
Dottorato di Ricerca in Informatica

Università di Bologna e Padova

Whole Platform

Riccardo Solmi

March 2005

Coordinatore: Tutore:

Prof. Özalp Babaoğlu Prof. Andrea Asperti

To my mother and my grandmother

iv

Abstract

The Whole Platform is a technology for engineering the production of software. We think

that programming is an activity concerning the development of languages; so, we pro-

vide an environment for developing new languages and tools in a much easier way than

now.

Most languages are designed as if their feature set will never change. Adding a simple

feature to a mainstream language such as Java requires a big effort which becomes huge

for adding a set of inter-dependent features. For example the support of Java 5 in the

Eclipse platform, has already taken 1.5 years of development.

Implementing and extending a programming language is more difficult today than

few years ago because a language is perceived by programmers together with the facil-

ities provided by a dedicated development environment such as code refactoring and

content assistance.

We think that these difficulties have encouraged non linguistic approaches to extend

languages. For instance, one of the most common non linguistic way to extend a language

is represented by libraries which work well with standard compilers and tools but have

the drawback that you loose the specific compiler optimizations and the specific support

provided by tools.

We advocate that facilitating the implementation and the extension of languages and

language processing tools, new domain languages and new extensions of the existing

languages will arise as well as it has happened for XML based languages.

The thesis focus on the design and the implementation of a software platform for

writing new languages and tools using a model driven technology.

v

Acknowledgments

My sincere gratitude goes to Professor Andrea Asperti who has supported my efforts for

five years. I want to thank also Ferruccio Guidi, Luca Padovani and Enrico Persiani for

their helpful discussions about the contents of this thesis.

A special thanks goes to Professor Joost Visser for his precious suggestions on how to

improve this document.

Finally, a thought to a friend, Tommaso Borromei, who has always believed in my re-

search projects.

vi

Contents

Abstract v

Acknowledgments vi

List of Figures xii

1 Introduction 1

1.1 Modern programming languages . 2

1.2 Domain knowledge representation . 3

1.2.1 Libraries . 3

1.2.2 XML dialects . 4

1.2.3 Annotations . 4

1.2.4 Domain editors . 5

1.3 Goals . 5

1.4 Outline . 6

I The Whole Platform Architecture 7

2 Guidelines for Architecture and Design 9

2.1 Abandoning the primacy of source code . 9

2.2 Model-driven development . 10

2.2.1 Programming is modeling . 10

2.3 Anatomy of languages . 11

vii

2.3.1 Metamodels abstract syntax . 12

2.3.2 Model to model translational semantics 12

2.3.3 Specialized concrete and serialization syntaxes 13

2.4 Domain specificity . 15

2.5 Families of languages . 15

3 The Whole Architecture 17

3.1 The Whole IDE . 17

3.1.1 Mbed Plug-in . 19

3.2 The Whole Languages . 20

3.3 The Whole Generative System . 21

4 Related Architectures 23

4.1 Conventional development environments 23

4.2 Metamodeling frameworks . 24

4.2.1 Model Driven Architecture (MDA) 24

4.2.2 Eclipse Modeling Framework (EMF) 25

4.2.3 The ASF+SDF MetaEnvironment . 25

4.3 Meta-programming with concrete syntax 25

4.4 Meta-modeling architectures . 25

4.4.1 Software Factories . 26

4.4.2 Meta-Programming System (MPS) 26

4.4.3 Intentional Programming . 26

4.4.4 HyperSenses . 27

viii

II The Whole Generative System 29

5 Modeling Framework 31

5.1 Introduction . 31

5.2 The model . 31

5.2.1 Compound models support . 33

5.2.2 Entity resolver . 34

5.3 Creational API . 36

5.4 Modeling API . 37

5.4.1 Containment features methods . 38

5.4.2 Manipulating features by child . 38

5.4.3 Manipulating features by index . 39

5.4.4 Manipulating features by name . 40

5.4.5 Manipulating features by value . 42

5.5 Metadata API . 42

5.5.1 Metadata of the model type system 43

5.5.2 Metadata of the model types . 43

5.6 Model Context API . 44

5.7 Intensional versioning support . 46

5.7.1 Implementation . 48

6 Traversal Framework 52

6.1 Introduction . 52

6.1.1 Applicability . 55

6.2 Defining polymorphic operations . 56

6.3 Visitor combinators . 59

6.4 Pattern matching visitors . 61

6.5 Model interfaces and polymorphic behavior 61

ix

7 Notification Framework 64

7.1 Introduction . 64

7.2 Dependency Management pattern . 64

7.2.1 Event handlers interface . 65

7.2.2 Entity notification code . 67

7.3 Predefined event handlers . 67

7.3.1 Composable event handlers . 67

7.3.2 PropertyChange event handler . 69

7.3.3 History event handler . 69

7.3.4 The Sharing event handler . 71

7.4 Event handler deployment . 71

7.5 Event handler clone behavior . 72

8 Persistence Framework 73

8.1 Introduction . 73

8.2 The generic interface of Builders . 74

8.3 The language specific interfaces of Builders 76

8.4 The hierarchy of Builders . 77

9 Editing Framework 80

10 Java Model Generation Framework 83

III The Whole Languages 87

11 Guidelines for Language Design 89

11.1 Specification approach . 89

12 Models DSL 92

12.1 Language metamodel . 93

12.1.1 Type System . 96

x

13 Editors DSL 98

13.1 Language metamodel . 98

13.1.1 The model component . 98

13.1.2 The view component . 99

13.1.3 The controller component . 100

14 Languages DSL 103

14.1 Language metamodel . 103

14.1.1 Language extension . 104

15 Legacy languages 105

15.1 Java . 105

15.2 XML . 105

15.3 EBNF . 106

15.4 Text . 106

16 Conclusions 107

References 109

xi

List of Figures

2.1 Formal language anatomy . 11

3.1 The Whole IDE architecture . 18

3.2 Model View Controller architectural pattern 18

3.3 Java compilation interaction diagram . 19

3.4 Whole Language collaboration diagram . 20

3.5 The Whole Generative System frameworks 21

3.6 A Whole generative framework . 22

5.1 Class diagram of model entities . 32

5.2 The Whole model structure . 34

5.3 Structure of the Resolver Object pattern . 36

5.4 Structure of the Model Context pattern . 46

5.5 Simple entity versioning structure . 50

5.6 Value entity versioning structure . 51

5.7 Composite entity versioning structure . 51

6.1 Class diagram of operation visitors . 58

6.2 Structure of the Visitable Marker Interface pattern 63

7.1 Class diagram of adapter event handlers . 68

8.1 Class diagram of the builders hierarchy . 78

9.1 Eclipse with Mbed editors . 81

xii

9.2 Mbed editor with templates . 82

11.1 Whole Languages semantics architecture 90

16.1 Whole Platform implementation statistics 108

xiii

Chapter 1

Introduction

Programming languages, like human languages, are evolving. The last version of two

mainstream languages: Java[36] and C#[41] includes new important features. Notice that

usually a feature gets discovered and experimented on research languages before being

added to a mainstream language (if ever).

The evolution of a programming language is a slow process controlled by an authority

responsible for evolving the standard of the language. When a language stops to evolve,

it becomes a legacy language; it is still used in production code and thus other languages

need to interface to it for some time.

Language design and evolution is known to be difficult.

Adding a feature to a language is difficult largely because every feature tends to affect

every other feature, and so the complexity of evolving a language grows exponentially

with the number of features.

If you try to add even a non interfering simple feature to an existing mainstream

language, you realize that you are facing engineering problems of existing languages and

tools. Mainstream languages are difficult to evolve for lack of modularity in the design

of the language and language tools. They are designed with a fixed language scenario

in mind; so, according to Simonyi[63], we call also them legacy languages even while they

are still evolving.

The problem is even worse because a language is perceived by programmers together

with the tools for manipulating it (editor, compiler, runtime). So, adding a feature to a

2 Chapter 1. Introduction

mainstream language requires also adding tool support for that feature; otherwise you

are reducing the language perceived and not extending it, because the programmer has

to loose the facilities of the tools for using the new feature.

The tools commonly used by a programmer are collected in a single environment

called Integrated Development Environment (IDE). IDEs are evolving much faster than

the languages they support. Most popular IDEs such as Eclipse[2] and NetBeans[11] are

extensible and language neutral. They provide extended functionalities for supported lan-

guages such as refactoring[31] and content assistance. Not surprisingly, the language

support is highly coupled with the features of the supported language; in fact a new

version of the language requires a new version of the IDE. The features contributed by

an IDE are not considered part of the language specification today but they play an im-

portant role in determining the success of a language and the adoption of new language

features.

The problem of adding features can be regarded from a more general perspective.

Features can be packaged not only as languages (linguistic constructs) but also as li-

braries. A significant difference between these two forms of packaging is that language-

based features can be fully supported by IDEs and processed by tools while library-based

features can not have an analogous support because it is difficult to distinguish them from

ordinary code.

So, adding a feature directly to a language is difficult but all the benefits of tools can

be achieved, on the other hand trying to bypass the problem using libraries means to

loose the specific support that tools can provide for linguistic features.

In this thesis we try to exploit all the expressive power of features facilitating their

integration in languages and in tools.

1.1 Modern programming languages

The most popular programming languages are general purpose and they are used to

write almost all types of applications. Today, knowing a programming language means

not only to be able to program with its constructs (features) but also to know many stan-

dard libraries written for the language. These libraries, today, are considered part of

the language while historically, they were considered part of the operating systems. The

Chapter 1. Introduction 3

Java[36] platform, for example, has native support for concurrency, memory manage-

ment, networking, GUI and runtime, and contains also a rich set of standard libraries

that facilitate the writing of different types of applications.

We can even say that the competition between languages is almost focalized on li-

braries and programming environments rather than on language constructs. This is

forced by the fact that the feature set of these languages is fixed by the language designer

and so the libraries are the principal way for extending the language.

1.2 Domain knowledge representation

Writing an application means to code part of the knowledge you have in the application

domain. The domain knowledge can be coded with a domain specific language, i.e. a lan-

guage including first class citizen for representing concepts and processes of that domain.

But, this approach today is advocated only by a restricted number of researchers and

few research projects [25][64][38][26][22] that are not mainstream. Nonetheless, in our

opinion, many domain-specific languages are in use today hidden behind less straight-

forward representation forms: libraries, XML dialects, annotations and domain editors.

Let us consider each of them in turn.

1.2.1 Libraries

Languages with a fixed feature set, as we have seen, can encapsulate domain knowledge

only in libraries. A library can be written and used using the standard compiler, runtime

and debugging tools available for the language. The constructs of a general purpose lan-

guage are of course sufficient for expressing domain abstractions at the semantics level.

A library exposes an Application Programmer’s Interface (API) that gives access to

the domain abstractions hiding implementation details. Unfortunately, libraries are not

expressed in terms of domain concepts but they are defined using lower level general-

purpose abstractions such as classes and methods; so programmers are forced to use the

generic notation of method invocation rather than a more specific domain notation.

The fixed nature of most popular language implementations is of course due to the

higher complexity of designing and implementing an extensible language but it is mainly

4 Chapter 1. Introduction

a design choice. Having a fixed syntax is supposed to facilitate understanding of pro-

grams and learning of new libraries. Unfortunately the understanding you get for free is

limited to the ability to interpret the program step by step much like a computer.

Learning libraries is not a simple task either if you are an expert in the domain because

you have to learn the mapping between the library API and the modeled domain. Even

after learning, using the library is verbose and the development environment can not

facilitate or enforce a correct use.

1.2.2 XML dialects

Using a general purpose language and representing all domain knowledge with libraries

is no longer sufficient for writing a modern enterprise application (see for example the

J2EE[6] standard). Several domain specific languages mainly packaged as XML dialects

have to be used. Whenever is not required the encapsulation (mixing) of domain knowl-

edge in code written with a general purpose language, we can choose to use an XML

dialect. The XML[75] notation, when used for representing a domain language, gives

to programmers a more concrete syntax feeling than a library because it fixes only the

structure of the syntax, permitting the definition of so called tags libraries.

XML shows us another important fact: if the mixing of languages is practical it is

used and considered useful. Many XML dialects are designed to work together in a

single document (see for instance XSLT[72] and JSF[8]).

1.2.3 Annotations

A third emerging approach consists in using user-defined annotations written on certain

places of the source code to specify additional information. The annotations can be re-

trieved both at compile time and at run time through language reflection. Both C# and

Java have just introduced support for annotations, calling them respectively attributes

and metadata.

A language supporting annotations permits a more declarative programming style

and gives an even more concrete domain syntax feeling with respect to libraries and

XML. But annotations represent a constrained linguistic extension of an host language;

so they are suitable only for writing a few types of domain specific languages.

Chapter 1. Introduction 5

1.2.4 Domain editors

The solutions seen so far can be improved introducing domain editors supporting a con-

crete syntax. A domain editor is an editor which complements the main editor when you

have to write code belonging to its particular domain. Domain editors are usually based

on graphical notations while the main one is textual. The domain editors improve only

the presentation of the code, in fact they translate whatever you write in the language

below.

For example the Graphical User Interface (GUI) construction tool VEP[14] allows to

edit a user interface manipulating it graphically, this representation is translated in ordi-

nary calls to the standard Java Swing library.

Developing domain editors is difficult because the domain representation has to be

extracted from code interleaved with other unrelated code. One of the main challenge

designing a GUI construction tool is synchronizing the graphical notation with the li-

brary calls in the source code; this task requires reverse engineering techniques and often

imposes some restrictions to developers.

1.3 Goals

The state of the art depicted above shows that the need to extend languages is provided

now by libraries, the use of XML dialects, source code annotations and domain editors;

none of them is completely satisfactory.

In this thesis a tool - the Whole Platform (pronounced as wool) - has been designed

and implemented that:

• supports rapid definition of families of integrated languages

• covers complete languages: concrete syntax (notation), abstract syntax (metamodel)

and semantics (translation)

• has built in support for sharing, versioning and staging abstractions

• has a persistence layer that subsumes the source role

• is layered and extensible

6 Chapter 1. Introduction

The tool is able to generate language processing tools from the definition of languages

expressed as metamodels. The implementation consists of a generative system (Whole

Generative System), an Eclipse[2] based development environment (Whole IDE) and a

meaningful library of languages (Whole Languages).

The tool is an improvement with respect to all the current practices depicted above.

In fact it allows:

• to define new languages without the syntax structure of the XML dialects (i.e. the

markup),

• to add new features to existing languages by extending the syntax in an unrestricted

way without the constraints imposed by annotations,

• to introduce new rich domain editors for languages using multiple notations,

• to replace libraries with languages having a concrete syntax.

1.4 Outline

The thesis is divided into three parts.

In the first part, the architecture of the Whole Platform is defined, the design choices

are motivated and a comparison is made with related architectures. The Whole Plat-

form includes a visual programming environment, a generative system and a family of

languages.

In the second part, the Whole Generative System is described. It consists of a set of

frameworks for modeling the structure, the behavior, the persistence and the editing of

a language. The frameworks support the implementation of a family of model-driven

languages and of the tools to manipulate them; they are designed to support languages

and operations obtained by composition.

In the third part, we introduce the family of languages implemented on top of the

Whole Generative System. The Whole Languages includes popular languages like Java,

XML, EBNF and plain Text together with some new metamodeling languages used to

define and extend the Whole family of languages itself.

Part I

The Whole Platform Architecture

7

8

In this part the architecture of the Whole Platform is defined.

The Whole Platform is a software platform including a visual programming environ-

ment, a generative system and a family of languages. The programming environment

(Whole IDE) consists of a set of plugins for the Eclipse[2] platform supporting rich graph-

ical editing of model driven languages. The generative system provides the infrastructure

for implementing model driven languages and for giving them a translational semantics

using advanced model to model generative technologies. The family of languages in-

cludes popular languages and some new metamodeling languages used to define and

extend the family itself.

In chapter 2 the design choices are outlined and motivated. In particular the main

characteristics of language processing technologies and tools are considered. In the fol-

lowing chapter 3 the overall architecture is presented. Finally, in chapter 4 the Whole

architecture is compared with some related architectures.

Chapter 2

Guidelines for Architecture and Design

In this chapter the main characteristics of language processing technologies and tools are

considered. For each characteristic a design choice is outlined and motivated.

2.1 Abandoning the primacy of source code

Adaptiveness requires the ability to change, but only a running system can change itself.

Documents with their computer counterparts - the files - contain information, they are

useful to store knowledge and to transmit it between systems but they do not evolve in

their own; a person or a running system is required to change them. Adaptiveness is a

property of life, documents are lifeless.

In a traditional programming language the developer writes the source code of an

application and uses the compiler to produce an executable running in some runtime

environment. Sources are required to modify the program and developers continue to

change them to fix problems and to introduce new functionalities. Source modification is

a responsibility of developers.

All non trivial language processing tools have to build an internal representation of

the sources to accomplish their job. However, they usually do not persist that represen-

tation; instead, they build it on the fly by extracting information from sources, use it, and

then discard it when the job finish.

An example is the refactoring operations supported by modern IDEs. A refactoring[31]

is a transformation from source to source that improves the code without changing its be-

10 Chapter 2. Guidelines for Architecture and Design

havior. Current implementations of refactorings build the internal representation when-

ever the operation is requested and then discard it.

All the available programming languages known by the author share a common per-

spective: they are built around the source code. According to the idea introduced in [64],

we think that the perspective should be reversed: the internal representation should be

persisted and regarded as the program. Source code should be derived from it and all

kinds of tools should operate directly on it.

In this way source views of the code limited and specific to the parts in which the

programmers is interested in can be derived. Tool writers are also facilitated because the

internal representation is given and they have to code only the specific behavior of the

tool.

2.2 Model-driven development

A model is an abstract description of software that hides information about some aspects

of the software to present a simpler description of other aspects. All internal representa-

tions built by applications and tools are models. We use models as a source code replace-

ment.

We want to automate software development so we restrict ourselves to models that

capture information in a form that can be interpreted by humans and processed by tools.

This restriction avoids models that can be used only as documentation intended for hu-

man consumption.

A model describes a software system from a specific perspective; usually, it describes

an aspectual part of the system. This means that multiple models are needed to com-

pletely describe a software system. We require a model to be a well-formed unit as de-

fined by the language in which it is expressed.

2.2.1 Programming is modeling

There are no well-established definitions for the terms programming languages and mod-

eling languages, the differences between them are mainly historical. Most programming

languages have textual notations and are primarily imperative, while most modeling

Chapter 2. Guidelines for Architecture and Design 11

languages (like UML[50] or GME[43]) have graphical notations and are primarily declar-

ative. However, an increasing number of languages (like Emfatic[3] or Visula[15]) crosses

these distinctions so we cannot take the notation or the style of specification as reliable

basis for distinguishing between modeling and programming.

Recent trends [38][24] suggest that the distinction between programming and model-

ing languages may soon become entirely irrelevant.

We want to build a tool which does not force any distinction between features coming

from programming or modeling languages. For instance we want to allow to mix graph-

ical and textual notations; so you are free to compose features on languages and to select

a notation for them.

We allow to attach a semantics to every fragment of code written in any supported

language; so, depending on the attached semantics, a code fragment plays the role of a

program or of a model. Given a code fragment, you get a program providing an exe-

cutable semantics for it, while you get a model providing a translational semantics that

uses the code as director (specification).

2.3 Anatomy of languages

To distinguish computer languages from human languages the formers are commonly

called formal languages. A formal language includes a semantics, an abstract syntax, and

one or more concrete or serialization syntaxes as depicted in Figure 2.1.

The semantics defines the meaning of the language.

The abstract syntax defines elements and elements composition rules.

The concrete syntax defines a human usable notation.

The serialization syntax defines persistent and interchangeable forms of the language.

CONCRETE
SYNTAX

ABSTRACT
SYNTAX

SERIALIZATION
SYNTAX

SEMANTICS

Figure 2.1: Formal language anatomy

In the following subsections we consider each part in turn.

12 Chapter 2. Guidelines for Architecture and Design

2.3.1 Metamodels abstract syntax

The distinctive aspect of a language is its abstract syntax. There are different ways in

which the abstract syntax can be defined; the most popular are context free grammars

and metamodels. Context-free grammars are traditionally used to define the abstract

syntax of textual languages. Since the introduction of UML [50] and other graphical

modeling languages, the metamodels have been used as a valid alternative to define the

abstract syntax.

Metamodels usually are object-oriented and characterize language elements as classes

and relationships between them using attributes and associations.

Metamodels are at least as expressive as BNFs [38]. A BNF language specification can

be translated into a corresponding metamodel specification. In general, non-terminals

become classes; production rules become ownership associations and the multiplicity of

an association corresponds directly to BNF quantifiers.

A metamodel represents an abstract syntax graph (ASG) because it has ownership

and reference links. The ownership links, by themselves, form a tree; taking in account

also the reference links you have a graph.

Metamodels have some advantages with respect to CFGs. A metamodel is more in-

tentional than a CFG because the rule alternatives and the links are named. A metamodel

specifies a family of object graphs instead of a family of trees specified by CFG.

2.3.2 Model to model translational semantics

We think that translation is usually the most effective way to give semantics to a lan-

guage; so we consider here only the translational approach to defining the semantics of

a language. The idea is that we can translate one language into another that has seman-

tics. A language might be a directly executable language, such as a (virtual) machine

instruction language, or, it might be a language that can be translated, with successive

translation steps, into a directly executable language.

A traditional language processor (e.g. a compiler) performs two additional tasks:

parsing and unparsing. Parsing is the process of constructing an abstract syntax repre-

sentation (e.g. a tree) from a concrete syntax notation (e.g source code); unparsing is the

reverse process: constructing a concrete notation starting from an abstract representation.

Chapter 2. Guidelines for Architecture and Design 13

A traditional language processor performs a parsing of the source notation, then it

performs a syntax-directed translation into a target language abstract representation, and

then emits (unparses) it. The translation may or may not use an abstract representation of

the target language; that is, the unparsing process is unnecessary for simple translations.

We are considering model-driven languages, so our abstract syntax representation is

a model. We choose to perform always a model to model translation. Given that the

abstract syntaxes of all languages are defined as metamodels, then we can also define the

translation as a metamodel [17].

With respect to a traditional language processor this approach leads to more reusable

translators because this way they are composeable and the parsing and unparsing pro-

cesses are done only at the ends of the translation chain and only if the entire process has

been requested for human consumption.

2.3.3 Specialized concrete and serialization syntaxes

The concrete syntax of a language defines a notation intended for human reading and edit-

ing. The serialization syntax defines a persistent and interchangeable form of the language

intended for processing by tools.

A language may have several concrete or serialization syntaxes but, usually, most

languages having a textual notation use it even for serialization purposes (e.g. Java[36])

while most languages having a graphical notation (e.g. UML[50]) have a different form

for serialization (e.g. XMI[54]).

The two complementary processes of converting a concrete or a serialization syntax to

and from an abstract syntax are called parsing/unparsing and marshalling/unmarshalling

respectively. These processes are well known and there are tools for generating parsers

and to add persistence to a language (with or without code generation). Unfortunately,

the most popular tools [44][57] are not model-driven and they fail to satisfy the additional

requirement of mixing multiple languages in an unanticipated way.

For instance, the most popular parser generator tools[44][57] are grammar-driven and

are limited to a subclass of context free languages open for composition. The serializa-

tion syntax is much less constrained so we can define it to make straightforward the

marshalling/unmarshalling processes even for multiple mixed languages.

14 Chapter 2. Guidelines for Architecture and Design

We choose to always have two different specialized syntaxes for human interaction

and for tools processing (persistence). So we can relegate the parsing/unparsing pro-

cesses to a legacy languages exchange facility: the language processing system should be

able to import existing programs written with legacy languages and to re-export them if

requested. In general, we expect that visualisation and editing of a concrete syntax will

be performed within a model-driven editor and that the persistence of the programs is a

responsibility of the language processing system and is always performed using a serial-

ization syntax.

The serialization syntax can be specialized for persisting models. We need a way to

handle multiple models and to partition a model in smaller models retaining the ability

to define references between them.

Mixing multiple language notations

Most programming languages have historically used textual notations and most mod-

eling languages have used graphical notations. Neither one is a requirement. For this

historical reason, editing tools for programming languages are usually based on textual

widgets and cannot visualize graphical notations, while editing tools for modeling lan-

guages are usually based on graphical widgets and cannot visualize textual notations.

The former limitation is inherent to textual widgets, the latter is only a choice motivated

mainly by the difficulty of implementation.

All languages can be visualized using a wide variety of notations including textual,

schematic (UML) and widget-based notations (tables, trees). Nevertheless, most lan-

guages have a default standard notation.

There are several interesting scenarios that require the embedding of a language

within another language. For instance, in a metaprogramming scenario a meta language

embeds a possibly different template language. The two languages may have a different

preferred notation or may have the same kind of notation but different validation criteria

and preferred presentation styles (i.e. syntax coloring). We are faced with the problem of

visualizing them mixing multiple notations.

We want to write an editing tool that supports all kinds of notations and permits to

mix them freely even within a single view. Such an editing tool will permit us to write

Chapter 2. Guidelines for Architecture and Design 15

programs using different languages each visualized using its own preferred notation and

interactive behavior.

2.4 Domain specificity

We prefer to distinguish languages focusing on specificity of the abstractions they in-

clude. According to [25] languages ranges from domain specific languages (DSL) to general

purpose languages (GPL). A general purpose language encodes mainly generic abstrac-

tions; while a DSL defines abstractions that encode the vocabulary of a specific domain.

To solve a software problem we have to design a conceptual model of the solution

first; then we choose one (or more) implementation languages for writing the solution.

If we choose a general purpose language, the gap between the conceptual model and

the implementation code is large enough to force us encoding many programmer inten-

tions in a very indirect manner. Using a well designed DSL the mapping is much more

straightforward because, by definition, the available abstractions are in the domain of the

problem.

To become a systematic approach to programming we have to make the development

of new languages, in particular DSL, in top of already defined languages and tools much

easier than now.

2.5 Families of languages

The one-off development process is organized around an individual product. Today, near

all programming languages are the result of one-off development.

The process of defining a language has been well engineered; there are tools to au-

tomate parts of the development process. Unfortunately, traditional language definition

tools such as parser generators [44][57] and code generators [9][13] are oriented to the

definition of a single standalone language.

Extending an existing language is a difficult task; integrating the extension in a ex-

isting state of the art development environment is even worse. Take as example one of

the few success stories: the development of the AspectJ[40] programming language. It

16 Chapter 2. Guidelines for Architecture and Design

is an aspect oriented[39] extension of Java and it has development tools (AJDT) well in-

tegrated with the Java development tools (JDT) of the Eclipse platform[2]. The AspectJ

tools require continuous development to be kept in sync with the evolving Java tools.

The need for extending a language is not limited to the research community. The

definitions of software products, already contain large amounts of code and metadata

expressed in DSLs different from the main base language.

An alternative process consists on developing a software product line[25]. Product

lines are not a new idea, they form the basis of modern industry, but applying this idea

to produce software products is a very recent trend[38].

In this perspective, it is necessary to introduce a domain specific language for defining

new languages and to regard a language definition as a component so that new languages

can be assembled from existing language components.

We want to define an architecture for building families of languages.

Chapter 3

The Whole Architecture

Whole is a software platform that runs on top of other platforms.

The Whole Platform includes a graphical development environment (Whole IDE),

a family of languages (Whole Languages) and a generative system (Whole Generative

System).

The Whole architecture enforces a model-driven perspective built around the Whole

Generative System. All software artifacts including program sources are persisted and

managed by the Whole Generative System. The Whole Languages are mainly conceived

for human-system communication; they are used by developers to write source programs

but the code is not stored in developer managed artifacts. The Whole Generative System

is responsible for maintaining all the programs knowledge and is able to make source

representations suitable for reviewing and editing within the Whole IDE.

In this chapter we follow a top down presentation order reflecting a user perspective.

The other parts of the thesis follow a bottom up order reflecting a developer perspective.

3.1 The Whole IDE

The Whole IDE is an interactive development environment for programming with the

Whole family of languages. The Whole IDE consists of the Eclipse platform extended

with some plug-ins as depicted in Figure 3.1.

Eclipse[2] is a popular, open source platform for building rich clients and develop-

ment environment tools. The Eclipse platform is structured around the concept of plug-

ins. A plug-in is a bundle of code and/or data that contribute libraries, extensions or

18 Chapter 3. The Whole Architecture

Java Virtual Machine

Eclipse Platform

GEF JDT

Mbed

Editors Operations

Whole IDE

Whole Platform
plug-ins

Eclipse standard
plug-ins

Figure 3.1: The Whole IDE architecture

documentation to the platform. The platform and the plug-ins have well-defined places

called extension points where other plug-ins can add functionality.

The Java development tools (JDT) is the Eclipse standard implementation of a full

featured Java development environment.

The Graphical Editor Framework (GEF)[4] is an Eclipse Tools project allowing devel-

opers to create a rich graphical editor. It follows the MVC architectural pattern: it takes

an existing model and provides many facilities related to the controller and view parts.

MODEL

Encapsulates the language model

Editable
Notifies changes

VIEW

Encapsulates the notation model

Sends user gestures to controller
Allows controller to select view

CONTROLLER

Maps user actions to model updates
Selects view for response

State query
State change

Change notification

View
selection

User gestures

Figure 3.2: Model View Controller architectural pattern

The JDT exposes both the Java compiler API and the API of the abstract syntax tree

(DOM/AST) used for representing Java compilation units. Exposing a Java AST, the

front-end and the back-end parts of the JDT Java compiler can be used separately. We

use the JDT for providing our Java model the ability to import Java source code and to

Chapter 3. The Whole Architecture 19

produce both Java source code and Java compiled code (bytecode).

other
models

WholeJDT

.java

.class

DOM/AST
Java

model

Java
model

front-end
back-end

parser

bytecode
generator

pretty
printer

Import
DOM/AST visitor

Export
Java traslator

Figure 3.3: Java compilation interaction diagram

In Figure 3.3 you can see the interactions involved. Java source code is parsed by the

JDT resulting in an AST that is translated into our Java model. In the reverse direction

our Java model is translated to the JDT DOM/AST and from here using the back-end of

the compiler we can pretty print the code or compile it.

3.1.1 Mbed Plug-in

The Model Based Editor (Mbed) is the implementation of the Whole Generative System

packaged as a standard Eclipse plug-in. Mbed defines a few extension points for adding

to it models, editors and operations.

For instance, the org.whole.mbed.editors extension point allows clients to con-

tribute custom editors. Each editor is a complete language (model, notation, semantics)

which will be added to the family of Whole Languages.

The following is an example of the editor extension point usage:

<extension point="org.whole.mbed.editors">

<editor

name="Mbed DSL Editor Kit"

id="org.whole.lang.mbed.MbedEditorKit"

class="org.whole.lang.mbed.MbedEditorKit"

extensions="mbed">

</editor>

</extension>

20 Chapter 3. The Whole Architecture

3.2 The Whole Languages

The Whole Languages is the extensible family of languages available to program the

Whole Platform. The Figure 3.4 shows a Whole language with all its collaborations. Each

language has an in-memory model representation encapsulated in a model context that

disciplines its construction and manipulation.

Event handlers

Serializer traslator

LANGUAGE

ADAPTERS

TARGET
LANGUAGE

Editor
support

Pattern
Language
Adapter

PATTERN
LANGUAGE

EDITOR

PERSISTENCE SERVICE

PATTERN ADAPTER

CLIENT

Model context

Rule checker

METAMODEL
LANGUAGE

Traversals

Iterators

OPERATIONS

TARGET
LANGUAGE

In-memory
Language

model

Figure 3.4: Whole Language collaboration diagram

The structure of a language is defined using a metamodel language; the language im-

plementation is generated from its metamodel definition. Furthermore, at runtime, you

can navigate the metamodel hierachy as long as the metamodel languages are deployed

together with the base level language.

Programs written in a given language can be persisted. The persistence service is

able to transform a model to(from) a stream of builder events and from there to(from) a

serialization syntax. Notice that serialization syntaxes are pluggable.

The behavior of a language is defined using operations and adapters. An operation

defines a batch behavior using traversals or iterators. An adapter defines a live (contin-

uous) behavior using event handlers. With an operation you can define, for instance, a

model to model transformation to a target language; while with an adapter you can de-

fine a live synchronization between two or more models where the other models act as

Chapter 3. The Whole Architecture 21

target languages or pattern languages. The name adapter suggests that the synchronized

languages can be used as alternatives for programming the adapted language.

The ability to edit a language program from within an editor in the Eclipse platform is

added using a mix of operations and adapters that define one or more concrete syntaxes

and the desired interactive behavior.

Notice that the in-memory representation of the model of a language is constructed

only if required by a model operation; furthermore, all given operations are defined to

minimize this requirement. For instance, you can write a code generator for XML and

Java that fires a stream of SAX events and builds a DOM/AST Java Model without con-

structing neither our XML model nor our Java model as intermediate steps.

3.3 The Whole Generative System

The Whole Generative System is a set of coordinated frameworks including (see Fig-

ure 3.5): Modeling, Traversal, Notification, Persistence, Java Model Generation and Edit-

ing.

Modeling framework

Persistence framework

Java Model
Generation framework

Notification framework

Traversal frameworkEditing framework

MODEL

IDB

.java

.class

Java
DOM/AST

Figure 3.5: The Whole Generative System frameworks

The Modeling framework supports the definition and the manipulation of the struc-

22 Chapter 3. The Whole Architecture

ture of models. The Traversal framework supports batch model operations based on

a traversal of the model. The Notification framework supports live model operations

triggered by state changes of the model. The Persistence framework is a persistence

and metaprogramming facility for generating and persisting models. The Editing frame-

work supports the creation of rich graphical editors for model based languages. The Java

Model Generation Framework is a bootstrap code generation facility for building models

of Java conforming to the JDT DOM/AST API [7] standard in Eclipse.

The frameworks have been designed together as a system of frameworks so that they

achieve a good level of coordination and optimization; in particular, each framework

exposes an API that facilitates inter frameworks collaborations.

In the Whole Generative System, frameworks are designed using a generative ap-

proach in mind. Each framework (Figure 3.6) addresses an aspect of the system and

exposes two kinds of API: a generative API and an infrastructure API. All commonalities

are packaged in the Infrastructure API that is much like an ordinary library, while specific

functionalities are generated on top of the Generative API.

The patterns used in the infrastructure are designed to be extended and partially over-

ridden with generative design patterns [45]. Many functionalities of the platform are

implemented both in a generic way and, using generative design patterns, in a model-

specific way.

Infrastructure API

Generated code

Generative API

Whole framework

Client
code

Figure 3.6: A Whole generative framework

The Whole Generative System is deployed without the Editing and the Java Model

Generation frameworks (that are deployed together with the Whole IDE), this way it is

independent from the Eclipse platform.

Chapter 4

Related Architectures

4.1 Conventional development environments

Conventional IDEs such as Eclipse[2] and NetBeans[11] have built-in support only for

textual programming languages. They integrate tools for compiling, debugging, man-

aging projects and, of course, editing code. Recent trends show major improvements in

editing support and integration with external tools.

Editing support includes: navigation in the type hierarchy and in the def-use hierar-

chy, code creation based on wizards and templates, content assistance showing all possi-

ble completions, automatic management of import statements and code refactoring[31].

Unfortunately, all this sophisticated editing support is available only for a fixed number

of languages built-in the development environments.

The integration with external tools has adopted an inversion of control pattern. It

is no more the environment that calls external tools; all IDE services are packaged as

reusable components and the environment can be programmatically used as a framework

for building development environments. With the public programming interface API the

tool writer is able to extend the environment with new languages and new features for

existing languages.

This last innovation permits us to write our development environment as an exten-

sion of an existing widely used and supported IDE, the Eclipse platform.

24 Chapter 4. Related Architectures

4.2 Metamodeling frameworks

In this section we consider tools that use a metamodel for language definition and use it

to implement the language tools. These tools are often called meta-tools.

4.2.1 Model Driven Architecture (MDA)

The Model Driven Architecture[49] is an open, vendor-neutral suite of standards adopted

by the Object Management Group (OMG). MDA aims to enable: platform-independent

specification of a software system, platform specification and transformation from plat-

form independent models (PIM) to a platform specific models (PSM). It includes (be-

tween others) three standards for modeling (MOF), notation (UML), and persistence

(XMI).

The support for model query, views and transformations has been submitted but is

not adopted yet. The first implementations of the overall architecture are expected next

year (2005).

Meta Object Facility (MOF 2)

The Meta Object Facility (MOF)[55] provides a metadata management framework, and a

set of services to enable interchange and manipulation of metadata.

MOF can be used to define and integrate a family of metamodels using simple class

modeling concepts.

Unified Modeling Language (UML 2)

The Unified Modeling Language (UML)[52][51][53] is a visual language for specifying,

constructing and documenting the artifacts of a system.

XML Metadata Interchange (XMI 2)

The XML Metadata Interchange (XMI)[54] is an XML based serialization syntax that fa-

cilitates the standardized interchange of models and metadata.

Chapter 4. Related Architectures 25

4.2.2 Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework[1] is a modeling framework and code generation fa-

cility for building software systems based on a structured data model. Models can be

specified in XMI or using annotated Java. Given a model specification, EMF is able to

produce a set of Java classes for the model and related services (including a basic editor).

The code generator facility is a traditional template language (Jet) not a model to

model transformation tool.

4.2.3 The ASF+SDF MetaEnvironment

The ASF+SDF MetaEnvironment[65] is an interactive development environment that can

be used to describe the syntax and semantics of programming languages and to describe

analysis and transformation of programs written in such programming languages.

The system is able to parse arbitrary context-free grammars.

4.3 Meta-programming with concrete syntax

The MetaBorg[10] system provides concrete syntax for domain abstractions allowing pro-

grammers to embed domain specific languages in a general purpose host language. The

embedded domain code is assimilated into the surrounding host language translating

the domain abstractions in terms of existing APIs leaving the host language undisturbed

(see [22] for details).

4.4 Meta-modeling architectures

This section outlines forthcoming products that follow much of the architecture we pro-

pose. All four systems are developed by vendors and so only limited technical informa-

tion is publicly available.

26 Chapter 4. Related Architectures

4.4.1 Software Factories

Software Factories[38] are a rapid and flexible way to build systems using domain-specific

tools, methods and content. They capture knowledge of business domains, platform tech-

nologies and software architectures and permit to customize development tools.

Software Factories is a methodology developed at Microsoft that aims to significantly

increase the level of automation in application development. Actual technology preview

(December 2004 release) of a Software Factory development environment is at a very

early stage of development. There is only a graphical editor for defining the structure of

a model and a traditional text based code generator.

4.4.2 Meta-Programming System (MPS)

JetBrains calls this technology approach Language Oriented Programming[26]. There is al-

ready a prototype plugin for IntelliJ IDEA which will allow you to include MPS concept

models in your project. The models will automatically be translated into Java source code

in the background as you edit them. So, you will be able to write part of your Java ap-

plications using MPS, as much or as little as you want. This means that you get all the

power of MPS, such as the ability to create and use specialized DSLs, to make whatever

language extensions you want, as well as to use customizable editors with code comple-

tion, error highlighting, refactoring, etc. The plugin will be tightly integrated with IDEA,

allowing you to embed Java code in your MPS models, navigate to embedded or gener-

ated Java code, and even perform concept-level debugging similar to the JSP debugging

support already available in IDEA.

Actual technology preview (November 2004 release) is a standalone graphical text

editing environment for defining the structure of a model; no code generators are avail-

able.

4.4.3 Intentional Programming

The Intentional Programming[25] is an extensible programming and metaprogramming

environment. Any part of the system can be extended. Each language (called active

source) provides its own editing, rendering, compiling, debugging and versioning be-

havior. A language defines a set of abstractions (called intentions) and can be composed

Chapter 4. Related Architectures 27

with others. The compilation framework defines protocols for coordinating the compila-

tion of code using independently developed language extensions.

Our architecture appears similar to the vision behind this technology. Charles Si-

monyi started working on Intentional Programming in the 90s when he worked at Mi-

crosoft Research; in 2002 it has co-founded the Intentional Software company.

No products or technology previews are publicly available so it is unknown whether

they have a working system, but we can speculate that very likely they have one.

4.4.4 HyperSenses

Delta Software technology is implementing the core ideas of Intentional Programming as

a new technology: HyperSenses[5]. Source code is rendered using different representa-

tions both textual and graphicals. The persistence layer is model driven and bassed on

open standards such as MOF[55] and XMI[54].

No products or technology previews are publicly available so it is unknown whether

they have a working system.

28 Chapter 4. Related Architectures

Part II

The Whole Generative System

29

30

The Whole Generative System is a system of frameworks supporting the implementa-

tion of a family of model-driven languages and of language processing and editing tools.

Languages are implemented with a model-driven approach, so all facilities provided by

frameworks are built around the models.

The Whole Generative System includes the following frameworks:

Modeling For building and manipulating models

Traversal For adding traversal-driven behavior to models

Notification For adding event-driven behavior to models

Persistence For adding a persistence service to models

Editing For adding concrete syntax and graphical editing to models

The different frameworks have been designed together to form a system. Clients can

use directly the System but the frameworks are designed to be the target infrastructure in

a generative scenario. The third part of the thesis will introduce a set of languages built

on top of the Whole Generative System.

The structure (model) and the semantics (translators) of the languages have a meta-

circular definition. Building a system with circular dependencies has required us to pass

through several development cycles. To simplify the bootstrapping of translators (code

generators) we have implemented one last framework: the Java Model Generation frame-

work.

This part of the thesis is organized one chapter for each framework.

Chapter 5

The Modeling framework

5.1 Introduction

The Modeling framework supports the definition and the manipulation of the structure

of models. A model is a first-class citizen, that is, models and model fragments can be

passed as arguments to functions, be assigned to variables and so on.

The Modeling framework defines the structure of the models and provides the fol-

lowing sets of APIs:

Creational API For building entities and fragments

Modeling API Model structure definition, editing and one step traversals

Metadata API For accessing the model type system

Model Context API For supporting higher level services

5.2 The model

The model structure is represented by a typed object hierarchy of entities. The design

of the model is a compound pattern[61][68] of Composite, Visitor, Iterator, Observer and

Command roughly equivalent for functionalities to the Tooled Composite[69] design pat-

tern.

The modeling framework defines an interface: IEntity common to all modeled enti-

ties. The framework includes several abstract and concrete implementations as depicted

in Figure 5.1.

32
C

hapter
5.

M
odeling

Fram
ew

ork

IEntity

AbstractEntity

AbstractCompositeEntity AbstractValueEntity AbstractFragment

AbstractEntityResolver

AbstractAdaptiveEntity

AbstractEntityVariable AbstractFeatureResolver

AbstractStagedFragment AbstractAdapterFragment AbstractProxyFragment

RootStage0Fragment

F
ig

u
re

5
.1:

C
lass

d
iag

ram
o

f
m

o
d

el
en

tities

Chapter 5. Modeling Framework 33

We have defined an abstract implementation for each kind of model entity: simple,

composite, value, adaptive, resolver, and a few kinds of fragments. A simple entity has

a fixed set of named structural features. A composite entity has a variable set of structural

features. A value entity has a single value type feature. An adaptive entity has a variable

set of named structural features. A resolver entity is an adaptive entity with the feature set

constrained by a given model type. A fragment entity is used to assemble different frag-

ments into a compound model. One abstract implementation is provided for controlling

staging, another one is provided for assembling different models and a third one is pro-

vided for building a fragment proxy. More details on each kind of entity will be given on

the following subsections.

5.2.1 Compound models support

We call compound model a model embedding other models with possibly different class

hierarchies of entities. Each embedded model is called model fragment; for uniformity

also the root model is referred to as a fragment.

Model embedding is required both for behavior assimilation and for staged execution.

The model behavior can be defined both in a generic way and in a specific per model way.

With assimilation we mean that we provide a mechanism for composing model specific

behavior definitions. With staging we mean that each model fragment can be annotated

with an execution stage. All operations are executed on each model fragment according

to their annotated stage; for instance a code generator program uses the staging facility

for separating the base level code from the template code.

To support compound models, a few design choices are possible including the use

of generic adapters, specific adapters or no adapters at all. To embed a model within

another model we use specific fragment adapter entities (see Figure 5.2). The default

semantics associated to a fragment entity is a switch to the behavior specific to the em-

bedded fragment. This way, a model specific behavior can be defined without taking in

account other fragments, unless desired.

To facilitate the definition of behavior and state common to a fragment or the whole

compound model, we provide additional objects; the compound model has an object

representing it, and each model fragment also has a corresponding object.

34 Chapter 5. Modeling Framework

fragment adapter

root fragment

fragment adapter

fragment adapter

Compound
Model

Model fragmentsHierarchy of entities

Figure 5.2: The Whole model structure

So, the architecture of a Whole model has three layers: a hierarchy of entities, a tree

of model fragments and a compound model. Each layer is useful for modeling behavior

and state common to the underlaying layers.

5.2.2 Entity resolver

We introduce the Resolver Object design pattern. It represents a long departure from the

original Null Object[34] design pattern that is only a do nothing place holder.

Intent A Resolver Object provides a surrogate for another object that shares the same

interface but has an adaptive behavior. A Resolver Object is a place holder for the

set of implementation types of its interface. If the ambiguity of the implementation

type is resolved at some time or by using setter methods or explicitly, the Resolver

Object replaces itself with the right implementation type.

Motivation Sometimes, manipulating a hierarchy of objects, we do not have enough

information to choose the type of an instance node while we know how to build

parts of its descendants. The lack of information might be permanent like in a

pattern having underspecified internal nodes.

A common but partial way to solve this problem would be to build separate object

hierarchies until information necessary to merge them become available. Unfortu-

Chapter 5. Modeling Framework 35

nately, this way operations called on the model do not consider separated hierar-

chies.

Applicability Use the Resolver Object pattern

• When you want clients to be able to ignore the difference between a complete

model and a model in construction. This way, the client does not have to

explicitly check for null values.

• When you want to build a model without following a rigid top down construc-

tion order. This way un(der)specified internal nodes are adaptively managed

by the pattern and you have always a whole model not a forest with a main

model and some fragments.

Structure and participants The structure of the Resolver Object pattern is shown in Fig-

ure 5.3.

• Client - Requires a collaborator with a specific interface.

• IEntity - Defines a type with the object hierarchy interface.

• RealObject - Defines a concrete implementation of IEntity.

• ResolverObject - Provides an interface that can be polymorphically substi-

tuted for a RealObject. Implements its interface to perform a consistency

check whenever a setter is called and, replaces itself with a RealObject if the

resolve method is called or if exists only one RealObject compatible with

the set of properties setted.

Collaborations Clients use the ResolverObject like any other object. It accepts calls

to setter methods as long as there exists at least one implementation type having

all the setted properties; otherwise it throws an exception. If the set of compatible

implementation types reduces to one the ResolverObject replaces itself with

an instance of that implementation type initialized with all setted properties. Here,

with compatible implementation types we mean the set of types having all the setter

methods invoked so far. The ability to replace all references to a given object with

another object is available for all model entities and is discussed elsewhere. Calling

a getter method behave as expected if the corresponding property has been already

setted otherwise it throws an exception.

36 Chapter 5. Modeling Framework

Client

ParentObject

+child: ObjectInterface

ObjectInterface

+owner: IEntity

+resolve(t:Class): void

RealObject1

+prop1: T1

+prop2: T2

ResolverObject

+prop1: T1

+prop2: T2

+prop3: T3

RealObject2

+prop1: T1

+prop3: T3

IEntity

+replace(oldChild:IEntity,newChild:IEntity): void

Figure 5.3: Structure of the Resolver Object pattern

5.3 Creational API

The framework defines three kinds of APIs for building model entities: ModelFactory,

PrototypeManager and TemplateManager.

The ModelFactory is a low level, model specific API for creating instances of sin-

gle model entities. It is a Singleton concrete Factory implementing the Abstract Factory

pattern. Each factory method is responsible for creating an instance of a model entity

given all its required features as arguments. This API is used only for instantiating and

configuring the prototypes of the PrototypeManager; it is not visible outside the im-

plementation of a language.

The PrototypeManager is a higher level generic API for building a dynamic set

of prototypes. A prototype is a model fragment cloned for every instantiation request;

The initial set of prototypes includes all the entities of the language. It is a registry for

prototypes.

The TemplateManager is a higher level generic API for building a dynamic set of

templates. A template is a model fragment built on demand for every instantiation re-

quest. It is a registry for templates.

Chapter 5. Modeling Framework 37

5.4 Modeling API

The modeling API defines the common interface exposed by all model entities. It includes

a set of abstract and concrete implementations.

The interface IEntity is the root type of all modeled entities; It provides support for

behavior and features common to all modeled entities. All method names start with w to

distinguish the modeling methods from the user defined methods.

Part of the Modeling API is available both with a model-specific interface and with a

generic reflective interface.

Model-specific API

Each model defines an interface IMyModelEntity that extends IEntity with model-

specific accessors to the features.

This model specific API duplicates the generic API for manipulating features by name;

it is defined only for convenience. Using the reflective API is slightly less efficient than

calling the model-specific methods directly. Actual performance penalty is as low as en-

tering a switch case and forwarding to the model-specific method.

Model-generic reflective API

With the reflective API we can query and manipulate a model generically. Here, generic

means using the common entity interface (IEntity) in place of a model specific type.

Using the reflective API, we can manipulate the model structure in four different

ways: by name, by index, by child and by value. According to the Composite pattern, not

all APIs are meaningful for each kind of entity: by name methods are of course available

only for named features and by value methods only for non structural features. Notice

the choice to define by index methods for all kinds of entities and not only for composites;

this way it is more easy and efficient to define behavior based on iterators or traversals.

All the APIs described on the following subsections are part of the (modeling) reflec-

tive API and are declared on the IEntity interface.

38 Chapter 5. Modeling Framework

5.4.1 Containment features methods

Containment features methods permit to navigate the containment axis of the model.

IEntity wGetRoot();

IEntity wGetParent();

IEntity wGetRoot()

Returns the root entity of this model fragment if any. Returns null if there is no root

entity.

IEntity wGetParent()

Returns the parent container entity of this entity if any. Returns null if there is no parent

entity.

5.4.2 Manipulating features by child

These methods operate on the feature having the given child. These methods are useful

in direct manipulation editors.

int wIndexOf(IEntity child);

FeatureDescriptor wGetDescriptor(IEntity child);

void wRemove(IEntity child);

void wReplace(IEntity oldChild, IEntity newChild);

int wIndexOf(IEntity child)

Returns the index of the given child.

FeatureDescriptor wGetDescriptor(IEntity child)

Returns the feature descriptor corresponding to the given child if it is contained in a

feature. Otherwise throws an IllegalArgumentException.

void wRemove(IEntity child)

Chapter 5. Modeling Framework 39

If the given child is contained in an indexed feature this method behaves like wRemove

on the child index. If the given child is contained in a named feature this method behaves

like wUnset on the child feature. Otherwise throws an IllegalArgumentException.

void wReplace(IEntity oldChild, IEntity newChild)

Replaces the old child with the new child. If the old child is contained in a feature

this method behaves like wSet on the child index or feature. Otherwise throws an

IllegalArgumentException.

5.4.3 Manipulating features by index

By index methods use an index to select the feature to operate on. These methods are im-

plemented by all abstract entity types, this way faster and easier to write model iterators

and traversals can be defined.

The AbstractCompositeEntity uses this API for manipulating its children. The

AbstractEntity and all other abstract entity types having only named features assign

an index to every named feature and use this mapping for manipulating named features

using an index.

boolean wIsEmpty();

int wSize();

FeatureDescriptor wGetDescriptor(int index);

void wAdd(int index, IEntity child);

void wRemove(int index);

IEntity wGet(int index);

void wSet(int index, IEntity child);

boolean wIsEmpty()

Returns true if the entity has no features or if it is an empty collection.

int wSize()

Returns the number of features of the entity or the number of children in the collection.

40 Chapter 5. Modeling Framework

FeatureDescriptor wGetDescriptor(int index)

Returns the feature descriptor corresponding to the given index if this entity has a cor-

responding feature. Otherwise throws an IllegalArgumentException.

void wAdd(int index, IEntity child)

Adds child to the specified index in the sequence, shifting following entities. Throws

IllegalArgumentException if this entity has a fixed size.

void wRemove(int index)

Removes the child at the specified index from the sequence, shifting following entities.

Throws IllegalArgumentException if this entity has a fixed size.

IEntity wGet(int index)

Returns the entity at the given index in the sequence.

void wSet(int index, IEntity child)

Replaces the entity at the specified index with the given child.

5.4.4 Manipulating features by name

Named features methods use a FeatureDescriptor to select the feature to operate on.

The methods are implemented in AbstractEntity and can be called only on simple

entities.

int wIndexOf(FeatureDescriptor feature);

void wAdd(FeatureDescriptor feature);

void wRemove(FeatureDescriptor feature);

IEntity wGet(FeatureDescriptor feature);

void wSet(FeatureDescriptor feature, IEntity value);

void wUnset(FeatureDescriptor feature);

boolean wIsSet(FeatureDescriptor feature);

Chapter 5. Modeling Framework 41

int wIndexOf(FeatureDescriptor feature)

Returns the index of the given feature in this entity if present, otherwise -1 is returned.

void wAdd(FeatureDescriptor feature)

Adds the given feature to this entity. Throws IllegalArgumentException if this

entity is not adaptive.

void wRemove(FeatureDescriptor feature)

Removes the given feature to this entity. Throws IllegalArgumentException if

this entity is not adaptive.

IEntity wGet(FeatureDescriptor feature)

Gets the value of the given feature. The result is always a single non null entity.

If the feature is composite, the result is a composite entity containing the values of the

feature. If the feature is primitive, the result is a value entity wrapping the primitive

value of the feature. If the feature has no value, a resolver entity is returned. Throws

IllegalArgumentException if the feature is not defined for this entity.

void wSet(FeatureDescriptor feature, IEntity value)

Sets the value of the given feature to the given value. The given value must be not

null. There is no return value. The operation is performed atomically independently of

the multiplicity of the feature.

void wUnset(FeatureDescriptor feature)

Sets the value of the feature to its default value. There is no return value. The operation

is performed atomically independently of the multiplicity of the feature.

boolean wIsSet(FeatureDescriptor feature)

Returns true if the value of the feature is different than the default value of that feature.

42 Chapter 5. Modeling Framework

5.4.5 Manipulating features by value

Value features methods are implemented in AbstractValueEntity and can be called

only on value entities. The setter method is overloaded for all primitive types and String;

the generic getter wGetValue is helped by additional type-specific methods.

boolean wBooleanValue();

byte wByteValue();

char wCharValue();

double wDoubleValue();

float wFloatValue();

int wIntValue();

long wLongValue();

short wShortValue();

String wStringValue();

Object wGetValue();

void wSetValue(boolean value);

void wSetValue(byte value);

void wSetValue(char value);

void wSetValue(double value);

void wSetValue(float value);

void wSetValue(int value);

void wSetValue(long value);

void wSetValue(short value);

void wSetValue(String value);

void wSetValue(Object value);

5.5 Metadata API

The Metadata API provides model-specific static constants and generic convenience meth-

ods for accessing the type system of a (language) model. All other metadata are available

only in the metamodel of the model and can be accessed using the ReflectionFactory.

Chapter 5. Modeling Framework 43

The metadata consists of two enumerations one for the model entities and the other

for the model features together with one EntityDescriptor for each entity type and

one FeatureDescriptor for each feature type.

5.5.1 Metadata of the model type system

Within the model implementation, you can access the two enumeration singletons di-

rectly using:

MyModelEntityDescriptorEnum.instance

MyModelFeatureDescriptorEnum.instance

More in general, you can use the ReflectionFactory and an entity object or a

language name:

ReflectionFactory.getModelEntities(anEntity)

ReflectionFactory.getModelFeatures(anEntity) or

ReflectionFactory.getLanguageKit(aLanguageId).getModelEntities()

ReflectionFactory.getLanguageKit(aLanguageId).getModelFeatures()

Each enumeration exposes the methods for accessing the language that defines it, the

set of names, the list of values and two methods for getting a value given its name or

ordinal.

5.5.2 Metadata of the model types

In a static context, you can access the entities and features descriptors and ordinals di-

rectly using:

MyModelEntityDescriptorEnum.EntityType ord

MyModelEntityDescriptorEnum.EntityType

MyModelFeatureDescriptorEnum.FeatureType ord

MyModelFeatureDescriptorEnum.FeatureType

Given an entity object, you can access to its EntityDescriptor using the method

wGetEntityDescriptor; while the FeatureDescriptor of a given feature is acces-

sible using the wGetDescriptormethods already seen.

Each feature descriptor (FeatureDescriptor) exposes its name and ordinal and a

method for accessing the language that defines it.

44 Chapter 5. Modeling Framework

Each entity descriptor (EntityDescriptor) exposes also the methods for accessing

the list of feature descriptors and the following methods related to type queries:

boolean has(FeatureDescriptor feature);

int indexOf(FeatureDescriptor feature);

FeatureDescriptor getDescriptor(int index);

boolean isAssignable(int index, EntityDescriptor entity);

boolean isAssignable(FeatureDescriptor feature,

EntityDescriptor entity);

5.6 Model Context API

We introduce the Model Context design pattern.

Intent The intent of the Model Context design pattern is to encapsulate all model entities

and references for their lifetime and to hide all details concerned with creation,

assembling and traversing including the logic for choosing between traversing and

building.

Structure and participants The structure of the Model Context pattern is shown in Fig-

ure 5.4.

• Client - A client of the model

• IModelContext - The model context interface defines a model-generic inter-

face based on the Reflective API.

• ISpecificModelContext - The model-specific context interface defines a model-

specific interface.

• ModelContext - A concrete model context implementation

• IEntity - The common interface of all model entities

• Entity - A concrete model entity

Collaborations Clients manipulate the model sending all requests to a ModelContext.

The ModelContext forwards all calls to the current model entity. Clients knowl-

Chapter 5. Modeling Framework 45

edge is limited to the ModelContext object; they perform all model operations on

it and they are not allowed to gain references to the model entities.

Consequences The model context pattern has several important consequences.

1. The Model Context API is a Facade [35] for all the Modeling API and is also a

Builder separating the construction of the model from its representation.

2. Encapsulation control. All getter methods return an IModelContext object

that behaves like the corresponding model entity expected as a result. This

way, aliasing control of model entities is straightforward.

3. Scope control. Getters and setters can be easily configured to operate in a

scope that can range from the current model entity to a chain of model enti-

ties resulting from the model structure or a traversal. For instance, inherited

features can be supported using a dynamic scope for model features.

4. Concurrency control. Because all accesses to the model entities are mediated

by a model context, concurrency support can be encapsulated at the model

context level.

5. Quantification support. The current model context may be a single entity but

may also be a set of entities. In the latter case we can define a semantics for

applying methods to a set of entities. Specific methods for manipulating the

context quantification can be included in the model context interface.

6. Intensional model view. When used together with an history manager, the

model context can provide a view of the model tied to a particular version.

This way a consistent view of the model can be granted to time consuming

operations without blocking model manipulation.

7. Virtual models. You are not required to explicitly represent the model with

a hierarchy of objects. For instance the model context building operations

can be used to trigger directly event-driven model transformations and code

generation without constructing an actual model in memory (see SAX[12] and

ASM[23] to get elegant examples). Same way, an intensional view can be

backed by a virtual model that behaves as expected but is synthesized on de-

mand.

46 Chapter 5. Modeling Framework

8. Model reconciliation. Getters, setters and factory methods can be implemented

with a reconciliation behavior. That is, the operations can check if the existing

model is consistent with them and if not they can try to reconcile the differ-

ences switching from a traversing to a building behavior.

Client

ISpecificEntity

ConcreteEntity1 ConcreteEntity2

IEntity

IModelContext

GenericModelContext

ISpecificModelContext

SpecificModelContext

Figure 5.4: Structure of the Model Context pattern

5.7 Intensional versioning support

All (model) computations are made according to an actual context. Once we add the

ability to change the computation context we begin to have intensional programming[28].

The behavior of an intensional program depends on the execution context and it has been

modeled using the possible world semantics of intensional logic[16].

Each model operation that changes the structure of the model implicitly build a new

version of the model itself. Without a specific programmer effort, an imperative language

(for instance Java) discards all previous values of the model: i.e. there is only a current

model version.

To support an intensional style of programming we need the ability to access to pre-

vious versions of a model and to select them as execution context for successive model

operations. In particular, calling history a time related sequence of versions, we expect

Chapter 5. Modeling Framework 47

the ability to select a version from the history of an entire model, of a given entity, or of a

given entity feature.

A dimension defines the coordinates of a context in which we can navigate. Any num-

ber of dimensions can be defined by an intensional language such as Indexical Lucid[18].

We restrict ourselves to time related dimensions like the original Lucid[19][20] language

because we are dealing only with intensional versioning of hierarchical structures. Fur-

thermore, currently, we allow only changes to the current version so that no branching is

possible.

All model related definitions are assumed to vary through the time dimension; we say

that they are versioned. Any part of a model, from a simple entity feature to a complete

model, may exist in different versions. Changes occur at the granularity of single entity

features. So, the history of a feature is given straightforward by the successive values

assumed by that feature. A particular version of an entity is formed by combining the

most relevant existing versions of the features composing the entity. A particular version

of an entire model is formed by combining the most relevant existing versions of the

various entities of the model. We call it anintensional view of the model.

Of course, we do not require that every model component exist in every version. In-

stead, we consider the absence of a particular version as meaning that a previous version

is adequate. We follow the variant structure principle introduced in [59] to select what is

inherited: the general rule is that when constructing version V of a system (entity, model),

we choose the version of each component which most closely approximates V according

to the ordering on versions. We call it the most relevant version.

To manipulate the time dimension, we support the two well known[58] intensional

operators: intensional query and intensional navigation. The first is used to query the ver-

sion of an entity, the latter to select the one to use.

In our approach version labels are numbers assigned by the framework and they have

a global significance. Human readable versions using string labels or common dot nota-

tion can be attached to our (system provided) versions by an ordinary model dedicated

to user-level versioning.

We introduce a version algebra to define an ordering on versions with a refinement

relation that can be used to automate the building of intensional views of models.

Definition 5.1 The version algebra is specified by the pair (V,⊑) where:

48 Chapter 5. Modeling Framework

• V is a countable set of versions

• ⊑ is a binary relation on V which we call the refinement relation:

reflexive v ⊑ v

transitive if u ⊑ v and v ⊑ w, then u ⊑ w

total order u ⊑ v or v ⊑ u

We define u = v as u ⊑ v and v ⊑ u.

We read v ⊑ w, as v is refined by w, or v is relevant to w, meaning that w is the result of

further developing version v.

The most relevant version of a component c and a version v is the component version

w such that does not exist a component version w′ with w ⊑ w′ ⊑ v. In configuring

the version v of a compound system (entities, models), we assemble the most relevant

version of each of its components.

5.7.1 Implementation

In the implementation, V is instantiated with the set of natural numbers and ⊑ is instan-

tiated with the ≤ relation.

Each model changing operation is encapsulated in a command object. To each com-

mand is assigned a unique progressive version number in execution order. The model

and its components are only indirectly versioned through associations to commands.

We have chosen to partition versioning related data and behavior between four par-

ticipants: the model, the commands, the history event handler and the model context.

The model context exposes both the intensional operators and a behavioral representa-

tion of an intensional view of the model. Each model entity is associated to exactly two

commands: the command used to bind the entity to a parent entity and the last com-

mand used to change the entity state (features, children). The links between commands

maintain both the parent axis of the model structure and two subsequences of the model

history. So we have one global history stored by the history event handler containing the

sequence of all commands executed and two local histories storing the history of each

entity and of each entity feature of the model.

Chapter 5. Modeling Framework 49

Let us consider in greater details the implementation of each participant; use the class

diagrams in Figure 5.5, Figure 5.6 and Figure 5.7 to follow the description.

A command represents a model change. Each command is labeled with a version

which is a unique progressive number in execution order. A command exposes an inten-

sional query method and two intensional navigation methods to access to a local history

built on the previous command association. The command API also defines methods for

accessing information about the entities involved on the operation.

public interface ICommand {

int getKind();

int getExecutionTime();

ICommand getPrevCommand();

ICommand getCommand(int contextTime);

IEntity getSource();

FeatureDescriptor getSourceFeatureDescriptor();

int getSourceIndex();

IEntity getOldValue();

IEntity getNewValue();

}

The model support to versioning is given by the following two pairs of methods de-

clared on the IEntity interface:

ICommand wGetBindingCommand();

void wSetBindingCommand(ICommand command);

ICommand wGetLastCommand();

ICommand wSetLastCommand(ICommand command);

ICommand wGetBindingCommand();

Returns the command used to attach the entity to a parent model feature.

void wSetBindingCommand(ICommand command);

50 Chapter 5. Modeling Framework

Associates the entity to the command that established the connection with a parent

model. The binding command represents a step in the history of changes of the par-

ent feature. This method is supposed to be called only by the framework when a setter

of the entity that will become the parent is called.

ICommand wGetLastCommand();

Returns the last command used to change the entity. For a simple entity it is the com-

mand that last changed a named feature; for a composite entity it is the last command

that manipulated the entity children; and for a value entity it is the command that setted

the current entity value.

ICommand wSetLastCommand(ICommand command);

Associates the entity to the last command executed on it and returns the previous com-

mand. This method is supposed to be called only by the framework when a setter method

of the entity is called.

simple entity

changeCommand1

+desc: IFeatureDescriptor

changeCommand2

+desc: IFeatureDescriptor

changeCommand3

+desc: IFeatureDescriptor

prev

prev

entity1

entity3

entity2

value bindingCommand

value
bindingCommand

value bindingCommand

lastCommand(for each) feature

History

source

Figure 5.5: Simple entity versioning structure

Chapter 5. Modeling Framework 51

value entity

changeCommand1

+value: type

changeCommand2

+value: type

changeCommand3

+value: type

cmd
executionTime

cmd executionTime

cmd
executionTime

prev

prev

lastCommand

History

source

Figure 5.6: Value entity versioning structure

composite entity

addCommand1

+index: int

setCommand3

+index: int

addCommand4

+index: int

cmd
executionTime

cmd

executionTime

cmd

executionTime

prev

prev

entity1

entity3

entity2

newValue bindingCommand

newValue

bindingCommand

newValue bindingCommand

lastCommandchildren

History

source

oldValue

removeCommand2

+index: int

prevoldValue

Figure 5.7: Composite entity versioning structure

Chapter 6

The Traversal framework

6.1 Introduction

The Traversal framework complements the Modeling framework facilitating the writing

of model operations. By definition, a model operation traverses the model, in some way

and to some extent, to perform its computation; in general the behavior of a model oper-

ation is polymorphic.

The traversal framework supports the definition of the traversal part of a model op-

eration providing the following facilities:

Modular definition An operation can be implemented in a modular unit; this way, new

operations can be added without modifying existing models (class hierarchy).

Traversal strategies Ability to compose and to control traversal strategies. A traversal

strategy defines a sequential order for traversing the entities of a model. We call

compound traversal a traversal defined by composition of two or more traversals. For

traversal control we mean the choice of what parts of the model to skip and when

to stop the traversal. The Traversal framework comes with a rich set of traversal

strategies.

Polymorphic behavior The extension points of the traversal code can distinguish model-

specific types so you can easily write polymorphic behavior. For each part of the

operation you can choose between a model-specific or a model-generic behavior.

The supported granularity includes: model-specific implementation types and ab-

stract types, model-generic entity types and model types.

Chapter 6. Traversal Framework 53

Compound models support Transparently supports operations on compound models.

We call compound model a model embedding other models (with different class hier-

archies). You can write a default model-generic traversal and behavior. Each model

in turn can override the generic behavior with a model-specific traversal and/or

behavior.

Staging support Transparently supports staged behavior for operations. Each model is

annotated with an execution stage (i.e. base level or meta level). You can write an

operation with a different behavior for each stage. This ability can be combined

with compound models support: for each operation a model may define a different

behavior for each stage, either model-specific or generic.

Variability time control At runtime, new traversal strategies can be defined by compo-

sition and new operation behavior can override predefined behavior. At generation

time, a compound traversal can be generated inlining its traversal components;

same way an entire operation can be inlined in a model class hierarchy. Even an

inlined operation can be overridden at runtime with the granularity of a model.

To design this framework, we have taken these facilities as requirements and we have

analysed existing design patterns and frameworks.

Two kind of patterns have been proposed to deal with traversals: visitors and itera-

tors. The Visitor[35] pattern defines a push API that you have to implement in order to

get called during traversal. The Iterator[35] pattern exposes a pull API that you call for

getting each entity of the model sequentially in traversal order.

Both patterns allow the encapsulation of polymorphic behavior outside the class hi-

erarchy of the model on which they operate.

The Visitor pattern requires the definition of a class implementing the visitor inter-

face for encapsulating the behavior. With the Iterator pattern you have the control of

the traversal so you can write the behavior code within a method of your choice. Hav-

ing control is a pro, but you have not type-specific knowledge this way, so, for writing a

polymorphic operation, you have to determine for each element of the traversal the poly-

morphic variant to apply. With the visitor pattern, you write the polymorphic variants

of an operation in different methods each called with a type-specific element to work on;

54 Chapter 6. Traversal Framework

that is, a traversal visitor encapsulates the choice of what polymorphic variants you want

to write.

Different iterators can be defined for supporting different traversal strategies. Writ-

ing an iterator is straightforward if the model has a reflective API that supports all ba-

sic one step traversal operations. In general, combination is limited to specialization

and traversal control is limited to choosing when to stop and subtrees to prune[32].

Iterators are the preferred choice for traversing collections but they are also used for

traversing models. For the DOM model[74] two kind of iterators are provided as an

optional feature[73]: node iterators hiding the hierarchical structure and tree walkers

presenting a tree-oriented view; node filters are also supported for skipping nodes. The

EMF framework[1] provides a tree traversal with a fixed top-down strategy and a prune

method for skipping subtrees.

Unfortunately, also the original GOF visitor[35] pattern resists combination and allows

little traversal control. Combination is limited to specialization and the traversal strategy

is either hard-wired into the accept methods, or entangled in the code of visitors. Several

variations have been proposed to remove these limitations [56][47][48] and to allow the

use of the pattern in frameworks [70][67].

The GOF Visitor suffers of an inherent dependency cycle between the class hierarchy

(the model) and the visitor interface that makes it inconvenient in scenarios where the

class hierarchy changes. A full exposition of the problem and an elegant solution called

acyclic visitor is proposed in [46]; unfortunately, this solution uses many dynamic casts.

The most important changes to the class hierarchy we have to support is the com-

position of class hierarchies. That is we want to write generic visitors working with a

compound model embedding model types unknown at compile time. This problem is

simpler and has been resolved by Vlissides with the staggered visitor[70] pattern; it sup-

ports generic visitors by introducing, on model-specific visitors, two forwarding methods

from generic to model-specific visit methods and vice versa.

Visitor combination and traversal control can be obtained with the Visitor Combinators

[66]; the JJTraveler framework [42] implements visitor combinators and make it possi-

ble to write libraries of generic algorithms. This solution satisfy near all our require-

ments. Compound traversals can be easily defined by composition of existing traver-

sals but there is no a traversal factory allowing transparent substitution of model-generic

Chapter 6. Traversal Framework 55

traversals with model-specific ones. The support for compound models is not efficient

enough and lacks the ability to have an operation state shared by all visitors composing

the operation. Compound visitors are always composed at runtime so more dispatching

calls are necessary. The library provides a set of model-generic traversals; the generation

of model-specific traversals is possible but considered out of the scope of the library.

We are working with models defined using the Modeling framework, so a compound

model has an adapter entity separating each embedded model. Taking advantage of this

knowledge we can mix model-specific visitors between them and with model-generic

visitors with less performance penalties. Furthermore, the choice of the visitor to use for

a given entity is done in constant time (performing a simple switch) and not in linear

time on the number of models types (performing multiple catches of exceptions).

The Traversal framework uses a generative approach to add the ability to compose the

traversal combinators at generation time, to generate a family of model-specific visitor

combinators and to inline visitor behavior in the class hierarchy itself. An operation can

be defined with a model-generic behavior and a shared context for state variables; each

model in turn can choose to specialize the operation behavior either in a modular way or

with code inlined in the class hierarchy.

6.1.1 Applicability

The simpler use case for a traversal is an operation that can be performed directly with

simple or no auxiliary model. For example an operation performing an analysis requires

a traversal that derives properties or values from the model. Examples: computation of

metrics, interpretation.

The main application for traversal operations is in model transformations. A model

transformation is a polymorphic operation executing on a model. According to a common

taxonomy, we categorize the transformations over a model representation depending on

the kind of participant models.

Traslation is a transformation where the source and target models are different. Exam-

ples: compilation, migration, reverse engineering, pretty-printing, type inference.

Rephrasing is a transformation where the source and target models are the same. Exam-

ples: refactoring, normalization, optimization, desugaring, renovation, cloning.

56 Chapter 6. Traversal Framework

With this framework the implementation of a transformation requires a compound

pattern: visitor + builder.

The visitor is a composition of a traversal and the director part of the builder. So

the complexity of the visitor is similar to the simple use case even for complex model

transformations. Note that the responsibility for building a consistent target model is not

on the visitor side of the transformation, so, the composition of transformations is not a

problem of coordination between visitors but a matter of following target builder rules.

6.2 Defining polymorphic operations

An OperationFactory API is used to discover all operations available. The factory

defines methods for selecting operations using the operation name, the kind and the

target model.

All polymorphic operations have to implement the IVisitorOperation interface;

they can do that using or extending the DefaultGenericOperation implementation.

The operation class has the responsibility of maintaining the set of all polymorphic vari-

ants of the operation specialized for execution stage and for model type.

public interface IVisitorOperation {

boolean isStage0Fragment();

void stagedVisit(IEntity entity);

void stagedVisit(IEntity entity, int stage);

}

boolean isStage0Fragment()

Returns true if the current entity is executed at stage 0 (base level); otherwise we are at

a template level stage.

void stagedVisit(IEntity entity)

Visits the given entity using a model-specific visitor for the current execution stage. If

a model-specific visitor is not defined, use the model-generic visitor or if not available

throw an exception.

Chapter 6. Traversal Framework 57

void stagedVisit(IEntity entity, int stage)

This overloaded variant permits to change the execution stage during the staged visit.

Each visitor is instantiated the first time it is requested then it is reused for all the

operation call, so it can accumulate model-specific and stage-specific state.

An operation is performed by a set of visitors implementing the IVisitor interface.

public interface IVisitor extends IVisitorOperation {

IVisitorOperation wGetOperation();

void visit(IEntity entity);

}

IVisitorOperation wGetOperation()

Returns the current operation. The operation object stores all the state of the operation

not specific for a givn model.

void visit(IEntity entity)

This is the generic method used for visiting an entity. The implementation can perform

the visit itself or more likely can forward the visit to a method in the model that in turn

can choose to do the visit itself or to complete the double-dispatching returning in an

entity specific visit method on the visitor.

The operation continues using the same model specific visitor or the inlined methods

until an adapter entity separating an embedded model is encountered. At this point a

staged visit is required.

The Traversal framework includes several abstract and concrete visitors as depicted

in Figure 6.1. Two dotted lines are used to separate model-specific visitors from model-

generic ones; the other line separates user defined visitors from visitors included in the

framework or generated from it.

The IVisitor interface is the root of two hierarchies of visitors: model-generic vis-

itors implementing the interface IGenericVisitor and model-specific visitors imple-

menting a different model-specific interface for each model. All (provided) visitor imple-

mentations extends the AbstractVisitor class.

58
C

hapter
6.

TraversalFram
ew

ork

IVisitor

AbstractVisitor

AbstractGenericVisitor

DefaultVisitorOperation

AbstractSpecificVisitor

IVisitorOperation

IGenericVisitor ISpecificVisitor

Model specific

Traversal framework Model visitor combinators

and client visitors

Model visitor combinators

and client visitors

Standard operations

client operations

Model generic

Client code

F
ig

u
re

6
.1:

C
lass

d
iag

ram
o

f
o

p
eratio

n
v

isito
rs

Chapter 6. Traversal Framework 59

Generic visitors use the model reflective API to perform the expected operation; the

IGenericVisitor interface provides an API for writing a polymorphic behavior based

on the abstract entity types defined by the Modeling framework.

public interface IGenericVisitor extends IVisitor {

void visit(AbstractBaseFragment entity);

void visit(AbstractMetaFragment entity);

void visit(AbstractAdapterFragment entity);

void visit(AbstractProxyFragment entity);

void visit(AbstractEntity entity);

void visit(AbstractCompositeEntity entity);

void visit(AbstractValueEntity entity);

void visit(AbstractAdaptiveEntity entity);

void visit(AbstractEntityResolver entity);

void visit(AbstractFeatureResolver entity);

void visit(AbstractEntityVariable entity);

}

The generic entity interface IEntity supports only generic visitors with the follow-

ing accept method:

void wAccept(IGenericVisitor visitor)

Each model in turn may support model-specific visitors adding an appropriate accept

method to the entity interface of the model.

6.3 Visitor combinators

The framework provides the implementation of an extensible family of traversal visitors

that we call, according to Visser[67], visitor combinators. The framework defines a set of

generic visitor combinators and is able to generate a corresponding set of model-specific

60 Chapter 6. Traversal Framework

combinators for a given model. Model-specific variants are useful only for improving

performance.

The set of visitor combinators provided is almost a subset of the one defined in the

JJTraveler framework [66].

Traversal Args Description

identity Do nothing with per Entity methods

identityWithDefault Do nothing with per Entity and per Type methods

failure Throws an exception (VisitFailException)

sequence v1, v2 Apply v1 and v2 in sequence

ifThen v1, v2 Apply v1 and if it succeeds apply v2

ifElse v1, v2 Apply v1 and if it fails apply v2

ifThenElse v1, v2, v3 Apply v1 and if it succeeds apply v2 otherwise v3

traverseAll v Apply v sequentially to all immediate children

traverseSome v Same as all but fails if all children fail

traverseOne v Same as all but stops the first child that succeeds

topDown v sequence(v, traverseAll(this))

topDownWhile v ifThen(v, traverseAll(this))

topDownUntil v ifElse(v, traverseAll(this))

bottomUp v sequence(traverseAll(this), v)

downUp before, after sequence(before, bottomUp(after))

downUpWhile before, after ifThen(before, bottomUp(after))

Table 6.1: Visitor traversal Factory (excerpt)

The first group includes primitive traversals, the second includes derived traversals.

A primitive traversal is implemented in a corresponding visitor class. A derived traversal is

defined by composition of other traversals.

For instantiating traversals, we have defined a GenericVisitorFactory. Model

specific factories can be defined extending it. A model specific factory must redefine all

primitive traversals and may redefine derived traversals.

Chapter 6. Traversal Framework 61

6.4 Pattern matching visitors

A specialized visitor interface is provided for matching a model with a pattern. A pattern

is a model with zero or more entity variables. Notice that patterns are implemented as

first-class entities like models.

Actual implementation allows variables to occur more than once in a pattern (non-

linear pattern matching); the pattern cannot be matched against another pattern (no uni-

fication).

Three generic concrete visitors are provided with the following semantics:

Exact match Returns true if the pattern is structurally identical to the model.

Contains pattern Returns true if the model contains the pattern.

Template learning The model is extended with parts taken from the template.

Pattern matching visitors can be mixed with other visitors.

6.5 Model interfaces and polymorphic behavior

A model is a hierarchy of objects linked by association relations. An association is imple-

mented by an object field with a reference type pointing to another object of the model.

The type of an association determines the operations you can perform on the associ-

ated object without the need of a type cast.

The most used choice is to declare in an association type the behavior common to

all the compatible implementation types. This way, traversing the model, you get an

interface with the larger set of behavior you can perform on the object without know-

ing its concrete type. Unfortunately, this way you are also restricting future changes to

the model. We say that your model is less adaptive because you are assuming actual

commonalities will never change.

An alternative solution that poses no restrictions on future changes to the model hier-

archy is the use of marker interfaces. The marker interface[37] pattern uses interfaces that

declare no behavior to group classes in categories. This way, to define a polymorphic

62 Chapter 6. Traversal Framework

variant of an operation you have to check the runtime type of an object for the pres-

ence of the marker interface. Examples of this pattern can be found on the Java API:

Cloneable, Serializable, EventListener.

We introduce the Visitable Marker Interface design pattern that gives us near all the

benefits of the two approaches without reducing the adaptiveness of the model and the

performance of polymorphic operations in a significant way.

Intent To declare a reference type that maximize the behavior you can perform on the

associated object and that minimize the constraints on the implementation of com-

patible concrete types.

Motivation When you define an association relation from an object to another you have

to choose the association type. You have two competing goals: to have access to

all the behavior of the associated object and to are free to define new compatible

implementations not constrained by the association type.

Applicability Use the Visitable Marker Interface pattern

• when the association relation is part of the definition of an object hierarchy

(i.e. a model) and

• when you want to define an adaptive model and

• when you define all polymorphic behavior in a modular way (i.e. using a

variant of the Visitor pattern).

Structure and participants The structure of the Visitable Marker Interface pattern is shown

in Figure 6.2.

• Visitable - The interface used to support the Visitor pattern.

• VisitableMarker1 and VisitableMarker2 - The visitable marker inter-

faces.

• Entity1,Entity2,Entity3 - The model entities. Each entity implements at

least one visitable marker and all association types are also visitable markers.

Collaborations Visitor clients use the accept method to perform a double dispatching

that call the polymorphic variant of the operation with a concrete parameter type

Chapter 6. Traversal Framework 63

allowing direct use of all public behavior and state of the implementation. Clients

can also use a reflective API to access the object behavior and state.

VisitableMarker1

Entity1

+child1: VisitableMarker1

+child2: VisitableMarker2

+op1()

Visitable

+accept(visitor:Visitor): void

VisitableMarker2

Model entities
Entity2

+child1: VisitableMarker2

+op2()

+op3()

Entity3

+op2()

+op4()

+op5()

Model association types

Figure 6.2: Structure of the Visitable Marker Interface pattern

Chapter 7

The Notification framework

7.1 Introduction

In a scenario of continuous synchronization, the model transformation cannot be achieved

using the Traversal framework; the support of an Observer[35] like pattern is required.

The Notification framework is a dependency manager, it deals with maintaining state

dependencies between different model features both within a model and across several

models. State changes of one feature can be reflected in state changes of further depen-

dent features.

The framework defines a Dependency Management pattern and a generator API.

7.2 Dependency Management pattern

Every model entity is a notifier, that is, it can send notification events whenever a feature

is changed.

The model delegates the notification process and the management of dependencies to

an event handler.

The Dependency Management pattern defines a general notification mechanism be-

tween a Model and an EventHandler. An EventHandler is a modular unit of depen-

dency control; it is the counterpart of a visitor: a visitor is triggered by a traversal, an

event handler is triggered by a state change.

The framework generates a family of combinable event handlers and a few handlers

that implements specific model synchronisation services. The pattern lets a Client dy-

namically configure a Model with a composition of dependency managers.

Chapter 7. Notification Framework 65

In a typical use case, the event handler plays the role of a synchronizer. Both intra

and inter model synchronization are supported.

Live refactoring A synchronization module can be defined to enforce all intra model de-

pendencies corresponding to refactoring operations. Editing a model with a refac-

toring synchronizer produces the same behavior of applying a refactoring operation

by hand.

Live generation In place of writing a traversal for generating from scratch a target model,

you can define a synchronizer that updates the target model whenever the source

model changes.

Two-ways synchronization Source and target models can be synchronized so that edit-

ing either model updates the other accordingly.

Abstracting generation Do suppose to have a design pattern level model synchronized

with an implementation model in a legacy language say Java; then you can write

builders targeting the design patterns model in place of the Java implementation

model. Such builders do not have to deal with implementation details. In fact, they

are also more reusable because you can change the target implementation model

without affecting them.

Multiple generation Multiple target models can be generated at once.

Generation time control Defining both traversal generators and synchronizers, you can

control the generation time (even at runtime) ranging from batch generation to live

model synchronisation.

Notice that some existing tools (i.e. UML modeling) provide two-ways synchroniza-

tion with code but they achieve this result in an ad-hoc manner; with the Whole Gener-

ative framework you get support for writing both intra and inter model synchronization

modules.

7.2.1 Event handlers interface

All event handlers have to implements the following interface:

66 Chapter 7. Notification Framework

public interface IEventHandler extends Serializable {

IEventHandler clone(IEventHandler parentEventHandler);

boolean hasSharingEventHandler();

SharingEventHandler getSharingEventHandler(IEntity entity);

IEventHandler add(IEventHandler eventHandler);

void notifyAdded(IEntity source, FeatureDescriptor feature,

int index, IEntity newValue);

void notifyRemoved(IEntity source, FeatureDescriptor feature,

int index, IEntity oldValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

int index, IEntity oldValue, IEntity newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

IEntity oldValue, IEntity newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

boolean oldValue, boolean newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

byte oldValue, byte newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

char oldValue, char newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

double oldValue, double newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

float oldValue, float newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

int oldValue, int newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

long oldValue, long newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

short oldValue, short newValue);

Chapter 7. Notification Framework 67

void notifyChanged(IEntity source, FeatureDescriptor feature,

String oldValue, String newValue);

void notifyChanged(IEntity source, FeatureDescriptor feature,

Object oldValue, Object newValue);

}

Notice that the values are not encapsulated in an event object and that the notifyChanged

method is overloaded for each primitive Java type.

7.2.2 Entity notification code

Model change notification is triggered by feature setters calling an (overloaded)notifyChanged

method. Take the following template code as example:

public void setFeature(FeatureType value) {

notifyChanged(ModelFeatureDescriptorEnum.feature,

this.feature, this.feature = value);

}

7.3 Predefined event handlers

There is a set of predefined event handlers that can be grouped in two categories: com-

posable and specialized event handlers.

7.3.1 Composable event handlers

The Notification framework comes with a small set of event handlers to facilitate the

writing of new event handlers.

The DefaultEventHandler is a do nothing implementation that can be extended

with feature type specific behavior.

The CompositeEventHandler maintains a sequence of event handlers and for-

wards all events to each of them in order.

The GenericEventHandler forwards all interface notification methods to the one

with Object type for values parameters.

68
C

hapter
7.

N
otification

Fram
ew

ork

IEventHandler

DefaultEventHandlerCompositeEventHandler

SharingEventHandler GenericEventHandler
SharedModel

HistoryEventHandler DelegatingEventHandler

PropertyChangeEventHandler MappingEventHandler

F
ig

u
re

7
.1:

C
lass

d
iag

ram
o

f
ad

ap
ter

ev
en

t
h

an
d

lers

Chapter 7. Notification Framework 69

The DelegatingEventHandler is an abstract implementation that forwards all

notification methods to an event handler selected by an abstract getEventHandler

method.

The MappingEventHandler is an abstract specialization of the DelegatingEventHandler

that uses a map to associate an event handler to an entity-feature pair. A few concrete

implementations are defined.

7.3.2 PropertyChange event handler

The PropertyChangeEventHandler is a standard event handler installed on the shared

model. Is is a Java compatible event handler that encapsulates events in PropertyChangeEvent

objects and forwards them to all registered PropertyChangeListeners. It includes a

set of methods to control the set of listeners:

boolean hasEventListeners();

Set getEventListeners();

void setEventListeners(Set eventListeners);

void addAllEventListeners(Collection eventListeners);

void addEventListener(PropertyChangeListener eventListener);

void removeEventListener(PropertyChangeListener eventListener);

The shared model duplicates the methods for registering listeners and lazily install

this event handler.

7.3.3 History event handler

The history event handler is a standard event handler installed on the shared model. It

provides three services to model clients:

Transparent undoable operations All operations performed over a model can be un-

done and redone.

Transactional behavior A sequence of changes can be encapsulated in a transaction that

can be committed or rolled back.

70 Chapter 7. Notification Framework

Optimistic feature validation A feature setter updates its value and then notifies changes

in a transaction context. Each event handler can reverse all changes consequents to

the setter simply calling the rollback method.

The HistoryEventHandler stores every event it receives in a sequence of model

changes each encapsulated in an object implementing the ICommand interface:

public interface ICommand {

void undo();

void redo();

}

The idea is to hide a logical unit of change behind a fixed interface. The history service

uses this interface to undo/redo the change.

The concrete commands are model-generic. They store a reference to the entity changed,

the feature affected and the old and new values. To undo/redo the change, they use the

model reflective API.

The HistoryEventHandler provides the following API:

void undo();

void redo();

void begin();

void commit();

void rollback();

The begin operation initiates a transaction. Each transaction eventually terminates

either with a commit or a rollback.

The commit operation encapsulates in a CompoundCommand[71] all commands exe-

cuted after the begin operation so that the entire transaction can be undone and redone

atomically.

The rollback operation reverses all changes happened after the call to begin. All

commands executed after the begin operation are undone and discarded (they are not

available for a successive redo).

Notice that there are a few differences between this pattern and the well known Com-

mand design pattern [35]. First, the commands encapsulate a change already applied to

Chapter 7. Notification Framework 71

the model and, second, the service is behind the model not in front of it so the creation of

the history is transparent for clients of the model.

The HistoryEventHandler interface is also available from the model and the model

context.

7.3.4 The Sharing event handler

The sharing event handler implements a sharing relation between model entities. Each

entity is part of a sharing set and all model operations performed over the entity are

applied to all entities in the sharing set. The sharing relation is a structural quantifier for

entity operations.

7.4 Event handler deployment

Event handlers can be deployed at three levels: per entity, per model and per shared

model.

An event handler deployed per entity receives notifications only by the entity. An

event handler deployed per model receives notifications from all entities of the model.

An event handler deployed per shared model receives notifications from all entities of a

compound model.

To deploy an event handler you have to call the addEventHandler method in an

entity, model or shared model. The addEventHandler method is responsible for re-

turning a possibly different event handler that replaces itself. This signature allows for

transparent composition and on demand deployment.

The default behavior returns a new CompositeEventHandlerwith the old and the

added event handlers as children. The DefaultEventHandler is the default per en-

tity event handler and cannot be explicitly deployed; adding an event handler to it has

the effect of replacing it with the added handler. The CompositeEventHandler can-

not be explicitly deployed; added event handlers are appended to the children list. The

SharingEventHandler is deployed on demand the first time getSharingEventHandler

is called.

72 Chapter 7. Notification Framework

7.5 Event handler clone behavior

The model clone operation interacts with event handlers deployed per entity. The

IEventHandler.clone method receives the cloned parent event handler and is re-

sponsible for cloning itself and returning a new parent. Each event handler can define a

clone behavior choosing between:

Clone the event handler is cloned and added to the parent event handler.

Share the event handler is shared

Discard the event handler is discarded; the parent event handler is returned.

Discard is the default behavior for event handlers deployed per entity.

The DefaultEventHandler discard itself returning the parent event handler. The

CompositeEventHandlerdiscard itself if, after cloning, it has less than two children.

Chapter 8

The Persistence framework

8.1 Introduction

The Persistence framework is a persistence and metaprogramming facility for generating

and persisting models.

The main idea is taken from the Builder design pattern [35]. The persistent form of a

model plays the role of the Director for the Builder that (re)constructs the model.

The framework consists of a set of generic builders and a few level 2 generators emit-

ting the specific builders for a given model. The model persistence builder fires a stream

of building events; other standard builders are chained to serialize and deserialize the

stream using different formats.

The idea of persisting a model using building events is atypical but not entirely new

to the field. The Long-Term Persistence API for JavaBeans [27] is standard in Java since

version 1.4 and it is based on similar concepts. Unfortunately the JavaBeans API is tied

to an XML representation so only small advantages of the approach can be seen.

The default stream serializer builder we provide is a Java code generator. Using it,

the persistent form of a model is a Java class that when (compiled and) executed rebuild

the original in memory representation of the model.

We have a few other requirements: we want to provide the ability to partition a soft-

ware system across multiple models and to partition a model across multiple persistence

files, and we need a way to define references between models. The problem of mapping

language names to file system files has been solved elegantly by programming languages

like C♯ and Java. For instance, in Java a class has a package declaration and a name and is

74 Chapter 8. Persistence Framework

stored in a file with the same name within a hierarchy of directories reflecting the pack-

age name; to reference a class you can use its name possibly qualified with its package

name and the mapping to the class file in the file system is straightforward. Using Java

as a persistence language gives us this solution to the problem.

Another very attractive advantage of this approach is automatic versioning through

refactoring. All refactoring operations performed over the model update also all persis-

tent model instances.

The Persistence framework supports languages built using multiple models and model

fragments.

The standard Java code representation is also a natural representation for meta pro-

grams.

8.2 The generic interface of Builders

All builders have to implements the IBuilder interface:

public interface IBuilder {

void wSetBuilderContext(IBuilderContext context);

void wSetEntityContext(IEntityContext context);

public void wDefault();

void wEntity();

void wEntity_();

void _wEntity();

void wEntity(EntityDescriptor entity);

void wEntity_(EntityDescriptor entity);

void wEntity_(EntityDescriptor entity, int initialCapacity);

void _wEntity(EntityDescriptor entity);

void wEntity(EntityDescriptor entity, boolean value);

void wEntity(EntityDescriptor entity, byte value);

void wEntity(EntityDescriptor entity, char value);

Chapter 8. Persistence Framework 75

void wEntity(EntityDescriptor entity, double value);

void wEntity(EntityDescriptor entity, float value);

void wEntity(EntityDescriptor entity, int value);

void wEntity(EntityDescriptor entity, long value);

void wEntity(EntityDescriptor entity, short value);

void wEntity(EntityDescriptor entity, String value);

void wEntity(EntityDescriptor entity, Object value);

void wFeature(int index);

void wFeature(FeatureDescriptor feature);

void wFeature(IDirector pattern);

}

The methods are designed to support a streaming behavior. We say that an API sup-

ports a model streaming behavior iff it fires (building) events in a top down traversal order

without exposing any detail of the model not yet traversed. We allow the freedom of

choosing the children order and of skipping one or more child forcing a default behavior.

Each build method is supposed to operate at the implicit location resulting from the

method call order in the stream. No entity objects are passed as arguments of the build

methods because they violate the streaming constraint. Only overloaded build methods

with primitive values are defined.

We have introduced a naming convention - the underscore symbol - to mark the start

or the end of an entity build scope depending on its relative position in a method name.

So you can build an entity using either a single build method or a pair of build methods

delimiting the start and the end of the stream used to define the children of the entity.

The entity build methods are defined in two flavors: with or without a parameter

with an EntityDescriptor. If a descriptor is given, the corresponding entity type is

used to build the entity, otherwise an entity resolver is used.

The wFeaturemethods are used to select the child to build. The behavior associated

to these methods is a change to the implicit location to be used for the following build

methods.

76 Chapter 8. Persistence Framework

For example the following code build a model of a model based editor (Mbed lan-

guage):

IBuilder b = new BuilderContext(new NewModelBuilder());

b.wEntity_(MbedEntityDescriptorEnum.ModelBasedEditor);

b.wDefault();

b.wDefault();

b.wEntity_(MbedEntityDescriptorEnum.ModelComponent);

b.wEntity(MbedEntityDescriptorEnum.Identifier, "TestModel");

b.wEntity_(MbedEntityDescriptorEnum.ModelComponent_Body);

b.wEntity_(MbedEntityDescriptorEnum.ModelEntity);

b.wEntity(MbedEntityDescriptorEnum.Identifier, "E1");

b._wEntity(MbedEntityDescriptorEnum.ModelEntity);

b.wDefault();

b.wDefault();

b.wDefault();

b.wEntity_(MbedEntityDescriptorEnum.ModelEntity);

b.wEntity(MbedEntityDescriptorEnum.Identifier, "E2");

b._wEntity(MbedEntityDescriptorEnum.ModelEntity);

b._wEntity(MbedEntityDescriptorEnum.ModelComponent_Body);

b._wEntity(MbedEntityDescriptorEnum.ModelComponent);

b.wDefault();

b.wEntity(MbedEntityDescriptorEnum.ControllerComponent);

b._wEntity(MbedEntityDescriptorEnum.ModelBasedEditor);

The code feels similar to an XML language without any distinction between attributes

and children. Note that the behavior of the builder context is defined by the builder

strategy argument; in the example a new model is built from scratch.

8.3 The language specific interfaces of Builders

For each language we define a model specific builder interface that defines for each entity

a set of builder methods similar to the generic wEntity methods but with the entity

Chapter 8. Persistence Framework 77

name; and it defines for each feature a set of child selection methods similar to the generic

wFeature methods but with the feature name.

Using the model specific builder IMbedBuilder the above example becomes:

b.ModelBasedEditor_();

b.wDefault();

b.wDefault();

b.ModelComponent_();

b.Identifier("TestModel");

b.ModelComponent_Body_();

b.ModelEntity_();

b.Identifier("E1");

b._ModelEntity();

b.wDefault();

b.wDefault();

b.wDefault();

b.ModelEntity_();

b.Identifier("E2");

b._ModelEntity();

b._ModelComponent_Body();

b._ModelComponent();

b.wDefault();

b.ControllerComponent();

b._ModelBasedEditor();

The resulting code feels much more intentional than in the generic case; furthermore

the code introduces only one type dependency with the specific builder of the language

used.

8.4 The hierarchy of Builders

Is easy to observe that the IBuilder API subsumes the functionalities of a creation API

based on the Abstract Factory pattern or based on the Prototype Manager pattern. We

78 Chapter 8. Persistence Framework

have the added ability to support default parameters in every position, and arguments

passed by name and by index in addition to by position.

But the more interesting advantage is the ability to choose the builder behavior with

much more freedom given by the support to the streaming behavior.

The Persistence framework includes several abstract and concrete implementations

of the IBuilder interface as depicted in Figure 8.1.
IB

ui
ld

er

A
bs

tr
ac

tB
ui

ld
er

F
or

w
ar

dB
ui

ld
er

N
ew

M
od

el
B

ui
ld

er
M

at
ch

B
ui

ld
er

La
ng

B
ui

ld
er

C
on

te
xt

B
ui

ld
er

C
on

te
xt

G
en

er
ic

C
od

eb
as

eB
ui

ld
er

S
pe

ci
fic

C
od

eb
as

eB
ui

ld
er

E
nt

ity
S

co
pe

B
ui

ld
er

Id
en

tit
yB

ui
ld

er

IB
ui

ld
er

C
on

te
xt

IE
nt

ity
C

on
te

xt

Figure 8.1: Class diagram of the builders hierarchy

There are two codebase builders that serialize a model to the Java director code for

Chapter 8. Persistence Framework 79

rebuilding it; one of the codebase builder uses the generic IBuilder interface while the

other uses only model specific builder interfaces. The NewModelBuilder build a new

model from scratch using the PrototypeManager API. The MatchBuilder performs

a comparison between a model and a stream of build events. The ForwardBuilder

forwards all build calls to a user definable builder strategy. The EntityScopeBuilder

forwards all the build calls used to build an entity.

Each builder is associated to an IBuilderContext and to one IEntityContext.

The IBuilderContext forwards all the builder method calls to its builder strategy and

all entity method calls the the entity context. The IEntityContext is an IEntitywith

additional methods for performing one step traversals; it represents the implicit location

where building events take place.

Chapter 9

The Editing framework

The Model Based Editing framework (Mbed) allows developers to create a rich graphical

editor for languages based on models written with the Modeling framework.

Model based means that the language presentation (user interface) is synchronized

with an internal object structure (the model).

Mbed is built on top of the Graphical Editing Framework (GEF)[4] and resulting edi-

tors works within the open source development environment Eclipse [2]. A snapshot of

the editor appearance is visible in Figure 9.1.

Mbed employs an MVC (model-view-controller) [33] architecture pattern. Specific

API and generative support is provided for each architecture part.

The framework is tied to models written with the Modeling framework. To work with

legacy models, you have to write adapters or, better, synchronizers (see [30]).

The controller supports all common interaction types with user through standard

keyboard and mouse devices including: menu, toolbar, palette, syntax aware context

menu, semantic selection and drag and drop.

The view part supports the creation of several kinds of presentations including:

• grammar layouts for rich text oriented languages

• math layouts for mathematical expressions

• tree and graph layouts for diagram oriented languages

The Mbed Editing framework extends the support of model composition provided

by the Modeling framework to the presentation level. It is possible to edit in a single ed-

itor window a language resulting from the composition of several fragments and legacy

Chapter 9. Editing Framework 81

Figure 9.1: Eclipse with Mbed editors

82 Chapter 9. Editing Framework

languages mixing different kinds of presentations. For example in Figure 9.2 a base level

Java code is mixed with template level XML, EBNF and Java code fragments; each lan-

guage is represented with its own default concrete syntax and the template level is high-

lighted with a different background color.

Figure 9.2: Mbed editor with templates

The Mbed Editing framework has required us mainly a big implementation effort;

no innovations at the design level are introduced so we do not spend any more time to

describe its implementation details here.

Chapter 10

The Java Model Generation framework

The Java Model Generation Framework is a code generation facility for building and

manipulating models of Java compilation units.

This framework is built on top of the Eclipse platform JDT DOM/AST API [7]. The

JDT API is a factory level no arguments API that provides a direct interface to the back

end of the Java compiler of the Eclipse platform and has operations for unparsing, for-

matting and saving Java compilation units.

Our framework provides two additional sets of APIs and some facilities to speedup

Java model building and manipulation. Code level API defines factory methods for cre-

ating single Java constructs passing common arguments. Pattern level API for building

Java code using pattern abstractions such as: singletons, delegation, constructors, get-

ters/setters, visitors, factories and factory methods. The framework has a facility for

writing code fragments representing names and types starting from familiar textual rep-

resentations. Tied with this facility we provide the ability to add import declarations

with control of ambiguous types and automatic selection between simple and qualified

names.

The framework has a model based on the Modeling framework API; it defines two

model entities: JavaModelGenerator and CompilationUnitBuilder.

The CompilationUnitBuilder is decoupled from Java compilation units. One Com-

pilationUnitBuilder can manage a set of compilation units but can even produce code

delegating to the current compilation unit managed by another CompilationUnitBuilder.

This feature is useful for writing specialized builders that add or modify behavior of code

produced by others.

84 Chapter 10. Java Model Generation Framework

A CompilationUnitBuilder is also a collector for names and types declared on compi-

lation units that it manages.

As an example of the Java Model Generation Framework API takes the following

code for building the first part of an EditorKit class:

public class EditorKitBuilder extends CompilationUnitBuilder {

public EditorKitBuilder(MbedEditorGenerator generator) {

super(generator);

addClassDeclaration(generator.editorKitName(),

AbstractEditorKit.class.getName());

FieldDeclaration fieldDec = newFieldDeclaration(

"String", "ID", newLiteral(generator.editorKitName()));

fieldDec.setModifiers(

Modifier.PUBLIC | Modifier.STATIC | Modifier.FINAL);

addBodyDeclaration(fieldDec);

methodDec = newMethodDeclaration("String", "getId");

addStatement(methodDec,

newReturnStatement(newSimpleName("ID")));

addBodyDeclaration(methodDec);

methodDec = newMethodDeclaration("String", "getName");

addStatement(methodDec,

newReturnStatement(newLiteral(generator.EditorName)));

addBodyDeclaration(methodDec);

methodDec = newMethodDeclaration(

EntityDescriptorEnum.class.getName(), "getModelEntities");

addStatement(methodDec,

newReturnStatement(newFieldAccess(

Chapter 10. Java Model Generation Framework 85

generator.specificEntityDescriptorEnumName(), "instance")));

addBodyDeclaration(methodDec);

The following Java code will be produced when the builder is applied to a model

called Mbed:

public class MbedEditorKit extends AbstractEditorKit {

public static final String ID = "org.whole.lang.mbed.MbedEditorKit";

public String getId() {

return ID;

}

public String getName() {

return "Mbed";

}

public EntityDescriptorEnum getModelEntities() {

return MbedEntityDescriptorEnum.instance;

}

As you can see the API of a model based generator, like this framework, hide the

output language syntax. We have preferred this kind of generator over the much more

commonly used text based generators [9][13][72] because having a concrete syntax is

much less important than having the full expressive power of a model generator. We are

able to build a single compilation unit in several steps without any order constraint; for

instance we can add interfaces, change a visibility modifier, add parameters to a method

declaration and so on.

This framework is used to give an executable semantics to our implementation of the

Java language and to all metamodeling languages. Now, that the bootstrapping phase

of the Whole Platform is terminating, we plan to replace all use of this framework with

the builders of our Java language. This way, we can have both a concrete syntax for

the template code (when edited with our development environment) and a model of the

generated code with all standard services provided by the Whole Platform.

86 Chapter 10. Java Model Generation Framework

Part III

The Whole Languages

87

88

The Whole Languages is the family of languages defined using the Whole Platform.

They are the communication languages used to represent the programs knowledge to

programmers for reading and editing.

Languages abstractions are packaged as languages. The set of language abstractions

is extensible. A few language abstractions are built-in on every language: embedding,

sharing and versioning.

Each language is regarded as a language component. New languages can be assem-

bled from language components.

Actual Whole Languages include two sets of languages: metamodeling languages

and legacy languages.

The legacy languages are provided because they are popular today and because they

have an executable semantics. Metamodeling languages are introduced for defining

other languages. The Languages DSL is assembled from all other metamodeling lan-

guages; each Whole language (including itself) is defined using it.

Chapter 11

Guidelines for Language Design

The Whole Languages have been architected with the following design principles in

mind:

Modularity This principle is applied to group related constructs into languages and to

separate loose coupled constructs in different languages.

Extensibility Each language is regarded as a component. A language can be extended

in two ways: 1) a new language can be defined assembling language components;

2) a new language can be defined reusing (sharing) parts of existing languages.

Layering The layered metamodel architectural pattern is consistently applied to separate

concerns across layers of abstraction. In particular each language is defined using

a metamodeling language.

Meta-circular The Whole family of languages includes metamodeling languages for defin-

ing all the members of the family. In particular, metamodeling languages have a

meta-circular definition.

11.1 Specification approach

The Whole family of languages is defined using a metamodeling approach. A metamodel

is used to specify the models defining a language. The architecture supports an unlimited

number of meta-layers. That is, a model instantiated from a metamodel can in turn be

used as a metamodel of another model in a recursive manner. In fact our metamodeling

90 Chapter 11. Guidelines for Language Design

hierarchy uses only the following three-layers and we think that this number is generally

enough:

M0 instances of models

M1 models

M2 metamodels

The models layer defines languages that describe semantic domains. A model is an

instance of a metamodel meaning that every element of the model is an instance of an

element in the metamodel. The Whole languages Java, XML, EBNF are examples of mod-

els.

The metamodels layer defines languages for specifying models (including metamod-

els). A metamodel is an instance of a metamodel acting as meta-metamodel. The Whole

languages Models, Operations, Editors and Languages are examples of metamodels.

A meta-metamodels layer would include languages for specifying metamodels only.

Because we have not a metamodel used only to define other metamodels, we prefer to

say that we have metamodels acting as meta-metamodels without introducing an explicit

meta-metalayer in the hierarchy.

For comparison in the OMG metamodeling hierarchy there is one meta-metamodel:

the MOF model used to define itself and all other metamodels.

The semantincs of a language is given with a generative plus framework completion

approach as depicted in Figure 11.1.

Platform

Whole Frameworks Code

Generated Code

Platform Independent Models

Platform Specific Models

Legacy code

Model to model
transformations

Model to code
transformations

Whole languages code

Figure 11.1: Whole Languages semantics architecture

Chapter 11. Guidelines for Language Design 91

The Whole family of languages include only languages having a model driven rep-

resentation. Even legacy languages do have a model driven counterpart in the Whole

family of languages. For each platform independent language we define one or more

model transformations to platform specific languages. For each platform specific lan-

guage we define a model transformation to code that completes the Whole frameworks

for the given platform.

The Whole languages can be defined at a high level of abstraction because they leave

to the model transformations and to the frameworks the responsibility to bridge the large

gap between the languages and the implementation platform. The frameworks capture

all commonalities of abstractions that appear in the models. The model to code transfor-

mations use the models to complete extension points in the frameworks.

Chapter 12

Models DSL

We are designing a language for defining the model of a language. Popular programming

language design books[62][29][60] and mainstream language specification books[36] de-

fine languages by giving a grammar with a (sort of) BNF[21] notation. In fact, the only

exceptions to this unwritten rule we know is the UML[50] language and other modeling

languages having a graphical notation.

So, before considering other specific modeling languages we try to use BNF for mod-

eling and we hilight what is wrong.

The BNF notation is conceived for defining language grammars so, it over specifies

the model with information (i.e. tokens) tied to a given textual concrete-syntax. In a

model driven approach, we want to separate the definition of the abstract-syntax of a lan-

guage (i.e. the model) because we want to define any number (including none) concrete-

syntaxes. Furthermore, we want to use different notation types (textual, graphical).

Even if we do not specify the terminals in a BNF grammar, we get an abstract syntax

but not a true model because BNF under specifies the language not permitting to give a

name to the alternate productions and to each part of a production. We can regard a BNF

specification as a model definition with all types declared but without names for con-

crete types and fields. Having names makes it possible to define polymorphic behavior

depending on them.

Also, BNF is not precise enough regarding the specification of multiplicity of nonter-

minals (sequences vs. sets, ordered or not).

The most popular modeling language is UML; it has a graphical notation and it re-

solves all points hilighted before. But, we think that a graphical notation alone is too

Chapter 12. Models DSL 93

dispersive to use for defining a big model.

Very recently (November 2004) a language with a textual notation and an expressivity

comparable to UML has been proposed: Emfatic[3]. The main advantage of Emfatic is

that it represents an entire model in a single source file and it uses a familiar Java-like

syntax.

We have chosen for our language a textual syntax that forces to define a name for each

type and for each feature.

With respect to cited modeling languages, we have taken a different approach re-

garding the concept of multiplicity. The multiplicity of a feature constrains the lower and

upper bounds allowed. The lower bound subsumes the concept of optional/mandatory.

Representing the multiplicity in a unique concept hides the difference between simple

types and composite types.

We have chosen to separate the two concepts introducing a modifier for optionality

and specific composite types. Composite types are also forced to be declared with a name.

With uniformity considerations in mind, we have also encapsulated legacy types such as

primitive types.

12.1 Language metamodel

The Model is the root entity of the language. It is defined by a name, two list of types

and modelDeclarations.

entity Model types IModelDeclaration

ModelName name

Types templateTypes

Types noBaseTypes

ModelDeclarations modelDeclarations

list<TypeName> Types

list<IModelDeclaration> ModelDeclarations

The two list of types constrain the metaprogramming ability of the model.

The templateTypes is the set of model types that can be staged to a template level

and that can embed a template program. Usually a model allows metaprograms written

94 Chapter 12. Models DSL

in any language but only at certain places. The noBaseTypes is the set of model types

that, when used in a template, cannot be staged to the base level. Usually a model allows

all entities (types) at template level to be down staged to the base level of possibly a

different language.

A type name can be an entity name or a simple name optionally qualified with a

model name.

value<String> ModelName

type TypeName

value<String> EntityName

value<String> SimpleTypeName

entity QualifiedTypeName

ModelName model

SimpleTypeName type

The Type entity can be used to introduce a type together with a set of entities typed

by it. Using a qualified type name you can extend the qualifier model type with new

entities and new type relations.

entity Type types IModelDeclaration

TypeName name

Types types

ModelDeclarations? typeDeclarations

An Enum entity introduces an enumeration type.

entity Enum types IModelDeclaration

SimpleTypeName name

EnumValues values

list<TypeName> EnumValues

Three types of entities are defined: simple, composite and value.

Chapter 12. Models DSL 95

entity Entity types IModelDeclaration

EntityName name

Types types

EntityDeclarations entityDeclarations

list<IEntityDeclaration> EntityDeclarations

entity Feature types IEntityDeclaration

Modifiers modifiers

TypeName type

FeatureName name

IExpression? exp

set<Modifier> Modifiers

enum Modifier

shared, optional

value<String> FeatureName

A collection of entities is explicitely modeled with a Composite entity. A Composite

entity represents a group of entities, known as its elements.

Three modifiers are used to constrain the content of the Composite. The ordered

modifier enforces an order on the elements. The sorted modifier enforces the key order

on the elements. The unique modifier prohibits duplicate elements. Common collection

types can be defined combining these modifiers as follows:

collection ordered sorted unique

bag (multiset)

set •

list •

ordered set • •

sorted list • •

sorted set • • •

96 Chapter 12. Models DSL

entity Composite types IModelDeclaration

CompositeModifiers modifiers

EntityName name

Types types

TypeName componentType

IEntity? keyPattern

set<CompositeModifier> CompositeModifiers

enum CompositeModifier

final, ordered, sorted, unique

Primitive types and other legacy types are wrapped in a Value entity.

entity Value types IModelDeclaration

EntityName name

Types types

ValueType valueType

value<String> ValueType

12.1.1 Type System

Definition 12.1 The Models DSL type system is specified by a tuple (E, T, :, /) where:

• E is the finite set of implementations (entities)

• T is the finite set of types

• : is the typing relation

• / is the substituibility relation

Notice that the two sets of implementations and types are disjoint.

The typing relation is a relation mapping an implementation to a set of types with the

following properties (axioms):

total ∀e ∈ E,∃t ∈ T | e : t

compatibility e : t, t/u → e : u where e ∈ E and t, u ∈ T

Chapter 12. Models DSL 97

The substituibility relation is a relation with the following properties (axioms):

reflexive t/t for all types in T

transitive if t/u and u/v, then t/v where t, u, v ∈ T

We define the following type equivalence relation on T :

t ≡ u iff t/u and u/t where t, u ∈ T

A circular definition of types is allowed and introduces an equivalence class of types. By

definition the equivalence classes are disjoint and in general do not partition the set of

types.

The possibility of defining an equivalence class of types is fundamental for allowing

flexible language composition. A type system without equivalence classes can only relate

two types in an asymmetric way (usual subtyping).

Type rules for Models constructs

A type is a marker for grouping types and implementations. Notice that a type does not

define a common behavior.

All constructs for entity definition define an implementation and one or more types.

A default type with the same name of the implementation is introduced. For instance:

entity e types t1,. . ., tn defines e : te, te/t1, . . . , te/tn

type t types t1,. . ., tn defines t/t1, . . . , t/tn

Chapter 13

Editors DSL

The Editors domain specific language has been designed for defining rich graphical edi-

tors for Whole languages.

13.1 Language metamodel

The definition of an editor strictly follows the Model View Controller[33] architectural pat-

tern (MVC): a model, a view and a controller components have to be defined. An editor,

of course, has also a name and a root entity.

entity Editor

EditorName editorName

EntityName rootEntity

ModelComponent modelComponent

ViewComponent viewComponent

ControllerComponent controllerComponent

value<String> EditorName

In the following subsections we define each editor component.

13.1.1 The model component

The Model type of the Models DSL is used to define the model component type of an

editor. Other two types: EntityName and FeatureName of the Models DSL are used to

define two types declared in this language with the same name.

Chapter 13. Editors DSL 99

type Models.Model types ModelComponent

type Models.EntityName types EntityName

type Models.FeatureName types FeatureName

13.1.2 The view component

The view component of an editor defines a set of view declarations for building a presen-

tation model. Notice that a view make no assumptions about the entities it displays.

entity ViewComponent types ViewComponent, IViewDeclaration

ViewDeclarations body

set<IViewDeclaration> ViewDeclarations

A TextualView is a kind of view using a textual representation. It consists of a list of

rows each defining a list of figures.

entity TextualView types IViewDeclaration

ViewName name

TextualRows rows

value<String> ViewName

list<ITextualRow> TextualRows

entity TextualRow types ITextualRow

TextualFigures figures

list<ITextualFigure> TextualFigures

Three kind of textual figures are available: a place holder for children figures, an

indentation figure and a token figure. All child places of a figure are filled with the

figures of the children of the presentation model. The token figure permits to define a

text literal to display and a category for selecting the rendering font, style and color.

100 Chapter 13. Editors DSL

type ITextualFigure

entity ChildPlace

entity Indent

entity Token

Category category

TokenImage text

enum Category

keyword, operator, delimiter, parenthesis, identifier, literal

value<String> TokenImage

Other kind of views can be defined for the editor but currently they have not a corre-

sponding set of constructs in this domain specific language.

13.1.3 The controller component

The controller component of an editor has three responsibilities: it defines the mapping

between the model and the view; it defines the set of prototypes and the set of actions.

The mapping is used to build a representation of the model. The prototypes can

be displayed on the editor palette view and on contextual menus. The actions can be

displayed on the editor toolbar and on contextual menus.

entity ControllerComponent

MappingDeclarations mapping

PrototypeDeclarations prototypes

ActionDeclarations actions

The mapping consists of a list of ControllerPartdeclarations each defining a cor-

respondence between a model entity and a view. The ControllerPart contains, in

presentation order, the list of entity features to be displayed on the view. Recursively the

view of a feature is constructed and displayed in the corresponding place holder of the

entity view.

Chapter 13. Editors DSL 101

set<IMappingDeclaration> MappingDeclarations

entity ControllerPart types IMappingDeclaration

PartName name

EntityName entityName

ViewName viewName

ControllerFeatures features

value<String> PartName

list<ControllerFeature> ControllerFeatures

entity ControllerFeature

FeatureName name

Prototypes define a set of model prototypes each with optional presentation name,

icon and description. The prototype is an arbitrary model fragment ranging from a single

entity to a full program.

set<IPrototypeDeclaration> PrototypeDeclarations

entity Prototype types IPrototypeDeclaration

IEntity prototype

TextName? textName

IconName? iconName

Description? description

Actions define a set of model operations each with optional presentation name, icon

and description. The operation call defines the invocation code to use; some information

taken from the execution context of the action such as current selection and the model are

available for defining operation arguments.

102 Chapter 13. Editors DSL

set<IActionDeclaration> ActionDeclarations

entity Action types IActionDeclaration

IOperationCall operationCall

TextName? textName

IconName? iconName

Description? description

value<String> TextName

value<String> IconName

value<String> Description

Chapter 14

Languages DSL

14.1 Language metamodel

The Languages DSL is able to define a complete Whole language including the model, the

behavior and some editors. The language extends three other domain specific languages:

Models, Operations, and Editors.

language Languages extends Models, Operations, Editors

model

type Models.Model types IModelDeclaration

type Operations.Operation types IOperationDeclaration

type Editors.Editor types IEditorDeclaration

A language has a name and can extends some other languages. The language model is

defined using the Models DSL. The language operations are defined using the Operations

DSL. The language editors are defined using the Editors DSL.

104 Chapter 14. Languages DSL

entity Language

LanguageName name

LanguageNames extendedLanguages

IModelDeclaration model

IOperationDeclarations operations

IEditorDeclarations editors

value<String> LanguageName

set<LanguageName> LanguageNames

set<IOperationDeclaration> IOperationDeclarations

set<IEditorDeclaration> IEditorDeclarations

14.1.1 Language extension

Each language is defined in a separate namespace. No automatic merge of types is per-

formed when extending a language. A language extending other languages is able to

access to external types using qualified names.

Chapter 15

Legacy languages

We call legacy languages all existing languages defined without a model-driven approach.

We have chosen four legacy languages for inclusion on the first distribution of the Whole

platform: Java, XML, EBNF and Text.

For each language a metamodel has been defined using the Languages DSL so editing

of these languages is fully supported in the Whole IDE. This chapter does not cover the

metamodel definitions; here we outline the kind of transformations defined for these

languages.

15.1 Java

A model of the Java language can be imported from and exported to its standard textual

notation. A two-ways model to model transformation has been defined for interopera-

tion with the Java abstract syntax tree representation used on the Eclipse platform Java

tools[7]. The compilation of the Java model is supported both using a standard compiler

on the textual representation and using the Eclipse Java compiler on the transformed

model. The Java model is used both as meta language and as target language for model

transformations defining the semantics of other languages.

15.2 XML

A model of the XML[75] language can be imported from and exported to a stream of

SAX[12] events. The Extensible Markup Language (XML) is widely used as a model and

106 Chapter 15. Legacy languages

notation for several domain specific languages. Near all applications use some XML di-

alects, for middleware configuration, deployment automation, object-relational mapping

specification and so on. We use the XML language for generating all artifacts of a given

application written in XML and for importing existing DSL defined using such a notation.

15.3 EBNF

The Backus Naur Form (BNF)[21] is the most widely used formalism to specify grammars

for languages. We have provided a model for this language both for importing existing

grammars and for generating a grammar suitable for processing with parser generator

tools[44][57].

15.4 Text

A model of a generic unstructured textual language can be imported from and exported

to a textual file. The text language is used as target for model transformations when

the target language is not supported with a model. The Text language is also useful as

domain specific language embedded in other languages for supporting string literals or

textual templates.

Chapter 16

Conclusions

A new technology for engineering the production of software through the development

of languages has been designed, implemented and successfully applied to real program-

ming languages.

The Whole Platform consists of a visual development environment, a generative sys-

tem and a family of languages.

The platform supports some services unique or improved with respect to compet-

ing technologies appeared so far such as: a model history with the ability to execute

operations intensionally, a streaming API for building and persisting models, a model

driven metaprogramming support with concrete syntax, a pluggable model type system,

dynamic scopes for operations and (inherited) properties, and composable families of

traversals, iterators, adapters and pattern matchers.

It has been possible to achieve the advanced services outlined above introducing sev-

eral innovations in the design of the platform architecture and frameworks. A contribute

of the thesis is the introduction of design patterns such as Model Context, Resolver Ob-

ject and Visitable Marker Interface and the improving of others like: Command, Builder,

Staged Visitors and Visitor Combinators. Without these design innovations it would not

be possible to realize a software platform extensible in a modular way both with new

languages and new operations.

These innovations in the solution proposed make possible: to add features to sup-

ported languages, to extend the set of supported languages (including the languages

used for generators and metamodels), the use of model driven generators, the support of

108 Chapter 16. Conclusions

both batch and live synchronization of models, the mixing of different notations even on

a single source code.

The Whole platform implementation has required near one year of development to

one person. Statistical details about the implementation are given in Figure 16.1. Note

that the Whole column includes all the frameworks code; the Mbed language column

includes all metamodeling languages and only the two major legacy languages (Java and

XML) are also included in the table.

Whole Mbed Java XML tot

Java Lines of Code (LoC) 8356 11973 13060 2947 36336

Java LoC written by hand 8356 1592 601 102 10551

Metamodels LoC 0 78 490 118 686

Number of Packages 23 16 24 13 76

Number of Interfaces 36 14 30 9 89

Number of Classes 267 167 451 154 1039

Number of Methods 2286 1519 5152 1472 10429

Number of Attributes 402 132 333 123 990

Figure 16.1: Whole Platform implementation statistics

All the implementation code is written using the Whole frameworks API or the Whole

metamodeling languages; i.e., the Whole Platform is bootstrapped.

Near the 75% of all the implementation code has been generated. The code written by

hand includes the implementation of the frameworks and the implementation of Whole

languages metamodels and behavior. Note that no metamodeling languages for describ-

ing model behavior are available so far.

Ranging from the 8% to 14% of the implementation of each language is written by

hand. We plan to introduce metamodeling languages for describing the transformation

and the synchronization behavior of a model.

References

[1] The eclipse modeling framework. http://www.eclipse.org/emf.

[2] The eclipse platform. http://www.eclipse.org.

[3] Emfatic language for emf development. http://www.alphaworks.ibm.com/

tech/emfatic?Open&ca=daw-hp-pr.

[4] The graphical editing framework. http://www.eclipse.org/gef.

[5] Hypersenses. http://www.d-s-t-g.com/neu/pages/pageseng/et/

common/techn_hypsen_frmset.htm.

[6] Java 2 platform, enterprise edition (j2ee). http://java.sun.com/j2ee/.

[7] The java development tools subproject. http://www.eclipse.org/jdt/

index.html.

[8] Javaserver faces. http://java.sun.com/j2ee/javaserverfaces/index.

jsp.

[9] Jet tutorial. http://www.eclipse.org/articles/Article-JET/jet_

tutorial1.html.

[10] Metaborg. http://www.stratego-language.org/Stratego/MetaBorg.

[11] The netbeans ide. http://www.netbeans.org/.

[12] Simple api for xml. http://www.saxproject.org/.

[13] Velocity. http://jakarta.apache.org/velocity/.

[14] Visual editor project. http://www.eclipse.org/vep.

110 References

[15] Visula. http://visula.org/index.html.

[16] Formal philosophy, selected papers of r. montague. Yale University Press, 1974.

[17] David H. Akehurst and Stuart J. H. Kent. A Relational Approach to Defining Trans-

formations in a Metamodel. In Jean-Marc Jezequel and Heinrich Hussmann, editors,

UML2002 - The Unified Modeling Language: Model Engineeing, Concepts, and Tools, vol-

ume 2460 of Lecture notes in computer science. Springer-Verlag, October 2002.

[18] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge. Multidimensional

Declarative Programming. Oxford University Press, London, 1995.

[19] E. A. Ashcroft and W. W. Wadge. Lucid - a formal system for writing and proving

programs. SIAM Journal on Computing.

[20] E. A. Ashcroft and W. W. Wadge. Lucid, the Dataflow Programming Language. Aca-

demic Press, London, 1985.

[21] John Backus and Peter Naur. Revised report on the algorithmic language algol 60.

Communications of the ACM, 3(5):299–314, 1960.

[22] Martin Bravenboer and Eelco Visser. Concrete syntax for objects. Domain-specific

language embedding and assimilation without restrictions. In Douglas C. Schmidt,

editor, Proceedings of the 19th ACM SIGPLAN conference on Object-Oriented Program-

ing, Systems, Languages, and Applications (OOPSLA’04), Vancouver, Canada, October

2004. ACM SIGPLAN.

[23] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: a code manipulation tool to im-

plement adaptable systems. In Adaptable and Extensible Component Systems, 2002.

http://asm.objectweb.org/current/asm-eng.pdf.

[24] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied Metamodelling:

A Foundation for Language-Driven Development. 2004.

[25] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming, chapter 11.

Addison-Wesley, 2000. Intentional Programming.

References 111

[26] Sergey Dmitriev. Language oriented programming: The next programming

paradigm. Technical report, JetBrains, 2004. http://www.onboard.jetbrains.

com/articles/04/10/lop/mps.pdf.

[27] JSR-57 expert group. Jsr-000057 long-term persistence for javabeans specifica-

tion, 2001. http://www.jcp.org/aboutJava/communityprocess/review/

jsr057/.

[28] A. A. Faustini and W. W. Wadge. Intensional programming. In J.C. Bourdeaux,

B.W.Hamill, and R.Jernigan, editors, The Role of Languages in Problem Solving 2,

North-Holland, 1987. Elsevier Science Publishers.

[29] Raphael A. Finkel. Advanced Programming Language Design. Addison-Wesley Pub-

lishing Company, 1996.

[30] Nathan Foster, Michael Greenwald, Jonathan Moore, Benjamin Pierce, and Alan

Schmitt. Combinators for bi-directional tree transformations: A linguistic approach

to the view update problem. POPL 2005, 2005.

[31] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley

Publishing Company, 2000.

[32] Frank Budinsky, et al. The Eclipse Modeling Framework. Addison-Wesley Publishing

Company, 2003.

[33] Frank Buschmann, et al. Pattern-Oriented Software Architecture: A System of Patterns.

Wiley Publishing Inc., Indianapolis, IN, 1996.

[34] Frank Buschmann, et al. Pattern Languages of Program Design 3. Addison-Wesley,

1998.

[35] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements od Reusable Object-Oriented Software. Addison-Wesley Professional Com-

puting Series. Addison-Wesley Publishing Company, New York, NY, 1995.

[36] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification,

Second Edition. Addison-Wesley Publishing Company, 2000.

112 References

[37] Mark Grand. Patterns in Java Volume 1. Wiley Publishing Inc., Indianapolis, IN,

1998.

[38] Jack Greenfield and Keith Short. Software Factories: Assembling Applications with Pat-

terns, Models, Frameworks, and Tools. Wiley Publishing Inc., Indianapolis, IN, 2004.

[39] Gregor Kiczales, et al. Aspect-oriented programming. In Proceedings of the European

Conference on Object-Oriented Programming (ECOOP). Springer-Verlag, 1997.

[40] Gregor Kiczales, et al. An overview of aspectj. In Proceedings of the European Confer-

ence on Object-Oriented Programming (ECOOP). Springer-Verlag, 2001.

[41] A. Hejlsberg and S. Wiltamuth. The C# Programming Language. Addison-Wesley

Publishing Company, 2004.

[42] T. Kuipers and J. Visser. Object-oriented tree traversal with jjforester. Electronic Notes

in Theoretical Computer Science, 44, 2001.

[43] Akos Ledeczi, Miklos Maroti, and Peter Volgyesi. The generic modeling environ-

ment. Technical report, Institute for Software Integrated Systems, Vanderbilt Uni-

versity, 2004.

[44] John R. Levine, Tony Mason, and Doug Brown. lex & yacc. O’Reilly & Associates,

Inc., 1992.

[45] S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling, and K. Tan. Generative

design patterns, 2002. citeseer.nj.nec.com/593908.html.

[46] Robert C. Martin. Acyclic Visitor, pages 93–104. Addison-Wesley, 1998.

[47] Robert C. Martin. The Visitor Family of Design Patterns. Prentice Hall, 2002.

[48] Fabian Buttner Oliver. Digging into the visitor pattern. citeseer.ist.psu.edu/

632686.html.

[49] OMG. Mda guide version 1.0.1, 2003. http://www.omg.org/cgi-bin/doc?

omg/03-06-01.

[50] OMG. Omg unified modeling language specification, v1.5, 2003. http://www.

omg.org/cgi-bin/doc?formal/03-03-01.

References 113

[51] OMG. Uml 2.0 diagram interchange specification, 2003. http://www.omg.org/

cgi-bin/doc?ptc/03-09-01.

[52] OMG. Uml 2.0 infrastructure specification, 2003. http://www.omg.org/

cgi-bin/doc?ptc/03-09-15.

[53] OMG. Uml 2.0 superstructure specification, 2003. http://www.omg.org/

cgi-bin/doc?formal/03-08-02.

[54] OMG. Xml metadata interchange (xmi) specification, 2003. http://www.omg.

org/cgi-bin/doc?formal/03-05-02.

[55] OMG. Meta object facility (mof) 2.0 core specification, 2004. http://www.omg.

org/cgi-bin/doc?ptc/03-10-04.

[56] Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In Proc. 22nd IEEE

Int. Computer Software and Applications Conf., COMPSAC, pages 9–15, 19–21 1998.

[57] Terence Parr. Antlr another tool for language recognition, 1989-2004. http://www.

antlr.org.

[58] J. Plaice and Joey Paquet. Introduction to intensional programming. In Intensional

Programming I, pages 1–14, Singapore, 1996.

[59] J. Plaice and W. W. Wadge. A new approach to version control. IEEE Transactions on

Software Engineering, 19(3):268–276, 1993.

[60] Terrence W. Pratt and Marvin V. Zelkowitz. Programming Languages Design and Im-

plementation. Prentice Hall, 2000.

[61] Dirk Riehle. Composite design patterns. In Proceedings of the 1997 Conference

on Object-Oriented Programming Systems, Languages and Applications (OOPSLA ’97),

pages 218–228, 1997.

[62] Michael L. Scott. Programming language pragmatics. Morgan Kaufmann Publishers

Inc., 2000.

[63] Charles Simonyi. The death of computer languages, the birth of intentional pro-

gramming. Technical Report MSR-TR-95-52, Microsoft Research, 1995.

114 References

[64] Charles Simonyi. Intentional programming - innovation in the legacy age. In IFIP

WG 2.1 meeting, 1996.

[65] Mark van den Brand, Jan Heering, Hayco de Jong, Merijn de Jonge, Tobias Kuipers,

Paul Klint, Leon Moonen, Pieter Olivier, Jeroen Scheerder, Jurgen Vinju, Eelco Visser,

and Joost Visser. The ASF+SDF Meta-Environment: a Component-Based Language

Development Environment. In Proceedings of Compiler Construction 2001 (CC 2001),

LNCS. Springer, 2001.

[66] Joost Visser. Visitor combination and traversal control. In Proceedings of the 16th

ACM SIGPLAN conference on Object-Oriented Programing, Systems, Languages, and Ap-

plications (OOPSLA’01), pages 270–282, November 2001.

[67] Joost Visser. Generic Traversal over Typed Source Code Representations. PhD thesis,

University of Amsterdam, 2003.

[68] John Vlissides. Composite design patterns (they aren’t what you think). C++ Report,

1998.

[69] John Vlissides. Tooled composite. C++ Report, 1999.

[70] John Vlissides. Visitor in frameworks. C++ Report, 11(10):40–46, 1999.

[71] John Vlissides and Richard Helm. Compounding command. C++ Report, pages

47–52, 1999.

[72] W3C. Xsl transformations (xslt) 1.0. Technical report, W3C, 1999. http://www.

w3.org/TR/1999/REC-xslt-19991116.

[73] W3C. Document object model (dom) level 2 traversal and

range specification, 2000. http://www.w3.org/TR/2000/

REC-DOM-Level-2-Traversal-Range-20001113/.

[74] W3C. Document object model (dom) level 3 core specification, 2004. http://www.

w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/.

[75] W3C. Extensible markup language (xml) 1.1. Technical report, W3C, 2004. http:

//www.w3.org/TR/2004/REC-xml11-20040204/.

