Balanced Search Tree

Luciano Bononi

Dip. di Scienze dell'Informazione
Università di Bologna
bononi@cs.unibo.it

Original work Copyright © 2009, 2010, Moreno Marzolla, Università di Bologna (http://www.moreno.marzolla.name/teaching/ASD2010/)
Modifications Copyright © 2012, Luciano Bononi, Università di Bologna (http://www.cs.unibo.it/~bononi/)

This work is licensed under the Creative Commons Attribution-NonCommercialShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Introduction

- We have seen that in BST we can search, delet and insert nodes with given key k in $\mathrm{O}(\mathrm{h})$ where $\mathrm{h}=$ heigth of the tree
- A complete binary tree with n nodes has heigth $h=\Theta(\log n)$
- However, insertion and deletion of nodes could unbalance the tree
- question: identify a sequence of n insertions in a BST (initially empty) such that the resulting BST has heigth $\Theta(n)$
- Our aim: keep balanced a BST despite insertions and deletions

AVL tree

- an AVL tree is a search tree (almost) balanced
- AVL tree with n nodes supports insert(), delete(), lookup() operations with cost $O(\log n)$ in the worst case
- Adelson-Velskii, G.; E. M. Landis (1962). "An algorithm for the organization of information". Proceedings of the USSR Academy of Sciences 146: 263-266

Georgy Maximovich Adelson-Velsky (1922—)
http://chessprogramming.wikispaces.com/Georgy+Adelson-Velsky

e Strutture Dati Evgenii Mikhailovich Landis (1921- ${ }^{4} 997$) http://en.wikipedia.org/wiki/Yevgeniy_Landis

definitions

- Balancing factor
- The balancing factor $\beta(v)$ of node v is the difference of heigth of left and right subtrees of v (in order):

$$
\beta(v)=\text { heigth }(\operatorname{left}(v))-\text { heigth }(\text { right }(v))
$$

- Heigth balancing
- A tree is said to be balanced in heigth if the heigth of subtrees left and right of each node v is at most 1
- In other words a tree is balanced in heigth is for any node v, $|\beta(\mathrm{v})| \leq 1$
- Definition: an AVL tree is a BST balanced in heigth.

Example

Algoritmi e Strutture Dati

Heigth of an AVL tree

- To evaluate the heigth of AVL trees, we start considering the most "unbalanced" trees we can realize.
- Fibonacci trees

Algoritmi e Strutture Dati

Heigth of a Fibonacci tree

- Given a Fibonacci tree of heigth h, let n_{h} be the number of nodes.
- We get (by construction) that

$$
n_{h}=n_{h-1}+n_{h-2}+1
$$

- We proof that

$$
n_{h}=F_{h+3}-1
$$

where F_{n} is the n-th Fibonacci number.

Heigth of a Fibonacci tree

$$
n_{h}=F_{h+3}-1
$$

- Base step: $\mathrm{h}=0$

$$
\begin{aligned}
& -\mathrm{n}_{0}=1 \\
& -\mathrm{F}_{3}=2
\end{aligned}
$$

- Inductive step

$$
\begin{aligned}
n_{h} & =n_{h-1}+n_{h-2}+1 \\
& =\left(F_{h+2}-1\right)+\left(F_{h+1}-1\right)+1 \\
& =F_{h+2}+F_{h+1}-1 \\
& =F_{h+3}-1
\end{aligned}
$$

Heigth of a Fibonacci tree

- hence: a Fibonacci tree with heigth h has $F_{h+3}-1$ nodes
- We note that

$$
F_{h}=\Theta\left(\phi^{h}\right), \phi \approx 1.618
$$

hence

$$
n_{h}=F_{h+3}-1=\Theta\left(\phi^{h}\right)
$$

and we conclude that

$$
h=\Theta\left(\log n_{h}\right)
$$

Conclusion

- Given that...
- A Fibonacci tree with n nodes is the AVL tree with maximum heigth (and n nodes)
- Heigth of a Fibonacci tree with n nodes is proportional to (log n)
- ...we conclude:
- The heigth of a AVL tree with n nodes is $O(\log n)$

How to keep the AVL balanced?

- The search() operation in a AVL tree is made as in a generic BST (no modifications)
- Unfortunately, Insert() and delete() require to be modified to maintain the balancing of the AVL tree
- Example

Rotation operation

- A new fundamental operation to be implemented for balancing the AVL tree is the simple rotation
- question: proof that the simple rotation preserves the order relationship of a BST

Rotations

- Let's assume that after a insert() or delete() the AVL tree is unbalanced.
- We have 4 cases (symmetry between 1-2 and 3-4)

Rebalancing: rotation SS

- A clockwise simple rotation of u on v
- Has cost O(1)

Rebalancing: rotation SD (does not work!)

Still not balanced!

Rebalancing: rotation SD first step

Algoritmi e Strutture Dati

Rebalancing: rotation SD second step

Rebalancing: rotation SD

 case 1

Double rotation: first one to the left on z as pivot, and second one to the right with v as pivot

Rebalancing: rotation SD

 case 2

AVL tree: Insertion

- Insert a new value like in traditional BSTs
- Recalculate all the balancing factors changed:
- At most, the recalculation is done for nodes on the path from the leaf inserted up to the root, hence cost is $\mathrm{O}(\log n)$
- If at least a node has balancing factor ± 2 (critical node), we need to rebalance the tree by using the rotations
- Note: in caso of insertion, there is only one critical node.
- Overall cost: O($\log n$)

AVL tree: deletion

- Remove a node like in traditional BSTs
- Recalculate all the balancing factors changed:
- At most, the recalculation is done for nodes on the path from the leaf deleted up to the root, hence cost is $\mathrm{O}(\log n)$
- For each node with balancing factor ± 2 (critical node), we need to rebalance the tree by using the rotations
- Note: in case of deletion, more than one nodes could result with a balancing index ± 2
- Overall cose: O($\log \mathrm{n})$

Example: deletion with cascade rotations

Algoritmi e Strutture Dati

Apply left rotation on 3

Algoritmi e Strutture Dati

Apply left rotation on 8

Algoritmi e Strutture Dati

New balanced AVL

Algoritmi e Strutture Dati

AVL trees: summary

- search(Key k)
- O($\log n)$ in the worst case
- insert(Key k, Item t)
- $\mathrm{O}(\log \mathrm{n})$ in the worst case
- delete(Key k)
- O($\log n$) in the worst case

2-3 trees

- Definition: a 2-3 tree is a tree where:
- Every internal node has 2 or 3 children and all the paths root/leaf have the same length
- The leaves contain the keys and associated values, and they are sorted from left to rigth in ascending order of key
- Every internal node v mantains two information:
- $S[\mathrm{v}]$ is the max key in the subtree whose root is the left child
- $\mathrm{M}[\mathrm{v}]$ is the max key in the subtree whose root is the central child (if v has only 2 children, it will contain S[v] only)

Example

Heigth of 2-3 trees

- let T be a 2-3 tree with n nodes, f leaves and heigth h. Then the following inequalities hold:

$$
\begin{gathered}
2^{h+1}-1 \leq n \leq\left(3^{h+1}-1\right) / 2 \\
2^{h} \leq f \leq 3^{h}
\end{gathered}
$$

- In particular, we can conclude that the heigth of a 2-3 tree is $\Theta(\log n)$

Heigth of 2-3 trees proof

- By induction on h : if $\mathrm{h}=0$, the tree has only one node (leaf) and the relations are satisfied.
- if $\mathrm{h}>0$, let's consider the 2-3 tree T ' without the lower level (leaves). Let n ' and f^{\prime} be the number of nodes and leaves in T^{\prime}
- Inductive assumption $2^{h-1} \leq f^{\prime} \leq 3^{h-1}$
- Every leaf in T' can have 2 or 3 children, so we obtain

$$
\begin{aligned}
2 \times 2^{h-1} & \leq f \leq 3 \times 3^{h-1} \\
2^{h} & \leq f \leq 3^{h}
\end{aligned}
$$

Heigth of 2-3 trees proof

- for the number of nodes, the inductive assumption is

$$
2^{h}-1 \leq n^{\prime} \leq\left(3^{h}-1\right) / 2
$$

- We observe that $\mathrm{n}=\mathrm{n}$ ' +f , hence

$$
\begin{gathered}
2^{h}-1 \leq n^{\prime} \leq\left(3^{h}-1\right) / 2 \\
2^{h} \leq f \leq 3^{h}
\end{gathered}
$$

and we obtain

$$
\begin{aligned}
2^{h}+2^{h}-1 & \leq n \leq\left(3^{h}-1\right) / 2+3^{h} \\
2^{h+1}-1 & \leq n \leq\left(3^{h+1}-1\right) / 2
\end{aligned}
$$

search

```
Algorithm 23search( T, k )
    if ( T == null ) then
        return null;
    endif
    node v := T.root;
    if ( v is a leaf ) then
        if ( key of v == k ) then
            return v;
        else
            return null;
        endif
    else // v is not a leaf
        if ( k s S[v] ) then
            return 23search( v.left, k );
        elseif ( v.right != null && k > M[v] ) then
            return 23search( v.right, k );
        else
            return 23search( v.mid, k );
        endif
    endif
```


Insertion

- Create a leaf v with key k
- By using the search operation, we find a node u in the penultimate level, who will become the father of v
- We add v as a child of u, if possible
- if u already has 3 children, we need to make an operation of splitting (split), which could also propagate back up to the root.

Example

Example

Example

Example

Algoritmi e Strutture Dati

Insertion: cost

- $O(\log n)$ to identify the father of the new node
- $O(\log n)$ split in the worst case, each one with cost O(1)
- Overall, the cost of the insertion is $O(\log n)$

Deletion

- We find a leaf v with the key to delete
- We remove v, detaching the node from the father u
- If u had 2 children, it remains with only 1 child (violating the property of 2-3 trees). So we need to merge the node U with a neighbor.
- The merging operation could propagate up to the root.

Example

Algoritmi e Strutture Dati

Example

Example

Algoritmi e Strutture Dati

Example

Algoritmi e Strutture Dati

Example

Algoritmi e Strutture Dati

2-3 trees: summary

- search(Key k)
- O($\log n)$ in the worst case
- insert(Key k, Item t)
- $\mathrm{O}(\log \mathrm{n})$ in the worst case
- delete(Key k)
- $\mathrm{O}(\log n)$ in the worst case

B-Tree

- Data structure used in applications needing to manage sets of ordered keys
- a variation ($\mathrm{B}+$-Tree) is used in:

- Filesystem: btrfs, NTFS, ReiserFS, NSS, XFS, JFS to index metadata
- Relational Database: IBM DB2, Informix, Microsoft SQL Server, Oracle 8, Sybase ASI, PostgreSQL, Firebird, MySQL to index tables

B-Tree

- Since every node can have a high number of children, B-trees can efficiently index big amounts of data on external memory (discs), reducing I/O operations.

1 node
1000 keys

1001 nodes
1.001.000 keys
1.002.001 nodes
1.002.001.000 keys

B-Tree

- a B-Tree with grade $t(\geq 2)$ has the following properties:
- All the leaves have the same depth
- Every node v different than the root maintains $k(v)$ ordered keys:

$$
\operatorname{key}_{1}(\mathrm{v}) \leq \operatorname{key}_{2}(\mathrm{v}) \leq \ldots \leq \operatorname{key}_{\mathrm{k}(\mathrm{v})}(\mathrm{v})
$$

such that $\mathrm{t}-1 \leq \mathrm{k}(\mathrm{v}) \leq 2 \mathrm{t}-1$

- The root has at least 1 and at most $2 \mathrm{t}-1$ ordered keys
- Every internal node v has $k(v)+1$ children
- The keys key(v) split the intervals of keys stored in every subtree. If c_{i} is a key of the i-th subtree of a node v, then $c_{1} \leq \operatorname{key}_{1}(v) \leq c_{2} \leq \operatorname{key}_{2}(v) \leq \ldots \leq c_{k(v)} \leq \operatorname{key}_{k(v)}(v) \leq c_{k(v)+1}$

Example: B-Tree with $\mathrm{t}=2$

Heigth of a B-Tree

- a B-Tree with n keys has heigth
- proof

$$
h \leq \log _{t} \frac{n+1}{2}
$$

- Given all B-trees of grade t, the higest one is the one with the lower number of children per node (that is, with t children)
- 1 node has depth zero (the root)
- 2 nodes have depth 1
- 2 t nodes have depth 2
- $2 t^{2}$ nodes have depth 3
- $2 \mathrm{t}^{\mathrm{i}-1}$ nodes have depthhydritmi e Struture Dati

Heigth of a B-Tree

- Total number of nodes in a B-Tree with heigth h

$$
1+\sum_{i=1}^{h} 2 \mathrm{t}^{i-1}
$$

- Since every node but the root contains exactly t-1 keys, the number of keys n satisfies:

$$
\begin{aligned}
& n \geq 1+(t-1) \sum_{i=1}^{h} 2 \mathrm{t}^{i-1} \\
= & 1+2(t-1) \frac{t^{h}-1}{t-1} t^{h-1}=2 \mathrm{t}^{h}-1
\end{aligned}
$$

Heigth of a B-tree

- given $n \geq 2 \mathrm{t}^{h}-1$
we get $t^{h} \leq \frac{n+1}{2}$
and applying the log base t we get:

$$
h \leq \log _{t} \frac{n+1}{2}
$$

Search operation on B-tree

- Is a generalization of the search on BST
- In each step we search the key in the current node
- If the key is found we stop
- If the key is not found we search it in the subtree who may contain it

```
algorithm search(root v of a B-Tree, key x) -> elem
    i}\leftarrow
    while (i\leqk(v) && x>key (v)) do
        i }\leftarrow i+1
    endwhile
    if (i\leqk(v) && x== key (v)) then
        return elem
    else
        if (v is a leaf) then
            return null
        else
            return search(i-th child of v, x);
        endif
    endif
```


Search opepration on B-tree

- Computational cost
- Number of visited nodes is $\mathrm{O}\left(\log _{t} n\right.$)
- Every visit costs $O(t)$ doing a linear scan of the keys.
- Total O(t $\log _{t} n$)
- However, since the keys are sorted in each node, we can exploit a binary search in time $O(\log t)$ instead of $O(t)$. In this case, the total cost becomes $O\left(\log t \log _{t} n\right)=O(\log n)$ (using the rule for changing the base of log)

Insert a key in a B-tree

- We search() the leaf f in which to insert key k
- If the leaf is not full (it has less than $2 \mathrm{t}-1$ keys) we insert k in the correct position and we stop.
- If the leaf is full (has 2t-1 keys) then
- Node fis split into two (split operation) and the t-th key is moved in the father of f
- If the father of falready had 2t-1 keys (full) we need to split it in the same way, (this may continue up to the root).
- In the worst case (when all the path from the leaf f to the root is made of full nodes) the consecutive splits will create a new root.

Insert a key in a B-tree

Split operation

- Computational cost
- Visited nodes are $O\left(\log _{t} n\right)$
- Each visit costs $O(t)$ in the worst case (due to split operations)
- Total $O\left(t \log _{t} n\right)$

Insert a key in a B-tree

- Example ($\mathrm{t}=2$)

Algoritmi e Strutture Dati

Insert a key in a B-tree

- Insert 56

Algoritmi e Strutture Dati

Insert a key in a B-tree

Algoritmi e Strutture Dati

Insert a key in a B-tree

Algoritmi e Strutture Dati

Insert a key in a B-tree

Algoritmi e Strutture Dati

Delete a key from a B-tree

- If the key k to delete is in a node v which is not a leaf
- We find the node containing the predecessor value of k
- We move the max key in win the place of the deleted key k
- We exploit the next case by removing the max key in w
- If the key k to delete is in a leaf v
- If the leaf has more than t-1 keys, just remove k and stop
- If the leaf contains k-1 keys, by removing k we go below the minimum threshold. So we have to cases based on adjacent brothers:
- If at least uno of the brothers has >t-1 keys we redistribute the keys
- If none of the adjacent brothers has >t-1 keys we make a fusion operation.

B-Tree operations: deletion from internal node

B-tree operations deletion from a leaf

- First case: leaf contains > t-1 keys
- We remove the key from the leaf (now leaf contains $\geq t-1$ keys)
- Second case: the leaf contains exactly t-1 keys. We have two possibilities:
- Redistribute keys with one adjacent brother
- Merge the leaf with an adjacent brother

B-tree operations delete from almost empyt leaf-case 1

- Given a B-tree fragment with $\mathrm{t}=4$

B-tree operations delete from almost empyt leaf-case 2

- Given a B-tree fragment with $t=4$ (fusion)

summary

	search	insert	delete
Sorted array	$O(\log n)$	$O(n)$	$O(n)$
Unsorted list	$O(n)$	$O(1)$	$O(n)$
BST	$O(h)$	$O(h)$	$O(h)$
AVL tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
$2-3$ tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
B-Tree	$O\left(\log t \log _{t} n\right)=$	$O\left(t \log _{t} n\right)$	$O\left(t \log _{t} n\right)$
	$O(\log n)$		

Note all the costs refer to worst cases.

