
© 2002-2008 Riccardo Solmi

Laboratorio di Progettazione di Sistemi Software
Design Pattern Comportamentali

Riccardo Solmi

2

© 2002-2008 Riccardo Solmi

Indice degli argomenti

• Catalogo di Design Patterns comportamentali:
• Interpreter
• Template Method
• Visitor
• Iterator
• Strategy
• State
• Observer
• Command
• Null Object

3

© 2002-2008 Riccardo Solmi

Interpreter

• Intent
• Represent an operation to be performed on the elements of an object structure.
Interpreter lets you define the operation into the classes of the elements on which it
operates.
• NB. The behavior of an interpreter operation is restricted only by the constraint
that must include a traversal of an [object] structure (What? Any. How? Traversal)
• NB. Popular definitions for use cases with an implied context:

• The “interpreter [operation] of a language” is an interpreter implementing the
execution semantics (traversing…)

• The “interpreter [program]” is an interpreter operation together with a parser for the
input sources and an unparser for the output .

• Was: Given a language, define a represention for its grammar along with an
interpreter that uses the representation to interpret sentences in the language.

• Applicability
• An object structure contains many classes of objects with differing interfaces, and
you want to perform operations on these objects that depend on their classes
• The operations over the structure rarely change, but you often want to extend the
object structure with new classes

4

© 2002-2008 Riccardo Solmi

Interpreter /2

• Structure

• Participants
• AbstractExpression

• declares an abstract Interpret operation that is common to all nodes in the object structure.
• TerminalExpression

• implements an Interpret operation associated with the leaves of the object structure.
• an instance is required for every entity without associations to the object structure.

• NonterminalExpression
• implements an Interpret operation associated with the internal nodes of the object structure.
• one such class is required for every entity having one or more associations to the object structure..
• Interpret typically calls itself recursively on the variables representing the associations.

• Context
• contains information that's global to the interpreter.

• Client
• builds (or is given) an object structure representing a particular sentence in the language that the grammar defines.
• invokes the Interpret operation

5

© 2002-2008 Riccardo Solmi

Interpreter /3

• Collaborations
• The client builds (or is given) the sentence as an object structure. Then

the client initializes the context and invokes the Interpret operation.
• Each NonterminalExpression node defines Interpret in terms of Interpret

on each subexpression. The Interpret operation of each
TerminalExpression defines the base case in the recursion.

• The Interpret operations at each node use the context to store and access
the state of the interpreter

• Consequences
• It's easy to change and extend the object structure (classes).
• Implementing the object structure is easy, too.
• Complex object structures are hard to maintain.
• If you keep creating new ways of interpreting an expression, then

consider using other patterns to avoid changing the object structure.

6

© 2002-2008 Riccardo Solmi

Interpreter example 1

• Interprete di espressioni regolari

7

© 2002-2008 Riccardo Solmi

Template Method

• Intent
• Define the skeleton of an algorithm in an operation, deferring some steps to
subclasses. Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure

• Applicability
• to implement the invariant parts of an algorithm once and leave it up to subclasses
to implement the behavior that can vary.
• when common behavior among subclasses should be factored and localized in a
common class to avoid code duplication
• to control subclasses extensions

8

© 2002-2008 Riccardo Solmi

Template Method /2

• Structure

• ConcreteClass

• implements the primitive operations to
carry out subclass-specific steps of the
algorithm.

Participants
AbstractClass
defines abstract primitive operations
that concrete subclasses define to
implement steps of an algorithm.
implements a template method defining
the skeleton of an algorithm. The
template method calls primitive
operations as well as operations defined
in AbstractClass or those of other
objects.

9

© 2002-2008 Riccardo Solmi

Template Method /3

• Collaborations
• ConcreteClass relies on AbstractClass to implement the invariant steps of the

algorithm

• Consequences
• Template methods lead to an inverted control structure that's sometimes referred to

as "the Hollywood principle," that is, "Don't call us, we'll call you"
• It's important for template methods to specify which operations are hooks (may be

overridden) and which are abstract operations (must be overridden). To reuse an
abstract class effectively, subclass writers must understand which operations are
designed for overriding

10

© 2002-2008 Riccardo Solmi

Template Method example 1

11

© 2002-2008 Riccardo Solmi

Template Method example 2

• Application framework that provides Application and Document classes

12

© 2002-2008 Riccardo Solmi

Template Method questions

• The Template Method relies on inheritance. Would it be possible to get
the same functionality of a Template Method, using object
composition? What would some of the tradeoffs be?

13

© 2002-2008 Riccardo Solmi

Visitor

• Intent
• Represent an operation to be performed on the elements of an object structure. Visitor lets

you define a new operation without changing the classes of the elements on which it operates

• Applicability
• an object structure contains many classes of objects with differing interfaces, and you want

to perform operations on these objects that depend on their concrete classes
• many distinct and unrelated operations need to be performed on objects in an object

structure, and you want to avoid "polluting" their classes with these operations
• the classes defining the object structure rarely change, but you often want to define new

operations over the structure

14

© 2002-2008 Riccardo Solmi

Visitor /2

• Structure

15

© 2002-2008 Riccardo Solmi

Visitor /3

• Collaborations
• A client that uses the Visitor pattern must create a ConcreteVisitor object and then

traverse the object structure, visiting each element with the visitor
• When an element is visited, it calls the Visitor operation that corresponds to its

class. The element supplies itself as an argument to this operation to let the visitor
access its state, if necessary

16

© 2002-2008 Riccardo Solmi

Visitor /4

• The following interaction diagram illustrates the collaborations between an object
structure, a visitor, and two elements

17

© 2002-2008 Riccardo Solmi

Visitor /4

• Consequences
• Visitor makes adding new operations easy
• A visitor gathers related operations and separates unrelated ones
• Adding new ConcreteElement classes is hard
• Visiting across class hierarchies
• Accumulating state
• Breaking encapsulation

18

© 2002-2008 Riccardo Solmi

Visitor example 1

19

© 2002-2008 Riccardo Solmi

Visitor example 2

• Compiler that represents programs
as abstract syntax trees

20

© 2002-2008 Riccardo Solmi

Visitor Questions

• One issue with the Visitor pattern involves cyclicality. When you add a
new Visitor, you must make changes to existing code. How would you
work around this possible problem?

21

© 2002-2008 Riccardo Solmi

Iterator

• Intent
• Provide a way to access the elements of an aggregate object sequentially without

exposing its underlying representation
• Applicability

• to access an aggregate object's contents without exposing its internal
representation.

• to support multiple traversals of aggregate objects.
• to provide a uniform interface for traversing different aggregate structures (that is,

to support polymorphic iteration).

22

© 2002-2008 Riccardo Solmi

Iterator /2

• Structure

Participants
Iterator

defines an interface for accessing and
traversing elements.

ConcreteIterator
implements the Iterator interface.
keeps track of the current position in the

traversal of the aggregate.

Aggregate
defines an interface for creating an Iterator
object.

ConcreteAggregate
implements the Iterator creation interface
to return an instance of the proper
ConcreteIterator.

23

© 2002-2008 Riccardo Solmi

Iterator /3
• Collaborations

• A ConcreteIterator keeps track of the current object in the aggregate and can
compute the succeeding object in the traversal

• Consequences
• It supports variations in the traversal of an aggregate
• Iterators simplify the Aggregate interface
• More than one traversal can be pending on an aggregate

24

© 2002-2008 Riccardo Solmi

Iterator example 1

25

© 2002-2008 Riccardo Solmi

Iterator example 2

• An aggregate object such as a list should give you a way to access its elements
without exposing its internal structure

26

© 2002-2008 Riccardo Solmi

Iterator questions

• Consider a composite that contains loan objects. The loan object interface
contains a method called "AmountOfLoan()", which returns the current
market value of a loan. Given a requirement to extract all loans above, below
or in between a certain amount, would you write or use an Iterator to do this?

27

© 2002-2008 Riccardo Solmi

Strategy

• Intent
• Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients that
use it.

• Applicability
• Many related classes differ only in their behavior. Strategies provide a way to

configure a class with one of many behaviors.
• You need different variants of an algorithm.
• An algorithm uses data that clients shouldn't know about.
• Instead of many conditionals.

28

© 2002-2008 Riccardo Solmi

Strategy /2

• Structure

Participants
Strategy

declares an interface common to all
supported algorithms. Context uses this
interface to call the algorithm defined by
a ConcreteStrategy.

ConcreteStrategy
implements the algorithm using the
Strategy interface

Context
is configured with a
ConcreteStrategy object.
maintains a reference to a
Strategy object.
may define an interface that lets
Strategy access its data

29

© 2002-2008 Riccardo Solmi

Strategy /3
• Collaborations

• Strategy and Context interact to implement the chosen algorithm. A context may
pass data or itself to the Strategy.

• A context forwards requests from its clients to its strategy.
• Clients usually create and pass a ConcreteStrategy to the context; thereafter, they

interact with the context exclusively.
• Consequences

• Families of related algorithms.
• An alternative to subclassing. Vary the algorithm independently of its context even

dynamically.
• Strategies eliminate conditional statements.
• A choice of implementations (space/time trade-offs).
• Clients must be aware of different Strategies.
• Communication overhead between Strategy and Context.
• Increased number of objects (stateless option).

30

© 2002-2008 Riccardo Solmi

Strategy example 1

• Sorting Strategy

31

© 2002-2008 Riccardo Solmi

Strategy example 2

• To define different algorithms

32

© 2002-2008 Riccardo Solmi

Strategy questions

• What happens when a system has an explosion of Strategy objects? Is
there some way to better manage these strategies?

• Is it possible that the data required by the strategy will not be available
from the context's interface? How could you remedy this potential
problem?

33

© 2002-2008 Riccardo Solmi

State

• Intent
• Allow an object to alter its behavior when its internal state changes. The object

will appear to change its class.
• Applicability

• An object's behavior depends on its state, and it must change its behavior at run-
time depending on that state.

• Operations have large, multipart conditional statements that depend on the object's
state. This state is usually represented by one or more enumerated constants.
Often, several operations will contain this same conditional structure.

34

© 2002-2008 Riccardo Solmi

State /2

• Structure

Participants
Context

defines the interface of interest
to clients.

maintains an instance of a
ConcreteState subclass that
defines the current state.

State
defines an interface for

encapsulating the behavior
associated with a particular
state of the Context.

ConcreteState subclasses
each subclass implements a

behavior associated with a
state of the Context.

35

© 2002-2008 Riccardo Solmi

State /3

• Collaborations
• Context delegates state-specific requests to the current ConcreteState object.
• A context may pass itself as an argument to the State object handling the request.
• Context is the primary interface for clients.
• Either Context or the ConcreteState subclasses can decide which state succeeds

another and under what circumstances.

36

© 2002-2008 Riccardo Solmi

State /4

• Consequences
• It localizes state-specific behavior and partitions behavior for different states.
• It makes state transitions explicit.
• State objects can be shared.

• Implementation
• Who defines the state transitions?
• Creating and destroying State objects
• A table-based alternative

37

© 2002-2008 Riccardo Solmi

State example 1

• Queue

38

© 2002-2008 Riccardo Solmi

State example 2

• Network connection

39

© 2002-2008 Riccardo Solmi

State example 3

• Drawing tool

40

© 2002-2008 Riccardo Solmi

State Questions

• If something has only two to three states, is it overkill to use the State
pattern?

41

© 2002-2008 Riccardo Solmi

Intent
Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

Applicability
When an abstraction has two aspects, one dependent on the
other. Encapsulating these aspects in separate objects lets you
vary and reuse them independently.
When a change to one object requires changing others, and
you don't know how many objects need to be changed.
When an object should be able to notify other objects without
making assumptions about who these objects are. In other
words, you don't want these objects tightly coupled.

Observer

42

© 2002-2008 Riccardo Solmi

Observer/2

Structure

• Structure

43

© 2002-2008 Riccardo Solmi

Observer/3

• Participants
• Subject: knows its observers. Any number of Observer objects may observe a

subject.◦provides an interface for attaching and detaching Observer objects.
• Observer: defines an updating interface for objects that should be notified of

changes in a subject.
• ConcreteSubject: stores state of interest to ConcreteObserver objects and sends a

notification to its observers when its state changes.
• ConcreteObserver: maintains a reference to a ConcreteSubject object, stores state

that should stay consistent with the subject's and implements the Observer
updating interface to keep its state consistent with the subject's.

44

© 2002-2008 Riccardo Solmi

Observer/4

• Collaborations
• ConcreteSubject notifies its observers whenever a change occurs that could make

its observers' state inconsistent with its own.
• After being informed of a change in the concrete subject, a ConcreteObserver

object may query the subject for information. ConcreteObserver uses this
information to reconcile its state with that of the subject.

45

© 2002-2008 Riccardo Solmi

Observer/5

• The following interaction diagram illustrates the collaborations
between a subject and two observers:

46

© 2002-2008 Riccardo Solmi

Observer/6

• Consequences
• The Observer pattern lets you vary subjects and observers independently.
• You can reuse subjects without reusing their observers, and vice versa.
• It lets you add observers without modifying the subject or other observers.
• Abstract coupling between Subject and Observer.
• Support for broadcast communication.
• Unexpected updates.

47

© 2002-2008 Riccardo Solmi

Command

• Intent
• Encapsulate a request as an object, thereby letting you parameterize clients with

different requests, queue or log requests, and support undoable operations.
• Applicability

• parameterize objects by an action to perform. Commands are an object-oriented
replacement for callbacks.

• specify, queue, and execute requests at different times. A Command object can
have a lifetime independent of the original request.

• support undo. The Command's Execute operation can store state for reversing its
effects in the command itself.

48

© 2002-2008 Riccardo Solmi

Command/2

• Structure

• Participants
• Command:

• declares an interface for
executing an operation

• ConcreteCommand:
• defines a binding between a

Receiver object and an action
• Implements Execute by

invoking the corresponding
operation on Receiver

Client:
Creates a ConcreteCommand object
and sets its receiver

Invoker:
Asks the command to carry out the
request

Receiver:
Knows how to perform the operations
associated with carrying out a request.
Any class may serve as a receiver

49

© 2002-2008 Riccardo Solmi

Command/3

• Collaborations
• The client creates a ConcreteCommand object and specifies its receiver.
• An Invoker object stores the ConcreteCommand object.
• The invoker issues a request by calling Execute on the command. When

commands are undoable, ConcreteCommand stores state for undoing the command
prior to invoking Execute.

• The ConcreteCommand object invokes operations on its receiver to carry out the
request.

50

© 2002-2008 Riccardo Solmi

Command/4

• Collaborations (continue)
• The following diagram shows the interactions between these objects

51

© 2002-2008 Riccardo Solmi

Command/5

• Consequences
• Command decouples the object that invokes the operation from the one that knows

how to perform it.
• Commands are first-class objects. They can be manipulated and extended like any

other object.
• You can assemble commands into a composite command. In general, composite

commands are an instance of the Composite pattern.
• It's easy to add new Commands, because you don't have to change existing classes.

52

© 2002-2008 Riccardo Solmi

Null Object (1)

• Intent
• It removes the need to check whether a field or variable is null by making it possible to

always call the field or variable safely.
• Motivation

• If a client calls a method on a field or variable that is null, an exception may be raised, a
system may crash, or similar problems may occur.

• To protect our systems from such unwanted behavior, we write checks to prevent null fields
or variables from being called.

• Repeating this “null logic” in multiple places bloats the system with unnecessary code.
• Compared with code that is free of null logic, code that is full of it takes longer to

comprehend and requires more thinking about how to extend.
• If new code is written and programmers forget to include null logic for it, null errors can

begin to occur.

53

© 2002-2008 Riccardo Solmi

Null Object (2)

• Structure
• Replace the null logic with a Null Object that provides the appropriate null

behavior.

54

© 2002-2008 Riccardo Solmi

Null Object (3)

• Consequences
• Prevents null error without duplicating null logic.
• Simplifies code by minimizing null tests.
• Complicates a design when a system needs few null tests.
• Complicates maintainance. Null objects that have a superclass nust override all

newly inherited public methods.

	Laboratorio di Progettazione di Sistemi Software�Design Pattern Comportamentali
	Indice degli argomenti
	Interpreter
	Interpreter /2
	Interpreter /3
	Interpreter example 1
	Template Method
	Template Method /2
	Template Method /3
	Template Method example 1
	Template Method example 2
	Template Method questions
	Visitor
	Visitor /2
	Visitor /3
	Visitor /4
	Visitor /4
	Visitor example 1
	Visitor example 2
	Visitor Questions
	Iterator
	Iterator /2
	Iterator /3
	Iterator example 1
	Iterator example 2
	Iterator questions
	Strategy
	Strategy /2
	Strategy /3
	Strategy example 1
	Strategy example 2
	Strategy questions
	State
	State /2
	State /3
	State /4
	State example 1
	State example 2
	State example 3
	State Questions
	Observer
	Observer/2
	Observer/3
	Observer/4
	Observer/5
	Observer/6
	Command
	Command/2
	Command/3
	Command/4
	Command/5
	Null Object (1)
	Null Object (2)
	Null Object (3)

