
1© 2002-2005 Riccardo Solmi

TITLE

Laboratorio di Progettazione di 
Sistemi Software

Design Patterns

Creazionali

Valentina Presutti (A-L)
Riccardo Solmi (M-Z)



2© 2002-2005 Riccardo Solmi

Indice degli argomenti

Catalogo di Design Patterns creazionali:
• Abstract Factory
• Factory Method
• Singleton
• Prototype
• Builder



3© 2002-2005 Riccardo Solmi

Abstract Factory

Intent

• Provide an interface for creating families of related or 
dependent objects without specifying their concrete classes 

Applicability
• a system should be independent of how its products are created, 

composed, and represented 

• a system should be configured with one of multiple families of products. 

• a family of related product objects is designed to be used together, and 
you need to enforce this constraint. 

• you want to provide a class library of products, and you want to reveal 
just their interfaces, not their implementations. 



4© 2002-2005 Riccardo Solmi

Abstract Factory /2

Structure

Participants
• AbstractFactory

• declares an interface for operations that create 
abstract product objects. 

• ConcreteFactory

• implements the operations to create concrete 
product objects. 

• AbstractProduct

• declares an interface for a type of product 
object. 

• ConcreteProduct

• defines a product object to be created by 
the corresponding concrete factory. 

• implements the AbstractProduct
interface. 

• Client

• uses only interfaces declared by 
AbstractFactory and AbstractProduct
classes



5© 2002-2005 Riccardo Solmi

Abstract Factory /3

Collaborations

• Normally a single instance of a ConcreteFactory class is 
created at run-time. This concrete factory creates product 
objects having a particular implementation. 

• AbstractFactory defers creation of product objects to its 
ConcreteFactory subclass 

Consequences

• It isolates concrete classes 

• It makes exchanging product families easy 

• It promotes consistency among products 

• Supporting new kinds of products is difficult 



6© 2002-2005 Riccardo Solmi

Abstract Factory example 1



7© 2002-2005 Riccardo Solmi

Abstract Factory example 2

User interface toolkit that supports multiple look-and-feel standards, 
such as Motif and Presentation Manager 



8© 2002-2005 Riccardo Solmi

Abstract Factory questions

In the Implementation section of this pattern, the authors
discuss the idea of defining extensible factories. Since an 
Abstract Factory is composed of Factory Methods, and each
Factory Method has only one signature, does this mean that
the Factory Method can only create an object in one way? 



9© 2002-2005 Riccardo Solmi

Factory Method

Intent

• Define an interface for creating an object, but let subclasses 
decide which class to instantiate. Factory Method lets a class 
defer instantiation to subclasses.

Applicability

• a class can't anticipate the class of objects it must create. 

• a class wants its subclasses to specify the objects it creates. 

• classes delegate responsibility to one of several helper 
subclasses, and you want to localize the knowledge of which 
helper subclass is the delegate. 



10© 2002-2005 Riccardo Solmi

Factory Method /2

Structure

Participants
• Product (Document) 

• defines the interface of 
objects the factory method 
creates. 

• ConcreteProduct (MyDocument)
• implements the Product 

interface.

• Creator (Application) 
• declares the factory method, which returns 

an object of type Product. Creator may also 
define a default implementation of the 
factory method that returns a default 
ConcreteProduct object. 

• may call the factory method to create a 
Product object. 

• ConcreteCreator (MyApplication) 
• overrides the factory method to return an 

instance of a ConcreteProduct



11© 2002-2005 Riccardo Solmi

FactoryMethod /3

Collaborations

• Creator relies on its subclasses to define the factory method 
so that it returns an instance of the appropriate 
ConcreteProduct.

Consequences

• The code only deals with the interface; therefore it can work 
with any user-defined concrete classes.

• Provides hooks for subclasses

• Connects parallel class hierarchies



12© 2002-2005 Riccardo Solmi

Factory Method example 1

JComponent



13© 2002-2005 Riccardo Solmi

Factory Method example 2

The code only deals with the interface; therefore it can work with any 
user-defined concrete classes.



14© 2002-2005 Riccardo Solmi

Factory Method example 3

Connects parallel class hierarchies



15© 2002-2005 Riccardo Solmi

Factory Method questions

How does Factory Method promote loosely coupled code?



16© 2002-2005 Riccardo Solmi

Singleton

Intent

• Ensure a class only has one instance, and provide a global 
point of access to it.

Applicability

• there must be exactly one instance of a class, and it must be 
accessible to clients from a well-known access point 

• when the sole instance should be extensible by subclassing, 
and clients should be able to use an extended instance 
without modifying their code. 



17© 2002-2005 Riccardo Solmi

Singleton /2

Structure

Participants
• Singleton

• defines an Instance operation that lets clients access its unique instance. 
Instance is a class operation (that is, a static method in Java and a static 
member function in C++). 

• may be responsible for creating its own unique instance. 



18© 2002-2005 Riccardo Solmi

Singleton /3

Collaborations

• Clients access a Singleton instance solely through Singleton's 
Instance operation. 

Consequences

• Controlled access to sole instance

• Reduced name space

• Permits refinement of operations and representation

• Permits a variable number of instances

• More flexible than class operations



19© 2002-2005 Riccardo Solmi

Singleton example 1



20© 2002-2005 Riccardo Solmi

Singleton example 2

It's important for some classes to have exactly one instance. 
Although there can be many printers in a system, there 
should be only one printer spooler. There should be only one 
file system and one window manager. A digital filter will have 
one A/D converter. An accounting system will be dedicated to 
serving one company.



21© 2002-2005 Riccardo Solmi

Singleton questions

The Singleton pattern is often paired with the Abstract 
Factory pattern. What other creational or non-creational
patterns would you use with the Singleton pattern? 



22© 2002-2005 Riccardo Solmi

Prototype

Intent

• Specify the kinds of objects to create using a prototypical instance, and 
create new objects by copying this prototype.

Applicability

• when a system should be independent of how its products are created, 
composed, and represented; and

• when the classes to instantiate are specified at run-time, for example, by 
dynamic loading; or

• to avoid building a class hierarchy of factories that parallels the class 
hierarchy of products; or

• when instances of a class can have one of only a few different 
combinations of state. It may be more convenient to install a corresponding 
number of prototypes and clone them rather than instantiating the class 
manually, each time with the appropriate state.



23© 2002-2005 Riccardo Solmi

Prototype /2

Structure

Participants

• Prototype

• declares an interface for 
cloning itself. 

• ConcretePrototype

• implements an operation for 
cloning itself.

•Client

•creates a new object by asking a 
prototype to clone itself. 



24© 2002-2005 Riccardo Solmi

Prototype /3

Collaborations
• A client asks a prototype to clone itself. 

Consequences
• hides the concrete product classes from the client 

• Adding and removing products at run-time 

• Specifying new objects by varying values 

• Specifying new objects by varying structure 

• Reduced subclassing 

• Configuring an application with classes dynamically 



25© 2002-2005 Riccardo Solmi

Prototype example 1



26© 2002-2005 Riccardo Solmi

Prototype example 2

Build an editor for music scores by customizing a general framework for 
graphical editors and adding new objects that represent notes, rests, and 
staves 



27© 2002-2005 Riccardo Solmi

Prototype questions

Part 1: When should this creational pattern be used over the 
other creational patterns?

Part 2: Explain the difference between deep vs. shallow copy



28© 2002-2005 Riccardo Solmi

Builder

Intent

• Separate the construction of a complex object from its 
representation so that the same construction process can 
create different representations 

Applicability

• the algorithm for creating a complex object should be 
independent of the parts that make up the object and how 
they're assembled. 

• the construction process must allow different 
representations for the object that's constructed. 



29© 2002-2005 Riccardo Solmi

Builder /2

Structure

Participants
• Builder

• specifies an abstract interface for creating 
parts of a Product object. 

• ConcreteBuilder

• constructs and assembles parts of the product 
by implementing the Builder interface. 

• defines and keeps track of the representation it 
creates. 

• provides an interface for retrieving the product

• Director

• constructs an object using the Builder 
interface. 

• Product

• represents the complex object under 
construction. ConcreteBuilder builds the 
product's internal representation and defines 
the process by which it's assembled. 

• includes classes that define the constituent 
parts, including interfaces for assembling 
the parts into the final result. 



30© 2002-2005 Riccardo Solmi

Builder /3

Collaborations

• Client creates Director object and configures it with desired Builder object. 

• Director notifies the builder whenever a part of the product should be built. 

• Builder handles requests from the director and adds parts to the product. 

• The client retrieves the product from the builder. 

Consequences

• It lets you vary a product's internal representation

• It isolates code for construction and representation 

• It gives you finer control over the construction process 



31© 2002-2005 Riccardo Solmi

Builder /4

The following interaction diagram illustrates how Builder and Director 
cooperate with a client.



32© 2002-2005 Riccardo Solmi

Builder example 1



33© 2002-2005 Riccardo Solmi

Builder example 2

A reader for the RTF document exchange format should be able to 
convert RTF to many text formats. The problem is that the number of 
possible conversions is open-ended 



34© 2002-2005 Riccardo Solmi

Builder questions

Like the Abstract Factory pattern, the Builder pattern 
requires that you define an interface, which will be used by 
clients to create complex objects in pieces. How does the 
Builder pattern allow one to add new methods to the 
Builder's interface, without having to change each and every
sub-class of the Builder? 


	TITLE
	Indice degli argomenti
	Abstract Factory
	Abstract Factory /2
	Abstract Factory /3
	Abstract Factory example 1
	Abstract Factory example 2
	Abstract Factory questions
	Factory Method
	Factory Method /2
	FactoryMethod /3
	Factory Method example 1
	Factory Method example 2
	Factory Method example 3
	Factory Method questions
	Singleton
	Singleton /2
	Singleton /3
	Singleton example 1
	Singleton example 2
	Singleton questions
	Prototype
	Prototype /2
	Prototype /3
	Prototype example 1
	Prototype example 2
	Prototype questions
	Builder
	Builder /2
	Builder /3
	Builder /4
	Builder example 1
	Builder example 2
	Builder questions

