

Outline of the lesson		
 Graphs 		
 Principles 		
 Representations 		
 Adjacency list 		
 Adjacency matrix 		
 Adjacency set (implemented as arrays) 		
Traversing graphs		
 Breadth-First Search (BFS) 		
 Depth-First Search (DFS) 		
Connected components		
ALMA MATER STUDIORIUM UN WERSITA DI OCLOCINA © Luciano Bononi Algorithms and Data Structures 2010-2011 2		

Graph ADT: some operations	
 G = graph, v = vertex, e=edge 	
Creates a new Graph	Create(G)
 Returns True if the Graph is empty 	Empty(G)
or False if it has at lest one vertex	
 Inserts a new vertex 	InsVertex(G, v)
 Inserts a new edge 	InsEdge(G, v_1 , v_2)
Deletes an existing vertex	DelVertex(G, v)
Deletes an existing edge	$DelEdge(G, v_1, v_2)$
 Returns the set of adjacent vertices 	AdjSet(G, v)
ALMA MATER STUDIORIM © Luciano Bononi Al	gorithms and Data Structures 2010-2011 12

Graphs traversal: BFS		
<pre>Procedure BFS(G : graph; u : vertex)</pre>		
<pre>Make(Q); Enqueue(Q, u);</pre>		
while not Empty (Q) do		
<pre>u := Dequeue(Q);</pre>		
/* visit the vertex u and mark it as visited */		
for each v in AdjSet (G, u)		
/* visit the edge (u, v) */		
if (v is not marked) and (v is not in Q) then		
Enqueue(Q, v)		
ALMA MATER STUDIORUM UN WERNITA DI BOLOGINA © Luciano Bononi Algorithms and Data Structures 2010-2011 20		

