A Additional material on Section 3

Congruence proofs Lemmas 3.7 and 3.8 are proved simultaneously, thus:

Lemma A.1 1. \(V \approx E W\) implies \(C[V] \approx E C[W]\), for all \(C\).

2. \(M \approx E N\) implies \(C[M] \approx E C[N]\), for all evaluation contexts \(C\).

Proof Suppose \(\mathcal{Y}\) is a bisimulation, and take

\[\mathcal{X} \equiv \{ (E^*, C[M, \overline{V}], C[N, \overline{W}]) \text{ s.t. } \]
\[M \not\approx E N, \]
\[C \text{ is an evaluation context on the first hole,} \]
\[V_i \in \mathcal{E} \]
\[E \in \mathcal{Y} \text{ and } V_i \in \mathcal{E} \]
\[\cup \{ \mathcal{E}^*, C[V], C[\overline{W}] \} \text{ s.t. } E \in \mathcal{Y} \}
\[\cup \{ \mathcal{E}^* \text{ s.t. } E \in \mathcal{Y} \} \}

We show that this is a bisimulation. We first prove the bisimilarity for elements of the form

\[(E^*, C[\overline{V}], C[\overline{W}]).\quad (1)\]

On these elements, clause (1.b) is immediate: if \(C[\overline{V}]\) is a value, then also \(C[\overline{W}]\) is a value and they are in \(E^*\). This is sufficient, because \(E^* \in \mathcal{X}\). Clause (1.a) is proved by an induction on \(C\). The details are easy: the only possible case is \(C = C_1 \cup C_2\); we use the fact that if \(\lambda x \cdot P \approx E \lambda x \cdot Q, P \approx E W,\) and \(Q \approx E W\), then \((P[V/x], Q[W/x]) \in \mathcal{X}_{E}\), for some \(E^*\) with \(E \subseteq E^*\), which follows from the definition of bisimulation (we exploit here the peculiarity of clause (2) of environmental bisimulations on abstractions).

The requirements for elements of the form

\[(E^*, C[M, \overline{V}], C[N, \overline{W}])\quad (2)\]

and \(E^*\) follow from the proof for the elements (1) above together with some basic properties of evaluation contexts on transitions (the fact that hole \([\]\) of an evaluation context is active and therefore the term that replaces this hole is free to reduce). In elements of the form (2) we distinguish the cases when \(M\) is a value and when it is not.

The next lemma shows that \(\approx\) is preserved by all contexts (this is Lemma 3.10 from the main text).

Lemma A.2 \(M \approx N\) implies, for all context \(C\), \(C[M] \approx C[N]\).

Proof The following relation is a bisimulation up-to bisimilarity:

\[\mathcal{X} \equiv \{ (\approx^*, C[\overline{M}], C[\overline{N}]) \text{ s.t. } \overline{M} \approx \overline{N} \} \cup \{ \approx^* \}\]

For elements \((\approx^*, C[\overline{M}], C[\overline{N}])\), clauses (1.a) and (1.b) are proved by a (straightforward) induction on the size of the context. Lemma A.1 is used to handle the “up-to bisimilarity” that originates from the induction hypothesis.

The case of elements of \(\approx^*\), is immediate, using the definition of bisimulations. We have either \(\lambda x \cdot P \approx \lambda x \cdot Q\), or \(\lambda x \cdot P\) and \(\lambda x \cdot Q\) have a common non-empty context and only the arguments of such context are related. In the first case, since \(\approx\) is a bisimulation we have:

\[P[V/x] \mathcal{X}_{\approx^*}; P[W/x] \approx Q[W/x]\]

which is sufficient, as \(\mathcal{X}\) is bisimilarity up-to bisimilarity. In the second case, we have \(P[V/x] \mathcal{X}_{\approx^*}; Q[W/x]\).

Up-to techniques

Definition A.3 An environmental relation \(\mathcal{X}\) is an environmental bisimulation up to environment if

1. \(M \mathcal{X}_{E} N\) implies:

\[\begin{align*}
(a) & \text{ if } M \rightarrow M' \text{ then } N \rightarrow N' \text{ and } M' \mathcal{X}_{E'} N' \text{ for some } E' \supseteq E \\
(b) & \text{ if } M = V \text{ then } N \rightarrow W \text{ and } E' \in \mathcal{X} \text{ for some } E' \supseteq E \cup \{(V, W)\} \\
(c) & \text{ the converse of the above two conditions, on } N
\end{align*}\]
2. if \(E \in X \) then for all \((\lambda x. P, \lambda x. Q) \in \mathcal{E}\) and for all \((M_1, N_1) \in \mathcal{E}^*\) it holds that \(P\{M_1/x\} \not\simeq Q\{N_1/x\}\) for some \(E' \supset \equiv E \).

Definition A.4 An environmental relation \(\mathcal{X} \) is an environmental bisimulation up to bisimilarity if

1. \(M \mathcal{X} N \) implies:

 (a) if \(M \rightarrow M' \) then \(N \Rightarrow N' \) and \(M' \mathcal{X} \simeq N' \)

 (b) if \(M = V \) then \(N \Rightarrow W \) and \(\mathcal{E} \cup \{(V, W')\} \in \mathcal{X} \) for some \(W' \simeq W \)

 (c) the converse of the above two conditions, on \(N \)

2. if \(E \in X \) then for all \((\lambda x. P, \lambda x. Q) \in \mathcal{E}\) and for all \((M_1, N_1) \in \mathcal{E}^*\) it holds that \(P\{M_1/x\} \not\simeq Q\{N_1/x\}\).

Definition A.5 An environmental relation \(\mathcal{X} \) is an environmental bisimulation up to reduction if

1. \(M \mathcal{X} N \) implies:

 (a) if \(M \rightarrow M' \) then \(N \Rightarrow N' \) and there are \(M'' \) and \(N'' \)

 (b) if \(M = V \) then \(N \Rightarrow W \) and \(\mathcal{E} \cup \{(V, W')\} \in \mathcal{X} \) for some \(W' \simeq W \)

 (c) the converse of the above two conditions, on \(N \)

2. if \(E \in X \) then for all \((\lambda x. P, \lambda x. Q) \in \mathcal{E}\) and for all \((M_1, N_1) \in \mathcal{E}^*\) it holds that \(P\{M_1/x\} \not\simeq Q\{N_1/x\}\).

B Additional material for logical bisimulations

This section has been superseded by “Logical Bisimulations and Functional Languages” to appear in Post-Proceedings of IPM International Symposium on Fundamentals of Software Engineering (FSEN 07), Lecture Notes in Computer Science, Springer-Verlag. The former Example B.7 now corresponds to Section 3.4, Example 1.

C Call-by-value \(\lambda \)-calculus

The one-step call-by-value reduction relation \(\rightarrow \subseteq \Lambda^* \times \Lambda^* \) is defined by these rules:

\[
\beta_v : (\lambda x. M)V \rightarrow M\{V/x\}
\]

\[
\mu : M \rightarrow M' \quad \nu : N \rightarrow N'
\]

We highlight what changes in the theory for call-by-name of the previous sections. For a relation \(\mathcal{R} \) we write \(\mathcal{R}^* \) for the subset of \(\mathcal{R}^* \) that only relate pairs of values.

- The input for two functions must be values. Therefore, in the definition of environmental bisimulation, the input terms \(M_1 \) and \(N_1 \) should be in \(\mathcal{E}^* \) (rather than \(\mathcal{E} \)).

A similar modification on the quantification over inputs of functions is needed in all definitions of bisimulations and up-to techniques.

- In the grammar for evaluation contexts, we add the production \(V.C \).

With these modifications, all definitions and results in Section 3 are valid for call-by-value. The structure of the proof also remains the same, with the expected differences in technical details due to the change in reduction strategy.

All up-to techniques described for call-by-name are valid also for call-by-value. In addition, we can also derive the soundness (and completeness) of a form of logical bisimulation with big-step restricted to values (in call-by-value, applicative bisimulation is normally defined this way) that we call value big-step logical bisimulation.

Definition C.1 A relation \(\mathcal{E} \) on closed values is a value big-step logical bisimulation if for all \(V \not\in \mathcal{E} \) and \(V_1 \not\in \mathcal{E} \), if \(VV_1 \not\Rightarrow V' \) then there is \(W' \) such that \(WW_1 \not\Rightarrow W' \) and \(V'W' \); and the converse, on the reductions from \(W \).

Example C.2 This example uses a simply-typed call-by-value extended with integers, an operator for subtraction (\(-\)), a conditional, and a fixed-point operator \(Y \). The reduction rule for \(Y \) is \(YV \rightarrow V(\lambda x. YVx) \). As mentioned in Section 2, it is straightforward to accommodate such additions in the theory developed. (We could also encode
arithmema into the untyped calculus and adapt the example, but it would become harder to read.) Let P, Q be the terms

$$
P \overset{\text{def}}{=} \lambda f. \lambda g. \lambda x. \lambda y. \text{if } x = 0 \text{ then } y \text{ else } g(f \; g(x - 1) \; y)$$

$$
Q \overset{\text{def}}{=} \lambda f. \lambda g. \lambda x. \lambda y. \text{if } x = 0 \text{ then } y \text{ else } f \; (g(x - 1) \; (g \; y))
$$

Let $F_1 \overset{\text{def}}{=} \lambda z. \lambda P \; z$ and $F_2 \overset{\text{def}}{=} \lambda z. \lambda Q \; z$.

The terms $F_1 \; g \; n \; m$ and $F_2 \; g \; n \; m$ (where g is a function value from integers to integers and n, m are integers) computes $g^n(m)$ if $n \geq 0$, diverge otherwise. In both cases, however, the computations made are different. We show $F_1 \; g \; n \; m \cong F_2 \; g \; n \; m$ using an up-to technique for logical bisimulations. For this, we use the following relation R:

$$
\{ (g^n(F_1 \; g \; n \; m), F_2 \; g \; n \; (g^n(m))) \mid \begin{array}{l} r, m, n \in \mathbb{Z}, r \geq 0, \text{ and} \\
\text{ } g \text{ is a closed value of type int} \rightarrow \text{int}. \end{array} \}
$$

We show that R is a logical bisimulation up-to expansion and context.

Let us consider the pair $(g^n(F_1 \; g \; n \; m), F_2 \; g \; n \; (g^n(m)))$.

If $n = 0$, then we have:

$$
g^n(F_1 \; g \; 0 \; m) \overset{R^*}{\longrightarrow} g^n(m)
$$

$$
F_2 \; g \; n \; (g^n(m)) \overset{\succcurlyeq}{\longrightarrow} g^n(m)
$$

So, the required condition holds. If $n \neq 0$, then we have

$$
g^n(F_1 \; g \; n \; m) \overset{\succcurlyeq}{\longrightarrow} g^n(g(F_1 \; g \; (n-1) \; m)) \geq g^{n+1}(F_1 \; g \; (n-1) \; m).
$$

and

$$
F_2 \; g \; n \; (g^n(m)) \overset{\succcurlyeq}{\longrightarrow} F_2 \; g \; (n-1) \; (g(g^n(m))) \geq F_2 \; g \; (n-1) \; (g^{n+1}(m)).
$$

Here, the first \succcurlyeq comes from the fact that y is not copied inside the function F_2. We are done, since

$$
(g^{n+1}(F_1 \; g \; (n-1) \; m), F_2 \; g \; (n-1) \; (g^{n+1}(m))) \in R.
$$

The example above makes use of key features of our method: the ability to compare terms in the middle of evaluations, and (some of) its up-to techniques.

D Additional material for the imperative call-by-value λ-calculus

Syntax and reduction rules

We use s, t to range over stores, i.e., finite mappings from locations to closed values and l, k over locations. Then $s[l = V]$ is the update of s (possibly an extension of s if l is not in the domain of s). We write $s \equiv s'$ for the union of the two stores when dom(s) and dom(s') are disjoint. We write \emptyset for the empty store, and dom(s) for the domain of s. \ast is the unit value (i.e., nullary tuple). We often write $M_1; M_2$ for $(\lambda x. M_2) M_1$ when $x \not\in\text{fv}(M_2)$.

The syntax of terms is given as follows:

$$
M ::= x \mid c \mid \lambda x. M \mid (V_1, \ldots, V_n) \mid l
$$

Values are:

$$
V ::= c \mid \lambda x. M \mid (V_1, \ldots, V_n) \mid l
$$

We assume that the set of primitive operations contains the equality function on constants.

The formal definition of the small-step reduction relation is given below. We assume that the semantics of primitive operations are already given by the function Prim.

$$
\langle s \; (\lambda x. M)V \rangle \rightarrow \langle s ; M[V/x] \rangle
$$

$$
\langle s \; \text{if true then } M_1 \text{ else } M_2 \rangle \rightarrow \langle s ; M_1 \rangle
$$

$$
\langle s \; \text{if false then } M_1 \text{ else } M_2 \rangle \rightarrow \langle s ; M_2 \rangle
$$

$$
\langle s ; \#i(V) \rangle \rightarrow \langle s ; V_i \rangle
$$

$$
\langle s ; l := V \rangle \rightarrow \langle s ; [l = V]; \ast \rangle
$$

$$
\text{Prim}(op, c') \rightarrow \langle s ; c' \rangle
$$

$$
l \not\in \text{dom}(s)
$$

$$
\langle s ; \nu x. M \rangle \rightarrow \langle s[l = 0]; M[\hat{l}/x] \rangle
$$

$$
s(l) = V
$$

$$
\langle s ; l \rangle \rightarrow \langle s ; V \rangle
$$

C is an evaluation context

$$
\langle s ; C[M] \rangle \rightarrow \langle s ; C[M'] \rangle
$$

where evaluation contexts are:

$$
C ::= [] \mid CM \mid VC \mid \text{op}(\bar{c}, C, M) \mid (\bar{V}, C, \bar{M}) \mid \#C \mid
$$

$$
\text{if } C \text{ then } M_1 \text{ else } M_2 \mid !C \mid C := M \mid l := C
$$
Contextual equivalence
We recall the standard definition of contextual equivalence.

Definition D.1 (contextual equivalence) M and N are contextually equivalent, written $M \equiv N$, if, for any store s and context C such that $(s; C[M])$ and $(s; C[N])$ are well-formed, $(s; C[M]) \Downarrow$ if and only if $(s; C[N]) \Downarrow$.

Remark D.2 [on Lemma 3.10] The correspondent of Lemma 3.10 does not hold in the imperative λ-calculus, i.e., we cannot replace evaluation contexts with arbitrary contexts in Lemma 4.4. For example, let M and N be if $l = 0$ then $l := 1$ else Ω and $l := 1$ respectively. Then, $\langle [l = 0]; M \rangle \approx_0 \langle [l = 0]; N \rangle$ but $\langle [l = 0]; C[M] \rangle \not\approx_0 \langle [l = 0]; C[N] \rangle$ for all $C = [\,]$. To obtain the congruence theorem we have to refine the lemma, using the same bisimulation requirement as in Theorem 4.5 (the free locations in the tested terms should be made available, as values, to the observer).

Up to environment, reduction and contexts
We write $(s; M) \mathcal{X}_\equiv^{\ast*} \langle t; N \rangle$ if there are s', M', t', N' with $(s; M) \rightarrow (s'; M'), (t; N) \rightarrow (t'; N')$, and either

- $M' = C[M' \triangledown \bar{\rightarrow}, N' = C[N' \triangledown \bar{\rightarrow}]$, and $[\,]$ is in redex position in C, and $V_i \in \mathcal{W}_i$, and $(s'; M') \mathcal{X}_\equiv \langle t'; N' \rangle$;

- or else $M' = C[V], N' = C[W]$, and $V_i \in \mathcal{W}_i$ and $(\mathcal{E}, s', t') \in \mathcal{X}$.

Definition D.3 (up to environment, reduction, and contexts)
An environmental relation \mathcal{X} is a bisimulation up to environment, reduction, and contexts if

1. $(\mathcal{E}, (s; M), \langle t; N \rangle) \in \mathcal{X}$ implies:

 (a) if $(s; M) \rightarrow (s'; M')$ then $(s'; M') \mathcal{X}_\equiv^{\ast*} \langle t; N \rangle$ for some \mathcal{E}' with $\mathcal{E} \subseteq \mathcal{E}'$;

 (b) if $M = V$ then $(t; N) \rightarrow (t'; W)$ (where W is a value) and $V \mathcal{E}_\equiv^{\ast*} W$ for some \mathcal{E}' with $\mathcal{E} \subseteq \mathcal{E}'$ and $(\mathcal{E}', s, t') \in \mathcal{X}$;

 (c) the converse of the above two conditions, on \mathcal{N};

2. if $(\mathcal{E}, s, t) \in \mathcal{X}$ then for all $(V, W) \in \mathcal{E}$ we have:

 (a) $V = c$ implies $W = c$;

 (b) $V = (V_1, \ldots, V_n)$ implies $W = (W_1, \ldots, W_n)$ and for all i, we have $V_i \mathcal{E}_\equiv^{\ast*} W_i$ for $\mathcal{E} \subseteq \mathcal{E}'$ and $(\mathcal{E}', s, t) \in \mathcal{X}$;

 (c) for all fresh l, l', we have $(\mathcal{E}', s[l = 0], t[l' = 0]) \in \mathcal{X}$, for $\mathcal{E} \subseteq \mathcal{E}'$ and $(l, l') \in \mathcal{E}'$;

 (d) if $V = 1$ then $W = 1'$, for some $1'$, and moreover,

 i. $(s(l), t(l')) \in \mathcal{E}_\equiv^{\ast*}$, for $(\mathcal{E}', s, t) \in \mathcal{X}$ and $\mathcal{E} \subseteq \mathcal{E}'$;

 ii. for all $(V_1, W_1) \in \mathcal{E}_\equiv^{\ast*}$, we have $(\mathcal{E}', s[l = V_1], t[l' = W_1]) \in \mathcal{X}$ and $\mathcal{E} \subseteq \mathcal{E}'$;

 (e) if $V = \lambda x. P$, then $W = \lambda x. Q$, and for all $(V_1, W_1) \in \mathcal{E}_\equiv^{\ast*}$ it holds that $(s; P[V_1/x]) \mathcal{X}_\equiv^{\ast*} \langle t; Q[W_1/x] \rangle$, for some \mathcal{E}' with $\mathcal{E} \subseteq \mathcal{E}'$;

 (f) the converse of the above five conditions, on \mathcal{N}.

E Additional definitions for HO_π

Syntax Below is the syntax for HO_π.

$P \ ::= \pi P, Q$ output prefix

$|\quad a(x). P$ input prefix

x process variable

$\nu \alpha P$ restriction

$P \mid Q$ parallel composition

0 nil

The replication operator $(!P)$ is derivable (see [37, 43]).

Transitions Now the LTS. There are three forms of transitions: τ transitions $M \xrightarrow{\tau} M'$; input transitions $M \xrightarrow{\alpha \cdot M} M'$, meaning that M receives at name α the term M' and then evolves to M''; and output transitions $M \xrightarrow{(\nu \alpha \cdot \pi M)} M''$ meaning that M emits M' at α, and in doing so it extrudes the names \tilde{b} and evolves to M'' (names \tilde{b} are private between M' and M''). We use α to indicate a generic label of a transition.

$a(x). P \xrightarrow{aQ} P[Q/x]$ output prefix

$\pi Q. P \xrightarrow{\pi Q} P$ output prefix

$P_1 \xrightarrow{\alpha} P'_1$ input prefix

$P_1 \xrightarrow{\beta} \nu \alpha (P'_1 | P_2)$ output prefix

$P_1 \xrightarrow{(\nu \alpha \cdot \pi P)} P'_1$ output prefix

$P \xrightarrow{\alpha} P'$ input prefix

$\alpha \notin n(\alpha)$ input prefix

$\nu \alpha P \xrightarrow{\nu \alpha P}$ input prefix

$P \xrightarrow{(\nu \alpha \cdot \pi Q \cdot c \neq a, c \in \text{fn}(Q) \sim \tilde{b})}$ output prefix

$\nu \nu \alpha P \xrightarrow{\nu \nu \alpha P}$ output prefix

Weaker transitions are defined in the usual way. Thus $\Rightarrow \equiv$ is the reflexive and transitive closure of $\xrightarrow{\equiv}$, and $\xrightarrow{\equiv}$ stands for $\xrightarrow{\equiv} \cup \xrightarrow{\equiv}$. Finally we define the barbs, and write $P \xrightarrow{\equiv} P'$ if there is α and P' s.t. $P \xrightarrow{\equiv} P'$ where α is an input or output action at α.

An up-to technique We report the full definition of the up-to technique mentioned in Section 5.

A context C is an **evaluation context** if the hole $[·]$ occurs in C exactly once, and not underneath a prefix. We write $P \xrightarrow{X\mathcal{E};r} Q$ if there is an evaluation context C and processes M, N such that:

- $P = C[P', \tilde{M}], Q = C[Q', \tilde{N}]$,
- $\text{bn}(C) \cap \text{fn}(\mathcal{E}, r) = \emptyset$
- $\tilde{M} \tilde{N}$
- if $s = \text{bn}(C) \cap \text{fn}(P', Q')$ then $\text{fn}(C) \subseteq r, s$ and $P' \xrightarrow{X\mathcal{E};r,s} Q'$

We write $P \xrightarrow{X\mathcal{E};r} Q$ if there is an evaluation context C such that:

- $P = C[P'], Q = C[Q']$,
- $\text{bn}(C) \cap \text{fn}(\mathcal{E}, r) = \emptyset$
- if $s = \text{bn}(C) \cap \text{fn}(P', Q')$ then $\text{fn}(C) \subseteq r, s$ and $P' \xrightarrow{X\mathcal{E};r,s} Q'$

In **strong environmental bisimilarity** (whose basic properties, including congruence, are established in the same manner as for weak bisimilarity) only strong transitions are used in the bisimulation game. We write \sim for the strong version of \simeq.

Definition E.1 An environmental relation X is an environmental bisimulation up-to contexts, bisimilarity, environment if $M \xrightarrow{X\mathcal{E};r} N$ implies:

1. if $M \rightarrow M'$ then $N \xrightarrow{a} N'$ and $M' \xrightarrow{X\mathcal{E};r} N'$;
2. if $M \xrightarrow{aP} M'$ with $a \in r$, and $(P, Q) \in (r; \mathcal{E})^*$, then $N \xrightarrow{a} N'$ and $M' \xrightarrow{X\mathcal{E};r} N'$;
3. if $M \xrightarrow{(\nu e)bP} M'$ with $a \in r$, then there are Q, N', \tilde{e} such that $N \xrightarrow{(\nu e)bQ} N'$ and $M' \xrightarrow{X\mathcal{E};(P,Q);r} N'$;
4. if $(P, Q) \in \mathcal{E}$ then $P \| M \xrightarrow{X\mathcal{E};r} Q \| N$
5. for all r' fresh (i.e., not in $\text{fn}(\mathcal{E}, M, N)$) we have $M \xrightarrow{X\mathcal{E};r,r'} N$
6. the converse of (1-3), on the actions from N.

Expansion could also be used, in place of \sim.