
1

Algorithms and Data Structures 2010-2011

Lesson 6: exercises, graphs and trees, priority queues and heaps

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

20/05/2011, Bologna

2Algorithms and Data Structures 2010-2011© Luciano Bononi

Outline of the lesson

� Graphs

� Exercises

� Connected components

� DFS and BFS

� Trees

� Traversals

� Exercises

2

3Algorithms and Data Structures 2010-2011© Luciano Bononi

Connected components

� EXERCISE: write the pseudo-code to find the number and

the composition of connected components in a given graph G

� SUGGESTION: the algorithm could be based on a slightly

modified version of the DFS traversal

4Algorithms and Data Structures 2010-2011© Luciano Bononi

Connected components: pseudo-code

� ASSUMING:

� COMP[] array of integers, size = # of vertex in

the graph

� SIZE(G) given a graph G, returns the number of vertices

� VERTEX (G, i) given a graph G and an integer i, returns the

vertex identified by i

� ORD(G, u) given a graph G and a vertex u, returns the

identifier of u as an integer

3

5Algorithms and Data Structures 2010-2011© Luciano Bononi

Connected components: pseudo-code

CONNEXCOMP(G)CONNEXCOMP(G)CONNEXCOMP(G)CONNEXCOMP(G)

numcomp := 0;

for i:=1 to SIZESIZESIZESIZE(G) do COMP[i] := 0;

for i:=1 to SIZESIZESIZESIZE(G) do

if COMP[i] == 0 then

numcomp := numcomp + 1;

DFSDFSDFSDFS----MODIFIEDMODIFIEDMODIFIEDMODIFIED(G, VERTEXVERTEXVERTEXVERTEX(G, i), numcomp);

6Algorithms and Data Structures 2010-2011© Luciano Bononi

Connected components: pseudo-code

DFSDFSDFSDFS----MODIFIED(G, u, i)MODIFIED(G, u, i)MODIFIED(G, u, i)MODIFIED(G, u, i)

COMP[ORDORDORDORD(G, u)] := i;

for each v in ADJSETADJSETADJSETADJSET(G, u) do

if COMP[ORDORDORDORD(G, v)] == 0 then

DFSDFSDFSDFS----MODIFIEDMODIFIEDMODIFIEDMODIFIED(G,v, i);

� Complexity in terms of space and computation?

4

7Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: exercises

� Write the Depth-First-Search (DFS) procedure in pseudo-code.

Given the graph

� G=(N, A)

� N={1, 2, 3, 4,5, 6}

� A={(1,4), (1,5), (2,5), (3,6), (4,5), (5,2), (5,3), (6,5)}

Execute the DFS procedure starting from the vertex 2

Plot the graph and show its representation based on adjacency

set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors

are in not decreasing order

8Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS

Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)

/* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) */

if (v is not marked) then DFSDFSDFSDFS(G, v)

5

9Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: exercises

� Write the Depth-First-Search (DFS) procedure in pseudo-code.

Given the graph

� G=(N, A)

� N={1, 2, 3, 4,5, 6}

� A={[1,4], [1,5], [2,5], [3,6], [4,5], [5,3], [6,5]}

Execute the DFS procedure starting from the vertex 2

Plot the graph and show its representation based on adjacency

set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors

are in not decreasing order

10Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: exercises

� Write the Breadth-First-Search (BFS) procedure in pseudo-

code. Given the graph

� G=(N, A)

� N={1, 2, 3, 4,5, 6}

� A={[1,4], [1,5], [2,5], [3,6], [4,5], [5,2], [5,3], [6,5]}

Execute the BFS procedure starting from the vertex 2

Plot the graph and show its representation based on adjacency

set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors

are in not decreasing order

6

11Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS

Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)

MakeMakeMakeMake(Q); EnqueueEnqueueEnqueueEnqueue(Q, u);

while not EmptyEmptyEmptyEmpty(Q) do

u := DequeueDequeueDequeueDequeue(Q);

/* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) */

if (v is not marked) and (v is not in Q) then

EnqueueEnqueueEnqueueEnqueue(Q, v)

12Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: exercises

� Write the Breadth-First-Search (BFS) procedure in pseudo-

code. Given the directed graph

� G=(N, A)

� N={1, 2, 3, 4, 5, 6}

� A={(1,4), (1,5), (2,1), (2,3), (2,5), (3,6), (4,5), (5,2), (5,3),

(6,5)}

Execute the BFS procedure starting from the vertex 2

Plot the graph and show its representation based on adjacency

set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors

are in not decreasing order

7

13Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary trees: pre-order visit

function preorder(T, node)

if (node <> NULL) then {

visit(T, node); // visits the node, i.e. prints the data

preorder(T, GetLeftChild(T, node));

preorder(T, GetRightChild(T, node));

}

14Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary trees: in-order visit

function inorder(T, node)

if (node <> NULL) then {

inorder(T, GetLeftChild(T, node));

visit(T, node); // visits the node, i.e. prints the data

inorder(T, GetRightChild(T, node));

}

8

15Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary trees: post-order visit

function postorder(T, node)

if (node <> NULL) then {

postorder(T, GetLeftChild(T, node));

postorder(T, GetRightChild(T, node));

visit(T, node); // visits the node, i.e. prints the data

}

16Algorithms and Data Structures 2010-2011© Luciano Bononi

Trees: exercises

� Given 2 trees (I and II)composed of nodes

� N = {10, 20, 30, 40, 50} and with

� PREORDER(I) = PREORDER(II)

� POSTORDER(I) = POSTORDER(II)

� INORDER(I) is the inverse of INORDER(II)

� plot both trees

9

17Algorithms and Data Structures 2010-2011© Luciano Bononi

Trees: exercises

� Given a tree (I)composed of nodes

� N = {1, 2, 7, 8, 9, 14, 27, 31} and with

� PREORDER(I) = 27/31/9/8/7/2/14/1

� INORDER(I) = 9/31/7/2/8/27/14/1

� POSTORDER(I) = 9/2/7/8/31/1/14/27

� plot the tree

Algorithms and Data Structures 2010 - 2011

Lesson 6: priority queues and heaps

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

20/05/2011, Bologna

10

19Algorithms and Data Structures 2010-2011© Luciano Bononi

Abstract Data Type: Priority Queue

� PRIORITY QUEUE is an abstract data type that supports the

following operations:

� InsertWithPriority(Q, e, p)

� add the element (e) to the queue (Q) with an

associated priority (p)

� GetNext(Q)

� remove the element from the queue that has the

highest priority

20Algorithms and Data Structures 2010-2011© Luciano Bononi

Priority Queue: implementations

� Some of the data structure that can be used for the

implementation:

� sorted list implementation

� unsorted list implementation

� Are these implementations efficient or not?

11

21Algorithms and Data Structures 2010-2011© Luciano Bononi

Heap

� A Heap is a complete tree that satisfies the heap property

� Heap property:

� if B is a child of node A, then key(A) ≥ key(B)

� It the heap property is satisfied then the node with higher

value is in the root of the tree (max-heap)

22Algorithms and Data Structures 2010-2011© Luciano Bononi

Heap: example

� Heap-max example (from wikipedia)

12

23Algorithms and Data Structures 2010-2011© Luciano Bononi

Heap: implementation

� How is possible to efficiently design these operations?

� GetNext()

� InsertWithPriority()

� What is the cost of such operations?

� How is possible to implement a binary heap using an

array?

Algorithms and Data Structures 2010 - 2011

Lesson 6: exercises, graphs and trees, priority queues and heaps

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

20/05/2011, Bologna

