
1

Luciano Bononi

International Bologna Master in
Bioinformatics

University of Bologna

27/05/2011, Bologna

Algorithms and Data Structures 2010 - 2011

Lesson 8: greedy technique

2Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Outline of the lesson

� Greedy technique:

� definition

� knapsack problem: continue and discrete cases

� Sorting algorithms:

� counting sort

� radix sort

� Exercise:

� efficiently sorting strings with duplicates

� Huffman codes

2

3Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Greedy technique

� The greedy technique is a another strategy for designing

algorithms, such as the “divide-et-impera” technique seen in

the previous lesson

� A greedy algorithm always makes the choice that looks best

at the moment

� The hope: a locally optimal choice will lead to a globally

optimal solution

� For some problems, it works

� Dynamic programming can be overkill; greedy algorithms tend

to be easier to code

4Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Greedy technique

� Basic steps:

� define the problem and corresponding greedy strategy

� show that greedy approach leads to optimal solution

� A problem is said to have optimal substructure if an optimal

solution can be constructed efficiently from optimal solutions to

its sub-problems

3

5Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Knapsack problem

� The famous knapsack problem:

A thief breaks into a museum. Fabulous paintings, sculptures,

and jewels are everywhere. The thief has a good eye for the

value of these objects, and knows that each will fetch hundreds

or thousands of dollars on the clandestine art collector’s

market. But, the thief has only brought a single knapsack to

the scene of the robbery, and can take away only what he can

carry. What items should the thief take to maximize the haul?

6Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Knapsack problem: 0-1 knapsack

� More formally, the 0-1 knapsack problem:

� the thief must choose among n items, where the i-th item

worth vi euro and weighs wi kilograms

� GOAL: carrying at most W kilograms and maximize value

� note: assume vi, wi, and W are all integers

� “0-1”, means that each item must be taken or left in

entirety

4

7Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Knapsack problem: fractional knapsack

� A variation, the fractional knapsack problem:

� it is a variation of the knapsack problem

� thief can take fractions of items

� think of items in 0-1 problem as gold lingots, in fractional

problem as buckets of gold dust

8Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Solving the knapsack problems

� The optimal solution to the fractional knapsack problem can

be found with a greedy algorithm. How?

� The same greedy approach can be applied to the knapsack 0-

1 problem?

� The optimal solution to the 0-1 problem cannot be found

using the same greedy strategy

5

9Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Solving the knapsack problems

� The optimal solution to the 0-1 problem cannot be found using

the same greedy strategy

� Greedy strategy: take in order of dollars/pound

� Example: 3 items weighing 10, 20, and 30 pounds,

knapsack can hold 50 pounds

� Suppose item 2 is worth $100. Assign values to the

other items so that the greedy strategy will fail

� E.g. 10($190)=19$/p, 20($200)=10$/p, 30($300)=10$/p ->

i) greedy = 10+30=$490, non greedy ii)20+30($500)

10Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Solving the knapsack problems

� The fractional problem can be solved greedily

� The 0-1 problem cannot be solved with a greedy approach

� however, it can be solved with dynamic programming

6

11Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Sorting algorithms: counting sort

� The counting sort is a sorting algorithm that is NOT based on

comparisons

� It takes advantage of knowing the range of the numbers in the

array to be sorted

� Basic idea: given that the numbers are in a range, the

algorithm can then determine, for each input element, the

amount of elements less than it

12Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Counting sort: pseudo-code

CountingSort(A[], B[], k)

for i = 1 to k do

C[i] = 0

for j = 1 to length(A) do

C[A[j]] = C[A[j]] + 1

for i = 2 to k do

C[i] = C[i] + C[i-1]

for j = length(A) downto 1 do

B[C[A[j]]] = A[j]

C[A[j]] = C[A[j]] - 1

data structures:

� A[]:initial data to be sorted

� B[]:used to store the sorted
output

� C[]: used to count the
occurrences of the data values

� initializes C[]

� increments the values in C[],

according to their frequencies

� adds all previous values, making

C[] contain a cumulative total

� writes out the sorted data into

array B[]

7

13Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Counting sort: pseudo-code

CountingSort(A[], B[], k)

for i = 1 to k do

C[i] = 0

for j = 1 to length(A) do

C[A[j]] = C[A[j]] + 1

for i = 2 to k do

C[i] = C[i] + C[i-1]

for j = length(A) downto 1 do

B[C[A[j]]] = A[j]

C[A[j]] = C[A[j]] - 1

cost of the counting sort:

� given n = length(A)

� loop 1 = O(k)

� loop 2 = O(n)

� loop 3 = O(k)

� loop 4 = (n)

� = O(k+n)

� if k = O(n) then the counting

sort is O(n)

14Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Counting sort: pseudo-code 2nd implementation

CountingSort(A[]) //Calcolo degli elementi max e min
max ← A[0]
min ← A[0]
for i ← 1 to length[A] do
if (A[i] > max) then
max ← A[i]

else
if(A[i] < min) then
min ← A[i]

//Costruzione dell'array C: crea array C di dimensione max - min + 1
for i ← 0 to length[C] do

C[i] ← 0 //inizializza a zero gli elementi di C
for i ← 0 to length[A] do
//aumenta il numero di volte che si è incontrato il valore
C[A[i] - min] = C[A[i] - min] + 1

//Ordinamento in base al contenuto dell'array delle frequenze C
k ← 0 //indice per l'array A
for i ← 0 to length[C] do

while C[i] > 0 do //scrive C[i] volte il valore (i + min) nell'array A
A[k] ← i + min
k ← k + 1
C[i] ← C[i] - 1

8

15Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Sorting algorithms: radix sort

� The radix sort is a sorting algorithm that sorts integers by

processing individual digits

� Radix sort dates back as far as 1887 to the work of Herman

Hollerith on tabulating machines

� It functions by sorting the input numbers on each digit, for

each of the digits in the numbers

� The numbers are sorted on the least-significant digit first,

followed by the second-least significant digit and so, up to the

most significant digit

16Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Radix sort: pseudo-code and example

RadixSort (A, d) A = array, d = number of digits

for i ← 1 to d do

// use a stable sort to sort A on digit i

INPUT 1°°°° pass 2°°°° pass 3°°°° pass

329

457

657

839

436

720

355

9

17Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Radix sort: pseudo-code and example

RadixSort (A, d) A = array, d = number of digits

for i ← 1 to d do

// use a stable sort to sort A on digit i

INPUT 1°°°° pass 2°°°° pass 3°°°° pass

329 720

457 355

657 436

839 457

436 657

720 329

355 839

18Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Radix sort: pseudo-code and example

RadixSort (A, d) A = array, d = number of digits

for i ← 1 to d do

// use a stable sort to sort A on digit i

INPUT 1°°°° pass 2°°°° pass 3°°°° pass

329 720 720

457 355 329

657 436 436

839 457 839

436 657 355

720 329 457

355 839 657

10

19Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Radix sort: pseudo-code and example

RadixSort (A, d) A = array, d = number of digits

for i ← 1 to d do

// use a stable sort to sort A on digit i

INPUT 1°°°° pass 2°°°° pass 3°°°° pass

329 720 720 329

457 355 329 355

657 436 436 436

839 457 839 457

436 657 355 657

720 329 457 720

355 839 657 839

20Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Radix sort

� What is the cost of radix sort?

� It depends on the intermediate sorting algorithm that is used

� The counting sort can be a good choice

� In this case, each pass over n d-digit numbers takes O(n + k)

time

� There are d passes so the total time for radix sort is

Θ(dn+kd)

� When d is constant and k = Θ(n), the radix sort runs in

linear time

11

21Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Exercise: strings with duplicates

� EXERCISE: given a set of n strings with duplicates, eliminate

all duplicates. The comparison of strings requires constant

time but the length of strings is n2. Write an efficient algorithm

in pseudo-code

Luciano Bononi

International Bologna Master in
Bioinformatics

University of Bologna

27/05/2011, Bologna

Algorithms and Data Structures 2010 - 2011

Lesson 8: greedy technique

