_aboratorio di Progettazione di
Sistemi Software

Design Patterns

Comportamentall

Valentina Presutti (A-L)
Riccardo Solmi (M-2)

Indice degli argomenti
I

= Catalogo di Design Patterns comportamentali:
e Template Method
e Visitor
e Iterator
e Strategy
e State
e Observer

e Command

© 2002-2005 Riccardo Solmi

Template Method
I

= |ntent

* Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the
algorithm's structure

= Applicability

 to implement the invariant parts of an algorithm once and
leave it up to subclasses to implement the behavior that can

vary.

* when common behavior among subclasses should be factored
and localized in a common class to avoid code duplication

* to control subclasses extensions
© 2002-2005 Riccardo Solmi z C 3

Template Method /2
B

= Structure

= Participants
« AbstractClass

» defines abstract primitive
operations that concrete subclasses
define to implement steps of an
algorithm.

* implements a template method
defining the skeleton of an
algorithm. The template method
calls primitive operations as well
as operations defined in
AbstractClass or those of other
objects.

© 2002-2005 Riccardo Solmi

AbstractClass

TemplateMeathod{} & -
FrimitiveOpearalion1()
PrimitiveOpatalion2()

A

ConcreteClass

PrimitiveCperationd ()
PrimitiveOpearation2(]

e ConcreteClass

i:".rirnatih'nl:lpe rationi)

PrimitiveOparation2()

T

* implements the primitive operations to
carry out subclass-specific steps of the
algorithm.

Template Method /3
N

= Collaborations

* ConcreteClass relies on AbstractClass to implement the
invariant steps of the algorithm

= Conseqguences

* Template methods lead to an inverted control structure that's
sometimes referred to as "the Hollywood principle," that is,
"Don't call us, we'll call you"

 It's important for template methods to specify which
operations are hooks (may be overridden) and which are
abstract operations (must be overridden). To reuse an
abstract class effectively, subclass writers must understand

which operations are designed for overriding 7
5

© 2002-2005 Riccardo Solmi

Template Method example 1

B
& Creator
@ decorate()
@' filter)
@ finalizel)
u:.-'u' preparel)
@ SimpleCreator & FancyCreator
i Afilter() @ filter()
@ finalizel) @ finalizel)
@ prepare) @ preparel)

© 2002-2005 Riccardo Solmi

Template Method example 2
I

= Application framework that provides Application and Document classes

OCs
Document <M Application
Savel} AddDacument{)
Openi) OpanDocumeant|)
Closal{) OoCreataDocurmenty)
DaRead) CanCoenDocurment(|
About TeOpenDocument()

A A
MyDocument fot - = === MyApplication
DoRead{) DoCreateDocumenty & 4------ return new Mylocument

CanOpenDocumeant()
AboutToOpenDocument()

© 2002-2005 Riccardo Solmi Z 7

Template Method questions
I

= The Template Method relies on inheritance. Would it be
possible to get the same functionality of a Template Method,

using object composition? What would some of the tradeoffs
be?

© 2002-2005 Riccardo Solmi z C 8

Visitor
B

= [ntent
« Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates

= Applicability

* an object structure contains many classes of objects with differing
interfaces, and you want to perform operations on these objects that
depend on their concrete classes

* many distinct and unrelated operations need to be performed on objects
n an object structure, and you want to avoid "polluting" their classes
with these operations

« the classes defining the object structure rarely change, but you often
want to define new operations over the structure

© 2002-2005 Riccardo Solmi z C 9

Visitor /2

E— Visitor
VisifConerateElementd Concratet lementA|
= Structu re VisitConereleclemeantb{Loncraletlemsnibd]

A

ConcretaVisitor ConcreteVisitor?

VisitConcrateElemantalConcraleElemeanta)

VisitConcralaElementd|Concrete Elemantd)
VisitConcreteElemantBiConcreteElements)

VisitConcreteElementB{ConcreteElemeantB)

ObjectStructure —-J Elemeant

AcceptVisilor)

A
I |

ConcreteElemant &

ConcreteElemantB

Cperafionil)

Uperationbr)

AccaptiVisitar v) o AccaptiVisitor v) P
: :
I 1
I 1

v—=VisitConcrateElamentat nisjh

ve=VisitConcreteElementBithis)

© 2002-2005 Riccardo Solmi

10

Visitor /3
0

= Collaborations

» A client that uses the Visitor pattern must create a
ConcreteVisitor object and then traverse the object
structure, visiting each element with the visitor

* When an element 1s visited, it calls the Visitor operation that
corresponds to its class. The element supplies itself as an

argument to this operation to let the visitor access its state, 1f
necessary

© 2002-2005 Riccardo Solmi z C 11

Visitor /4
B

= The following interaction diagram illustrates the collaborations between
an object structure, a visitor, and two elements

anObjectStructure aConcreteElemeantA aConcreteElementB aConcreteVisitor

J‘ AcceptiaVisitor) L

W | VisitConcreteElementAiaConcreteElament}

T Operationa()

Accept(aVisitor) T |
- WisitConcreteElementBi{aConcreteElementB)
L OparationBi(}
it
T T

© 2002-2005 Riccardo Solmi z C 12

Visitor /4
BN

Consequences

* Visitor makes adding new operations easy

* A visitor gathers related operations and separates unrelated

ones

* Adding new ConcreteElement classes 1s hard
« Visiting across class hierarchies

e Accumulating state

* Breaking encapsulation

© 2002-2005 Riccardo Solmi

Visitor example 1
I

ginterface:s

9 NodeVisitor

& repart()
O visitLeaf()
o] visitHe%IularNDdEEj

I____L"j____W

ginterfaces

& Node

O accept()

® TraversalVisitor ® SumVisitor
@ repart() @ reparti)

O visitLeaf() O visitLeaf()

@ visitRegularMode) @ visitRegularModel

© 2002-2005 Riccardo Solmi

® Leaf

A 0.1 -
N

@ ReqgularNode

@ Leaf(]

O accept()
@ getWalue()

FegularMade)
accept()
getleft)
getRight()

e @ 0 @

14

Visitor example 2

= Compiler that represents
programs as abstract syntax

NodeVisitor

Visitdssignment{Assignmenthode)
VisitWVarnableReff\VanableRefode)

A

I

TypeCheckingVisitor

CodeGeneratingVisitor

Visithssignment{AssignmentMaoda)
VisitVariableRef{VariableRefMade)

VisithssignmentAssignmentModa)
VisitWariable Ref{VariableRefNode)

Program

trees

Node

TypeCheck(}

GenerateCode()

PrettyPrint{)
VariableRefNode AssignmentNode
TypaCheck(} TypaCheack{}
GenerateCodea() GenerateCodea()
PrettyPrint() PrettyPrint()

© 2002-2005 Riccardo Solmi

el Node

AcceptiMNodelisitar)

A

AssignmentNode

VariableRelMode

Accapt{ModaVisitor v) IIZ'
i
[

Accepl|MadeVistar v '?'
i
I

'|'—3=-"|.|'IEi'AEEIgI’In’IEI’It[IhiE:IH

== sV a riablaHai:thm]H

Visitor Questions
I

= One issue with the Visitor pattern involces cyclicality. When
you add a new Visitor, you must make changes to existing
code. How would you work around this possible problem?

© 2002-2005 Riccardo Solmi z C 16

Iterator
B

= |ntent

* Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation

= Applicability

* to access an aggregate object's contents without exposing its
internal representation.

 to support multiple traversals of aggregate objects.

* to provide a uniform interface for traversing different
aggregate structures (that 1s, to support polymorphic
iteration).

© 2002-2005 Riccardo Solmi z C 17

Iterator /2

B Aggregate
- Stru Ctu re Lreatelferator)
AN
ConcreteAggregate

Createlterator() ¢
1

Herator

Firsi(}

Nexf)
IsDoref)
Currentiterny)

:

refurn new Concralalteraton rhm}ﬂ

Participants

. Iterator

* defines an interface for accessing and .

traversing elements.

. Concretelterator

« implements the Iterator interface.

» keeps track of the current position in the

traversal of the aggregate.

© 2002-2005 Riccardo Solmi

. Aggregate

Iterator object.

« ConcreteAggregate

Concretelterator

defines an interface for creating an

« implements the Iterator creation
interface to return an instance of the
proper Concretelterator.

18

Iterator /3
BN
= Collaborations

» A Concretelterator keeps track of the current object in the
aggregate and can compute the succeeding object in the
traversal

= Consequences
It supports variations in the traversal of an aggregate
 Iterators simplify the Aggregate interface

* More than one traversal can be pending on an aggregate

© 2002-2005 Riccardo Solmi z C 19

Iterator example 1

B
ginterface:
& SimpleList
0.1
@ append]
@ count() # list
o get)) R
@ removerl)

(& Reverselterator

© 2002-2005 Riccardo Solmi

@ OpenlList

& list: LinkedList

Feverzeterator)
hazkext

nextl)

removerl)

e @ @ @

sppenddl)
ot

createReverselterator))

getl]
removel)

e oo @ @

20

Iterator example 2
B

An aggregate object such as a list should give you a way to access its

elements without exposing its internal structure

AbstractList

Count(}
Appand(itam)
Hamove(ltevn)

Createlteratory)

Client

List '; ________________ - Listiterator

Iterator

Firsti}

MNexti)
isDonef]
Courrentltemny)

SkipList

SkipListiterator

© 2002-2005 Riccardo Solmi

7

Iterator questions
I

= Consider a composite that contains loan objects. The loan
object interface contains a method called
"AmountOfLoan()", which returns the current market value
of a loan. Given a requirement to extract all loans above,
below or In between a certain amount, would you write or
use an lterator to do this?

© 2002-2005 Riccardo Solmi z C 22

Strategy
B

= |ntent

e Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

= Applicability

e Many related classes differ only in their behavior. Strategies
provide a way to configure a class with one of many
behaviors.

* You need different variants of an algorithm.
e An algorithm uses data that clients shouldn't know about.

* Instead of many conditionals.

© 2002-2005 Riccardo Solmi z C 23

Strategy /2
I

= Structure

strate

Context - y p= Sirateqgy

Contextinterface() Aigorithminterfacey)
ConcreteStrategy A ConcreteStrategyB ConcreteStrategyC

o Algorithminterface() Algorithminlerface() Algorthminterface)
= Participants
* Strategy « Context
 declares an interface common to all « is configured with a
supported algorithms. Context uses ConcreteStrategy object.

this interface to call the algorithm

* maintains a reference to a
defined by a ConcreteStrategy.

Strategy object.

* ConcreteStrategy may define an interface that

 implements the algorithm using the lets Strategy access its data
Strategy interface
24

© 2002-2005 Riccardo Solmi

Strategy /3

EE
= Collaborations

« Strategy and Context interact to implement the chosen algorithm. A
context may pass data or itself to the Strategy.

* A context forwards requests from its clients to its strategy.

» Clients usually create and pass a ConcreteStrategy to the context;
thereafter, they interact with the context exclusively.

= Consequences
» Families of related algorithms.

* An alternative to subclassing. Vary the algorithm independently of its
context even dynamically.

« Strategies eliminate conditional statements.
* A choice of implementations (space/time trade-offs).
* Clients must be aware of different Strategies.

« Communication overhead between Strategy and Context.

* Increased number of objects (stateless option).
© 2002-2005 Riccardo Solmi 25

Strategy example 1
I

Sorting Strategy

ginterface:s

O SortingStrategy

|

@ =0l

® LinearSort (® BubbleSort

@ =0l @ =0l

© 2002-2005 Riccardo Solmi

™ Sorter

@ Sorterr)

Strategy example 2
I

To define different algorithms

. COMposilon .
Composition [s IlIJ Compositor
Traverse() Lompose|)
Hepairi) o /k

:

|

1

|

] SimpleCompositor TeXCompaositor ArrayCompositor
compositor->LComposel)
Composea() Composeal) Composa|)

© 2002-2005 Riccardo Solmi

4

Strategy questions

What happens when a system has an explosion of Strategy
objects? Is there some way to better manage these strategies?

Is it possible that the data required by the strategy will not
be available from the context's interface? How could you
remedy this potential problem?

© 2002-2005 Riccardo Solmi z C 28

State
B

= |ntent

« Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.

= Applicability

« An object's behavior depends on its state, and 1t must
change 1ts behavior at run-time depending on that state.

e Operations have large, multipart conditional statements that
depend on the object's state. This state 1s usually represented
by one or more enumerated constants. Often, several
operations will contain this same conditional structure.

© 2002-2005 Riccardo Solmi z C 29

State /2

EE——

= Structure -
ﬂﬂﬂtEﬂ stame
Request() o

state-=Handlel()

= Participants

 Context

— defines the interface of
interest to clients.

— maintains an instance of a
ConcreteState subclass that
defines the current state.

© 2002-2005 Riccardo Solmi

.J State

Handle(]

A

ConcreteStateA ConcreteStateB
Handlel) Handie()
« State

— defines an interface for
encapsulating the behavior
associated with a particular
state of the Context.

« ConcreteState subclasses

— each subclass implements a
behavior associated with a
state of the Context.

30

State /3
0

= Collaborations

« Context delegates state-specific requests to the current
ConcreteState object.

* A context may pass itself as an argument to the State object
handling the request.

e Context 1s the primary interface for clients.

 Either Context or the ConcreteState subclasses can decide
which state succeeds another and under what circumstances.

© 2002-2005 Riccardo Solmi z C 31

State /4
B

= Consequences

» It localizes state-specific behavior and partitions behavior

for different states.
« It makes state transitions explicit.
e State objects can be shared.
= Implementation
* Who defines the state transitions?
* Creating and destroying State objects

A table-based alternative

© 2002-2005 Riccardo Solmi

State example 1
I

= Queue

ginterface:s
9 QueueState

i@ oetFirst)
@ insert()
@ removeFirst)

state

® QueueFull

® QueueEmpty

& QueueContext

girter faces

@ setState)

;

® Queue

GeueFull()
getFirst()
inzert()
removeFirst)

e @ @ @

@ QueueNormal

@ getFirsti)
@ inseri)
i removeFirst()

© 2002-2005 Riccardo Solmi

e @ @ @ @

GeueMarmal)
euetormal)
getFirst)
inzert()
removeFirst)

e o @ @

getFirst
inzert()

remaoveFirst()

setStater)

)z

State example 2
I

= Network connection

. state
TCPConnection s
Open{) O------ I
Closa() I
Acknowladgea() :

:
|
|
I
j=

state—=Dpeni)

© 2002-2005 Riccardo Solmi

TCPState

Olpeny
Closef)
Acknowledge(]

/

TCPEstablished

Opend)
Close()
Acknowledge()

TCPListen

Cpani()
Closel)
Acknowledgea()

TCPClosed

Qpen()
Closea()
Acknowiedge()

34

State example 3

Drawing tool

DrawingController currentTool

MousePrassed()
ProcesskKeyboard()
Initialize()

© 2002-2005 Riccardo Solmi

..J Tool

HandleflouseFPrass])
HandighdouseRelease(}
HandleCharacter()

GetCursar)
Activale|)

CreationTool

SelectionTool

TextTool

State Questions
I

= [f something has only two to three states, Is it overkill to use
the State pattern?

© 2002-2005 Riccardo Solmi z C 36

Observer
B

= |ntent

* Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are
notified and updated automatically.

= Applicability

When an abstraction has two aspects, one dependent on the
other. Encapsulating these aspects in separate objects lets
you vary and reuse them independently.

When a change to one object requires changing others,
and you don't know how many objects need to be changed.

* When an object should be able to notify other objects
without making assumptions about who these objects are.
In other words, you don't want these objects tightly

coupled.
© 2002-2005 Riccardo Solmi 37

Observer/2

= Structure

Subject ohservers
|
Attach{Observer)
Jetact 2rver) .
Detach(Observe] for ali o in obsamers il‘h'“
Motifyl) r———- - --| o-=Update()
A]

ConcreteSubject Iq

subject

g Observer

Update()

:

ConcreteObserver

GetState(} ©---
setstated)

refum subjectStale

subjectstate

© 2002-2005 Riccardo

Solmi

Uipdated) 0=

ohsenverState

observarstate =
subject-=GetStatel)

)z

Observer/3
N

= Participants

« Subject: knows its observers. Any number of Observer
objects may observe a subject.cprovides an interface for
attaching and detaching Observer objects.

* Observer: defines an updating interface for objects that
should be notified of changes in a subject.

« ConcreteSubject: stores state of interest to
ConcreteObserver objects and sends a notification to its
observers when its state changes.

« ConcreteObserver: maintains a reference to a
ConcreteSubject object, stores state that should stay
consistent with the subject's and implements the Observer
updating interface to keep 1its state consistent with the

subject's.
© 2002-2005 Riccardo Solmi 39

Observer/4
0

= Collaborations

« ConcreteSubject notifies its observers whenever a change
occurs that could make its observers' state inconsistent with
1ts own.

« After being informed of a change in the concrete subject, a
ConcreteObserver object may query the subject for
information. ConcreteObserver uses this information to
reconcile its state with that of the subject.

© 2002-2005 Riccardo Solmi z C 40

Observer/s5
B

= The following interaction diagram illustrates the
collaborations between a subject and two observers:

aConcreteSubject aConcreteObserver anotherConcreteObserver

1 SetState()

Motify()

Update()

GetState()
- L
Update(}

GEtStatEJ_J
i
© 2002-2005 Riccardo Solmi z C 41

Observer/6
0

= Consequences

« The Observer pattern lets you vary subjects and observers
independently.

* You can reuse subjects without reusing their observers, and
vice versa.

« It lets you add observers without modifying the subject or
other observers.

» Abstract coupling between Subject and Observer.
* Support for broadcast communication.

« Unexpected updates.

© 2002-2005 Riccardo Solmi z C 42

Command
B

= |ntent

* Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operations.

= Applicability

e parameterize objects by an action to perform. Commands
are an object-oriented replacement for callbacks.

e specify, queue, and execute requests at different times. A
Command object can have a lifetime independent of the
original request.

« support undo. The Command's Execute operation can store
state for reversing its effects in the command itself. 7
43

© 2002-2005 Riccardo Solmi

Command/2
B

Client

Structure

Participants
« Command

* declares an interface
for executing an
operation

« ConcreteCommand:

* defines a binding
between a Receiver
object and an action

* Implements Execute
by invoking the
corresponding
operation on Receiver

© 2002-2005 Riccardo Solmi

Invoker (.~

| o Receiver |

Command

Execute(}

;

Al

recaiver

tian{) — | ConcreteCommand

1 recelver-=Action),

Client:

* (Creates a ConcreteCommand
object and sets its receiver

Invoker:

» Asks the command to carry out

the request

Receiver:

* Knows how to perform the
operations associated with

carrying out a request. Any class
may serve as a receiver

44

Command/3
B

= Collaborations

« The client creates a ConcreteCommand object and specifies
its receiver.

« An Invoker object stores the ConcreteCommand object.

« The invoker issues a request by calling Execute on the
command. When commands are undoable,
ConcreteCommand stores state for undoing the command
prior to invoking Execute.

e The ConcreteCommand object invokes operations on its
receiver to carry out the request.

© 2002-2005 Riccardo Solmi z C 45

Command/4

= Collaborations (continue)

= The following diagram shows the interactions between these objects

aReceiver aClient

aCommand anlnvoker

|
| raw Command{aReceiver) -:
StoreCommand{aCammand)
v v /.
etian() g Execuia()
I I

© 2002-2005 Riccardo Solmi

Command/5
N

= Consequences

« Command decouples the object that invokes the operation
from the one that knows how to perform it.

 Commands are first-class objects. They can be manipulated
and extended like any other object.

* You can assemble commands into a composite command. In
general, composite commands are an instance of the
Composite pattern.

« It's easy to add new Commands, because you don't have to
change existing classes.

© 2002-2005 Riccardo Solmi Z 47

	TITLE
	Indice degli argomenti
	Template Method
	Template Method /2
	Template Method /3
	Template Method example 1
	Template Method example 2
	Template Method questions
	Visitor
	Visitor /2
	Visitor /3
	Visitor /4
	Visitor /4
	Visitor example 1
	Visitor example 2
	Visitor Questions
	Iterator
	Iterator /2
	Iterator /3
	Iterator example 1
	Iterator example 2
	Iterator questions
	Strategy
	Strategy /2
	Strategy /3
	Strategy example 1
	Strategy example 2
	Strategy questions
	State
	State /2
	State /3
	State /4
	State example 1
	State example 2
	State example 3
	State Questions
	Observer
	Observer/2
	Observer/3
	Observer/4
	Observer/5
	Observer/6
	Command
	Command/2
	Command/3
	Command/4
	Command/5

