
1© 2002-2005 Riccardo Solmi

TITLE

Laboratorio di Progettazione di
Sistemi Software

Design Patterns

Comportamentali

Valentina Presutti (A-L)
Riccardo Solmi (M-Z)

2© 2002-2005 Riccardo Solmi

Indice degli argomenti

Catalogo di Design Patterns comportamentali:
• Template Method
• Visitor
• Iterator
• Strategy
• State
• Observer
• Command

3© 2002-2005 Riccardo Solmi

Template Method

Intent

• Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the
algorithm's structure

Applicability

• to implement the invariant parts of an algorithm once and
leave it up to subclasses to implement the behavior that can
vary.

• when common behavior among subclasses should be factored
and localized in a common class to avoid code duplication

• to control subclasses extensions

4© 2002-2005 Riccardo Solmi

Template Method /2

Structure

• ConcreteClass

• implements the primitive operations to
carry out subclass-specific steps of the
algorithm.

Participants
• AbstractClass

• defines abstract primitive
operations that concrete subclasses
define to implement steps of an
algorithm.

• implements a template method
defining the skeleton of an
algorithm. The template method
calls primitive operations as well
as operations defined in
AbstractClass or those of other
objects.

5© 2002-2005 Riccardo Solmi

Template Method /3

Collaborations
• ConcreteClass relies on AbstractClass to implement the

invariant steps of the algorithm

Consequences
• Template methods lead to an inverted control structure that's

sometimes referred to as "the Hollywood principle," that is,
"Don't call us, we'll call you"

• It's important for template methods to specify which
operations are hooks (may be overridden) and which are
abstract operations (must be overridden). To reuse an
abstract class effectively, subclass writers must understand
which operations are designed for overriding

6© 2002-2005 Riccardo Solmi

Template Method example 1

7© 2002-2005 Riccardo Solmi

Template Method example 2

Application framework that provides Application and Document classes

8© 2002-2005 Riccardo Solmi

Template Method questions

The Template Method relies on inheritance. Would it be
possible to get the same functionality of a Template Method,
using object composition? What would some of the tradeoffs
be?

9© 2002-2005 Riccardo Solmi

Visitor

Intent
• Represent an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates

Applicability
• an object structure contains many classes of objects with differing

interfaces, and you want to perform operations on these objects that
depend on their concrete classes

• many distinct and unrelated operations need to be performed on objects
in an object structure, and you want to avoid "polluting" their classes
with these operations

• the classes defining the object structure rarely change, but you often
want to define new operations over the structure

10© 2002-2005 Riccardo Solmi

Visitor /2

Structure

11© 2002-2005 Riccardo Solmi

Visitor /3

Collaborations

• A client that uses the Visitor pattern must create a
ConcreteVisitor object and then traverse the object
structure, visiting each element with the visitor

• When an element is visited, it calls the Visitor operation that
corresponds to its class. The element supplies itself as an
argument to this operation to let the visitor access its state, if
necessary

12© 2002-2005 Riccardo Solmi

Visitor /4

The following interaction diagram illustrates the collaborations between
an object structure, a visitor, and two elements

13© 2002-2005 Riccardo Solmi

Visitor /4

Consequences

• Visitor makes adding new operations easy

• A visitor gathers related operations and separates unrelated
ones

• Adding new ConcreteElement classes is hard

• Visiting across class hierarchies

• Accumulating state

• Breaking encapsulation

14© 2002-2005 Riccardo Solmi

Visitor example 1

15© 2002-2005 Riccardo Solmi

Visitor example 2

Compiler that represents
programs as abstract syntax
trees

16© 2002-2005 Riccardo Solmi

Visitor Questions

One issue with the Visitor pattern involces cyclicality. When
you add a new Visitor, you must make changes to existing
code. How would you work around this possible problem?

17© 2002-2005 Riccardo Solmi

Iterator

Intent

• Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

Applicability

• to access an aggregate object's contents without exposing its
internal representation.

• to support multiple traversals of aggregate objects.

• to provide a uniform interface for traversing different
aggregate structures (that is, to support polymorphic
iteration).

18© 2002-2005 Riccardo Solmi

Iterator /2

Structure

Participants
• Iterator

• defines an interface for accessing and
traversing elements.

• ConcreteIterator
• implements the Iterator interface.
• keeps track of the current position in the

traversal of the aggregate.

• Aggregate
• defines an interface for creating an

Iterator object.

• ConcreteAggregate
• implements the Iterator creation

interface to return an instance of the
proper ConcreteIterator.

19© 2002-2005 Riccardo Solmi

Iterator /3

Collaborations

• A ConcreteIterator keeps track of the current object in the
aggregate and can compute the succeeding object in the
traversal

Consequences

• It supports variations in the traversal of an aggregate

• Iterators simplify the Aggregate interface

• More than one traversal can be pending on an aggregate

20© 2002-2005 Riccardo Solmi

Iterator example 1

21© 2002-2005 Riccardo Solmi

Iterator example 2

An aggregate object such as a list should give you a way to access its
elements without exposing its internal structure

22© 2002-2005 Riccardo Solmi

Iterator questions

Consider a composite that contains loan objects. The loan
object interface contains a method called
"AmountOfLoan()", which returns the current market value
of a loan. Given a requirement to extract all loans above,
below or in between a certain amount, would you write or
use an Iterator to do this?

23© 2002-2005 Riccardo Solmi

Strategy

Intent

• Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Applicability

• Many related classes differ only in their behavior. Strategies
provide a way to configure a class with one of many
behaviors.

• You need different variants of an algorithm.

• An algorithm uses data that clients shouldn't know about.

• Instead of many conditionals.

24© 2002-2005 Riccardo Solmi

Strategy /2

Structure

Participants

• Strategy
• declares an interface common to all

supported algorithms. Context uses
this interface to call the algorithm
defined by a ConcreteStrategy.

• ConcreteStrategy
• implements the algorithm using the

Strategy interface

• Context
• is configured with a

ConcreteStrategy object.
• maintains a reference to a

Strategy object.
• may define an interface that

lets Strategy access its data

25© 2002-2005 Riccardo Solmi

Strategy /3

Collaborations
• Strategy and Context interact to implement the chosen algorithm. A

context may pass data or itself to the Strategy.
• A context forwards requests from its clients to its strategy.
• Clients usually create and pass a ConcreteStrategy to the context;

thereafter, they interact with the context exclusively.

Consequences
• Families of related algorithms.
• An alternative to subclassing. Vary the algorithm independently of its

context even dynamically.
• Strategies eliminate conditional statements.
• A choice of implementations (space/time trade-offs).
• Clients must be aware of different Strategies.
• Communication overhead between Strategy and Context.
• Increased number of objects (stateless option).

26© 2002-2005 Riccardo Solmi

Strategy example 1

Sorting Strategy

27© 2002-2005 Riccardo Solmi

Strategy example 2

To define different algorithms

28© 2002-2005 Riccardo Solmi

Strategy questions

What happens when a system has an explosion of Strategy
objects? Is there some way to better manage these strategies?

Is it possible that the data required by the strategy will not
be available from the context's interface? How could you
remedy this potential problem?

29© 2002-2005 Riccardo Solmi

State

Intent

• Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.

Applicability

• An object's behavior depends on its state, and it must
change its behavior at run-time depending on that state.

• Operations have large, multipart conditional statements that
depend on the object's state. This state is usually represented
by one or more enumerated constants. Often, several
operations will contain this same conditional structure.

30© 2002-2005 Riccardo Solmi

State /2

Structure

Participants

• Context
– defines the interface of

interest to clients.
– maintains an instance of a

ConcreteState subclass that
defines the current state.

• State
– defines an interface for

encapsulating the behavior
associated with a particular
state of the Context.

• ConcreteState subclasses
– each subclass implements a

behavior associated with a
state of the Context.

31© 2002-2005 Riccardo Solmi

State /3

Collaborations

• Context delegates state-specific requests to the current
ConcreteState object.

• A context may pass itself as an argument to the State object
handling the request.

• Context is the primary interface for clients.

• Either Context or the ConcreteState subclasses can decide
which state succeeds another and under what circumstances.

32© 2002-2005 Riccardo Solmi

State /4

Consequences

• It localizes state-specific behavior and partitions behavior
for different states.

• It makes state transitions explicit.

• State objects can be shared.

Implementation

• Who defines the state transitions?

• Creating and destroying State objects

• A table-based alternative

33© 2002-2005 Riccardo Solmi

State example 1

Queue

34© 2002-2005 Riccardo Solmi

State example 2

Network connection

35© 2002-2005 Riccardo Solmi

State example 3

Drawing tool

36© 2002-2005 Riccardo Solmi

State Questions

If something has only two to three states, is it overkill to use
the State pattern?

37© 2002-2005 Riccardo Solmi

Observer

Intent
• Define a one-to-many dependency between objects so that

when one object changes state, all its dependents are
notified and updated automatically.

Applicability
• When an abstraction has two aspects, one dependent on the

other. Encapsulating these aspects in separate objects lets
you vary and reuse them independently.

• When a change to one object requires changing others,
and you don't know how many objects need to be changed.

• When an object should be able to notify other objects
without making assumptions about who these objects are.
In other words, you don't want these objects tightly
coupled.

38© 2002-2005 Riccardo Solmi

Observer/2

Structure

Structure

39© 2002-2005 Riccardo Solmi

Observer/3

Participants
• Subject: knows its observers. Any number of Observer

objects may observe a subject.◦provides an interface for
attaching and detaching Observer objects.

• Observer: defines an updating interface for objects that
should be notified of changes in a subject.

• ConcreteSubject: stores state of interest to
ConcreteObserver objects and sends a notification to its
observers when its state changes.

• ConcreteObserver: maintains a reference to a
ConcreteSubject object, stores state that should stay
consistent with the subject's and implements the Observer
updating interface to keep its state consistent with the
subject's.

40© 2002-2005 Riccardo Solmi

Observer/4

Collaborations

• ConcreteSubject notifies its observers whenever a change
occurs that could make its observers' state inconsistent with
its own.

• After being informed of a change in the concrete subject, a
ConcreteObserver object may query the subject for
information. ConcreteObserver uses this information to
reconcile its state with that of the subject.

41© 2002-2005 Riccardo Solmi

Observer/5

The following interaction diagram illustrates the
collaborations between a subject and two observers:

42© 2002-2005 Riccardo Solmi

Observer/6

Consequences

• The Observer pattern lets you vary subjects and observers
independently.

• You can reuse subjects without reusing their observers, and
vice versa.

• It lets you add observers without modifying the subject or
other observers.

• Abstract coupling between Subject and Observer.

• Support for broadcast communication.

• Unexpected updates.

43© 2002-2005 Riccardo Solmi

Command

Intent

• Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operations.

Applicability

• parameterize objects by an action to perform. Commands
are an object-oriented replacement for callbacks.

• specify, queue, and execute requests at different times. A
Command object can have a lifetime independent of the
original request.

• support undo. The Command's Execute operation can store
state for reversing its effects in the command itself.

44© 2002-2005 Riccardo Solmi

Command/2

Structure

Participants
• Command:

• declares an interface
for executing an
operation

• ConcreteCommand:
• defines a binding

between a Receiver
object and an action

• Implements Execute
by invoking the
corresponding
operation on Receiver

• Client:
• Creates a ConcreteCommand

object and sets its receiver

• Invoker:
• Asks the command to carry out

the request

• Receiver:
• Knows how to perform the

operations associated with
carrying out a request. Any class
may serve as a receiver

45© 2002-2005 Riccardo Solmi

Command/3

Collaborations
• The client creates a ConcreteCommand object and specifies

its receiver.
• An Invoker object stores the ConcreteCommand object.
• The invoker issues a request by calling Execute on the

command. When commands are undoable,
ConcreteCommand stores state for undoing the command
prior to invoking Execute.

• The ConcreteCommand object invokes operations on its
receiver to carry out the request.

46© 2002-2005 Riccardo Solmi

Command/4

Collaborations (continue)
The following diagram shows the interactions between these objects

47© 2002-2005 Riccardo Solmi

Command/5

Consequences
• Command decouples the object that invokes the operation

from the one that knows how to perform it.
• Commands are first-class objects. They can be manipulated

and extended like any other object.
• You can assemble commands into a composite command. In

general, composite commands are an instance of the
Composite pattern.

• It's easy to add new Commands, because you don't have to
change existing classes.

	TITLE
	Indice degli argomenti
	Template Method
	Template Method /2
	Template Method /3
	Template Method example 1
	Template Method example 2
	Template Method questions
	Visitor
	Visitor /2
	Visitor /3
	Visitor /4
	Visitor /4
	Visitor example 1
	Visitor example 2
	Visitor Questions
	Iterator
	Iterator /2
	Iterator /3
	Iterator example 1
	Iterator example 2
	Iterator questions
	Strategy
	Strategy /2
	Strategy /3
	Strategy example 1
	Strategy example 2
	Strategy questions
	State
	State /2
	State /3
	State /4
	State example 1
	State example 2
	State example 3
	State Questions
	Observer
	Observer/2
	Observer/3
	Observer/4
	Observer/5
	Observer/6
	Command
	Command/2
	Command/3
	Command/4
	Command/5

