
1

Luciano Bononi

International Bologna Master in
Bioinformatics

University of Bologna

27/05/2011, Bologna

Algorithms and Data Structures 2010 - 2011

Lesson 8: Huffman codes

2Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Coding

� Let’s assume to have a message composed only of lower-case letters

� Our goal is to code the message in a very compact form, to save

memorization space

� Without using compressing techniques, how many bits are used to

codify each letter?

� If we assume to have an alphabet of lower-case letters (that is

without numbers, symbols and upper-case letters). How many bits

are necessary to codify each letter?

2

3Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Coding

� Alphabet = 26 letters

Number of bits Alphabet size

1 21 = 2

2 22 = 4

3 23 = 8

4 24 = 16

5 25 = 32

6 26 = 64

4Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Coding

� Alphabet = 26 letters

Number of bits Alphabet size

1 21 = 2

2 22 = 4

3 23 = 8

4 24 = 16

5 25 = 32

6 26 = 64

3

5Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Fixed length codes

� Simple solution: a fixed length code is assigned to each letter in the

alphabet. This solution is often very inefficient!

Letter Code

a 00000

b 00001

c 00010

d 00011

e 00100

f 00101

… …

6Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Frequency of letters

� Some letters are more frequent than others, that is the letters

have a different frequency of use

� Example:

� the frequency of vocal letters is usually much higher than

consonants

� some consonants are more used than others (e.g. “c” vs. “y”)

� in a given message, a specific letter could not appear at all

4

7Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Variable length codes

� Idea: a variable length code is assigned to each letter

� The length of each code depends on the frequency of the letter

Letter Code

a 0

b 1

c 00

d 01

e 10

f 11

… …

8Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Variable length codes

� That’s all ok? NO! The proposed code is ambiguous!

� Example, the received message:

“001000”

� Can be decoded in many different ways:

� “0 0 1 0 0 0” -> “aabaaa”

� “00 1 00 0” -> “cbca”

� “00 10 0 0” -> “ceaa”

� “00 10 00” -> “cec”

� … The way you decode is not unique!!!

5

9Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Huffman codes

� The Huffman codes are non-ambiguous variable-length codes

� The algorithm used to define the code follows a greedy approach and

is based on a binary tree

Definition of the code:

� Step 1: the frequency of each letter in the message is calculated

� Step 2: the set of letters is placed in non-increasing frequency

order (e.g. f(a) >= f(c) >= f(b)…)

� Step 3: the two letters with min f value (right side) are selected

� Step 4: a new symbol is created, whose children are the letters

selected before. Its frequency is the sum of child's frequencies

� Step 5: go back to step 2, until only one symbol remains

10Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Huffman codes

� At the end of this algorithm, we have a binary tree that has as

leaves the letters that are in our alphabet

� To obtain the code that is associated to each letter, we have to visit

the tree (traversal procedure). Each left-edge (left-child) represents

a “0” and each right-edge (right-child) is a “1”

6

11Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Example of Huffman code

� Let’s suppose that the message is: “abracadabra”

� Frequency table:

Symbol Frequency

d 1

b 2

r 2

c 1

a 5

12Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Example of Huffman code

� Ordering the frequency table we have:

Symbol Frequency

a 5

b 2

r 2

c 1

d 1

7

13Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Example of Huffman code

� Fusion of the symbols with lower frequency values

� That is c (with frequency 1) and d (also with frequency 1), it is

obtained a new node that is called “cd” (with frequency 1+1 = 2)

� Now, the new node “cd” is inserted in the data structure (ordered

queue)

c1 d1

cd2

14Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

� Table of symbols, represented as an ordered list (non-increasing)

Example of Huffman code

c1 d1

cd2a5 b2
r2

8

15Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

� The algorithms is iterated

until we obtain the tree:

Example of Huffman code

rcdba11

a5rcdb6

b2rcd4

r2

c1 d1

cd2

1

1

1

1

0

0

0

0

Therefore, the code of the

letter “d” is: 0 0 1 1

16Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Example of Huffman codes

� Codes table:

� The generated code is non-ambiguous and less frequent letters have

long codes, and vice versa

Letter Frequency Codes

a 5 1

b 2 01

r 2 000

c 1 0010

d 1 0011

9

17Algorithms and Data Structures 2008 - 2009© Gabriele D’Angelo

Notes and bibliography

� Huffman coding

� http://en.wikipedia.org/wiki/Huffman_coding

� From ASCII Coding to Huffman Coding

� http://www.cs.duke.edu/csed/huff/info/

Luciano Bononi

International Bologna Master in
Bioinformatics

University of Bologna

27/05/2011, Bologna

Algorithms and Data Structures 2010 - 2011

Lesson 8: Huffman codes

