
© 2002-2008 Riccardo Solmi

Laboratorio di Progettazione di Sistemi Software
Design Pattern Strutturali

Riccardo Somi



2

© 2002-2008 Riccardo Solmi

Indice degli argomenti

• Catalogo di Design Patterns strutturali:
• Composite
• Decorator
• Adapter



3

© 2002-2008 Riccardo Solmi

Composite

• Intent
• Compose objects into tree structures to represent part-whole hierarchies. 
Composite lets clients treat individual objects and compositions of objects uniformly 

• Applicability
• you want to represent part-whole hierarchies of objects. 
• you want clients to be able to ignore the difference between compositions of 
objects and individual objects. Clients will treat all objects in the composite structure 
uniformly 



4

© 2002-2008 Riccardo Solmi

Composite /2

• Structure

Participants
Component

declares the interface for objects in the 
composition. 
implements default behavior for the interface 
common to all classes. 
declares an interface for accessing and 
managing its child components. 
(optional) defines an interface for accessing a 
component's parent in the recursive structure, 
and implements it if that's appropriate. 

Leaf
represents leaf objects in the composition. 
defines behavior for primitive objects 

Composite
defines behavior for components having children. 
stores child components. 
Implements child-related operations in the Component 
interface. 

Client
manipulates objects in the composition through the 
Component interface. 



5

© 2002-2008 Riccardo Solmi

Composite /3

• Collaborations
• Clients use the Component class interface to interact with objects in the composite 

structure. If the recipient is a Leaf, then the request is handled directly. If the 
recipient is a Composite, then it usually forwards requests to its child components, 
possibly performing additional operations before and/or after forwarding. 

• Consequences
• defines class hierarchies consisting of primitive objects and composite 

objects
• makes the client simple
• makes it easier to add new kinds of components 
• can make your design overly general 



6

© 2002-2008 Riccardo Solmi

Composite example 1



7

© 2002-2008 Riccardo Solmi

Composite example 2

• Graphics applications like drawing editors and schematic capture systems let users 
build complex diagrams out of simple components 



8

© 2002-2008 Riccardo Solmi

Composite Questions

• Part 1: How does the Composite pattern help to consolidate system-wide 
conditional logic?

• Part 2: Would you use the composite pattern if you did not have a part-whole
hierarchy? In other words, if only a few objects have children and almost
everything else in your collection is a leaf (a leaf can have no children), would
you still use the composite pattern to model these objects?



9

© 2002-2008 Riccardo Solmi

Decorator or Wrapper

• Intent
• Attach additional responsibilities to an object dynamically. Decorators provide a 

flexible alternative to subclassing for extending functionality.
• Applicability

• to add responsibilities to individual objects dynamically and transparently, that is, 
without affecting other objects. 

• for responsibilities that can be withdrawn. 
• when extension by subclassing is impractical or not allowed



10

© 2002-2008 Riccardo Solmi

Decorator /2

• Structure

Participants
Component

defines the interface for objects that can 
have responsibilities added to them
dynamically

ConcreteComponent
defines an object to which additional

responsibilities can be attached

Decorator
maintains a reference to a Component object 

and defines an interface that conforms to 
Component's interface

ConcreteDecorator
adds responsibilities to the component



11

© 2002-2008 Riccardo Solmi

Decorator /3

• Collaborations
• Decorator forwards requests to its Component object. It may optionally perform additional 

operations before and after forwarding the request

• Consequences
• More flexibility than static inheritance.
• Avoids feature-laden classes high up in the hierarchy.
• A decorator and its component aren’t identical.
• Lots of little objects.

• Implementation
• Keeping Component classes lightweight.
• Changing the skin of an object versus changing its guts.



12

© 2002-2008 Riccardo Solmi

Decorator example 1

• String Decorator



13

© 2002-2008 Riccardo Solmi

Decorator example 2

• To decorate an individual objects



14

© 2002-2008 Riccardo Solmi

Decorator example 3

• Adding responsibilities to streams



15

© 2002-2008 Riccardo Solmi

Decorator questions

• Now consider an object A, that is decorated with an object B. Since object B 
"decorates" object A, object B shares an interface with object A. If some client
is then passed an instance of this decorated object, and that method attempts to
call a method in B that is not part of A's interface, does this mean that the 
object is no longer a Decorator, in the strict sense of the pattern? Furthermore, 
why is it important that a decorator object's interface conforms to the interface 
of the component it decorates? 



16

© 2002-2008 Riccardo Solmi

Adapter

• Intent
• Convert the interface of a class into another interface clients expect. Adapter lets 

classes work together that couldn't otherwise because of incompatible interfaces.
• Applicability

• you want to use an existing class, and its interface does not match the one you 
need.

• you want to create a reusable class that cooperates with unrelated or unforeseen 
classes, that is, classes that don't necessarily have compatible interfaces.

• (object adapter only) you need to use several existing subclasses, but it's 
impractical to adapt their interface by subclassing every one. An object adapter 
can adapt the interface of its parent class.



17

© 2002-2008 Riccardo Solmi

Adapter/2

• Structure
• A class adapter uses multiple inheritance to adapt one interface to another:

Participants:
Target: defines the domain-specific 
interface that Client uses. 
Client: collaborates with objects 
conforming to the Target interface. 
Adaptee: defines interface that 
needs adapting. 
Adapter: adapts the interface of 
Adaptee to the Target interface.



18

© 2002-2008 Riccardo Solmi

Adapter/2

• Structure
• An object adapter relies on object composition:



19

© 2002-2008 Riccardo Solmi

Adapter/4
• Consequences
• Class and object adapters have different trade-offs. 
• A class adapter
• adapts Adaptee to Target by committing to a concrete Adapter class. A class adapter won't 

work when we want to adapt a class and all its subclasses. 
• lets Adapter override some of Adaptee's behavior, since Adapter is a subclass of Adaptee. 
• introduces only one object, and no additional pointer indirection is needed to get to the adaptee.
• An object adapter
• lets a single Adapter work with many Adaptees, that is, the Adaptee itself and all of its 

subclasses (if any). The Adapter can also add functionality to all Adaptees at once. 
• makes it harder to override Adaptee behavior. It will require subclassing Adaptee and making 

Adapter refer to the subclass rather than the Adaptee itself.



20

© 2002-2008 Riccardo Solmi

Adapter/5
• Example

• Sometimes a toolkit class that's designed for reuse isn't reusable only because its interface 
doesn't match the domain-specific interface an application requires.Consider for example a 
drawing editor that lets users draw and arrange graphical elements (lines, polygons, text, etc.) 
into pictures and diagrams. An user interface toolkit might already provide a sophisticated 
TextView class for displaying and editing text.


	Laboratorio di Progettazione di Sistemi Software�Design Pattern Strutturali
	Indice degli argomenti
	Composite
	Composite /2
	Composite /3
	Composite example 1
	Composite example 2
	Composite Questions
	Decorator or Wrapper
	Decorator /2
	Decorator /3
	Decorator example 1
	Decorator example 2
	Decorator example 3
	Decorator questions
	Adapter
	Adapter/2
	Adapter/2
	Adapter/4
	Adapter/5

