

Algorithms and Data Structures
2015-2016

Claudio Sacerdoti Coen
--

Graph Algorithms

DAGs as Dependency Graphs

1)Tasks to be completed can be arranged into DAGs
(Direct Acyclic Graphs)

1) vertices are tasks
2) an edge (v,w) means that v must be completed before w
 (or is required by w or ...)

1)Question : can we use a general directed graph instead?

Exercise : draw the graph to cook your favourite meal

Topological Sorting

1)Given a DAG (V,E), (v1, …, vn) is a topological sorting of the
nodes in V iff

1) {v1, …, vn} = V
2)2) for each i < j, there is no path from vj to vi

1)Tasks can be executed in topological order without violating the
dependency graph.

Question : can a DAG be topologically sorted in two different ways?

Topological Sorting

1){ A, B, C, D }, { B, A, D, C }, { A, D, B, C } are all valid topological
orders

2)
3)Question: are there more?

A B

C D

Topological Sorting

1)Topological sorting algorith – ideas :
2)
3)1. nodes are added one by one in front of the result list
4)2. a node is to be added only after adding all nodes

 that are reachable from it
5)
6)Question: how to know what nodes are reachable from

a given one?

A B

C D

Topological Sorting

1)TopoSort(G) =
1)L = empty_list()

for u in vertices(G)
1)modified_dfs(G,u,L)

2)return L

3)modified_dfs(G,u,L) =
1)mark(u)
2)for v in AdjSet(G,u)

1)If not marked(v)
modified_dfs(G,v,L)

2)add(L,v) // v is added to L after all nodes
 // reachable from v

Topological Sorting

1)Exercise : run the previous algorithm on the graph of
2)Slide 5 multiple times, changing only the order in which
3)vertices(G) returns the node.
4)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

