Laboratorio di Progettazione di Sistemi Software
Design Pattern Comportamentali

Riccardo Solmi

© 2002-2008 Riccardo Solmi

Indice degli argomenti

» Catalogo di Design Patterns comportamentali:
e Interpreter
* Template Method
* Visitor
e [terator
* Strategy
* State
* Observer
* Command

* Null Object

© 2002-2008 Riccardo Solmi

Interpreter

Intent

* Represent an operation to be performed on the elements of an object structure.
Interpreter lets you define the operation into the classes of the elements on which it
operates.

» NB. The behavior of an interpreter operation is restricted only by the constraint
that must include a traversal of an [object] structure (What? Any. How? Traversal)
* NB. Popular definitions for use cases with an implied context:

* The “interpreter [operation] of a language” is an interpreter implementing the
execution semantics (traversing...)

» The “interpreter [program]” is an interpreter operation together with a parser for the
input sources and an unparser for the output .

« Was: Given a language, define a represention for its grammar along with an
interpreter that uses the representation to interpret sentences in the language.

Applicability
* An object structure contains many classes of objects with differing interfaces, and
you want to perform operations on these objects that depend on their classes

« The operations over the structure rarely change, but you often want to extend the
object structure with new classes

© 2002-2008 Riccardo Solmi

Interpreter /2

—me Context

Structure -
Client | i AbstractExpression
interpretfContext)
| |
= TerminalExpression NonterminalExpression Fo—
Participants - —
] Interprat(Context) nterpretiiontext}
AbstractExpression

* declares an abstract Interpret operation that is common to all nodes in the object structure.
TerminalExpression
« implements an Interpret operation associated with the leaves of the object structure.
* an instance is required for every entity without associations to the object structure.
NonterminalExpression
* implements an Interpret operation associated with the internal nodes of the object structure.
« one such class is required for every entity having one or more associations to the object structure..
* Interpret typically calls itself recursively on the variables representing the associations.
Context
* contains information that's global to the interpreter.
Client
* builds (or is given) an object structure representing a particular sentence in the language that the grammar defines.
* invokes the Interpret operation

© 2002-2008 Riccardo Solmi

Interpreter /3

 (Collaborations

The client builds (or is given) the sentence as an object structure. Then
the client initializes the context and invokes the Interpret operation.

Each NonterminalExpression node defines Interpret in terms of Interpret
on each subexpression. The Interpret operation of each
TerminalExpression defines the base case in the recursion.

The Interpret operations at each node use the context to store and access
the state of the interpreter

* Consequences

It's easy to change and extend the object structure (classes).
Implementing the object structure is easy, too.
Complex object structures are hard to maintain.

If you keep creating new ways of interpreting an expression, then
consider using other patterns to avoid changing the object structure.

© 2002-2008 Riccardo Solmi

* Interprete di espressioni regolari

RequiarExpression

h'l interpreli)

¥Y Y]

A

LiteralExpression

Interpret()

literal

SequenceExpression

expression
2

Interpreat()

c:}r.-:xpreaslun.?

|
repelilion - RepetitionExpression

AlternationExpression

Gal[err1a1l'.fe1

Interpretf)

Intermretl)

{_}almrn;:m'.rﬁ?

© 2002-2008 Riccardo Solmi

6

Template Method

 Intent

* Define the skeleton of an algorithm in an operation, deferring some steps to
subclasses. Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure

* Applicability

* to implement the invariant parts of an algorithm once and leave it up to subclasses
to implement the behavior that can vary.

* when common behavior among subclasses should be factored and localized in a
common class to avoid code duplication

* to control subclasses extensions

© 2002-2008 Riccardo Solmi

Structure

Participants
AbstractClass
defines abstract primitive operations
that concrete subclasses define to
implement steps of an algorithm.
implements a template method defining
the skeleton of an algorithm. The
template method calls primitive
operations as well as operations defined
in AbstractClass or those of other
objects.

© 2002-2008 Riccardo Solmi

AbstractClass

TemplateMethod(}) G--f---—-=------ PrimitiveOperation1()
PrimitveOperationii) ,
PrimitiveOparations() PrimitiveOperalion2()
ConcreteClass

PrimitiveCperationd ()
PrimitiveOperation2()

e ConcreteClass

« implements the primitive operations to
carry out subclass-specific steps of the
algorithm.

Template Method /3

* (ollaborations

« ConcreteClass relies on AbstractClass to implement the invariant steps of the
algorithm

» Consequences
« Template methods lead to an inverted control structure that's sometimes referred to
as "the Hollywood principle," that is, "Don't call us, we'll call you"

 It's important for template methods to specify which operations are hooks (may be
overridden) and which are abstract operations (must be overridden). To reuse an
abstract class effectively, subclass writers must understand which operations are
designed for overriding

9

© 2002-2008 Riccardo Solmi

& Creator

@ decorate()
@ fitterr)

@ finalizel)

u,:f" preparel)

@ SimpleCreator & FancyCreator
i filter() @ filter()

@ finalizel) @ finalizel)

D prepare) @ preparel)

© 2002-2008 Riccardo Solmi

10

Template Method example 2

Application framework that provides Application and Document classes

dOoCcs
Document o
Savel}
Opent)
Closa()
DaFead|)

AN

My Document

DoRead()

© 2002-2008 Riccardo Solmi

Application

AddDoocument()
OpanDocumeant|)
DoCreateDocument)
CanCpenDocument |
About ToOpenDocument()

A

My Application

DoCreateDocument() <1
CanOpenDocument()

AboutToOpenDocument()

return new hMyDocument

Template Method questions

* The Template Method relies on inheritance. Would it be possible to get
the same functionality of a Template Method, using object
composition? What would some of the tradeoffs be?

© 2002-2008 Riccardo Solmi

Visitor

 Intent

* Represent an operation to be performed on the elements of an object structure. Visitor lets
you define a new operation without changing the classes of the elements on which it operates

* Applicability
* an object structure contains many classes of objects with differing interfaces, and you want
to perform operations on these objects that depend on their concrete classes

* many distinct and unrelated operations need to be performed on objects in an object
structure, and you want to avoid "polluting" their classes with these operations

 the classes defining the object structure rarely change, but you often want to define new
operations over the structure

© 2002-2008 Riccardo Solmi

Visifor

VisitConeretetliementdfConcrateElementAl

WVisifConcretecliemantBi Loncredetiemenid]

A

e Structure

CaoncrataVisitor ConcreteVisitor?

VisitConcrateElemantalConcrateElomantA)

VisitConcralaElementd|Concrete Elemantd)
VisitConcreteElemantBiConcreteElement)

VisitConcreteElementB{ConcreteElementB)

ObjectStructure —-J Element

AccoptVisilar)

ConcreteElemant i

ConcreteElemantB

Cperationdd) Uperatianb)

AccaptiVisitar v) o AccaptiVisitor v) P
: :
| 1
| 1

v=xVisitConcreleElementAlt nia,]h

vemVisitConcreteElementBithiz)

© 2002-2008 Riccardo Solmi

Visitor /3

* (Collaborations

A client that uses the Visitor pattern must create a ConcreteVisitor object and then
traverse the object structure, visiting each element with the visitor

* When an element is visited, it calls the Visitor operation that corresponds to its
class. The element supplies itself as an argument to this operation to let the visitor
access its state, if necessary

© 2002-2008 Riccardo Solmi

Visitor /4

* The following interaction diagram illustrates the collaborations between an object
structure, a visitor, and two elements

anObjectStructure aConcreteElementA aConcreteElementB aConcreteVisitor

J‘ AcceptiaYisitor) J_

e WisitConcreteElementiiaConcreteElameant i)

I Operationd|

Accept/aVisitor)

w WisitConcreteElementB{aConcreteElamentB)

T OperationBl]

16

© 2002-2008 Riccardo Solmi

Visitor /4

Consequences
 Visitor makes adding new operations easy
A visitor gathers related operations and separates unrelated ones
* Adding new ConcreteElement classes 1s hard
 Visiting across class hierarchies
* Accumulating state

* Breaking encapsulation

© 2002-2008 Riccardo Solmi

ginterface:s

9 NodeVisitor

@ reporti)
O visitLeaf()

(o] visitﬁe%lularmndetj

I____£___1

ginterface:s

2 Node

O accept)

3 TraversalVisitor

3 SumVisitor

@ repori)
O visitLeat()
O visitRegularModel)

@ repoHi)
i wisitLeat()
@ visitRegularMadel)

© 2002-2008 Riccardo Solmi

® Leaf

Z;\‘ 0.1 -
N

@ RegularNode

@ Leaf)

O accept)
@ getvaluel)

FegularMade)
accept()
getleft)
getRight()

@ @ 0 @

TypeCheck(}
GenerateCodea()
PrettyPrintf)

AssignmentiNode

TypeCheck()
GenerateCodea()
PrettyPrint)

© 2002-2008 Riccardo Solmi

NodeVisitor

1 Visitdssignmant{AssignmentNods)
« Compiler that represents program e o assy mamoce
S 2Rl VarablaHaeldooe)
as abstract syntax trees /k
TypeCheckingVisitor CodeGeneratingVisitor
VisitAssignment{AssignmentMode) VisitAssignment{AssignmentMNode)
VisitWariable Ref{VariableHefModa) VisitVariable RefVMariableHefMode)
Node
- Program i}—I-J Node
TvpeCheck()
GenerateCode() AcceptNodelisitor)
PrettyPrint{] /k
- --- AssignmeniMNode VariableRelNode
VariableRefNode

AccaptModaVisitor v) ll:'
I
1

Accepl{MadeVistar v '?
i
I

y—=Visitassignment[ihis) L

]
v—=Yisi anableHatkth 5]1?""*

Visitor Questions

* One issue with the Visitor pattern involves cyclicality. When you add a
new Visitor, you must make changes to existing code. How would you
work around this possible problem?

20

© 2002-2008 Riccardo Solmi

Iterator

 Intent

« Provide a way to access the elements of an aggregate object sequentially without
exposing its underlying representation

* Applicability
* to access an aggregate object's contents without exposing its internal
representation.
* to support multiple traversals of aggregate objects.

* to provide a uniform interface for traversing different aggregate structures (that is,
to support polymorphic iteration).

21

© 2002-2008 Riccardo Solmi

Aggregale

Lreaiglferator)

o Structure

ConcreteAggregate

Herator

Firsiy)

Nexf)
IsDoref)
Currentiterny)

:

Concretelterator

Createlterator() ¢
1

relLEn new Gnnmmelrnramrfrhm}h

Participants
Iterator
defines an interface for accessing and
traversing elements.
Concretelterator
implements the Iterator interface.
keeps track of the current position in the

traversal of the aggregate.

© 2002-2008 Riccardo Solmi

Aggregate
defines an interface for creating an Iterator
object.

ConcreteAggregate
implements the Iterator creation interface
to return an instance of the proper
Concretelterator.

o¥)

[terator /3

Collaborations

« A Concretelterator keeps track of the current object in the aggregate and can
compute the succeeding object in the traversal

Consequences
It supports variations in the traversal of an aggregate
 [terators simplify the Aggregate interface

* More than one traversal can be pending on an aggregate

© 2002-2008 Riccardo Solmi

23

@ SimpleList

girterfaces

(& Reverselterator

0.1
@ append)
@ counti) & list
o getl) R
@ removerl)

© 2002-2008 Riccardo Solmi

@ OpenlList

& list: LinkedList

Feverzeterator))
hasMext()

nextl)

removel)

e o o @

append()
Count)

createReverselterator))

get(])
removel)

e & oo @

* An aggregate object such as a list should give you a way to access its elements

AbstractList & Client = [terator
Createlteratory) Firsti}
Count() Next]}
Appand(Ttam) isDonef]
Hamove(ltevn) Currentltemny)
List '; ________________ - Listiterator
SkipList : """""""""""""""""""""" SkipListiterator

© 2002-2008 Riccardo Solmi

[terator questions

Consider a composite that contains loan objects. The loan object interface
contains a method called "AmountOfLoan()", which returns the current
market value of a loan. Given a requirement to extract all loans above, below
or in between a certain amount, would you write or use an Iterator to do this?

26

© 2002-2008 Riccardo Solmi

Strategy

 Intent

* Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients that
use it.

* Applicability
* Many related classes differ only in their behavior. Strategies provide a way to
configure a class with one of many behaviors.
* You need different variants of an algorithm.
* An algorithm uses data that clients shouldn't know about.

 Instead of many conditionals.

27

© 2002-2008 Riccardo Solmi

Context

Contextinterface])

Participants
Strategy

strate
& m{ Strategy
Algorithminterface(]
Concreta5StratagyA ConcreteStrategyB ConcreteStrategyC
Algorithminterface() Algorithminlerface() Algorithminterface()
Context

declares an interface common to all

supported algorithms. Context uses this

interface to call the algorithm defined by

a ConcreteStrategy.
ConcreteStrategy

implements the algorithm using the

Strategy interface

© 2002-2008 Riccardo Solmi

1s configured with a
ConcreteStrategy object.
maintains a reference to a
Strategy object.

may define an interface that lets
Strategy access its data

Strategy /3

* (Collaborations

 Strategy and Context interact to implement the chosen algorithm. A context may
pass data or itself to the Strategy.

* A context forwards requests from its clients to its strategy.

» Clients usually create and pass a ConcreteStrategy to the context; thereafter, they
interact with the context exclusively.

« Consequences
« Families of related algorithms.

* An alternative to subclassing. Vary the algorithm independently of its context even
dynamically.

« Strategies eliminate conditional statements.

* A choice of implementations (space/time trade-offs).

* Clients must be aware of different Strategies.

« Communication overhead between Strategy and Context.

 Increased number of objects (stateless option).

29

© 2002-2008 Riccardo Solmi

Sorting Strategy

ginterface:s

O SortingStrategy

|

@ =0l

® LinearSort (® BubbleSort

@ =0l @ =0l

© 2002-2008 Riccardo Solmi

™ Sorter

@ Sorterr)

30

e To define different aloorithme

COMposion

Composition <>

Traverse()
Hepairi)
7

T

compositor->Composel)

© 2002-2008 Riccardo Solmi

-J Compositor

Lompose|)
SimpleCompositor TeXCompaositor ArrayCompositor
Composea() Composea() Composa|)

31

Strategy questions

« What happens when a system has an explosion of Strategy objects? Is
there some way to better manage these strategies?

« Is it possible that the data required by the strategy will not be available
from the context's interface? How could you remedy this potential
problem?

32

© 2002-2008 Riccardo Solmi

State

 Intent

- Allow an object to alter its behavior when its internal state changes. The object
will appear to change its class.

* Applicability
* An object's behavior depends on its state, and it must change its behavior at run-
time depending on that state.

« Operations have large, multipart conditional statements that depend on the object's
state. This state is usually represented by one or more enumerated constants.
Often, several operations will contain this same conditional structure.

33

© 2002-2008 Riccardo Solmi

=iamne
Structur¢ Context -

.J State

Requast() o

state-=Handle()

Participants

Context
defines the interface of interest
to clients.
maintains an instance of a
ConcreteState subclass that
defines the current state.

© 2002-2008 Riccardo Solmi

Handlef'|

A

ConcreteState A ConcreteStateB
Handlel) Handie()
State

defines an interface for
encapsulating the behavior
associated with a particular
state of the Context.

ConcreteState subclasses

each subclass implements a
behavior associated with a
state of the Context.

State /3

* Collaborations
« Context delegates state-specific requests to the current ConcreteState object.
* A context may pass itself as an argument to the State object handling the request.
« Context is the primary interface for clients.

» FEither Context or the ConcreteState subclasses can decide which state succeeds
another and under what circumstances.

35

© 2002-2008 Riccardo Solmi

State /4

Consequences
It localizes state-specific behavior and partitions behavior for different states.
It makes state transitions explicit.
 State objects can be shared.
Implementation
* Who defines the state transitions?
» Creating and destroying State objects
* A table-based alternative

© 2002-2008 Riccardo Solmi

36

e (Muene

girterface: girterface:
& QueueState & QueueContext
@ getFirst]) ¥ ctate @ zetState)
@ insert()
@ removeFirst() 4_\\

T —————— @ Queue

@ QueueFull ® QueusEmpty ® QueueNormal @ getFirst()
@ inser
@ GQueusFulll) @ getFirst) @ GQueueiMormall) @ removeFirst()
i@ getFirst() @ inzert() @ GQueueiMarmall) @ zetState)
@ inzert() @ removeFirst() @ getFirst()
@ removeFirst() @ inserti)
@ removeFirst])

© 2002-2008 Riccardo Solmi

» Network connection

TCPConnection §a1e TCPState
Openf) O--—--—-- | Olpeny
Closa() I Close)
Acknowledge() 1 Acknowledge(}
|
i
, /
state—=Dpeni) =
TCPEstablished TCPListen
Opend) Cpen()
Closel) Closel)
Acknowledge() Acknowladne()

© 2002-2008 Riccardo Solmi

TCPClosed

Openi}
Closea()
Acknowiedge()

38

e Drawino tool

DrawingController C__l__:urrr:bnt Fool
MouseFressead()

FProcessKeyboard()

Initialized)

© 2002-2008 Riccardo Solmi

Tool

HandleMouseFPress{)
HandleMouseRelease!)
HandleC-haracter}
GatCursor)

Activatel]

CreationTool

SelectionTool

TextTool

State Questions

« If something has only two to three states, is it overkill to use the State
pattern?

© 2002-2008 Riccardo Solmi

40

Intent
Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

Applicability
When an abstraction has two aspects, one dependent on the
other. Encapsulating these aspects in separate objects lets you
vary and reuse them independently.
When a change to one object requires changing others, and
you don't know how many objects need to be changed.
When an object should be able to notify other objects without
making assumptions about who these objects are. In other
words, you don't want these objects tightly coupled.

© 2002-2008 Riccardo Solmi

St

e Structure

Subject

Obhservers

g Observer

AttachiObserver)
DetachiObsarver)
T

for all 0 in ohservers |

--| o-=Update(]

i
|

b

ConcreteSubject L.

subject

Update)

|

ConcreteObserver

GetState(} ©---
metstatel)

refum subjectState

subjectsiate

© 2002-2008 Riccardo

Solmi

Updated) D=

ohsenverState

observerstate =
subject-=GetState()

Observer/3

 Participants

« Subject: knows its observers. Any number of Observer objects may observe a
subject.cprovides an interface for attaching and detaching Observer objects.

* Observer: defines an updating interface for objects that should be notified of
changes in a subject.

« ConcreteSubject: stores state of interest to ConcreteObserver objects and sends a
notification to its observers when its state changes.

« ConcreteObserver: maintains a reference to a ConcreteSubject object, stores state
that should stay consistent with the subject's and implements the Observer
updating interface to keep its state consistent with the subject's.

43

© 2002-2008 Riccardo Solmi

Observer/4

* (Collaborations

« ConcreteSubject notifies its observers whenever a change occurs that could make
its observers' state inconsistent with its own.

« After being informed of a change in the concrete subject, a ConcreteObserver
object may query the subject for information. ConcreteObserver uses this
information to reconcile its state with that of the subject.

44

© 2002-2008 Riccardo Solmi

Observer/5

* The following interaction diagram illustrates the collaborations
between a subject and two observers:

aConcreteSubject aConcreteObserver anotherConcreteObserver

1

SetState()

MNotify()

.|

Update()

GetState()
- L
Update(}

GetStateJ
-al

© 2002-2008 Riccardo Solmi

Observer/6

Consequences
« The Observer pattern lets you vary subjects and observers independently.
* You can reuse subjects without reusing their observers, and vice versa.
« It lets you add observers without modifying the subject or other observers.
» Abstract coupling between Subject and Observer.
« Support for broadcast communication.
* Unexpected updates.

© 2002-2008 Riccardo Solmi

46

Command

 Intent

« Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations.

* Applicability
* parameterize objects by an action to perform. Commands are an object-oriented
replacement for callbacks.

+ specify, queue, and execute requests at different times. A Command object can
have a lifetime independent of the original request.

 support undo. The Command's Execute operation can store state for reversing its
effects in the command itself.

47

© 2002-2008 Riccardo Solmi

Client Invoker fo————m Command

I Execute()
* Structure |
L g/ Receiver |
| .
i Action() ..ﬂ ConcreteCommand
| . .
. . Execuls() F------- -——1 recaiver-=Action();
 Participants i reaul recelver->Action)
- Command: | state
o declares an wicrraveaus . .
executing an operation Client:
. ConcreteCommand: Creates a ConcreteCommand object
« defines a binding between a and sets its receiver
Receiver object and an action Invoker:
* Implements Execute by Asks the command to carry out the
invoking the corresponding request
operation on Receiver)
Recelver:

Knows how to perform the operations
associated with carrying out a request.
Any class may serve as a receiver

48

© 2002-2008 Riccardo Solmi

Command/3

* Collaborations
« The client creates a ConcreteCommand object and specifies its receiver.
* An Invoker object stores the ConcreteCommand object.

« The invoker issues a request by calling Execute on the command. When
commands are undoable, ConcreteCommand stores state for undoing the command
prior to invoking Execute.

« The ConcreteCommand object invokes operations on its receiver to carry out the
request.

49

© 2002-2008 Riccardo Solmi

Command/4

» Collaborations (continue)

« The following diagram shows the interactions between these objects

aReceiver aClient

aCommand anlnvoker

|

1

| .

e Command{aBeceivar) !

_________________________ -
StoreCommand{aCammand)

s & &
N - xcuie])
Actiand) Executa()

-
I I

© 2002-2008 Riccardo Solmi

50

Command/5

* Consequences

« Command decouples the object that invokes the operation from the one that knows
how to perform it.

« Commands are first-class objects. They can be manipulated and extended like any
other object.

* You can assemble commands into a composite command. In general, composite
commands are an instance of the Composite pattern.

 It's easy to add new Commands, because you don't have to change existing classes.

51

© 2002-2008 Riccardo Solmi

Null Object (1)

* Intent
» It removes the need to check whether a field or variable is null by making it possible to
always call the field or variable safely.
* Motivation

« Ifaclient calls a method on a field or variable that is null, an exception may be raised, a
system may crash, or similar problems may occur.

* To protect our systems from such unwanted behavior, we write checks to prevent null fields
or variables from being called.

* Repeating this “null logic” in multiple places bloats the system with unnecessary code.

* Compared with code that is free of null logic, code that is full of it takes longer to
comprehend and requires more thinking about how to extend.

* Ifnew code is written and programmers forget to include null logic for it, null errors can
begin to occur.

52

© 2002-2008 Riccardo Solmi

Null Object (2)

e Structure

» Replace the null logic with a Null Object that provides the appropriate null

behavior.

subclassing approach

MouseBEventHandler

mouseDownl...): boolean
mouseMove(...) : boolean

AN

MullMouse BventHandler

mouseDownl...): boolean
mouseMove(...) : boolean

interface approach

zzintedfaces>
MouseBEventHandler

mouseDown(...): boolean
mouseMove(...) : boolean

MullMouse BventHandler

MouseEventHandlerStandard

© 2002-2008 Riccardo Solmi

mouselDown(...): boolean
mouseMove(...) : boolean

mouseDown(...): boolean
mouseMove(...) : boolean

53

Null Object (3)

Consequences
« Prevents null error without duplicating null logic.
» Simplifies code by minimizing null tests.
« Complicates a design when a system needs few null tests.

« Complicates maintainance. Null objects that have a superclass nust override all
newly inherited public methods.

54

© 2002-2008 Riccardo Solmi

	Laboratorio di Progettazione di Sistemi Software�Design Pattern Comportamentali
	Indice degli argomenti
	Interpreter
	Interpreter /2
	Interpreter /3
	Interpreter example 1
	Template Method
	Template Method /2
	Template Method /3
	Template Method example 1
	Template Method example 2
	Template Method questions
	Visitor
	Visitor /2
	Visitor /3
	Visitor /4
	Visitor /4
	Visitor example 1
	Visitor example 2
	Visitor Questions
	Iterator
	Iterator /2
	Iterator /3
	Iterator example 1
	Iterator example 2
	Iterator questions
	Strategy
	Strategy /2
	Strategy /3
	Strategy example 1
	Strategy example 2
	Strategy questions
	State
	State /2
	State /3
	State /4
	State example 1
	State example 2
	State example 3
	State Questions
	Observer
	Observer/2
	Observer/3
	Observer/4
	Observer/5
	Observer/6
	Command
	Command/2
	Command/3
	Command/4
	Command/5
	Null Object (1)
	Null Object (2)
	Null Object (3)

