Algorithms and Data Structures 2010-2011

Lesson 5: graphs and visits

Outline of the lesson

- Graphs
- Principles
- Representations
- Adjacency list
- Adjacency matrix
- Adjacency set (implemented as arrays)
- Traversing graphs
- Breadth-First Search (BFS)
- Depth-First Search (DFS)
- Connected components

Graphs: definition

- DEFINITION: a graph $G=(\mathrm{V}, \mathrm{E})$ is composed of
- V : set of vertices
- $\mathrm{E} \subset \mathrm{V} \times \mathrm{V}$: set of edges connecting the vertices
- An edge $e=(u, v) \quad$ is a pair of vertices
- Undirected graph: a graph $G=(V, E)$ in which every edge is undirected

SALSARATER STUBDONM
© Luciano Bononi
Algorithms and Data Structures 2010-2011

Graphs: definition

- Directed graph or digraph: a graph $G=(V, E)$ in which E is a set of ordered pairs of vertices, called directed edges, arcs, or arrows

Graphs: undirected and directed

- Undirected graph
- $G=(V, E)$ with $V=\{1,2,3,4\}$ and

$$
E=\{[1,2],[1,3],[2,4],[3,2],[4,2],[4,3]\}
$$

- Directed graph
- $G=(V, E)$ with $V=\{1,2,3,4\}$ and

$$
E=\{(1,2),(1,3),(2,4),(3,2),(4,2),(4,3)\}
$$

Graphs: terminology

- adjacent vertices: connected by an edge
- degree (of a vertex): \# of adjacent vertices

$\sum_{v \in V} \operatorname{deg}(v)=2$ (\# of edges)
"Since adjacent vertices each count the adjoining edge then it will be counted twice"
- path: sequence of vertices $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots . \mathrm{V}_{\mathrm{k}}$ such that consecutive vertices V_{i} and V_{i+1} are adjacent

	© Luciano Bononi	Algorithms and Data Structures	2010-2011	6

Graphs: terminology

- simple path: no repeated vertices

bec

Graphs: terminology

- cycle: simple path, except that the last vertex is the same as the first vertex

- connected graph: any two vertices are connected by some path

Graphs: terminology

- sub-graph: subset of vertices and edges forming a graph
- connected component: maximal connected sub-graph
- two vertices are in the same connected component if and only if there exist a path between them
- e.g., the graph below has 3 connected components

Graphs: terminology

- A direct graph is called in strongly connected if for every pair of vertices \mathbf{u} and \mathbf{v} there is a path from \mathbf{u} to \mathbf{v} and from \mathbf{v} to \mathbf{u}
- The strongly connected components of a directed graph are its maximal strongly connected sub-graphs
- These form a partition of the graph

Graphs: terminology

- tree: connected graph without cycles
- forest: collection of trees

Graph ADT: some operations

- G = graph, v = vertex, e=edge
- Creates a new Graph

Create(G)

- Returns True if the Graph is empty

Empty(G)
or False if it has at lest one vertex

- Inserts a new vertex

InsVertex(G, v)

- Inserts a new edge
- Deletes an existing vertex
- Deletes an existing edge

InsEdge($\mathrm{G}, \mathrm{v}_{1}, \mathrm{v}_{2}$)
DelVertex(G, v)

- Returns the set of adjacent vertices

DelEdge($\mathrm{G}, \mathrm{v}_{1}, \mathrm{v}_{2}$)
AdjSet(G, v)

Graphs ADT: implementation - adjacency matrix

Implementation based on adjacency matrix

- Matrix M with entries for all pairs of vertices
- $M[i, j]=$ true if there is an edge (i, j) in the graph
- $M[i, j]=$ false \quad if there is no edge (i, j) in the graph
- Space $=O\left(n^{2}\right) \quad$ with $n=$ number of vertices in the graph

[^0]
Graphs ADT: implementation - adjacency list

Implementation based on adjacency list

- The adjacency list of a vertex v : the sequence of vertices adjacent to v
- The graphs is obtained by the adjacency lists of all its vertices

$$
\text { Space }=\Theta\left(n+\sum \operatorname{deg}(v)\right)=\Theta(n+m)
$$

Graphs ADT: implementation - adjacency set

Implementation based on adjacency set

- Implemented using two vectors
- First vector for vertices
- Second vector for edges
- EXAMPLE:
- Undirected graph
- $G=(V, E)$ with $V=\{1,2,3,4\}$ and

$$
A=\{[1,2],[1,3],[2,4],[3,2],[4,2],[4,3]\}
$$

Graphs ADT: implementation - adjacency set

VERTICES

EDGES

Graphs ADT: implementation

- EXERCISE

What is the cost of the Graph ADT operations seen before in presence of an implementation based on:

1. Adjacency matrix
2. Adjacency list
3. Adjacency set (using arrays)

Graphs traversal

- The graph traversal refers to the problem of visiting all vertices in a graph in a particular manner
- Two common graph traversal algorithms:
- Breadth-First Search (BFS)
- application example: finds the shortest paths in an unweighted (?) graph
- Depth-First Search (DFS)
- application example: finds strongly connected components

Graphs traversal: Breadth-First Search (BFS)

- Given any source vertex \mathbf{s}, the BFS visits the other vertices at increasing distances away from s
- In doing so, the BFS discovers paths from s to other vertices
- What do we mean by "distance"? The number of edges on a path from s

Example:

Consider s=vertex 1
Nodes at distance 1?
2, 3, 7, 9
Nodes at distance 2?

$$
8,6,5,4
$$

Nodes at distance 3?

Graphs traversal: BFS

Procedure BFS(G : graph; u : vertex)
Make (Q) ; Enqueue (Q, u) ;
while not Empty (Q) do
u := Dequeue (Q);
/* visit the vertex u and mark it as visited */
for each v in AdjSet(G, u)
/* visit the edge (u, v) */
if (v is not marked) and (v is not in Q) then Enqueue(Q, v)

Graphs traversal: BFS

```
Procedure BFS(G : graph; u : vertex)
    Make(Q); Enqueue(Q, u);
    while not Empty(Q) do
        u := Dequeue(Q);
        /* visit the vertex u and mark it as visited */
        for each v in AdjSet(G, u)
            /* visit the edge (u, v) */
            if (v is not marked) and (v is not in Q) then
            Enqueue(Q, v)
```


Graphs traversal: BFS, example

Graphs traversal: BFS, example

Place source 2 on the queue.

Graphs traversal: BFS, example

Adjacency List Visited Table (T/F)

$$
Q=\{8,1,4\} \rightarrow\{1,4,0,9\}
$$

Mark new visited
Neighbors.

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

Graphs traversal: BFS, example

-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven't been visited yet.

Graphs traversal: BFS, example

Graphs traversal: BFS, example

Adjacency List Visited Table (T/F)

Graphs traversal: BFS, example

Graphs traversal: BFS, example

Graphs traversal: BFS, example

Graphs traversal: BFS, example

 $$
Q=\{6\} \rightarrow\{ \}
$$

Dequeue 6.
-- no unvisited neighbors of 6.

Graphs traversal: BFS, example

What did we discover?
Look at "visited" tables.

There exists a path from source vertex 2 to all vertices in the graph

Time complexity of BFS

- Assuming: $\quad \mathbf{n}=$ number of vertices, $\mathbf{m}=$ number of edges
- Time complexity of BFS:
- Assuming adjacency lists: $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- each vertex in the graph is marked only once
- for each vertex, the AdjSet is visited only once
- Assuming adjacency matrix: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- for each vertex it is necessary to scan the whole vector of adjacency
- it is independent from the number of edges

Graphs traversal: Depth-First Search (DFS)

- DFS will continue to visit neighbors in a recursive pattern
- Main principle:
- whenever we visit \mathbf{v} from \mathbf{u}, we recursively visit all unvisited neighbors of \mathbf{v}
- then we backtrack (return) to \mathbf{u}

Graphs traversal: DFS

Procedure DFS(G : graph; u : vertex)
/* visit the vertex u and mark it as visited */
for each v in AdjSet(G, u)
/* visit the edge (u, v) */
if (v is not marked) then $\operatorname{DFS}(G, v)$

Graphs traversal: DFS

Procedure DFS(G : graph; u : vertex)
/* visit the vertex u and mark it as visited */
for each v in AdjSet(G, u)

```
/* visit the edge (u, v) */
if (v is not marked) then DFS(G, v)
```


Graphs traversal: DFS, example

Mark 9 as visited

Graphs traversal: DFS, example

		Adjacency List	Visited Table (T/F)		
		${ }^{0}{ }^{0}{ }^{\top}$			
		1 T			
		${ }^{2} \mathrm{~T}$ T			
		3 F			
		${ }^{4} \mathrm{~F}$			
		5 F			
		${ }_{6}^{6} \mathrm{~F}$			
		7 7			
		${ }^{8} \mathrm{~T}$			
				Mark 1 as	visited
3. Ammantrsumown	๑Luciano Bonon		Algorithm sand Data S	uctures 2010-2011	44

Graphs traversal: DFS, example

Mark 3 as visited

Graphs traversal: DFS, example

Graphs traversal: DFS, example

Graphs traversal: DFS, example

Graphs traversal: DFS, example

Graphs traversal: DFS, example

Time complexity of DFS

- Assuming: $\quad \mathbf{n}=$ number of vertices, $\mathbf{m}=$ number of edges
- Time complexity of DFS:
- Assuming adjacency lists:
$\mathrm{O}(\mathrm{n}+\mathrm{m})$
- we never visited a vertex more than once
- we had to examine all edges of the vertices
- Assuming adjacency matrix: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- for each node it is necessary to scan the whole vector of adjacency
- it is independent from the number of edges

(1.). Alumatier sumbonum	© Luciano Bononi	Algorithms and Data Structures	2010-2011	58

Graphs: exercise

- Write the Depth-First-Search (DFS) procedure in pseudo-code. Given the undirected graph
- $\mathrm{G}=(\mathrm{N}, \mathrm{A})$
- $N=\{1,2,3,4,5\}$
- $A=\{[1,2],[1,3],[1,5],[3,5],[3,4],[4,1],[4,2]\}$

Execute the DFS procedure starting from the vertex 5
Plot the graph and show its representation based on adjacency set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors are in not decreasing order

DFS exercise resolution

Graphs: exercise

- Write the Breadth-First-Search (BFS) procedure in pseudocode. Given the directed graph
- $\mathrm{G}=(\mathrm{N}, \mathrm{A})$
- $N=\{1,2,3,4,5\}$
- $A=\{(1,2),(1,3),(1,5),(3,5),(3,4),(4,1),(4,2),(5,2)\}$

Execute the BFS procedure starting from the vertex 4
Plot the graph and show its representation based on adjacency set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors are in decreasing order

Connected components

- EXERCISE: write the pseudo-code to find the number and the composition of connected components in a given graph G
- SUGGESTION: the algorithm could be based on a slightly modified version of the DFS traversal

References

- Part of this material is inspired / taken by the following freely available resources:
- http://www.cs.aau.dk/~simas/ad01/slides.html
- http://www.cs.ust.hk/~huamin/COMP171/index.htm

Algorithms and Data Structures 2010-2011

Lesson 5: graphs and visits

Luciano Bononi
bononi@cs.unibo.it
http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D'Angelo)
International Bologna Master in
Bioinformatics
University of Bologna
29/04/2011, Bologna

[^0]:

