
An Introduction to Bisimulation and Coinduction

Davide Sangiorgi

Focus Team,
INRIA (France)/University of Bologna (Italy)

Email: Davide.Sangiorgi@cs.unibo.it

http://www.cs.unibo.it/ ˜ sangio/

Scuola Logica, Lago Garda, Agosto 2013



Capsule bio

– 1983-1986: undergraduate, Pisa University, Italy

– 1987: research assistant, Pisa University
(A. Maggiolo-Schettini)

– 1988: military service

– 1989-91: PhD, Ednburgh University, UK
(Robin Milner)

– 1991-1994: Research Fellow, Ednburgh University
(Robin Milner)

– 1995-2002 INRIA, France

– 2003 - today, Bologna University

page 1



FOCUS
FOundations of Component-based Ubiquitous Systems

A joint effort between the Institut national de recherche en informatique et
automatique (INRIA) (France) and the University of Bologna (Italy)

Semantic foundations of distributed systems (models, formalization and
verification of properties, linguistic constructs, prototypes)

Algebra, logics, type theory

About 15/20 people, 8 permanents INRIA: 8 centers in France, ˜3, 500
researchers

page 2



Why induction and coinduction in this school

– logical concepts

– interdisciplinary concepts

– fundamental notions for programming languages
∗ defining structures, objects
∗ reasoning on them (proofs, tools)

– abstract, unifying notions

– notions that will still be around when most present-day
programming languages will be obsolete

– an introduction to these notions that uses some very simple s et
theory

page 3



Induction

– pervasive in Computer Science and Mathematics
definition of objects, proofs of properties, ...

– stratification
finite lists, finite trees, natural numbers, ...

– natural (least fixed points)

Coinduction

– less known
discovered and studied in recent years

– a growing interest

– quite different from induction
the dual of induction

– no need of stratification
objects can be infinite, or circular

– natural (greatest fixed points)
page 4



Why coinduction: examples

– streams

– real numbers

– a process that continuously accepts interactions with the
environment

– memory cells with pointers (and possibly cylces)

– graphs

– objects on which we are unable to place size bounds
(eg, a database, a stack)

– objects that operate in non-fixed environments
(eg, distributed systems)

page 5



Other examples

In a sequential language

– definition of the terminating terms
inductively, from the rules of the operational semantics

– definition of the non-terminating terms

∗ the complement set of the terminating ones
(an indirect definition)

∗ coinductively, from the rules of the operational semantics
(a direct definition: more elegant, better for reasoning)

In constructive mathematics

– open sets
a direct inductive definition

– closet sets

∗ the complement set of the open ones
∗ a direct coinductive definition

page 6



Bisimulation

– the best known instance of coinduction

– discovered in Concurrency Theory
formalising the idea of behavioural equality on processes

– one of the most important contributions of Concurrency Theo ry to
CS (and beyond)

– it has spurred the study of coinduction

– in concurrency: the most studied behavioural equivalence
many others have been proposed

page 7



Coinduction in programming languages

– widely used in concurrency theory

∗ to define equality on processes (fundamental !!)
∗ to prove equalities
∗ to justify algebraic laws
∗ to minimise the state space
∗ to abstract from certain details

– functional languages and OO languages
A major factor in the movement towards operationally-based techniques
in PL semantics in the 90s

– program analysis (see any book on program analysis)

– verification tools : algorithms for computing gfp (for modal and
temporal logics), tactics and heuristics

page 8



– Types

∗ type soundness
∗ coinductive types and definition by corecursion

Infinite proofs in Coq
∗ recursive types (equality, subtyping, ...)

A coinductive rule:

Γ, 〈p1, q1〉 ∼ 〈p2, q2〉 ⊢ pi ∼ qi

Γ ⊢ 〈p1, q1〉 ∼ 〈p2, q2〉

– Databases

– Compiler correctness

– ...

page 9



Other fields

Today bisimulation and coinduction also used in

– Artificial Intelligence

– Cognitive Science

– Mathematics

– Modal Logics

– Philosophy

– Physics

mainly to explain phenomena involving some kind of circularity

page 10



Main objectives of the course

At the end of the course, a student should:

– have an idea of the meaning of bisimulation and coinduction

– have a grasp of the duality between induction and coinductio n

– be able to read (simple) bisimulation proofs and coinductiv e
definitions

Other objectives

– know the interest of process calculi

– understand what is behavioural equality on processes

– see the possibilities of enhancements for the bisimulation proof method
(if time permits)

page 11



References

This course is based on the book:
Davide Sangiorgi, An introduction to bisimulation and coinduction,
Cambridge University Press, October 2012

page 12



Outline

The success of bisimulation and coinduction

Towards bisimulation, or: from functions to processes

Bisimulation

Induction and coinduction

Process calculi and Concurrency theory

Behavioral equivalences

Bits of history

(Enhancements of the bisimulation proof method)

page 13



Towards bisimulation, or :

from functions to processes

page 14



A very simple example: a vending machine

In your office you have a tea/coffee machine, a red box whose behaviour is
described thus:

– you put a coin

– you are then allowed to press the tea button or the coffee button

– after pressing the tea button you collect tea, after pressing the coffee
button you collect coffee

– after collecting the beverage, the services of machine are again
available

page 15



Equivalence of machines

The machine breaks

You need a new machine, with the same behaviour

You show the description in the previous slide

You get a red box machine that, when a tea or coffee button is pressed
non-deterministically delivers tea or coffee

After paying some money, you get another machine, a green box that
behaves as you wanted

page 16



Questions

1. How can we specify formally the behaviour of the machines?

2. What does it mean that two machines “are the same”?

3. How do we prove that the first replacement machine is “wrong”, and that
the second replacement machine is “correct”?

Answers from this course

1. Labelled Transitions Systems (automata-like)

2. Bisimulation

3. Coinduction

page 17



Processes?

We can think of sequential computations as mathematical objects, namely
functions .

Concurrent program are not functions, but processes . But what is a
process?

No universally-accepted mathematical answer.

Hence we do not find in mathematics tools/concepts for the denotational
semantics of concurrent languages, at least not as successful as those for
the sequential ones.

page 18



Processes are not functions

A sequential imperative language can be viewed as a function from states
to states.

These two programs denote the same function from states to states:

X := 2 and X := 1; X := X+ 1

But now take a context with parallelism, such as [·] | X := 2. The program

X := 2 | X := 2

always terminates with X = 2. This is not true (why?) for

( X := 1; X := X+ 1 ) | X := 2

Therefore: Viewing processes as functions gives us a notion of
equivalence that is not a congruence . In other words, such a semantics of
processes as functions would not be compositional .

page 19



Furthermore:

A concurrent program may not terminate, and yet perform meaningful
computations (examples: an operating system, the controllers of a
nuclear station or of a railway system).
In sequential languages programs that do not terminate are
undesirable; they are ‘wrong’.

The behaviour of a concurrent program can be non-deterministic.
Example:

( X := 1; X := X+ 1 ) | X := 2

In a functional approach, non-determinism can be dealt with using
powersets and powerdomains.

This works for pure non-determinism, as in λx. (3 ⊕ 5)

But not for parallelism.

page 20



What is a process?
When are two processes behaviourally equivalent?

These are basic, fundamental, questions; they have been at the core of the
research in concurrency theory for the past 30 years. (They are still so
today, although remarkable progress has been made)

Fundamental for a model or a language on top of which we want to make
proofs

page 21



Interaction

In the example at page 19

X := 2 and X := 1; X := X+ 1

should be distinguished because they interact in a different way with the
memory.

Computation is interaction . Examples: access to a memory cell,
interrogating a data base, selecting a programme in a washing machine, ....

The participants of an interaction are processes (a cell, a data base, a
washing machine, ...)

The behaviour of a process should tell us when and how a process can
interact with its environment

page 22



How to represent interaction: labelled transition systems

Definition A labeled transition system (LTS) is a triple (P,Act ,T )

where
– P is the set of states , or processes ;

– Act is the set of actions ; (NB: can be infinite)

– T ⊆ (P,Act ,P) is the transition relation .

We write P
µ

−→ P ′ if (P, µ, P ′) ∈ T . Meaning: process P accepts an
interaction with the environment where P performs action µ and then
becomes process P ′.

P ′ is a derivative of P if there are P1, . . . , Pn, µ1, . . . , µn s.t.
P

µ1
−→ P1 . . .

µn
−→ Pn and Pn = P ′.

page 23



Example: the behaviour of our beloved vending machine

The behaviour is what we can observe, by interacting with the machine.
We can represent such a behaviour as an LTS:

P3

tea

P1

1c
P2

collect−tea

collect−coffee

P4coffee

where indicates the processes we are interested in (the “initial state”)

NB: the color of the machine is irrelevant

page 24



The behaviour of the first replacement machine

Q2

collect−tea

Q3

tea

Q1

1c

1c Q4

collect−coffee

Q5

coffee

page 25



Other examples of LTS

(we omit the name of the states)

a

b

a

a

b

Now we now: how to write beahviours

Next: When should two behaviours be considered equal?

page 26



Equivalence of processes

Two processes should be equivalent if we cannot distinguish them by
interacting with them.

Example

P1

a

P2
b

= Q1

a
Q2

b

Q3
a

Can graph theory help? (equality is graph isomorphism )

... too strong (example above)

What about automata theory ? (equality is trace equivalence )

page 27



Examples of trace-equivalent processes:

b

d

a

a
c

e

=

d

a

b

c

e

a

a

b

= a b

These equalities are OK on automata.

... but they are not on processes ( deadlock risk!)

page 28



For instance, you would not consider these two vending machines ‘the
same’:

collect−tea

tea

1c

1c
collect−coffee

coffee

tea

1c

collect−tea

collect−coffee

coffee

Trace equivalence (also called language equivalence) is still important in
concurrency.

Examples: confluent processes; liveness properties such as termination

page 29



These examples suggest that the notion of equivalence we seek:

– should imply a tighter correspondence between transitions than
language equivalence,

– should be based on the informations that the transitions convey, and not
on the shape of the diagrams.

Intuitively, what does it mean for an observer that two machines are
equivalent?

If you do something with one machine, you must be able to the same with
the other, and on the two states which the machines evolve to the same is
again true.

This is the idea of equivalence that we are going to formalise; it is called
bisimilarity .

page 30



Bisimulation and bisimilarity

We define bisimulation on a single LTS, because: the union of two LTSs is
an LTS; we will often want to compare derivatives of the same process.

Definition A relation R on processes is a bisimulation if
whenever P R Q:

1. ∀µ, P ′ s.t. P
µ

−→ P ′, then ∃Q′ such that Q
µ

−→ Q′ and P ′ R Q′;

2. ∀µ,Q′ s.t. Q
µ

−→ Q′, then ∃P ′ such that P
µ

−→ P ′ and P ′ R Q′.

P and Q are bisimilar , written P ∼ Q, if P R Q, for some bisimulation R.

The bisimulation diagram: P R Q

µ ↓ µ ↓

P ′ R Q′

page 31



Examples

Show P1 ∼ Q1 (easy, processes are deterministic):

P1

a

P2
b

Q1

a
Q2

b

Q3
a

page 32



Examples

Show P1 ∼ Q1 (easy, processes are deterministic):

P1

a

P2
b

Q1

a
Q2

b

Q3
a

First attempt for a bisimulation:

R = {(P1, Q1), (P2, Q2)}

Bisimulation diagrams for (P1, Q1):

P1 R Q1

a ↓ a ↓

P2 Q2

P1 R Q1

a ↓ a ↓

P2 Q2

page 33



Examples

Show P1 ∼ Q1 (easy, processes are deterministic):

P1

a

P2
b

Q1

a
Q2

b

Q3
a

First attempt for a bisimulation:

R = {(P1, Q1), (P2, Q2)}

Bisimulation diagrams for (P1, Q1):

P1 R Q1

a ↓ a ↓

P2 R Q2

P1 R Q1

a ↓ a ↓

P2 R Q2

page 34



Examples

Show P1 ∼ Q1 (easy, processes are deterministic):

P1

a

P2
b

Q1

a
Q2

b

Q3
a

First attempt for a bisimulation:

R = {(P1, Q1), (P2, Q2)}

Bisimulation diagrams for (P2, Q2):

P2 R Q2

b ↓ b ↓

P1 R× Q3

P2 R Q2

b ↓ b ↓

P1 R× Q3

page 35



Examples

Show P1 ∼ Q1 (easy, processes are deterministic):

P1

a

P2
b

Q1

a
Q2

b

Q3
a

First attempt for a bisimulation:

R = {(P1, Q1), (P2, Q2)}

Bisimulation diagrams for (P2, Q2):

P2 R Q2

b ↓ b ↓

P1 R× Q3

P2 R Q2

b ↓ b ↓

P1 R× Q3

page 36



Examples

Show P1 ∼ Q1 (easy, processes are deterministic):

P1

a

P2
b

Q1

a
Q2

b

Q3
a

A bisimulation:

R = {(P1, Q1), (P2, Q2), (P1, Q3)}

All diagrams are ok

page 37



Suppose we add a b-transition to Q2
b

−→ Q1:

P1

a

P2
b

Q1

a
Q2

b

b
Q3

a

In the original R = {(P1, Q1), (P2, Q2)} now the diagrams for (P2, Q2)

look ok:

P2 R Q2

b ↓ b ↓

P1 R Q1

P2 R Q2

b ↓ b ↓

P1 R Q1

R is still not a bisimulation: why?

page 38



Now we want to prove Q1 ∼ R1 (all processes but R4 are deterministic):

Q1

a
Q2

b

Q3
a

R1

a
R2

b
R3

a

R4b

b

Our initial guess: {(Q1, R1), (Q2, R2), (Q3, R3), (Q2, R4)}

The diagram checks for the first 3 pairs are easy. On (Q2, R4):

Q2 R R4

b ↓ b ↓

Q3 R R3

Q2 R R4

b ↓ b ↓

Q3 R R3

One diagram check is missing. Which one? R4
b

−→ R1
page 39



Now we want to prove Q1 ∼ R1 (all processes but R4 are deterministic):

Q1

a
Q2

b

Q3
a

R1

a
R2

b
R3

a

R4b

b

Our initial guess: {(Q1, R1), (Q2, R2), (Q3, R3), (Q2, R4)}

The diagram checks for the first 3 pairs are easy. On (Q2, R4):

Q2 R R4

b ↓ b ↓

Q3 R R3

Q2 R R4

b ↓ b ↓

Q3 R R3

The diagram for R4
b

−→ R1 is missing. Add (Q3, R1)
page 40



We want to prove M1 ∼ N1:

M1

a

N1

a a

M2

b

a

N2

a

b

N3

a

b

M3

b

N4

b

N5

b

page 41



A graphical representation of a bisimulation:

M1

a

N1

a a

M2

b

a

N2

a

b

N3

a

b

M3

b

N4

b

N5

b

{(M1, N1), (M2, N2), (M2, N3), (M3, N4), (M3, N5)}

page 42



Find an LTS with only two states, and in a bisimulation relation with the
states of following LTS:

a

R1
b

R2

c

b

R3

b

c

page 43



Take

a

R1
b

R2

c

b

R3

b

c

a

R′
1

b

R

b

c

A bisimulation is {(R1, R
′
1), (R2, R), (R3, R)}.

page 44



Examples: nondeterminism

Are the following processes bisimilar?

P

•

a

•
b c

• •

Q

•
a a

•

b

•

c

• •

R

•

a
a a

•

b

•
b c

•

c

• • • •
page 45



P

•

a

•

b
•

c d

• •

Q

•

a

•
b b

•

c

•

d
• •

R

•
a a

•

b

•

b
•

c

•

d
• •

page 46



Basic properties of bisimilarity

Theorem ∼ is an equivalence relation, i.e. the following hold:
1. P ∼ P (reflexivity)

2. P ∼ Q implies Q ∼ P (symmetry)

3. P ∼ Q and Q ∼ R imply P ∼ R (transitivity);

Corollary ∼ itself is a bisimulation.

Exercise Prove the corollary. You have to show that

∪{R | R is a bisimulation }

is a bisimulation.
page 47



The previous corollary suggests an alternative definition of ∼:

Corollary ∼ is the largest relation on processes such that P ∼ Q implies:

1. ∀µ, P ′ s.t. P
µ

−→ P ′, then ∃Q′ such that Q
µ

−→ Q′ and P ′ ∼ Q′;

2. ∀µ,Q′ s.t. Q
µ

−→ Q′, then ∃P ′ such that P
µ

−→ P ′ and P ′ ∼ Q′.

page 48



Proof of transitivity

Hp: P ∼ Q and Q ∼ R. Th: P ∼ R.

For P ∼ R, we need a bisimulation R with P R R.

Since P ∼ Q and Q ∼ R, there are bisimulations R1 and R2 with
P R1 Q and Q R2 R.

Set
R = {(A,C) | there is B with A R1 B and B R2 C}

Claim: R is a bisimulation.

Take (A,C) ∈ R, because ∃ B with A R1 B and B R2 C, with A
a

−→ A′:

A R1 B R2 C

µ ↓ µ ↓ µ ↓

A′ R1 B′ R2 C′

page 49



Proof of symmetry

Hp: P ∼ Q. Th: Q ∼ P .

If P ∼ Q, there is a bisimulation R with P R Q.

Take
R−1 = {(B,A) | A R B}

R−1 is a bisimulation.

We have Q R−1 P , thus Q ∼ P .

page 50



An enhancement of the bisimulation proof method

We write P ∼R∼ Q if there are P ′, Q′ s.t. P ∼ P ′, P ′ R Q′, and
Q′ ∼ Q (and alike for similar notations).

Definition A relation R on processes is a bisimulation up-to ∼ if P R Q

implies:
1. ∀µ, P ′ s.t. P

µ
−→ P ′, then ∃Q′ such that Q

µ
−→ Q′ and P ′ ∼R∼ Q′.

2. ∀µ,Q′ s.t. Q
µ

−→ Q′, then ∃P ′ such that P
µ

−→ P ′ and P ′ ∼R∼ Q′.

Exercise If R is a bisimulation up-to ∼ then R ⊆ ∼. (Hint: prove that
∼ R ∼ is a bisimulation.)

page 51



Simulation

Definition A relation R on processes is a simulation if P R Q implies:
1. ∀µ, P ′ s.t. P

µ
−→ P ′, then ∃Q′ s.t. Q

µ
−→ Q′ and P ′ R Q′.

P is simulated by Q, written P < Q, if P R Q, for some simulation R.

Exercise Does P ∼ Q imply P < Q and Q < P? What about the
converse? (Hint for the second point: think about the 2nd equality at page
28.)

page 52



Exercize: quantifiers

Suppose the existential quantifiers in the definition of bisimulation were
replaced by universal quantifiers. For instance, clause (1) would become:

– for all P ′ with P
µ

−→ P ′, and for all Q′ such that Q
µ

−→ Q′, we have
P ′ R Q′;

and similarly for clause (2).

Would these two (identical!) processes be bisimilar? What do you think
bisimilarity would become?

P

•
a a

•

b

•

c

• •

Q

•
a a

•

b

•

c

• •

page 53



Other equivalences: examples

We have seen: trace equivalence has deadlock problems, e.g.,

•

a

•
b c

• •

= •
a a

•

b

•

c

• •

Besides bisimilarity, many other solutions have been suggested, usually
inductive.

Ex: using decorated traces , i.e., pairs a1 . . . an;S of a sequence of
actions and a set of action

P has a1 . . . an;S if:

∃R′ st P
a1−→ . . .

an−→ R′ and then R′ b
−→ ⇔ b ∈ S

The mathematical robustness of bisimilarity and the bisimulation proof
method are however major advantages

(i.e., on finite-state processes: bisimilarity is P-space complete, inductive
equivalences are PSPACE-complete)

page 54



We have seen:

– the problem of equality between processes

– representing behaviours: LTSs

– graph theory, automata theory

– bisimilarity

– the bisimulation proof method

– impredicativity (circularity)

Bisimilarity and the bisimulation proof method:
very different from the the usual, familiar inductive definitions and
inductive proofs .

They are examples of a coinductive definition and of a
coinductive proof technique .

page 55



Induction and coinduction

– examples

– duality

– fixed-point theory

page 56



Examples of induction and coinduction

page 57



Mathematical induction

To prove a property for all natural numbers:

1. Show that the property holds at 0 (basis)

2. Show that, whenever the property holds at n, it also holds at n + 1

(inductive part)

In a variant, step (2) becomes:

Show that, whenever the property holds at all natural less than or equal to
n, then it also holds at n + 1

NB: other variants are possible, modifying for instance the basis

page 58



Example of mathematical induction

1 + 2+. . . +n =
n × (n + 1)

2

Basis: 1 =
1 × 2

2

Inductive step: (assume true at n, prove statement for n + 1)

1 + 2+. . . +n + (n + 1) = (inductive hypothesis)

n × (n + 1)

2
+ (n + 1) =

n × (n + 1)

2
+

2 × (n + 1)

2
=

n × (n + 1) + 2 × (n + 1)

2
=

(n + 1) × (n + 2)

2
=

(n + 1) × ((n + 1) + 1)

2

page 59



A non-example of mathematical induction

Statement: All men have eyes of the same color

Basis: trivial (with only one man, there is only one color)

Inductive step: (assume true at n, prove statement for n + 1)

Order the n + 1 men, in the positions {1, 2, . . . , n + 1}

Consider now the two subsets of men in positions {1, 2, . . . , n} and
{2, . . . , n + 1}

Each subset has n elements.

By the inductive hypothesis, the men in each subset have the eyes of the
same color

The two sets overlap, so there is only one color for the eyes of the n + 1

men.

page 60



Rule induction: finite traces (may termination)

(assume only one label
hence we drop it)

P1 P2 P7

P5 P3 P4 P6

A process stopped : it cannot do any transitions

P has a finite trace , written P ⇂, if P has a finite sequence of transitions
that lead to a stopped process

Examples: P1, P2, P3, P5, P7 (how many finite traces for P2?)

(inductive definition of ⇂) P ⇂ if
(1) P is stopped
(2) ∃ P ′ with P −→ P ′ and P ′ ⇂

as rules:
P stopped

P ⇂

P −→ P ′ P ′ ⇂

P ⇂

page 61



What is a set inductively defined by a set of rules?

...later , using some (very simple) fixed-point and lattice theory

Now: 3 equivalent readings of inductive sets, informally

1. sets of elements with a certain proof trees

2. sets satisfying a certain closure property
(from which we derive the familiar method of proofs by induction)

3. sets obtained via a certain iteration schema

We will do the same for coinduction

Then we formally justify the 3 readings, from fixed-point theory
First (2), then (3), then (1).

We will also see another reading, as games

page 62



Equivalent readings for ⇂

P stopped

P ⇂
(AX)

P −→ P ′ P ′ ⇂

P ⇂
(INF)

– The processes obtained with a finite proof from the rules

page 63



Equivalent readings for ⇂

P stopped

P ⇂
(AX)

P −→ P ′ P ′ ⇂

P ⇂
(INF)

– The processes obtained with a finite proof from the rules

Example

P1 −→ P2

P2 −→ P7

P7 stopped

P7 ⇂
(AX)

P2 ⇂
(INF)

P1 ⇂
(INF)

P1 P2 P7

P5 P3 P4 P6

page 64



Equivalent readings for ⇂

P stopped

P ⇂
(AX)

P −→ P ′ P ′ ⇂

P ⇂
(INF)

– The processes obtained with a finite proof from the rules

Example (another proof for P1; how many other proofs?) :

P1 −→ P2

P2 −→ P1

P1 −→ P2

P2 −→ P7

P7 stopped

P7 ⇂

P2 ⇂

P1 ⇂

P2 ⇂

P1 ⇂

P1 P2 P7

P5 P3 P4 P6

page 65



Equivalent readings for ⇂

P stopped

P ⇂
(AX)

P −→ P ′ P ′ ⇂

P ⇂
(INF)

– The processes obtained with a finite proof from the rules

– the smallest set of processes that is closed forward under the rules ;
i.e., the smallest subset S of Pr (all processes) such that
∗ all stopped processes are in S;
∗ if there is P ′ with P −→ P ′ and P ′ ∈ S, then also P ∈ S.

page 66



Equivalent readings for ⇂

P stopped

P ⇂
(AX)

P −→ P ′ P ′ ⇂

P ⇂
(INF)

– The processes obtained with a finite proof from the rules

– the smallest set of processes that is closed forward under the rules ;
i.e., the smallest subset S of Pr (all processes) such that
∗ all stopped processes are in S;
∗ if there is P ′ with P −→ P ′ and P ′ ∈ S, then also P ∈ S.

Hence a proof technique for ⇂ (rule induction) :
given a property T on the processes (a subset of processes),
to prove ⇂⊆ T (all processes in ⇂ have the property)
show that T is closed forward under the rules.

page 67



Example of rule induction for finite traces

A partial function f , from processes to integers, that satisfies the following
conditions:

f(P ) = 0 if P is stopped
f(P ) = min{f(P ′) + 1 | P −→ P ′ for some P ′

and f(P ′) is defined } otherwise

(f can have any value, or even be undefined, if the set on which the min is
taken is empty)

We wish to prove f defined on processes with a finite trace (i.e., dom(⇂) ⊆ dom(f))

We can show that dom(f) is closed forward under the rules defining ⇂.

Proof:

1. f(P ) is defined whenever P is stopped;

2. if there is P ′ with P −→ P ′ and f(P ′) is defined, then also f(P ) is
defined.

page 68



Equivalent readings for ⇂

P stopped

P ⇂
(AX)

P −→ P ′ P ′ ⇂

P ⇂
(INF)

– The processes obtained with a finite proof from the rules

– the smallest set of processes that is closed forward under the rules ;
i.e., the smallest subset S of Pr (all processes) such that
∗ all stopped processes are in S;
∗ if there is P ′ with P −→ P ′ and P ′ ∈ S, then also P ∈ S.

– (iterative construction)
Start from ∅;
add all objects as in the axiom;
repeat adding objects following the inference rule forwards

page 69



Rule coinduction definition: ω-traces (non-termination)

P1 P2 P7

P5 P3 P4 P6

P has an ω-trace , written P ↾, if it there is an infinite sequence of
transitions starting from P .

Examples: P1, P2, P4, P6

Coinductive definition of ↾:

P −→ P ′ P ′ ↾

P ↾

page 70



Equivalent readings for ⇂

P −→ P ′ P ′ ↾

P ↾

– The processes obtained with an infinite proof from the rules

page 71



Equivalent readings for ⇂

P −→ P ′ P ′ ↾

P ↾

– The processes obtained with an infinite proof from the rules

Example

P1 −→ P2

P2 −→ P1

P1 −→ P2

...

P2 ↾

P1 ↾

P2 ↾

P1 ↾

P1 P2 P7

P5 P3 P4 P6

page 72



Equivalent readings for ⇂

P −→ P ′ P ′ ↾

P ↾

– The processes obtained with an infinite proof from the rules

An invalid proof:

P1 −→ P3

P3 −→ P5

??

P5 ↾

P3 ↾

P1 ↾

P1 P2 P7

P5 P3 P4 P6

page 73



Equivalent readings for ⇂

P −→ P ′ P ′ ↾

P ↾

– The processes obtained with an infinite proof from the rules

– the largest set of processes that is closed backward under the rule ;
i.e., the largest subset S of processes such that if P ∈ S then
∗ there is P ′ such that P −→ P ′ and P ′ ∈ S.

page 74



Equivalent readings for ⇂

P −→ P ′ P ′ ↾

P ↾

– The processes obtained with an infinite proof from the rules

– the largest set of processes that is closed backward under the rule ;
i.e., the largest subset S of processes such that if P ∈ S then
∗ there is P ′ such that P −→ P ′ and P ′ ∈ S.

Hence a proof technique for ↾ (rule coinduction) :
to prove that each process in a set T has an ω-trace
show that T is closed backward under the rule.

page 75



Example of rule coinduction for ω-traces

P1 P2 P7

P5 P3 P4 P6

P −→ P ′ P ′ ↾

P ↾

Suppose we want to prove P1 ↾

Proof

T = {P1, P2} is closed backward :

P1 −→ P2 P2 ∈ T

P1 ∈ T

P2 −→ P1 P1 ∈ T

P2 ∈ T

Another choice: T = {P1, P2, P4, P6} (correct, but more work in the proof)

Would T = {P1, P2, P4} or T = {P1, P2, P3} be correct?

page 76



ω-traces in the bisimulation style

A predicate S on processes is ω-closed if whenever P ∈ S:
– there is P ′ ∈ S such that P −→ P ′.
P has an ω-trace , written P ↾, if P ∈ S, for some ω-closed predicate S.

The proof technique is explicit

Compare with the definition of bisimilarity:

A relation R on processes is a bisimulation if whenever P R Q:
1. ∀µ, P ′ s.t. P

µ
−→ P ′, then ∃Q′ such that Q

µ
−→ Q′ and P ′ R Q′;

2. ∀µ,Q′ s.t. Q
µ

−→ Q′, then ∃P ′ such that P
µ

−→ P ′ and P ′ R Q′.
P and Q are bisimilar , written P ∼ Q, if P R Q, for some bisimulation
R.

page 77



Equivalent readings for ⇂

P −→ P ′ P ′ ↾

P ↾

– The processes obtained with an infinite proof from the rules

– the largest set of processes that is closed backward under the rule ;
i.e., the largest subset S of processes such that if P ∈ S then
∗ there is P ′ ∈ S such that P −→ P ′.

– (iterative construction) start with the set Pr of all processes;
repeatedly remove a process P from the set if one of these applies (the
backward closure fails):
∗ P has no transitions
∗ all transitions from P lead to derivatives that are not anymore in the

set.

page 78



An inductive definition: finite lists over a set A

nil ∈ L

ℓ ∈ L a ∈ A

〈a〉 • ℓ ∈ L

3 equivalent readings (in the “forward” direction):

– The objects obtained with a finite proof from the rules

– The smallest set closed forward under these rules

A set T is closed forward if: – nil ∈ T

– ℓ ∈ T implies 〈a〉 • ℓ ∈ T , for all a ∈ A

Inductive proof technique for lists: Let T be a predicate (a property)
on lists. To prove that T holds on all lists, prove that T is closed forward

– (iterative construction) Start from ∅; add all objects as in the axiom;
repeat adding objects following the inference rule forwards

page 79



A coinductive definition: finite and infinite lists over A

nil ∈ L

ℓ ∈ L a ∈ A

〈a〉 • ℓ ∈ L

3 equivalent readings (in the “backward” direction) :

– The objects that are conclusion of a finite or infinite proof from the rules

– The largest set closed backward under these rules

A set T is closed backward if ∀t ∈ T :
– either t = nil

– or t = 〈a〉 • ℓ, for some ℓ ∈ T and a ∈ A

Coinduction proof method: to prove that ℓ is a finite or infinite list, find
a set D with ℓ ∈ D and D closed backward

– X = all (finite and infinite) strings of A ∪ {nil , 〈, 〉, •}

Start from X (all strings) and keep removing strings, following the
backward-closure

page 80



An inductive definition: convergence, in λ-calculus

Set of λ-terms (an inductive def!) e ::= x | λx. e | e1(e2)

Convergence to a value (⇓), on closed λ-terms, call-by-name:

λx. e ⇓ λx. e

e1 ⇓ λx. e0 e0{e2/x} ⇓ e′

e1(e2) ⇓ e′

As before, ⇓ can be read in terms of finite proofs, limit of an iterative
construction, or smallest set closed forward under these rules

⇓ is the smallest relation S on (closed) λ-terms s.t.
– λx. e S λx. e for all abstractions,
– if e1 S λx. e0 and e0{e2/x} S e′ then also e1(e2) S e′.

page 81



A coinductive definition: divergence in the λ-calculus

Divergence (⇑), on closed λ-terms, call-by-name:

e1 ⇑

e1(e2) ⇑

e1 ⇓ λx. e0 e0{e2/x} ⇑

e1(e2) ⇑

The ‘closed backward’ reading:

⇑ is the largest predicate on λ-terms that is closed backward under
these rules; i.e., the largest subset D of λ-terms s.t. if e ∈ D then

– either e = e1(e2) and e1 ∈ D,
– or e = e1(e2), e1 ⇓ λx. e0 and e0{e2/x} ∈ D.

Coinduction proof technique :
to prove e ⇑, find E ⊆ Λ closed backward and with e ∈ E

What is the smallest predicate closed backward?

page 82



The duality induction/coinduction

page 83



Constructors/destructors

– An inductive definition tells us what are the constructors for generating
all the elements (cf: the forward closure).

– A coinductive definition tells us what are the destructors for
decomposing the elements (cf: the backward closure).

The destructors show what we can observe of the elements
(think of the elements as black boxes;
the destructors tell us what we can do with them;
this is clear in the case of infinite lists).

page 84



Definitions given by means of rules

– if the definition is inductive , we look for the smallest universe in which
such rules live.

– if it is coinductive , we look for the largest universe.

– the inductive proof principle allows us to infer that the inductive set
is included in a set (ie, has a given property) by proving that the set
satisfies the forward closure ;

– the coinductive proof principle allows us to infer that a set is
included in the coinductive set by proving that the given set satisfies
the backward closure .

page 85



Forward and backward closures

A set T being closed forward intuitively means that

for each rule whose premise is satisfied in T

there is an element of T

such that the element is the conclusion of the rule.

In the backward closure for T , the order between the two quantified entities
is swapped:

for each element of T

there is a rule whose premise is satisfied in T

such that the element is the conclusion of the rule.

In fixed-point theory, the duality between forward and backward closure
will the duality between pre-fixed points and post-fixed points.

page 86



Congruences vs bisimulation equivalences

Congruence : an equivalence relation
that respects the constructors of a language

Example ( λ-calculus)

Consider the following rules, acting on pairs of (open) λ-terms:

(x, x)

(e1, e2)

(e e1, e e2)

(e1, e2)

(e1 e, e2 e)

(e1, e2)

(λx. e1, λx. e2)

A congruence: an equivalence relation closed forward under the rules

The smallest such relation is syntactic equality : the identity relation

In other words, congruence rules express syntactic constraints

page 87



Bisimulation equivalence : an equivalence relation
that respects the destructors

Example ( λ-calculus, call-by-name)

Consider the following rules

e1 ⇑ e2 ⇑

(e1, e2)
e1, e2 closed

e1 ⇓ λx. e′1 e2 ⇓ λx. e′2 ∪e′′ {(e
′
1{

e′′
/x}, e′2{

e′′
/x})}

(e1, e2)
e1, e2, e

′′ closed

∪σ {(e1σ, e2σ)}

(e1, e2)
e1, e2 non closed, σ closing substitution for e1, e2

A bisimulation equivalence: an equivalence relation closed backward under
the rules

The largest such relation is semantic equality : bisimilarity

In other words, the bisimulation rules express semantic constraints
page 88



Substitutive relations vs bisimulations

In the duality between congruences and bisimulation equivalences, the
equivalence requirement is not necessary.

Leave it aside, we obtaining the duality between bisimulations and
substitutive relations

a relation is substitutive if whenever s and t are related,
then any term t′ must be related to a term s′

obtained from t′ by replacing occurrences of t with s

page 89



Bisimilarity is a congruence

To be useful, a bisimilarity on a term language should be a congruence

This leads to proofs where inductive and coinductive techniques are
intertwined

In certain languages, for instance higher-order languages, such proofs may
be hard, and how to best combine induction and coinduction remains a
research topic.

What makes the combination delicate is that the rules on which
congruence and bisimulation are defined — the rules for syntactic and
semantic equality — are different.

page 90



Summary of the dualities

inductive definition coinductive definition
induction proof principle coinduction proof principle

constructors observations
smallest universe largest universe

’forward closure’ in rules ’backward closure’ in rules
congruence bisimulation equivalence

substitutive relation bisimulation
identity bisimilarity

least fixed point greatest fixed point
pre-fixed point post-fixed point

algebra coalgebra
syntax semantics

semi-decidable set cosemi-decidable set
strengthening of the candidate in proofs weakening of the candidate in proofs

page 91



We have seen:

– examples of induction and coinduction

– 3 readings for the sets inductively and coinductively obtai ned from
a set of rules

– justifications for the induction and coinduction proof prin ciples

– the duality between induction and coinduction, informally

page 92



Remaining questions

– What is the definition of an inductive set?

– From this definition, how do we derive the previous 3 readings for
sets inductively and coinductively obtained from a set of ru les?

– How is the duality induction/coinduction formalised?

What follows answers these questions. It is a simple application of fixed-point
theory on complete lattices.

To make things simpler, we work on powersets and fixed-point theory .
(It is possible to be more general, working with universal algebras or category
theory.)

page 93



Complete lattices and fixed-points

page 94



Complete lattices

The important example of complete lattice for us: powersets .

For a given set X, the powerset of X, written ℘(X), is

℘(X)
def
= {T | T ⊆ X}

℘(X) is a complete lattice because:

– it comes with a relation ⊆ (set inclusion) that is reflexive, transitive, and
antisymmetric.

– it is closed under union and intersection

(∪ and ∩ give least upper bounds and greatest lower bounds for ⊆)

A partially ordered set (or poset ): a non-empty set with a relation
on its elements that is reflexive, transitive, and antisymmetric.

A complete lattice : a poset with all joins (least upper bounds)
and (hence) also all meets (greatest lower bounds).

page 95



Example of a complete lattice

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

Two points x, y are in the relation ≤ if there is a path from x to y following
the directional edges

(a path may also be empty, hence x ≤ x holds for all x)

page 96



A partially ordered set that is not a complete lattice

a b

c d

e f

Again, x ≤ y if there is a path from x to y

page 97



Bounds, meets, and joins

L poset, S ⊆ L: then y ∈ L is an upper bound of S if x ≤ y ∀ x ∈ S.

The dual: a lower bound of S: (a y ∈ L with y ≤ x for all x ∈ S)

The least upper bound (also called the join ) of S: an upper bound y with
y ≤ z ∀ upper bounds z of S

The dual: of these concepts gives us the greatest lower bound (or meet )

Example:
U = the upper bounds for S
t = the least upper bound

U

t

S

L

page 98



The Fixed-point Theorem

NB: Complete lattices are “dualisable” structures: reverse the arrows and
you get another complete lattice. Similarly, statements on complete lattices
can be dualised.

For simplicity, we will focus on complete lattices produced by the
powerset construction. But all statements can be generalised to arbitrary
complete lattices

Given a function F on a complete lattice:

– F is monotone if x ≤ y implies F (x) ≤ F (y), for all x, y.

– x is a pre-fixed point of F if F (x) ≤ x.
Dually, x is a post-fixed point if x ≤ F (x).

– x is a fixed point of F if F (x) = x (it is both pre- and post-fixed point)

– The set of fixed points of F may have a least element, the least fixed
point , and a greatest element, the greatest fixed point

page 99



Example

the poset of the (positive) natural numbers with n ≤ m if n divides m

For S = {4, 8, 16}:

- {1, 2, 4} = the set of lower bounds of S

- 4 is the least element in S and its meet;

- 16 is the greatest element and the join

For S = {2, 3, 4}:

- 1 is the only lower bound and the meet;

- there is no least element; any multiple of 12 is an upper bound, 12 is the
join; no greatest element

The endofunction F where F (n) is the sum of the factors of n that
are different from n, with the exception of 1 that is mapped onto itself

eg: F (1) = 1, F (2) = 1, F (3) = 1, F (4) = 3, F (6) = 6.

Then 1, 2, 3, 6 are pre-fixed points, and 1, 6 fixed points.
page 100



Exercise

– Is the set of all natural numbers a complete lattice?

– Is it a lattice (that is, is a poset in which all pairs of elements have a
join)?

– Can we add elements to the set of natural numbers so as to make it a
complete lattice?

Exercise

1. Show that if F is a monotone endofunction on a complete lattice, and x

and y are post-fixed points of F , then also ∪{x, y} is a post-fixed point.

2. Generalise the previous point to an arbitrary set S of post-fixed points:
∪S is also a post-fixed point. Then dualise the result to pre-fixed points.

page 101



For simplicity, we discuss the theorem on the complete lattices generated
by the powerset construction

Theorem [Fixed-point Theorem] If F : ℘(X) → ℘(X) is monotone,
then

lfp(F ) =
⋂

{T | F (T ) ⊆ T}

gfp(F ) =
⋃

{T | T ⊆ F (T )}

(the meet of the pre-fixed points, the join of the post-fixed points)

NB: the theorem actually says more: the set of fixed points is itself a
complete lattice, and the same for the sets of pre-fixed points and
post-fixed points.

page 102



Proof of the Fixed-point Theorem

We consider one part of the statement (the other part is dual), namely

gfp(F ) =
⋃

{S | S ⊆ F (S)}

Set T =
⋃
{S | S ⊆ F (S)}. We have to show T fixed point (it is then the

greatest: any other fixed point is a post-fixed point, hence contained in T )

Proof of T ⊆ F (T )

For each S s.t. S ⊆ F (S) we have:

S ⊆ T (def of T as a union)
hence F (S) ⊆ F (T ) (monotonicity of F )
hence S ⊆ F (T ) (since S is a post-fixed point)

We conclude F (T ) ⊇
⋃
{S | S ⊆ F (S)} = T

page 103



Proof of the Fixed-point Theorem

We consider one part of the statement (the other part is dual), namely

gfp(F ) =
⋃

{S | S ⊆ F (S)}

Set T =
⋃
{S | S ⊆ F (S)}. We have to show T fixed point (it is then the

greatest: any other fixed point is a post-fixed point, hence contained in T )

Proof of F (T ) ⊆ T

We have T ⊆ F (T ) (just proved)
hence F (T ) ⊆ F (F (T )) (monotonicity of F )
that is, F (T ) is a post-fixed point

Done, by definition of T as a union of the post-fixed points.

page 104



Sets coinductively and inductively defined by F

Definition Given a complete lattice produced by the powerset construction,
and an endofunction F on it, the sets:

Find

def
=

⋂
{x | F (x) ⊆ x}

Fcoind
def
=

⋃
{x | x ⊆ F (x)}

are the sets inductively defined by F , and coinductively defined by F .

By the Fixed-point Theorem, when F monotone:

Find = lfp(F )

= least pre-fixed point of F

Fcoind = gfp(F )

= greatest post-fixed point of F

page 105



Next objective

We wish to derive the reading (2) of inductive sets
(the smallest sets ‘close forward’ wrt some rules)

And dually for coinductive sets

We have to show:

a set of rules ⇔ a monotone function on a complete lattice

a forward closure for the rules ⇔ a pre-fixed point for the function

a backward closure for the rules ⇔ a post-fixed point for the function

NB: all inductive and coinductive definitions can be given in terms of rules

page 106



Definitions by means of rules

Given a set X, a ground rule on X is a pair (S, x) with S ⊆ X and
x ∈ X

We can write a rule (S, x) as

x1 . . . xn . . .

x
where {x1, . . . , xn, . . .} = S.

A rule (∅, x) is an axiom

page 107



Definitions by means of rules

Given a set X, a ground rule on X is a pair (S, x) with S ⊆ X and
x ∈ X

We can write a rule (S, x) as

x1 . . . xn . . .

x
where {x1, . . . , xn, . . .} = S.

A rule (∅, x) is an axiom

NB: previous rules, eg
P −→ P ′ P ′ ↾

P ↾
were not ground (P, P ′ are

metavariables)

The translation to ground rules is trivial (take all valid instantiations)

page 108



Definitions by means of rules

Given a set X, a ground rule on X is a pair (S, x) with S ⊆ X and
x ∈ X

We can write a rule (S, x) as

x1 . . . xn . . .

x
where {x1, . . . , xn, . . .} = S.

A rule (∅, x) is an axiom

A set R of rules on X yields a monotone endofunction ΦR, called the
functional of R (or rule functional ), on the complete lattice ℘(X), where

ΦR(T ) = {x | (T ′, x) ∈ R for some T ′ ⊆ T}

Exercise Show ΦR monotone, and that every monotone operator on
℘(X) can be expressed as the functional of some set of rules.

page 109



By the Fixed-point Theorem there are least fixed point and greatest fixed
point, lfp(ΦR) and gfp(ΦR), obtained via the join and meet in the
theorem.

They are indeed called the sets inductively and coinductively defined by
the rules .

Thus indeed:
a set of rules ⇔ a monotone function on a complete lattice

Next: pre-fixed points and forward closure (and dually)

page 110



What does it mean ΦR(T ) ⊆ T (ie, set T is a pre-fixed point of ΦR)?

As ΦR(T ) = {x | (S, x) ∈ R for some S ⊆ T} it means:

for all rules (S, x) ∈ R,
if S ⊆ T (so that x ∈ ΦR(T )), then also x ∈ T .

That is:

(i) the conclusions of each axiom is in T ;

(ii) each rule whose premises are in T has also the conclusion in T .

This is precisely the ‘forward’ closure in previous examples.

The Fixed-point Theorem tells us that the least fixed point is the least
pre-fixed point: the set inductively defined by the rules is therefore the
smallest set closed forward.

page 111



For rules, the induction proof principle, in turn, says:

for a given T ,
if for all rules (S, x) ∈ R, S ⊆ T implies x ∈ T

then (the set inductively defined by the rules) ⊆ T .

As already seen discussing the forward closure, this is the familiar way of
reasoning inductively on rules.

(the assumption “S ⊆ T ” is the inductive hypothesis ; the base of the
induction is given by the axioms of R)

We have recovered the principle of rule induction

page 112



Now the case of coinduction. Set T is a post-fixed if

T ⊆ ΦR(T ) , where ΦR(T ) = {x | (T ′, x) ∈ R for some T ′ ⊆ T}

This means:

for all t ∈ T there is a rule (S, t) ∈ R with S ⊆ T

This is precisely the ‘backward’ closure

By Fixed-point Theory, the set coinductively defined by the rules is the
largest set closed backward.

The coinduction proof principle reads thus (principle of rule coinduction ):

for a given T ,
if for all x ∈ T there is a rule (S, x) ∈ R with S ⊆ T ,
then T ⊆ (the set coinductive defined by the rules)

Exercise Let R be a set of ground rules, and suppose each rule has a
non-empty premise. Show that lfp(ΦR) = ∅.

page 113



The examples, revisited

and continued

– the previous examples of rule induction and coinduction reduced to the
fixed-point format

– example of application of bisimulation outside concurrency

page 114



Finite traces

P stopped

P ⇂

P
µ

−→ P ′ P ′ ⇂

P ⇂

As ground rules, these become:

R⇂
def
= {(∅, P ) | P is stopped}⋃

{({P ′}, P ) | P
µ

−→ P ′ for some µ}

This yields the following functional:

ΦR⇂
(T )

def
= {P | P is stopped, or there are P ′, µ with P ′ ∈ T and P

µ
−→ P ′}

The sets ‘closed forward’ are the pre-fixed points of ΦR⇂
.

Thus the smallest set closed forward and the associated proof technique
become examples of inductively defined set and of induction proof
principle.

page 115



ω-traces

P
µ

−→ P ′ P ′ ↾

P ↾

As ground rules, this yields:

R↾
def
= {({P ′}, P ) | P

µ
−→ P ′} .

This yields the following functional:

ΦR↾
(T )

def
= {P | there is P ′ ∈ T and P

µ
−→ P ′}

Thus the sets ‘closed backward’ are the post-fixed points of ΦR↾
, and the

largest set closed backward is the greatest fixed point of ΦR↾
;

Similarly, the proof technique for ω-traces is derived from the coinduction
proof principle.

page 116



Finite lists ( finLists)

The rule functional (from sets to sets) is:

F (T )
def
= {nil} ∪ {〈a〉 • ℓ | a ∈ A, ℓ ∈ T}

F is monotone, and finLists = lfp(F ). (i.e., finLists is the smallest set
solution to the equation L = nil + 〈A〉 • L).

From the induction and coinduction principles, we infer: Suppose
T ⊆ finLists. If F (T ) ⊆ T then T ⊆ finLists (hence T = finLists).

Proving F (T ) ⊆ T requires proving

– nil ∈ T ;

– ℓ ∈ finLists∩ T implies 〈a〉 • ℓ ∈ T , for all a ∈ A.

This is the same as the familiar induction technique for lists

page 117



λ-calculus

In the case of ⇓, the rules manipulate pairs of closed λ-terms, thus they act
on the set Λ0 × Λ0. The rule functional for ⇓, written Φ⇓, is

Φ⇓(T )
def
= {(e, e′) | e = e′ = λx. e′′ , for some e′′ }⋃

{(e, e′) | e = e1 e2 and
∃ e0 such that (e1, λx. e0) ∈ T and (e0{e2/x}, e′) ∈ T} .

In the case of ⇑, the rules are on Λ0. The rule functional for ⇑ is

Φ⇑(T )
def
= {e1 e2 | e1 ∈ T, }⋃

{e1 e2 | e1 ⇓ λx. e0 and e0{e2/x} ∈ T}.

page 118



Example (bisimulation outside concurrency )

Problem: reason about equality on infinite lists (streams), more generally
on coinductively defined sets

Objects may be ‘infinite’, induction may not be applicable

We can prove equalities adapting the idea of bisimulation.

The coinductive definition tells us what can be observed

An LTS for lists:
〈a〉 • s

a
−→ s

∼: the resulting bisimulation

Lemma On finite/infinite lists, s = t if and only if s ∼ t.

page 119



Of course it is not necessary to define an LTS from lists.

We can directly define a kind of bisimulation on lists, as follows:

A relation R on lists is a list bisimulation if whenever (s, t) ∈ R

then
1. s = nil implies t = nil ;

2. s = 〈a〉 • s′ implies there is t′ such that t = 〈a〉 • t′ and (s′, t′) ∈

R

Then list bisimilarity as the union of all list bisimulations.

page 120



To see how natural is the bisimulation method on lists, consider the
following characterisation of equality between lists:

nil = nil

s1 = s2 a ∈ A

〈a〉 • s1 = 〈a〉 • s2

The inductive interpretation of the rules gives us equality on finite lists, as
the least fixed point of the corresponding rule functional.

The coinductive interpretation gives us equality on finite-infinite lists, and
list bisimulation as associated proof technique.

To see this, it suffices to note that the post-fixed points of the rule functional
are precisely the list bisimulations; hence the greatest fixed point is list
bisimilarity and, by the previous Lemma, it is also the equality relation.

page 121



The coinduction/bisimulation proof method on lists

f : A → A

mapf nil = nil

mapf (〈a〉 • s) = 〈f(a)〉 • mapf s

iterate f a = 〈a〉 • iterate f f(a)

Thus iterate f a builds the infinite list

〈a〉 • 〈f(a)〉 • 〈f(f(a))〉 • . . .

For all a ∈ A: mapf (iterate f a) = iterate f f(a)

An LTS for lists: 〈a〉 • s
a

−→ s

page 122



Proof

R
def
= {(mapf (iterate f a), iterate f f(a)) | a ∈ A}

is a bisimulation. Let (P,Q) ∈ R, for P
def
= mapf (iterate f c)

Q
def
= iterate f f(c)

Applying the definitions of iterate , and of LTS

Q = 〈f(c)〉 • iterate f f(f(c))
f(c)
−→ iterate f f(f(c))

def
= Q′.

Similarly, P = mapf 〈c〉 • (iterate f f(c))

= 〈f(c)〉 • mapf (iterate f f(c))
f(c)
−→ mapf (iterate f f(c))

def
= P ′

We have P ′ R Q′, as f(c) ∈ A.

Done (we have showed that P and Q have a single transition, with same
labels, and with derivatives in R)

page 123



Other induction and coinduction

principles

– justification from fixed-point theory

– recursion and corecursion

– enhancements of the principles

page 124



Mathematical induction

The rules (on the set {0, 1, . . .} of natural numbers or any set containing
the natural numbers) are:

0

n

n + 1
(for all n ≥ 0)

The natural numbers: the least fixed point of a rule functional.

Principle of rule induction: if a property on the naturals holds at 0 and,
whenever it holds at n, it also holds at n + 1, then the property is true for
all naturals.

This is the ordinary mathematical induction

page 125



A variant induction on the natural numbers: the inductive step assumes the
property at all numbers less than or equal to n

0

0, 1, . . . , n

n + 1
(for all n ≥ 0)

These are the ground-rule translation of this (open) rule, where S is a
property on the natural numbers:

i ∈ S , ∀ i < j

j ∈ S

page 126



Well-founded induction

Given a well-founded relation R on a set X, and a property T on X, to
show that X ⊆ T (the property T holds at all elements of X), it suffices to
prove that, for all x ∈ X: if y ∈ T for all y with y R x, then also x ∈ T .

mathematical induction, structural induction can be seen as special cases

Well-founded induction is indeed the natural generalisation of mathematical
induction to sets and, as such, it is frequent to find it in Mathematics and
Computer Science.

Example: proof of a property reasoning on the lexicographical order on
pairs of natural numbers

page 127



We can derive well-founded induction from fixed-point theory in the same
way as we did for rule induction.

In fact, we can reduce well-founded induction to rule induction taking as
rules, for each x ∈ X, the pair (S, x) where S is the set {y | y R x}

and R the well-founded relation.

Note that the set inductively defined by the rules is precisely X; that is, any
set equipped with a well-founded relation is an inductive set.

page 128



Transfinite induction

The extension of mathematical induction to ordinals

Transfinite induction says that to prove that a property T on the ordinals
holds at all ordinals, it suffices to prove, for all ordinals α: if β ∈ T for all
ordinals β < α then also α ∈ T .

In proofs, this is usually split into three cases:

(i) 0 ∈ T ;

(ii) for each ordinal α, if α ∈ T then also α + 1 ∈ T ;

(iii) for each limit ordinal β, if α ∈ T for all α < β then also β ∈ T .

page 129



Transfinite induction acts on the ordinals, which form a proper class rather
than a set.

As such, we cannot derive it from the fixed-point theory presented.

However, in practice, transfinite induction is used to reason on sets, in
cases where mathematical induction is not sufficient because the set has
’too many’ elements.

In these cases, in the transfinite induction each ordinal is associated to an
element of the set. Then the < relation on the ordinals is a well-founded
relation on a set, so that transfinite induction becomes a special case of
well-founded induction on sets.

Another possibility: lifting the theory of induction to classes.

page 130



Other examples

Structural induction

Induction on derivation proofs

Transition induction

...

page 131



Function definitions by recursion and corecursion

One often finds functions defined by means of systems of equations. Such
definitions may follow the schema of recursion or corecursion .

In a definition by recursion the domain of the function is an inductive set.

Examples on the well-founded set of the natural numbers: the factorial
function

f(0) = 1 f(n + 1) = n × f(n)

An example of structural recursion is the function f that defines the
number of λ-abstractions in a λ-term:

f(x) = 0 f(λx. e) = 1 + f(e) f(e e′) = f(e) + f(e′)

It is possible to define patterns of equations for well-founded recursion, and
prove that whenever the patterns are respected the functions specified
exist and are unique. The proof makes use of well-founded induction twice,
to prove that such functions exist and to prove its unicity

page 132



a function defined by corecursion produces an element of a coinductive
set.

An equation for a corecursive function specifies the immediate observables
of the element returned by the function

for instance, if the element is an infinite list, the equation should tell us
specify the head of the list.

Examples are the definitions of the functions map, iterate

As in the case of recursion, so for corecursion one can produce general
equation schemata, and prove that any system of equations satisfying the
schemata defines a unique function (or unique functions, in case of
mutually recursive equations)

page 133



Enhancements of the principles

Theorem Let F be a monotone endofunction on a complete lattice L, and
y a post-fixed point of F (i.e., y ≤ F (y)). Then

gfp(F ) =
⋃

{x | x ≤ F (x ∪ y)}

principle of coinduction up-to ∪:

Let F be a monotone endofunction on a complete lattice,
and suppose y ≤ F (y);
then x ≤ F (x ∪ y) implies x ≤ gfp(F ).

page 134



Theorem Let F be a monotone endofunction on a complete lattice L, and
• : L × L → L an associative function such that:
1. for all x, y, x′, y′ ∈ L, whenever both x ≤ F (x′) and y ≤ F (y′), then

x • y ≤ F (x′ • y′);

2. for all x with x ≤ F (x) we have both x ≤ x•gfp(F ) and x ≤ gfp(F )•

x.
Then

gfp(F ) =
⋃

{x | x ≤ F (gfp(F ) • x • gfp(F ))}

principle of coinduction up-to gfp:

Let F be a monotone endofunction on a complete lattice L,
and • : L × L → L an associative function
for which the assumptions (1) and (2) of Theorem above hold;
then x ≤ F (gfp(F ) • x • gfp(F )) implies x ≤ gfp(F ).

page 135



Back to bisimulation

– bisimilarity as a fixed point

page 136



Bisimulation as a fixed-point

Definition Consider the following function F∼ : ℘(Pr×Pr) → ℘(Pr×Pr).
F∼(R) is the set of all pairs (P,Q) s.t.:
1. ∀µ, P ′ s.t. P

µ
−→ P ′, then ∃Q′ such that Q

µ
−→ Q′ and P ′ R Q′;

2. ∀µ,Q′ s.t. Q
µ

−→ Q′, then ∃P ′ such that P
µ

−→ P ′ and P ′ R Q′.

Proposition We have:
– F∼ is monotone;

– R is a bisimulation iff R ⊆ F∼(R);

– ∼ = gfp(F∼).

page 137



Least and greatest fixed points:

approximations and constructive proofs

– objective: derive the reading (3) of inductive/coinductive sets
(via iteration schema)

page 138



Continuity and cocontinuity

The proof of the Fixed-point Theorem is not constructive

We show now constructive proofs, by means of iterative schemata.

Pros:

– approximating/computing least fixed points and greatest fixed points.
(at the heart of the algorithms used in tools)

– an alternative way for reasoning

Cons:

– requires properties on functions (continuity/cocontinuity) stronger than
monotonicity.

Abbreviations:
⋃

i αi for
⋃

i{αi}, and
⋃

i F (αi) for
⋃

i{F (αi)}; similarly
for

⋂
i αi and

⋂
i F (αi).

page 139



Definition An endofunction on a complete lattice is:
– continuous if for all sequences T0, T1 . . . of increasing points in the lat-

tice (i.e., Ti ⊆ Ti+1, for i ≥ 0) we have F (
⋃

i Ti) =
⋃

i F (Ti).

– cocontinuous if for all sequences T0, T1 . . . of decreasing points in the
lattice (i.e., Ti+1 ⊆ Ti, for i ≥ 0) we have F (

⋂
i Ti) =

⋂
i F (Ti).

Example: the complete lattice made of the integers plus the points ω and
−ω, with the ordering −ω ≤ n ≤ ω for all n.

Take F with: F (n) = n + 1, F (ω) = ω, F (−ω) = −ω

Then F (∪{3, 4, 6}) = F (6) = 7 = ∪{4, 5, 7} = ∪{F (3), F (4), F (6)}

For the increasing sequence of the positive integers, we have
F (∪ini) = F (ω) = ω = ∪ini+1 = ∪iF (ni).

Dually, for the decreasing sequence of the negative integers, we have
F (∩i − ni) = −ω = ∩iF (−ni).

page 140



Exercise If F is cocontinuous (or continuous), then it is also monotone.
(Hint: Take x ≥ y, and the sequence x, y, y, y, . . ..) �

Cont. Cocont.

Monotone

page 141



Fn(x) indicates the n-th iteration of F starting from the point x:

F 0(x)
def
= x

Fn+1(x)
def
= F (Fn(x))

Then we set:
F∩ω(x)

def
=

⋂
n≥0 F

n(x)

F∪ω(x)
def
=

⋃
n≥0 F

n(x)

Theorem [Continuity/Cocontinuity] Let F be an endofunction on a com-
plete lattice, in which ⊥ and ⊤ are the bottom and top elements.
– If F is continuous, then lfp(F ) = F∪ω(⊥) ;

– if F is cocontinuous, then gfp(F ) = F∩ω(⊤) .

F 0(⊥), F 1(⊥), . . . is increasing, F 0(⊤), F 1(⊤), . . . is decreasing.

lfp and gfp of F are the join and meet of the two sequences.
page 142



Exercise Prove the Continuity/Cocontinuity Theorem. (Hint: Referring to
the second part, first show that F∩ω is a fixed point, exploiting the
definition of cocontinuity; then show that it is the greatest fixed point,
exploiting the definition of meet.)

If F is not cocontinuous, and only monotone, we only have
gfp(F ) ≤ F∩ω(⊤). The converse need not hold

However, when F∩ω(⊤) is a fixed point, then surely it is the greatest fixed
point.

Example Let L be the set of negative integers plus the elements −ω and
−(ω + 1), with the expected ordering −n ≥ −ω ≥ −(ω + 1), for all n.
Let now F be the following function on L:

F (−n) = −(n + 1)

F (−ω) = −(ω + 1)

F (−(ω + 1)) = −(ω + 1)

The top and bottom elements are −1 and −(ω + 1). Function F is
monotone but not cocontinuous, and we have F∩ω(−1) = −ω and
gfp(F ) = −(ω + 1).

page 143



Having only monotonicity, to reach the greatest fixed point using induction,
we need to iterate over the transfinite ordinals.

(The dual statement, for continuity and least fixed points, also holds.)

Theorem Let F be a monotone endofunction on a complete lattice L, and
define F λ(⊤), where λ is an ordinal, as follows:

F 0(⊤)
def
= ⊤

F λ+1(⊤)
def
= F (F λ(⊤)) for successor ordinals

F λ(⊤)
def
= F (

⋂
β<λ F β(⊤)) for limit ordinals

and then F∞(⊤)
def
=

⋂
λ F λ(⊤). We have:

F∞(⊤) = gfp(F ).

page 144



Continuity and cocontinuity, for rules

The functional given by a set of rules need not be continuous or cocontinuous.

Example: Take the rule
a1 . . . an . . .

a
and call φ its functional, Tn = {a1, . . . , an}.
Then a ∈ φ(

⋃
n Tn), but a 6∈

⋃
n φ(Tn) (hence φ not continuous)

We can recover continuity and cocontinuity for rule functionals adding
some conditions.

Definition A set R of rules is finite in the premises , briefly FP, if for each
rule (S, x) ∈ R the premise set S is finite.

Exercise Show that if the set of rules R is FP, then ΦR is continuous;
conclude that lfp(ΦR) = Φ∪ω

R (∅).

page 145



FP does not work for cocontinuity

Example. X = {b} ∪ {a1, . . . , an, . . .}, and rules
ai

b
∀ i

call Φ the corresponding rule functional.

Thus Φ(T ) = {b} if there is i with ai ∈ T , otherwise Φ(T ) = ∅.

Take the sequence of decreasing sets T0, . . . , Tn, . . ., where

Ti
def
= {aj | j ≥ i}

We have Φ(
⋂

n Tn) = ∅, but
⋂

n Φ(Tn) = {b}.

To obtain cocontinuity we need some finiteness conditions on the
conclusions of the rules (rather than on the premises as for continuity).

page 146



Definition A set of rules R is finite in the conclusions , briefly FC, if for
each x, the set {S | (S, x) ∈ R} is finite (i.e., there is only a finite number
of rules whose conclusion is x)

Each premise set S may itself be infinite

Theorem If a set of rules R is FC, then ΦR is cocontinuous.

Exercise Prove the theorem above.

Corollary If a set of rules R on X is FC, then gfp(ΦR) = Φ∩ω
R (X).

Without FC, and therefore without cocontinuity, we have nevertheless
gfp(ΦR) ⊆ Φ∩ω

R (X).
page 147



With the FP or FC hypothesis we are thus able of applying the
Continuity/Cocontinuity Theorem.

For FP and continuity, the theorem tells us that given some rules R, the set
inductively defined by R can be obtained as the limit of the increasing
sequence of sets

∅,ΦR(∅),ΦR(ΦR(∅)),ΦR(ΦR(ΦR(∅))), . . . .

That is, we construct the inductive set thus:

– start with the empty set

– add the conclusions of the axioms in R (ΦR(∅)),

– repeatedly add elements following the inference rules in R in a ’forward’
manner

This corresponds to the usual constructive way of interpreting inductively a
bunch of rules

As usual, the case for coinductively defined sets is dual.
page 148



The iterative reading, for the finite-trace example

Exercise The rules for finite traces:

R⇂
def
= {(∅, P ) | P is stopped}⋃

{({P ′}, P ) | P
µ

−→ P ′ for some µ}

Show that:

– P ∈ Φn
R⇂

(∅), for 0 ≤ n, if and only if there are 0 ≤ m ≤ n, processes
P0, . . . , Pm, and actions µ1, . . . , µm with P = P0 and such that
P0

µ1
−→ P1 . . .

µm
−→ Pm and Pm is stopped.

At step 0 we have the empty set; then at step 1 we add the stopped
processes; at step 2 we add the processes that have a stopped derivative;
and so on.

In applications in which the set of all processes is finite, the sequence
{Φn

R⇂
(∅)}n will not increase forever

page 149



The iterative reading, for the ω-trace example

Recall that the ground rules are:

R↾
def
= {({P ′}, P ) | P

µ
−→ P ′} .

Exercise For Pr = all processes, show that:

– P ∈ Φn
R↾

(Pr), for 0 ≤ n, if and only if there are processes P0, . . . , Pn

with P = P0 and such that P0
µ

−→ P1 . . .
µ

−→ Pn.

In the sequence
Φ0

R↾
(Pr),Φ1

R↾
(Pr),Φ2

R↾
(Pr), · · ·

at step 0 we have the set Pr of all processes; at step 1 we remove the
processes that do not have a µ-derivative; at step 2 the processes that
cannot perform 2 consecutive µ-transitions; and so on.

If the set of processes is finite, the sequence will not decrease forever

page 150



Approximants of bisimilarity

Here is a natural definition of approximants of bisimilarity, where Pr = the
states of an LTS

– ∼0
def
= Pr × Pr;

– P ∼n+1 Q, for n ≥ 0, if for all µ:
1. for all P ′ with P

µ
−→ P ′, there is Q′ such that Q

µ
−→ Q′ and

P ′ ∼n Q′;
2. the converse, i.e., for all Q′ with Q

µ
−→ Q′, there is P ′ such that

P
µ

−→ P ′ and P ′ ∼n Q′;

– ∼ω
def
=

⋂
n≥0 ∼n.

At stage n, we check transitions up to depth n.

There is an exact correspondence with the the sequence

F 0
∼(Pr × Pr), F 1

∼(Pr × Pr), F 2
∼(Pr × Pr), · · ·

where F∼ is the functional of bisimilarity
page 151



Recall that F∼(R) is the set of all pairs (P,Q) s.t.:

1. ∀µ, P ′ s.t. P
µ

−→ P ′, then ∃Q′ such that Q
µ

−→ Q′ and P ′ R Q′;

2. ∀µ,Q′ s.t. Q
µ

−→ Q′, then ∃P ′ such that P
µ

−→ P ′ and P ′ R Q′.

Exercise

1. ∼0, . . . ,∼n, . . . is a decreasing sequence of relations.

2. For all 0 ≤ n < ω, we have ∼n = Fn
∼(Pr × Pr), and

∼ω = F∩ω
∼ (Pr × Pr), where Fn

∼ and F∩ω
∼ are the iterations of F∼

following the definitions used in the Cocontinuity Theorem

NB: Approximants can also be usefully employed to prove non-bisimilarity
results

page 152



Bisimulation and cocontinuity

A counterexample to ∼ = ∼ω. Take the states and transitions:

a0 def
= 0

aω a
−→ aω

an a
−→ an−1 for n ≥ 1

Now let P,Q be states with transitions

P
a

−→ an for all n ≥ 0

and
Q

a
−→ an for all n ≥ 0

Q
a

−→ aω

P ∼n Q for all n (simple induction), hence also P ∼ω Q.

P 6∼ Q, as Q
a

−→ aω can only be matched by P
a

−→ an, for some n

Exercise Show formally that the functional F∼ of bisimilarity is not
cocontinuous.

page 153



A sufficient condition: finite branching

We can obtain ∼ by iteration over the natural numbers if we add some
finiteness hypothesis on the branching structure of the LTS.

An LTS is finitely-branching if for each process the set of its (immediate)
derivatives is finite.

Theorem On finitely-branching LTSs, ∼ = ∼ω.

The thereom follows from the following exercise and the Cocontibuity
Theorem.

Exercise Check that under the finitely-branching hypothesis the functional
F∼ is cocontinuous.

A direct proof is useful to understand the hypothesis

page 154



Proof The inclusion ∼ ⊆ ∼ω is easy: one proves that ∼ ⊆ ∼n for all n,
using the fact that ∼ is a bisimulation

(or, using the fact that ∼ is a fixed point of F∼, monotonicity of F∼, and
∼n+1= F∼(∼n); we can also directly derive it from fixed-point theory).

Now the converse. We show that the set

R
def
= {(P,Q) | P ∼ω Q}

is a bisimulation. Take (P,Q) ∈ R and suppose P
µ

−→ P ′.

∀ n, as P ∼n+1 Q, ∃ Qn s.t. Q
µ

−→ Qn and P ∼n Qn.

As the LTS is finitely-branching, the set {Qi | Q
µ

−→ Qi} is finite.

Hence ∃ Qi s.t. P ′ ∼n Qi for infinitely many n.

As {∼n}n is decreasing with n, we have P ′ ∼n Qi ∀ n.

Hence P ′ ∼ω Qi and (P ′, Qi) ∈ R. �

page 155



Algorithms for bisimilarity

The stratification of bisimilarity given by continuity is also the basis for
algorithms for mechanically checking bisimilarity and for minimisation of
the state-space of a process

These algorithms work on processes that are finite-state (ie, each process
has only a finite number of possible derivaties)

They proceed by progressively refining a partition of all processes

In the initial partition, all processes are in the same set

Bisimulation: P-complete [Alvarez, Balcazar, Gabarro, Santha, ’91 ]

With m transitions, n states:
O(m log n) time and O(m + n) space [Paige, Tarjan, ’87]

Trace equivalence, testing: PSPACE-complete
[Kannelakis, Smolka, ’90; Huynh, Tian, 95 ]

page 156



Other views on the meaning of

induction and coinduction

– derivation proofs
(cf: the informal reading (1) of inductive and coinductive sets)

– games

page 157



Proof tree interpretations

A set of ground rules is used to derive elements, via proof trees

The example of lists. The rules are
nil

s a

〈a〉 • s
(∀s ∈ X, a ∈ A)

nil
〈b〉 • nil

〈a〉 • 〈b〉 • nil

〈a〉 • 〈a〉 • 〈b〉 • nil

. . .

〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • . . .

〈b〉 • 〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • . . .

〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • . . .

(in general — but not with lists — a node of a tree may have several children)

〈a〉 • 〈a〉 • 〈b〉 • nil is both in the inductive and in the coinductive set

〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • . . . in only in the coinductive set

What is the difference between induction and coinduction on the
meaning of ‘correct’ proof tree?

page 158



Trees (informally)

The set of trees over X is the set of all trees, possibly infinite both in depth
and in breadth, in which each node is labelled with an element from the set
X and, moreover, the labels of the children of a node are pairwise distinct.

If T is such a tree, then the root of T is the only node without a parent.

Let R be a set of ground rules.

A tree T is a proof tree for x ∈ X under R if x is the label of the root of
T and, for each node h with label y, if S is the set of the labels of all
children of h, then (S, y) is a rule in R.

page 159



A tree is non-well-founded if it has paths of infinite length. It is well-founded
otherwise.

Some well-founded trees:

h4

h1 h2 h3

h0

h1 h2 . . . hn . . .

h0

h3,1

h2,1 h2,2

h1,1 h1,2 h1,3 . . . h1,n . . .

h0,1

A non-well-founded tree: h3,2

h2,1 h2,2

h1,1 h1,2

h1

page 160



Theorem x ∈ lfp(ΦR) iff there is a well-founded proof tree for x under R.

Proof: reason on the approximants

With FP hypothesis, each node only has finitely many children, and
therefore a well-founded proof tree has a finite height (hence it is finite)

In the examples of traces, λ-calculus, lists, the rules are FP, hence the
inductive objects are those with a ‘finite derivation proof’.

Without FP, a well-founded proof tree need not have a finite height.

page 161



Theorem x ∈ gfp(ΦR) iff there is a proof tree for x under R.

Proof First, the direction from left to right.

If x ∈ gfp(ΦR), then x is in some post-fixed point of ΦR; that is, there is
T with x ∈ T and T ⊆ ΦR(T ).

Now, as T ⊆ ΦR(T ), by definition of ΦR, for each y ∈ T there is at least
one rule (S, y) in R with S ⊆ T ; we pick one of these rules and call it Ry.

The proof tree for x is defined as follows. The root is x. The children of a
node y in the tree are the nodes y1, . . . , yn that form the premise of the
rule Ry chosen for y.

page 162



Theorem x ∈ gfp(ΦR) iff there is a proof tree for x under R.

Proof Now the converse direction (right to left).

Suppose there is a proof tree for x.

Let T be the set of all the (labels of) nodes in the tree. We show that T is a
post-fixed point of ΦR.

We have to show that any y ∈ T is in ΦR(T ).

If y ∈ T then there is a node in the tree that is labelled y.

Let {y1, . . . , yn} be the set of the labels of the children of such node.

By definition of proof tree, ({y1, . . . , yn}, y) is a rule in R and, by
definition of T , we have ({y1, . . . , yn} ⊆ T .

Hence y ∈ ΦR(T ).

page 163



Game interpretations

A game-theoretic characterisation of induction and coinduction, exploiting
some of the ideas in the ‘proof-tree’ presentation

Consider a set R of ground rules (on X).

A game in R has:

– two players (the verifier V and the refuter R)

– an element x0 ∈ X

V tries to show that a proof tree for x0 exists; R tries to dispute that

page 164



A play

Thus a play for R and x0 is a sequence

x0, S0, . . . , xn, Sn, . . .

which can be finite or infinite.

It goes thus:

– V chooses a set S0 s.t. (S0, x0) ∈ R (i.e., x0 can be derived from S0)

– R chooses an element x1 ∈ S0 (thus challenging V to continue)

– V has to find a set S1 with (S1, x1) ∈ R

– R picks x2 ∈ S1

– and so on.

page 165



Example from the λ-calculus

The ground rules R for the divergence predicate ⇑ of the λ-calculus are

e

e e′
e

e1 e2
with e1 ⇓ λx. e0 for some e0 with e0{e2/x} = e

For e1 = λx.xx, a play is

e1 e1, {e1 e1}, e1 e1, . . .

For e2 = λx.xxx, a play is

e2 e2, {(e2 e2) e2}, (e2 e2) e2, {e2 e2}, . . .

Both plays, in the coinductive game, represent win for V. A finite play for
e2 e2 is

e2 e2, {e2}, e2

and it is a win for R.
page 166



Example with finite traces

The ground rules R⇂ for the finite-trace predicate ⇂ are

P
with P stopped

P ′

P
with P

µ
−→ P ′

P4 P1
a

b

P2
b

a
P3

A play for R⇂ and P1 is

P1, {P2}, P2, {P1}, P1, . . .

where V follows the b-transitions; another play is

P1, {P2}, P2, ∅

where V follows an a-transition. The latter play is a win for V. In the
inductive game, the first play is a win for R.

page 167



Inductive vs coinductive games

The game is finite if at some point one of the players is unable to make the
move; then the other player wins.

(e.g., V’s last move was the empty set ∅; R’s last move was an element x
that does not appear in conclusions of the rules R)

An infinite game:

– in the inductive world it is a win for R

(with induction, proofs should must be well-founded)

– in the coinductive world it is a win for V

(with coinduction, non-well-founded paths in proof trees are allowed)

Gind(R, x0): the inductive game.

Gcoind(R, x0): the coinductive game.

page 168



Strategies

A winning strategy : a systematic way of playing that always produces a win

Definition In a game Gind(R, x0) or Gcoind(R, x0):
a strategy for V is a partial function that associates to each play

x0, S0, . . . , xn, Sn, xn+1

a set Sn+1, with (Sn+1, xn+1) ∈ R, to be used for the next move for V;
similarly, a strategy for R in Gind(R, x0) or Gcoind(R, x0) is a partial func-
tion that associates to each play

x0, S0, . . . , xn, Sn

an element xn+1 ∈ Sn. The strategy of a player is winning if that player
wins every play in which he/she has followed the strategy.

page 169



The strategies for induction and coinduction can actually be history-free

Exercise Analise the winning stragegies for the previous examples

Theorem
1. x0 ∈ lfp(ΦR) iff player V has a winning strategy in the game

Gind(R, x0);

2. x0 ∈ gfp(ΦR) iff player V has a winning strategy in the game
Gcoind(R, x0).

page 170



The bisimulation game

As we have seen, there is a standard construction to turn any monotone
operator on a complete lattice ℘(X) into a set of rules (and vice versa)

This construction gives us these rules for bisimulation:

Der (P,Q, f, g)

(P,Q)

where

– function f maps a pair (µ, P ′) such that P
µ

−→ P ′ into a process Q′

such that Q
µ

−→ Q′

Conversely, function g maps a pair (µ,Q′) such that Q
µ

−→ Q′ into a
process P ′ such that P

µ
−→ P ′

– Der (P,Q, f, g) is the set of process pairs

{(P ′, f(µ, P ′)) | P
µ

−→ P ′} ∪ {(g(µ,Q′), Q′) | Q
µ

−→ Q′} .

(With non-determinism, there may be several rules with the same
conclusion)

page 171



In the resulting game interpretation, given a pair (P,Q), the verifier V
chooses the functions f and g that determine the pairs Der (P,Q, f, g)

needed in the premise.

The refuter R then picks up one of the pairs in Der (P,Q, f, g) to continue
the game.

If functions f and g for V do not exist, then V cannot continue and R wins.

When Der (P,Q, f, g) is empty (which happens if both P and Q are
stopped), R cannot continue and V wins.

As the game is coinductive, an infinite play represents a win for V.

page 172



Example

P2

P1

a

a
P3

b
P4

Q1

a
Q2

b
Q3

A play in which V wins:

(P1, Q1), {(P2, Q2), (P3, Q2)}, (P3, Q2), {(P4, Q3)}, (P4, Q3), ∅

A play with a win for R:

(P1, Q1), {(P2, Q2), (P3, Q2)}, (P2, Q2)

R has a winning strategy, which consists in following the latter play, thereby
always selecting, in the first move, the pair (P2, Q2).

page 173



A simpler bisimulation game

We formulate the bisimulation game a bit differently, letting R move first

R first chooses a transition, say P
µ

−→ P ′ or Q
µ

−→ Q′

then V has to find a matching derivative from Q or P

A play for (P0, Q0) in the new game is a finite or infinite sequence of pairs

(P0, Q0), (P1, Q1), · · · , (Pi, Qi), · · ·

Given (Pi, Qi), the following pair (Pi+1, Qi+1) is determined thus:

– R makes the challenge by choosing either a transition Pi
µ

−→ P ′ or a
transition Qi

µ
−→ Q′;

– V has to answer, in the former case with a transition Qi
µ

−→ Q′, in the
latter case with a transition Pi

µ
−→ P ′;

– the pair (P ′, Q′) is (i + 1)th one of the play.

If V is unable to answer, then R wins.
page 174



If this situation never occurs (at some point R cannot formulate a challenge,
or the play is infinite) then V is the winner.

Again, we can define the notion of strategy

Theorem P ∼ Q if and only if V has a winning strategy for (P,Q).

Theorem P 6∼ Q if and only if R has a winning strategy for (P,Q).

The game interpretation is also useful to reason about bisimulation,
especially to prove non-bisimilarity results.

page 175



Example: a winning strategy for R

P3
a a

P 1
3

b

P 2
3

b

P 3
3

c

P 4
3

d

P 5
3 P 6

3

Q3

a

Q1
3

b b

Q2
3

c

Q3
3

d

Q4
3 Q5

3

– The initial transition chosen by R is P3
a

−→ P 1
3 .

– The only answer for V can be via the transition Q3
a

−→ Q1
3, and the

resulting pair is (P 1
3 , Q

1
3).

– Now R chooses the transition Q1
3

b
−→ Q3

3, and V has only the transition

P 1
3

b
−→ P 3

3 , resulting in the new pair (P 3
3 , Q

3
3).

– Finally, R makes the challenge on the transition Q3
3

d
−→ Q5

3, and V

cannot answer.
page 176



A process calculus: CCS

page 177



Imposing structure: an algebraic language of processes

We introduce some common process operators, which impose a structure
on processes and bring in concepts from algebra.

Analogy with automata theory: The language of an automata can be
described as a regular expression:

L ::= L⋆ | L;L | L + L | ∅ | a where a ∈ Act

Theorem 1 A language is regular iff it is the language accepted by some
automata

The description of automata as regular languages is important: regular
languages have an algebra, which can be used for synthesis, analysis,
reasoning

For instance, the reduction of non-deterministism to determinism for trace
equivalence can be proved using the law

(a.P ) + (a.Q) = a. (P + Q) (1)

page 178



Of course, algebra is not the only means for reasoning on automata!
(Example of another means: automata minimisation).

Similarly, in a process calculus algebra is very important; but it should not
be the only tool
(other tools: logics, induction, coinduction, etc.).

That is why process calculus is a better terminology than process
algebra

Motivation for this part

– introduction to the concept of process calculus

– the Structured Operational Semantics (SOS) style

– robustness of bisimilarity: compositionality, axiomatisation

page 179



Towards a process calculus

We wish to isolate a set of basic constructors for concurrency

This is hard: we do not have something like Theorem 1 to guide us.

LTS’s tell us what are the processes; but what are the ‘computable’
processes?

Another analogy: Church’s λ-calculus:

functions LTS’s

computable functions ???

The behaviour of proceses: operationally, following Plotkin’s Structured
Operational Semantics .

Robin Milner (the Calculus of Communicating Systems, CCS, end 70s);
Tony Hoare (Communicating Sequential Processes, CSP, similar dates)

page 180



Names and transitions in CCS

Interaction: handshaking between two processes.

No value passing, for simplicity.

In an interaction: a process performs an action a and a parallel process the
complementary action a.

P,Q,R range over processes; a, b . . . over names

a, b are co-names. Names, co-names and τ form the set Act of actions.
µ, λ range over Act

P
a

−→ P ′: P offers an input at port a, thus evolving into P ′

P
a

−→ P ′: similar, but P offers an output at a.

P
τ

−→ P ′: P can internally do some work and then become P ′ (eg, an
interaction between components)

We assume a = a, and τ different from any name or co-name.

page 181



The CCS operators

P ::= P1 | P2 | P1 + P2 | µ.P | (νa) P | 0 | K

where K is a constant

Nil , written 0 : a terminated process, no transitions

Prefixing (action sequentialisation)

µ.P
µ

−→ P
PRE

Example: a. b. 0
a

−→ b. 0
b

−→ 0

page 182



Parallel composition Complex systems are composed of components,
that interact both with each other and with the environment.

A component can be a register, a bus, a memory, a program, a wire etc.

P1
µ

−→ P ′
1

P1 | P2
µ

−→ P ′
1 | P2

PARL
P2

µ
−→ P ′

2

P1 | P2
µ

−→ P1 | P ′
2

PARR

P1
µ

−→ P ′
1 P2

µ
−→ P ′

2

P1 | P2
τ

−→ P ′
1 | P ′

2

COM

P
def
= (a. 0 | b. 0) | a. 0 has the transitions

P
a

−→ (0 | b. 0) | a. 0

P
b

−→ (a. 0 | 0) | a. 0

P
τ

−→ (0 | b. 0) | 0

P
a

−→ (a. 0 | b. 0) | 0

Other communication mechanisms (eg, shared variables, or buffered
communications) can be modeled

page 183



Choice
P1

µ
−→ P ′

1

P1 + P2
µ

−→ P ′
1

SUML

P2
µ

−→ P ′
2

P1 + P2
µ

−→ P ′
2

SUMR

Example. P
def
= (a.Q1 | a.Q2) + b.R has the transitions

P
τ

−→ Q1 | Q2

P
a

−→ Q1 | a.Q2

P
a

−→ a.Q1 | Q2

P
b

−→ R

page 184



Restriction
P

µ
−→ P ′

(νa) P
µ

−→ (νa) P ′
RES µ 6∈ {a, a}

In (νa) P : a is private to P , hidden to the external environment

It is a binder (cf: λa.M in the λ-calculus)

Example: P
def
= (νa) ((a.Q1 | a.Q2) + b.R) has transitions

P
τ

−→ (νa) (Q1 | Q2) and P
b

−→ (νa) R .

Exercise

1. Which transitions can the process P
def
= (νa) ((a. 0 + b. 0) | a. 0)

make?

2. Find a process Q in which there is no parallel composition and
restriction and with P ∼ Q. �

page 185



Constants (Recursive process definitions)

Each constant K has a behaviour specified by a set of transitions of the
form K

µ
−→ P .

Example. K
a

−→ K

Example. Let K1 and K2 have the transitions

K1
a

−→ c.K1

K2
b

−→ c.K2

The LTS for (νc) (K1 | K2) is

(νc) (K1 | K2)
a

b
(νc) (c.K1 | K2)

b

(νc) (K1 | c.K2)
a

(νc) (c.K1 | c.K2)

τ

page 186



CCS(Act , Cons,TCons)

The set of all constants is Cons, and the set of all transitions for the
constants in Cons is TCons ⊆ Cons× Act × Pr.

The transitions for the processes in Pr are determined by TCons plus the
inferences rules for the operators seen above

Such a process language is called CCS(Act , Cons,TCons), abbreviated
as CCS, since either the specific sets of actions and constants are not
important, or anyhow there are no risks of ambiguities.

page 187



Examples bisimilarities

Write Ωµ for the constant whose only transition is

Ωµ
µ

−→ Ωµ

Thus Ωµ perpetually performs the action µ. Having two, or more, copies of
Ωµ has no visible effect, that is, for all n ≥ 1, we have

Ωµ | . . . | Ωµ︸ ︷︷ ︸
n times

∼ Ωµ

Proof: for each n ≥ 1, {(Ωµ | . . . | Ωµ︸ ︷︷ ︸
n times

,Ωµ)} is a bisimulation.

Exercise

– a.P | b.Q ∼ a. (P | b.Q) + b. (a.P | Q)

– a.P | a.Q ∼ a. (P | a.Q) + a. (a.P | Q) + τ . (P | Q)

Exercise Show that (νa) (a.P | a.Q) ∼ τ . (νa) (P | Q). The restriction
forces an interaction between the two parallel components. �

page 188



Semaphores

Semaphores are widely used, for instance in operating systems, to protect
access to resources.

An n-ary semaphore is used to guarantee that at most n processes have
concurrent access to a resource.

A semaphore provides two operations, p and v: the former is invoked in
order to obtain access, the latter to signal the completion of the activity

page 189



A binary semaphore:

K0
2

p
−→ K1

2 and K1
2

v
−→ K0

2

where K0
2 is the initial state, and K1

2 an auxiliary state indicating that one
instance of the resource is active.

A 3-ary semaphore:

K0
3

p
−→ K1

3 K1
3

p
−→ K2

3

K2
3

v
−→ K1

3 K1
3

v
−→ K0

3

where the superscript indicates the number of resources active.

We obtain a 3-ary semaphore by composing 2 binary semaphores:

K0
2 | K0

2 ∼ K0
3

A bisimulation that proves the equality:

R
def
= {(K0

2 | K0
2,K

0
3), (K

1
2 | K0

2,K
1
3), (K

0
2 | K1

2,K
1
3), (K

1
2 | K1

2,K
2
3)}

page 190



A specification and an implementation of a counter

Take constants Countern, for n ≥ 0, with transitions

Counter0
up

−→ Counter1

and, for n > 0,

Countern
up

−→ Countern+1 Countern
down
−→ Countern−1 .

The initial state is Counter0

An implementation of the counter in term of a constant C with transition

C
up

−→ C | down. 0 .

We want to show: Counter0 ∼ C

page 191



Proof

R
def
= {(C | Πn

1 down. 0, Countern) | n ≥ 0} ,

is a bisimulation up-to ∼

Take (C | Πn
1 down. 0, Countern) in R.

Suppose C | Πn
1 down. 0

µ
−→ P .

By inspecting the inference rules for parallel composition: µ can only be
either up or down.

µ = up. the transition from C | Πn
1 down. 0 originates from C, which

performs the transition C
up

−→ C | down. 0, and P = C | Πn+1
1 down. 0.

Process Countern can answer Countern
up

−→ Countern+1. For P = P ′

and Q = Countern+1, this closes the diagram.

page 192



The pair being inspected: (C | Πn
1 down. 0, Countern)

Action: C | Πn
1 down. 0

µ
−→ P

µ = down. It must be n > 0. The action must originate from one of the
down. 0 components of Πn

1 down. 0, which has made the transition

down. 0
down
−→ 0.

Therefore P = C | Πn
1 Pi, where exactly one Pi is 0 and all the others

are down. 0.
we have: P ∼ C | Πn−1

1 down. 0.
Process Countern can answer with the transition
Countern

down
−→ Countern−1.

This closes the diagram, for P ′ def
= C | Πn−1

1 down. 0 and
Q

def
= Countern−1, as P ′ R Q.

The case when Countern moves first and C | Πn
1 down. 0 has to answer is

similar.

page 193



Example algebraic characterisation: the axiom system SB

Summation S1 P + 0 = P

S2 P + Q = Q + P

S3 P + (Q + R) = (P + Q) + R

S4 P + P = P

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Restriction R1 (νa) 0 = 0

R2 if µ ∈ {a, a} (νa) µ.P = 0

R3 if µ 6∈ {a, a} (νa) µ.P = µ. (νa) P

R4 (νa) (P + Q) = (νa) P + (νa) Q

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Expansion E <laws for parallel composition>

Theorem For P,Q finite CCS processes, P ∼ Q iff SB ⊢ P = Q.

page 194



Some key features of CCS (... and its family)

1. Minimality (set of operators, taxonomy)

2. Specificity of each operator

3. The algebra of the operators

4. Practical interest

A good example for 1-2: in CCS there is no construct P ;Q for sequential
composition of processes

Sequential composition is a special special form of interaction, which can
be modeled using the basic mechanisms of interaction in the calculus.

For instance, take P
def
= a. b + c, and suppose d does not appear in P and

Q. Then

P ;Q
def
= (νd) ((a. b. d + c. d) | d.Q).

page 195



A lot has been learnt with CCS (and similar calculi such as CSP),
especially in the 80s:

behavioural equivalences

algebras for concurrency

logics for expressising behavioural properties

techniques and algorithms for reasoning

tools to assist mechanically in the specification and verification

design of concurrent languages

page 196



Weak bisimulation

page 197



Consider the processes

τ . a. 0 and a. 0

They are not strongly bisimilar.

But we do want to regard them as behaviourally equivalent! τ -transitions
represent internal activities of processes, which are not visible.

(Analogy in functional languages: (λx.x)3 and 3 are semantically the
same.)

Internal work (τ -transitions) should be ignored in the bisimulation game.
Define:

(i) =⇒ as the reflexive and transitive closure of
τ

−→.

(ii)
µ

=⇒ as =⇒
µ

−→=⇒ (relational composition).

(iii)
µ̂

=⇒ is =⇒ if µ = τ ; it is
µ

=⇒ otherwise.

page 198



Definition A process relation R is a weak bisimulation if P R Q implies:

1. if P
µ

=⇒ P ′, then there is Q′ s.t. Q
µ̂

=⇒ Q′ and P ′ R Q′;

2. the converse of (1) on the actions from Q.

Definition P and Q are weakly bisimilar , written P ≈ Q, if P R Q for
some weak bisimulation R.

Why did we study strong bisimulation?

– ∼ is simpler to work with, and ∼⊆≈; (cf: exp. law)

– the theory of ≈ is in many aspects similar to that of ∼;

– the differences between ∼ and ≈ correspond to subtle points in the
theory of ≈

Are the processes τ . 0 + τ . a. 0 and a. 0 weakly bisimilar ?
page 199



Examples of non-equivalence:

a + b 6≈ a + τ . b 6≈ τ . a + τ . b 6≈ a + b

Examples of equivalence:

τ . a ≈ a ≈ a + τ . a

a. (b + τ . c) ≈ a. (b + τ . c) + a. c

These are instances of useful algebraic laws, called the τ laws :

Lemma
1. P ≈ τ .P

2. τ .N + N ≈ N

3. M + α. (N + τ .P ) ≈ M + α. (N + τ .P ) + α.P

page 200



In the clauses of weak bisimulation, the use of
µ

=⇒ on the challenger side
can be heavy.

For instance, take K ⊜ τ . (a | K); for all n, we have K =⇒ (a |)n | K,
and all these transitions have to be taken into account in the bisimulation
game.

The following definition is much simpler to use:

Definition A process relation R is a weak bisimulation if P R Q implies:

1. if P
µ

−→ P ′, then there is Q′ s.t. Q
µ̂

=⇒ Q′ and P ′ R Q′;

2. the converse of (1) on the actions from Q

Proposition The two definitions of weak bisimulation coincide.

Proof: a useful exercise.
page 201



Exercises

Exercise Prove these equivalences (all cases can be done purely
algebraically or using the bisimulation technique):

(τ .P ) | Q ≈ τ . (P | Q) for all P,Q

(νa) (τ . b | c) ≈ b | c

(νa) (b. a | a. c) ≈ b. c

Exercise Explain why τ . (τ . a + b) + τ . b 6≈ τ . a + τ . b

Exercise Is it true that K ≈ a, where K ⊜ τ .K + a?

Exercise Let K1 ⊜ a. (b.K1 | c), K′
1 ⊜ a. (b. c.K′

1 + c. b.K′
1),

K2 ⊜ a.K2, H1 ⊜ a. b.H1, H2 ⊜ a. c.H2, H ⊜ a. b.H + b. a.H.
Explain why (νa) (K1 | K2) 6≈ (νa) (H1 | H2). Prove that
(νa) (K′

1 | K2) ≈ H ≈ (νa) (H1 | H2). (Hint: for ≈, you may find
Exercises ?? useful; then either use algebraic laws and unique solutions of
equations (page ?? ), or define an appropriate weak bisimulation.)

page 202



Weak bisimulations “up-to”

Definition [weak bisimulation up-to ∼] A process relation R is a weak
bisimulation up-to ∼ if P R Q implies:

1. if P
µ

−→ P ′, then there is Q′ s.t. Q
µ̂

=⇒ Q′ and P ′ ∼R∼ Q′;

2. the converse of (1) on the actions from Q.

Exercize If R is a weak bisimulation up-to ∼ then R ⊆≈.

Definition [weak bisimulation up-to ≈] A process relation R is a weak
bisimulation up-to ≈ if P R Q implies:

1. if P
µ

=⇒ P ′, then there is Q′ s.t. Q
µ̂

=⇒ Q′ and P ′ ≈R≈ Q′;

2. the converse of (1) on the actions from Q.

Exercize If R is a weak bisimulation up-to ≈ then R ⊆≈.

page 203



Enhancements of the bisimulation proof method

– The forms of “up-to” techniques we have seen are examples of
enhancements of the bisimulation proof method

– Such enhancements are extremely useful

∗ They are essential in π-calculus-like languages, higher-order
languages

– Various forms of enhancement (“up-to techniques”) exist (up-to
context, up-to substitution, etc.)

– They are subtle , and not well-understood yet

page 204



Example: up-to bisimilarity that fails

In Definition of “weak bisimulation up-to ∼” we cannot replace ∼ with ≈ :

τ . a. 0 R 0

a. 0 0

≈ ≈

τ . a. 0 R 0

page 205



Exercises

Exercise Let K1 ⊜ f . a. d.K1, K2 ⊜ d. b. e.K2, K3 ⊜ f . e. c.K3,
H ⊜ a. b. c.H. Prove that ((νd, e, f) )(K1 | K2 | K3) ≈ H.

Exercise Let H1 ⊜ a. c1. e1. d, H2 ⊜ b. c2,
Sync ⊜ c1. c2. e1. Prove that
((νc1, c2, e1) )(H1 | H2 | Sync) ≈ a. b. d + b. a. d.

Exercise Let H1 ⊜ a. c1. e1.H1, H2 ⊜ b. c2. e2.H2,
Sync ⊜ c1. c2. e1. e2. Sync. Prove that

((νc1, c2, e1, e2) )(H1 | H2 | Sync) ≈ H

for H ⊜ a. b.H + b. a.H.

Note: process Syncis used to synchronise 2 processes. Similarly
synchronisers for n > 2 processes can be defined.

Exercise We proved that strong bisimulation can also be defined on
sequences of actions. Prove something analogous for weak bisimulation.
(The crux is to find the right definition of weak bisimulation on sequences
of actions).

page 206



Other equivalences

page 207



Concurrency theory: models of processes

LTS

Petri Nets

Mazurkiewikz traces

Event structures

I/O automata

page 208



Process calculi

CCS [→ π-calculus → Join ]

CSP

ACP

Additional features: real-time, probability,...

page 209



Behavioural equivalences (and preorders)

traces

bisimilarity (in various forms)

failures and testing

non-interleaving equivalences (in which parallelism cannot be reduced
to non-determinism, cf. the expansion law)
[causality, location-based]

Depending on the desired level of abstraction or on the tools available, an
equivalence may be better than an other.

van Glabbeek, in ’93, listed more than 50 forms of behavioural
equivalence, today the listing would be even longer

Rob J. van Glabbeek: The Linear Time - Branching Time Spectrum II,
LNCS 715, 1993

page 210



Failure equivalence

In CSP equivalence, it is intended that the observations are those obtained
from all possible finite experiments with the process

A failure is a pair (µ+, A), where µ+ is a trace and A a set of actions. The
failure (µ+, A) belongs to process P if

– P
µ+

−→ P ′, for some P ′

– not P ′ τ
−→

– not P ′ a
−→, for all a ∈ A

Example: P
def
= a. (b. c. 0 + b. d. 0) has the following failures:

– (ǫ, A) for all A with a 6∈ A.

– (a,A) for all A with b 6∈ A.

– (ab,A) for all A with {c, d} 6⊆ A.

– (abc,A) and (abd,A), for all A

Two processes are failure-equivalent if they possess the same failures
page 211



Advantages of failure equivalence:

– the coarsest equivalence sensitive to deadlock

– characterisation as testing equivalence

Advantages of bisimilarity:

– the coinductive technique

– the finest reasonable behavioural equivalence for processes

– robust mathematical characterisations

Failure is not preserved, for instance, by certain forms of priority

page 212



These processes are failure equivalent but not bisimilar

•
c

•

•
a

•

b

b
•

d
•

•
b

•
c

•

•

a

a
•

b

•
d

•

A law valid for failure but not for bisimilarity:

a. (b.P + b.Q) = a. b.P + a. b.Q

page 213



Ready equivalence

A similar, but slightly finer, equivalence: ready equivalence.

A pair (µ+, A) is a ready pair of P if P
µ+

−→ P ′ and A is the set of action
that P ′ can immediately perform.

These processes are failure, but not ready, equivalent:

a. b + a. c a. b + a. c + a. (b + c)

page 214



Testing

page 215



The testing theme

Processes should be equivalent unless

there is some test that can tell them apart

– We first show how to capture bisimilarity this way

– Then we will notice that there are other reasonable ways of defining the
language of tests, and these may lead to different semantic notions.

– In this section: processes are (image-finte) LTSs (ie, finitely-branching
labelled trees), with labels from a given alphabet of actions Act

page 216



Bisimulation in a testing scenario

Language for testing:

T ::= SUCC | FAIL | a. T | ã. T | T1 ∧ T2 | T1 ∨ T2 | ∀T | ∃T

(a ∈ Act )

The outcomes of an experiment , testing a process P with a test T :

O(T, P ) ⊆ {⊤,⊥}

⊤ :success

⊥ : lack of success (failure, or success is never reached)

Notation:

P ref(a)
def
= P cannot perform a (ie, there is no P ′ st P

a
−→ P ′)

page 217



Outcomes

O(SUCC, P ) = ⊤

O(FAIL, P ) = ⊥

O(a. T, P ) =

{
{⊥} if P ref(a)⋃

{O(T, P ′) | P
a

−→ P ′} otherwise

O(ã. T, P ) =

{
{⊤} if P ref(a)⋃

{O(T, P ′) | P
a

−→ P ′} otherwise

O(T1 ∧ T2, P ) = O(T1, P ) ∧⋆ O(T1, P )

O(T1 ∨ T2, P ) = O(T1, P ) ∨⋆ O(T1, P )

O(∀T, P ) =

{
{⊤} if ⊥ 6∈ O(T, P )

{⊥} otherwise

O(∃T, P ) =

{
{⊤} if ⊤ ∈ O(T, P )

{⊥} otherwise

where ∧⋆ and ∨⋆ are the pointwise extensions of ∧ and ∨ to powersets
page 218



Examples (a)

•

a

•
b c

• •

•
a a

•

b

•

c

• •

P1 P2

For T1 = a. (b. SUCC ∧ c. SUCC), we have O(T1, P1) = {⊤} and
O(T1, P2) = {⊥}

page 219



Examples (b)

•
a a

•

b

•

•

•

a

•

b
•

P3 P4

For T3 = a. b. SUCC, we have O(T3, P3) = {⊥,⊤} and
O(T3, P4) = {⊤}

For T4 = a. b̃.FAIL, we have O(T4, P3) = {⊥,⊤} and O(T4, P4) = {⊥}

page 220



Examples (c)

•
a a

•

b

•

b
•

c

•

d
• •

•

a

•
b b

•

c

•

d
• •

P5 P6

For T = ∃a. ∀b. c. SUCC, we have O(T, P5) = {⊤} and
O(T, P6) = {⊥}

Exercise: define other tests that distinguish between P5 and P6.

page 221



Examples (d)

•
a a

•
b a

•
a a

• • •

a

•

•

•
a a

•
b a

•
a

• • •

a

•

P7 P8

Exercise: Define tests that distinguish between P7 and P8.

page 222



Note: Every test has an inverse:

SUCC = FAIL

FAIL = SUCC

a. T = ã. T

ã. T = a. T

T1 ∧ T2 = T1 ∨ T2

T1 ∨ T2 = T1 ∧ T2

∀T = ∃T

∃T = ∀T

We have:

1. ⊥ ∈ O(T, P ) iff ⊤ ∈ O(T , P )

2. ⊤ ∈ O(T, P ) iff ⊥ ∈ O(T , P )

page 223



The equivalence induced by these tests:

P ∼T Q
def
= for all T , O(T, P ) = O(T,Q).

Theorem ∼ = ∼T

– The proof is along the lines of the proof of characterisation of
bisimulation in terms of modal logics (Hennessy-Milner’s logics and
theorem)

– A similar theorem holds for weak bisimilarity (with internal actions, the
definition of the tests may need to be refined)

page 224



Testing equivalence

– The previous testing scenario requires considerable control over the
processes (eg: the ability to copy their state at any moment)
One may argue that this is too strong

– An alternative: the tester is a process of the same language as the
tested process (in our case: an LTS)

– Performing a test : the two processes attempt to communicate with each
other.

– Thus most of the constructs in the previous testing language are no
longer appropriate (for instance, because they imply the ability of
copying a process)

– To signal success, the tester process uses a special action w 6∈ Act

page 225



Outcomes of running a test

Experiments:
E ::= 〈T, P 〉 | ⊤

A run for a pair 〈T, P 〉: a (finite or infinite) sequence of esperiments Ei

such that

1. E0 = 〈T, P 〉

2. a transition Ei
a

−→ Ei+1 is defined by the following rules:

T
a

−→ T ′ P
a

−→ P ′

〈T, P 〉 −→ 〈T ′, P ′〉

T
w

−→ T ′

〈T, P 〉 −→ ⊤

3. the last element of the sequence, say Ek, is such that there is no E′

such that Ek −→ E′.

page 226



We now set:

⊤ ∈ O(T, P ) if 〈T, P 〉 has a run in which ⊤ appears (ie, 〈T, P 〉 =⇒ ⊤)

⊥ ∈ O(T, P ) if there is a run for 〈T, P 〉 in which ⊤ never appears

Testing equivalence (≃): the equivalence on processes so obtained

Note: If processes could perform internal actions, then other rules would
be needed:

T
τ

−→ T ′

〈T, P 〉 −→ 〈T ′, P 〉

P
τ

−→ P ′

〈T, P 〉 −→ 〈T, P ′〉

page 227



O(T, P ) is a non-empty subset of the 2-point lattice ⊤

⊥

However, there are 3 ways of lifting such lattice to its non-empty subsets:

℘May ℘Must ℘Testing

{⊤} = {⊤,⊥}

{⊥}

{⊤}

{⊥} = {⊤,⊥}

{⊤}

{⊤,⊥}

{⊥}

℘May : the possibility of success is essential

℘Must : failure is disastrous

The resulting equivalences are ≃May (may testing ) and ≃Must (must
testing )

Note: ≃Testing is ≃
page 228



Results for the test-based relations

Theorem
1. ≃= (≃May ∩ ≃Must)

2. ≃May coincides with trace equivalence

3. ≃ coincides with failure equivalence

page 229



Example

•

a

•

b
•

c d

• •

•

a

•
b b

•

c

•

d
• •

•
a a

•

b

•

b
•

c

•

d
• •

P9 P6 P5

P9 ≃May P5 ≃May P6

P9 6≃Must P5 ≃Must P6

P9 6≃ P5 ≃ P6

P9 6∼ P5 6∼ P6

page 230



•
a

•

τ

•
a

•

Q1 Q2

In CCS: Q1 = τω | a, and Q2 = a. 0

Q1 and Q2 are weakly bisimilar , but not testing equivalent

Justification for testing: bisimulation is insensitive to divergence

Justification for bisimulation: testing is not “fair”

(notions of fair testing have been proposed, and then bisimulation is indeed
strictly included in testing)

page 231



All equivalences discussed in these lectures reduce parallelism to
interleaving, in that

a. 0 | b. 0 is the same as a. b. 0 + b. a. 0

Not discussed in these lectures: equivalences that refuse the above
equality (called true-concurrency, or non-interleaving)

page 232



Bisimulation and Coinduction:

examples of research problems

page 233



– Bisimulation in higher-order languages

– Enhancements of the bisimulation proof method

– Combination of inductive and coinductive proofs (eg, proof that
bisimilarity is a congruence)

– Languages with probabilistic constructs

– Unifying notions

page 234



Bits of history

page 235



3 lines, beginning mid 70s

– Computer Science

– Philosophical logic (modal logic)

– Set theory

Common basis: (weak) homomorphism between algebraic structures

Details:

Davide Sangiorgi, On the origins of bisimulation and coinduction,
ACM Trans. Program. Lang. Syst., 31(4), 2009.

page 236



The origins of bisimulation

and coinduction in Mathematics

page 237



Overview

– Foundations of theories for non-well-founded sets

– problem: what is equality for such sets?
(non-trivial question, as these sets may have an infinite depth)

– bisimulation derived from isomorphism (and homomorphism)
goal: obtaining relations coarser than isomorphism but still relating sets
with “the same” internal structure

– main names: M. Forti, F. Honsell, P. Aczel, J. Barwise

page 238



Non-well-founded sets

The axiom of foundation : the membership relation on sets does not give
rise to infinite descending sequences

. . . An ∈ An−1 ∈ . . . ∈ A1 ∈ A0 .

Non-well-founded sets may violate it

Example (circular set) Ω that satisfies Ω = {Ω}

A set can also be non-well-founded without being circular

page 239



Equality on sets

– Equality on well-founded sets (Zermelo’s extensionality axiom ): two
sets are equal if they have exactly the same elements.

– induction to reason on equality
eg. to prove that the relation of equality is unique.

– On non-well-founded sets inductive arguments may not be applicable
Example: the sets A and B s.t. A = {B} and B = {A}

If we apply the extensionality axiom we end up with a tautology
(“A and B are equal iff A and B are equal”)

page 240



Set Theory, first half 20th century

– The first axiomatisation of set theory by Ernst Zermelo in 1908
- seven axioms, among which extensionality
- no axioms of foundation (the possibility of circular is left open)

– In the same years, Bertrand Russell strongly rejects all definitions that
involve forms of circularity

– Russel’s theory of types (“stratification”) [1903,1908,1913]

- followed by the main logicians of the first half of the 20th century
(Ernst Zermelo, Abraham Fraenkel, Thoralf Skolem, Johann von
Neumann, Kurt Gödel, Paul Bernays)

– fear of paradoxes (eg, Burali-Forti’s, Russell’s)

– common sense and perception

– axiom of foundation deemed necessary for a “canonical” universe

page 241



Appearance of non-well-founded sets

Dimitry Mirimanoff [1917]: distinguish between well-founded and
non-well-founded sets (the ‘ensembles ordinaires et extraordinaires’)

(we will come back to this later)

Paul Finsler [1926]: first attempt to an extensionality more powerful than
Zermelo’s

(NB: use of graph theory)

Finsler and Mirimanoff work: remarkable but completely isolated and
little known, until at least the 1960s (Specker, Scott, Boffa)

page 242



Main developments

Marco Forti and Furio Honsel [1980-83]

– work spurred by Ennio De Giorgi

– a number of anti-foundation axioms,
some already appeared,
a new one, X1, that gives the strongest extensionality properties

Peter Aczel [1980s and later]

– re-discovers Forti and Honsell’s anti-foundation axiom X1, called AFA

– use of graph theory

– a book [1988] that makes bisimulation and non-well-founded sets
popular in Mathematics

– motivations: mathematical foundations of processes, prompted by
Milner’s work on CCS and bisimulation

page 243



Sets via graphs

sets as (pointed) graphs where

– the nodes represent sets,

– the edges represent the converse membership relation
(e.g., x → y if the set y is a member of x)

– the root of the graph indicates the node that represents the set under
consideration.

Examples (roots in orange):

graphs •

• •

•

• •

sets {∅, {∅}} D = {∅, {D}}

The graphs for the well-founded sets: no infinite paths or cycles
page 244



Decorations

A decoration : an assignment of sets to nodes that respects the structure
of the edges

Examples

{∅, {∅}}

∅ {∅}

{∅, {D}}

∅ {D}

[ recall D = {∅, {D}} ]

page 245



The AFA axiom

AFA: every graph has a unique decoration

– existence of the decoration
it tells us that the non-well-founded sets we need do exist.

– uniqueness of the decoration
it tell us what is equality

Example: equality for the sets Ω = {Ω} , A = {B} , B = {A}.

Ω Ω A B

page 246



Bisimulation on sets

Bisimulation comes out when one tries to extract the meaning of equality.

A bisimulation relates sets A and B such that

– for all A1 ∈ A there is B1 ∈ B with A1 and B1 related; and the
converse, for the elements of B1.

Two sets are equal precisely if there is a bisimulation relating them.

The bisimulation proof method can then be used to prove equalities
between sets (eg, the sets A and B in the previous slide).

Exercise AFA postulates that graphs have unique decoration. Show that
the converse is false, i.e., there are (non-well-founded) sets that decorate
different graphs.

page 247



Further developments

Aczel formulates AFA towards end 1983

he does not publish it immediately having then discovered the earlier work
of Forti and Honsell and the equivalence between AFA and X1

he goes on developing the theory of non-well-founded sets, which leads to
his ’88 book

and he develops the coalgebraic approach to semantics (Final Semantics)

with Aczel non-well-founded sets and bisimulation become popular in
Mathematics for two main reasons:

– the elegant theory that he develops

– the concrete motivations for studying non-well-founded sets that he
brings up.

page 248



Jon Barwise

Jon Barwise brings up other applications for non-well-founded sets

the study of paradoxes such as the Liar paradox in Philosophical Logic

more broadly the meaning in natural (i.e., human spoken) languages

Barwise develops a theory of non-well-founded sets based on systems of
equations.

The axiom AFA becomes a requirement that appropriate systems of
equations have a unique solution.

Intuition: Ω can be seen as the solution to the equation x = {x}, so all
non-well-founded sets arise from systems of equations with variables on
the left-hand side, and well-founded sets possibly containing such
variables on the right-hand side.

(In Aczel ’88 this property was expressed as the Solution Lemma; in
Barwise it is the base assumption)

Barwise makes it the base assumption from which all the theory of sets is
derived.

page 249



Historical curiosities

page 250



Other bisimulation-like notions

Earlier, or at the same time as Forti and Honsell, bisimulation-like relations
are used to obtain extensional quotient models:

– Roland Hinnion [80,81]

– Harvey Friedman [73] and Lev Gordeev [82]

– Jon Barwise, Robin O. Gandy, and Yiannis N. Moschovakis [71]
(cf: admissible sets; see also Moschovakis’s book [74])

However these works do not isolate or study the concept of bisimulation
(let alone bisimilarity)

page 251



Mirimanoff’s isomorphism

– Dimitry Mirimanoff [1917] (“ensembles extraordinaires”)
Isomorphism between two non-well-founded sets E and E′:

A perfect correspondence can be established between the elements
of E and E′, in such a way that:

1. all atoms e ∈ E corresponds to an atom e ∈ E′ and conversely;
2. all sets F ∈ E corresponds to a set F ′ ∈ E′ so that the perfect

correspondence can also be established on F and F ′ (ie, all atoms
in F corresponds to an atom in F ′, and so forth)

page 252



For Mirimanoff: isomorphism is not equality
(cf: Zermelo’s extensionality axiom)
Hence isomorphism remains different from bisimilarity

Example:

A = {B} and B = {A} isomorphic, not equal
{A,B} not isomorphic to {A} or {B}

Had one investigated the impact of isomorphism on extension ality,
bisimulation and bisimilarity would have been discovered

Surprisingly, We have to wait 65 years for that

page 253



Why bisimulation discovered so late?

(in Math and elsewhere)

– Dangers of circularity and paradoxes (like Burali-Forti’s and Russel’s)

– Russel’s stratified approach

– Common sense

– Lack of concrete motivations
(eg: Aczel’s work triggered by Milner’s on processes)

NB: Russel’s stratified approach has of course inspired type theories,
including type theory in Computer Science, (Church, Scott, and Martin-Löf)

first disputed by Jean-Yves Girard and John Reynolds, in the 1970s, with
impredicative polymorphism

page 254



Sets, functions, and the λ-calculus

– in the early 1900s a lot of of work in logic devoted to the building of
systems meant to be the foundations for the whole of Mathematics

– some based on concepts of sets, others on concepts of functions

– on the line on functions, a very significant outcome for Computer
Science (and logics) is the λ-calculus by Alonzo Church [1930s]
(also Combinatory Logics, Ilyich Schonfinkel [1920s])

– Church’s goal: a foundation for logic which would be more natural than
Russell’s type theory or Zermelo’s set theory, and based on functions

– at the end mathematicians preferred (axiomatic) set theory.

– Church retreated to the less ambitious goal of re-formulating simple type
theory on a λ-calculus base

page 255



– Church used the λ-calculus to provide the first solution to Hilbert’s
Entscheidungsproblem
(’is there a decision method to solve all problems in first order logic?’)

∗ independently and shortly afterwards, same result by Alan Turing,
who invented Turing machines for this

∗ Church and Turing needed a formalism to reason on the intuitive
notion of ’decidable’ (ie., ’computable’)

– λ-calculus was re-discovered for Computer Science by people like
McCarthy, Strachey, Landin, and Scott in the 1960s.

∗ imperative programming languages follow the λ-calculus paradigm
∗ imperative programming languages follow the Turing machines

paradigm

page 256


