
Algorithms and Data Structures, Academic Year 2016/2017
International Bologna Master in Bioinformatics

June 27, 2017

Please complete the following exercises by applying the concepts that have been illustrated to you
during the classes. The score associated with each exercise and the expected time for completion is
reported in the first line. It is possible to keep paper version of notes, but no electronic device is
allowed.

Exercise 0 (2 points): write your name and surname in the first row of all the sheets you use.

Name:_________________________________ Surname:______________________________

Exercise 1 (35 points, 60 minutes): Given a sequence S of n integers, stored into an array, one wants
to find the length of the Longest Increasing Subsequence (LIS) of S (e.g. if S = 9, 15, 3, 6, 4, 2, 5, 10,
3, then the solution is 4, because the LIS is 3, 4, 5, 10). Solve the problem by a dynamic programming
algorithm, defining first the recurrence relation giving the optimal sub-structure property, and then
writing its pseudo-code and analyzing its complexity. (Suggestion: define D[i] as the length of the LIS
ending with element S[i] and P[i] as the position of the element preceding S[i] in such an LIS). Finally,
run (by hand) the algorithm on the sequence given above as an example.

(use additional sheets for this exercise, including the back of this sheet)

Name:_________________________________ Surname:______________________________

Exercise 2 (18 points, 20 minutes): given the following sequences of visited nodes of a generic
binary tree whose nodes are all distinct, write the tree itself in the space below. An “x” is a
placeholder for an unknown number. Note: the solution is not unique.

pre-order visit:

x 30 6 7 32 x x 10 3

in-order visit:

x x x 13 x 16 21 3 10

post-order visit:

7 6 30 x 15 x x x 13

Name:_________________________________ Surname:______________________________

Exercise 4 (25 points, 15 minutes): Consider the following function and assume that it is always
called with a being an array of integers, 0 <= l <= u, and u <= size(a) + 1. Also assume k to be a
positive integer.
Compute the time and space complexity of f as a function of k. Then determine the mathematical
expression implemented.

Hint: to understand what the function does, imagine to call it initially with l = 0 and u = size(a) + 1.
Hint: observe that for certain values of u,l,k, not all elements of the array a are accessed.

function f(int a[], int l, int u)
begin

int res := 1
int step := (u – l) / k // this is integer division, rounded below; e.g. 11 / 3 = 3
if u - l < k then

for j := l to u – 1 do
res := res * a[j]

end
else

for j := 0 to k - 1 do
res := res * f(a, l + step * j, l + step * (j+1))

end
return res

end

Name:_________________________________ Surname:______________________________

Exercise 5 (20 points, 25 minutes): Consider the string “m a m m a”. Write (by hand) its
corresponding:

 Suffix trie;
 Suffix tree;
 Suffix array;
 Burrows-Wheeler transform;
 LF mapping.

