
1

Algorithms and Data Structures 2010-2011

Lesson 5: graphs and visits

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

13/05/2011, Bologna

2Algorithms and Data Structures 2010-2011© Luciano Bononi

Outline of the lesson

� Graphs

� Principles

� Representations

� Adjacency list

� Adjacency matrix

� Adjacency set (implemented as arrays)

� Traversing graphs

� Breadth-First Search (BFS)

� Depth-First Search (DFS)

� Connected components

2

3Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: definition

� DEFINITION: a graph G = (V,E) is composed of

� V: set of vertices

� E ⊂ V x V: set of edges connecting the vertices

� An edge e = (u,v) is a pair of vertices

� Undirected graph: a graph G = (V,E) in which every edge is

undirected

4Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: definition

� Directed graph or digraph: a graph G = (V,E) in which E is a

set of ordered pairs of vertices, called directed edges, arcs, or

arrows

3

5Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: undirected and directed

� Undirected graph

� G=(V,E) with V={1, 2, 3, 4} and

E={[1, 2], [1, 3], [2, 4], [3, 2], [4, 2], [4, 3]}

� Directed graph

� G=(V,E) with V={1, 2, 3, 4} and

E={(1, 2), (1, 3), (2, 4), (3, 2), (4, 2), (4, 3)}

6Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: terminology

� adjacent vertices: connected by an edge

� degree (of a vertex): # of adjacent vertices

� path: sequence of vertices V1 ,V2 ,. . .Vk such that consecutive

vertices Vi and Vi+1 are adjacent

“Since adjacent vertices

each count the adjoining

edge then it will be

counted twice”

deg() 2(# of edges)
v V

v

∈

=∑

4

7Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: terminology

� simple path: no repeated vertices

8Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: terminology

� cycle: simple path, except that the last vertex is the

same as the first vertex

� connected graph: any two vertices are connected by

some path

5

9Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: terminology

� sub-graph: subset of vertices and edges forming a graph

� connected component: maximal connected sub-graph

� two vertices are in the same connected component if and

only if there exist a path between them

� e.g., the graph below has 3 connected components

10Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: terminology

� A direct graph is called in strongly connected if for every

pair of vertices u and v there is a path from u to v and from v

to u

� The strongly connected components of a directed graph are

its maximal strongly connected sub-graphs

� These form a partition of the graph

6

11Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: terminology

� tree: connected graph without cycles

� forest: collection of trees

12Algorithms and Data Structures 2010-2011© Luciano Bononi

Graph ADT: some operations

� G = graph, v = vertex, e=edge

� Creates a new Graph

� Returns True if the Graph is empty

or False if it has at lest one vertex

� Inserts a new vertex

� Inserts a new edge

� Deletes an existing vertex

� Deletes an existing edge

� Returns the set of adjacent vertices

…

Create(G)

Empty(G)

InsVertex(G, v)

InsEdge(G, v1, v2)

DelVertex(G, v)

DelEdge(G, v1, v2)

AdjSet(G, v)

7

13Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs ADT: implementation – adjacency matrix

Implementation based on adjacency matrix

� Matrix M with entries for all pairs of vertices

� M[i,j] = true if there is an edge (i,j) in the graph

� M[i,j] = false if there is no edge (i,j) in the graph

� Space = O(n2) with n = number of vertices in the graph

14Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs ADT: implementation – adjacency list

Implementation based on adjacency list

� The adjacency list of a vertex v: the sequence of vertices

adjacent to v

� The graphs is obtained by the adjacency lists of all its vertices

Space (deg()) ()n v n m= Θ + = Θ +∑

8

15Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs ADT: implementation – adjacency set

Implementation based on adjacency set

� Implemented using two vectors

� First vector for vertices

� Second vector for edges

� EXAMPLE:

� Undirected graph

� G=(V,E) with V={1, 2, 3, 4} and

A={[1, 2], [1, 3], [2, 4], [3, 2], [4, 2], [4, 3]}

16Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs ADT: implementation – adjacency set

1 2

3 4

1 1

2 3

3 6

4 9

5 11

VERTICES

1 2

2 3

3 1

4 3

5 4

6 1

7 2

8 4

9 2

10 3

EDGES

A(1)

A(2)

A(3)

A(4)

� Space complexity?

9

17Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs ADT: implementation

� EXERCISE

What is the cost of the Graph ADT operations seen before in

presence of an implementation based on:

1. Adjacency matrix

2. Adjacency list

3. Adjacency set (using arrays)

18Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal

� The graph traversal refers to the problem of visiting all

vertices in a graph in a particular manner

� Two common graph traversal algorithms:

� Breadth-First Search (BFS)

� application example: finds the shortest paths in an

unweighted (?) graph

� Depth-First Search (DFS)

� application example: finds strongly connected

components

10

19Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: Breadth-First Search (BFS)

� Given any source vertex s, the BFS visits the other vertices at

increasing distances away from s

� In doing so, the BFS discovers paths from s to other vertices

� What do we mean by “distance”? The number of edges on a

path from s

2

4

3

5

1

7

6

9

8

0

Consider s=vertex 1

Nodes at distance 1?

2, 3, 7, 91

1

1

1 2

22

2
s

Example:

Nodes at distance 2?

8, 6, 5, 4

Nodes at distance 3?

0

20Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS

Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)

MakeMakeMakeMake(Q); EnqueueEnqueueEnqueueEnqueue(Q, u);

while not EmptyEmptyEmptyEmpty(Q) do

u := DequeueDequeueDequeueDequeue(Q);

/* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) */

if (v is not marked) and (v is not in Q) then

EnqueueEnqueueEnqueueEnqueue(Q, v)

11

21Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS

Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)

MakeMakeMakeMake(Q); EnqueueEnqueueEnqueueEnqueue(Q, u);

while not EmptyEmptyEmptyEmpty(Q) do

u := DequeueDequeueDequeueDequeue(Q);

/* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) *//* visit the edge (u, v) *//* visit the edge (u, v) *//* visit the edge (u, v) */

if (v is not marked) and (v is not in Q) then

EnqueueEnqueueEnqueueEnqueue(Q, v)

22Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited

table (all False)

Initialize Q to be empty

12

23Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has

been visited.

Place source 2 on the queue.

24Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors

as visited.

Dequeue 2.

Place all unvisited neighbors of 2 on the queue

Neighbors

13

25Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }

Mark new visited

Neighbors.

Dequeue 8.

-- Place all unvisited neighbors of 8 on the queue.

-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

26Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited

Neighbors.

Dequeue 1.

-- Place all unvisited neighbors of 1 on the queue.

-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

14

27Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.

-- 4 has no unvisited neighbors!

Neighbors

28Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.

-- 0 has no unvisited neighbors!

Neighbors

15

29Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.

-- 9 has no unvisited neighbors!

Neighbors

30Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.

-- place neighbor 5 on the queue.

Neighbors

Mark new visited

Vertex 5.

16

31Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.

-- place neighbor 6 on the queue.

Neighbors

Mark new visited

Vertex 6.

32Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.

-- no unvisited neighbors of 5.

Neighbors

17

33Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.

-- no unvisited neighbors of 6.

Neighbors

34Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

source

0

1

2

3

4

5

6

7

8

9

T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!

What did we discover?

Look at “visited” tables.

There exists a path from source

vertex 2 to all vertices in the graph

18

35Algorithms and Data Structures 2010-2011© Luciano Bononi

Time complexity of BFS

� Assuming: n = number of vertices, m = number of edges

� Time complexity of BFS:

� Assuming adjacency lists: O(n+m)

� each vertex in the graph is marked only once

� for each vertex, the AdjSet is visited only once

� Assuming adjacency matrix: O(n2)

� for each vertex it is necessary to scan the whole vector

of adjacency

� it is independent from the number of edges

36Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: Depth-First Search (DFS)

� DFS will continue to visit neighbors in a recursive pattern

� Main principle:

� whenever we visit v from u, we recursively visit all

unvisited neighbors of v

� then we backtrack (return) to u

19

37Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS

Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)

/* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) */

if (v is not marked) then DFSDFSDFSDFS(G, v)

38Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS

Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)

/* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) *//* visit the edge (u, v) *//* visit the edge (u, v) *//* visit the edge (u, v) */

if (v is not marked) then DFSDFSDFSDFS(G, v)

20

39Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Mark 2 as visited

40Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

T

F

Mark 8 as visited

21

41Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

F

T

F

F

F

F

F

T

F

Mark 0 as visited

42Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

F

T

F

F

F

F

F

T

F

Back to 8

22

43Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

F

T

F

F

F

F

F

T

T

Mark 9 as visited

44Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

F

F

F

F

T

T

Mark 1 as visited

23

45Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

F

F

F

F

T

T

Mark 3 as visited

Pred

46Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

F

T

T

Mark 4 as visited

24

47Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

F

T

T

8

9

-

1

3

-

-

-

2

8

Pred
Back to 3

48Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

F

T

T

Mark 5 as visited

25

49Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

F

T

T

50Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Mark 7 as visited

26

51Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

2

4

3

5

1

7

6

9

8

0

source

52Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

2

4

3

5

1

7

6

9

8

0

source

27

53Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

Adjacency List

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

2

4

3

5

1

7

6

9

8

0

source

54Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

2

4

3

5

1

7

6

9

8

0

source

28

55Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

2

4

3

5

1

7

6

9

8

0

source

56Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

2

4

3

5

1

7

6

9

8

0

source

29

57Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs traversal: DFS, example

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

2

4

3

5

1

7

6

9

8

0

source

Traversal completed!

58Algorithms and Data Structures 2010-2011© Luciano Bononi

Time complexity of DFS

� Assuming: n = number of vertices, m = number of edges

� Time complexity of DFS:

� Assuming adjacency lists: O(n+m)

� we never visited a vertex more than once

� we had to examine all edges of the vertices

� Assuming adjacency matrix: O(n2)

� for each node it is necessary to scan the whole vector

of adjacency

� it is independent from the number of edges

30

59Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: exercise

� Write the Depth-First-Search (DFS) procedure in pseudo-code.

Given the undirected graph

� G=(N, A)

� N={1, 2, 3, 4,5}

� A={[1, 2], [1, 3], [1,5], [3, 5], [3, 4], [4, 1], [4, 2]}

Execute the DFS procedure starting from the vertex 5

Plot the graph and show its representation based on adjacency

set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors

are in not decreasing order

60Algorithms and Data Structures 2010-2011© Luciano Bononi

DFS exercise resolution

1 2

3 4

1 1

2 5

3 7

4 10

5 13

VERTICES

1 2

2 3

3 4

4 5

5 1

6 4

7 1

8 4

9 5

10 1

EDGES A(1)

DFS(5) = 5 (5, 1) 1 (1, 2) 2 (2, 1) (2, 4)

4 (4, 1)(4, 2) (4, 3) 3 (3, 1) (3, 4)

(3, 5) (1, 3) (1, 4) (1, 5) (5, 3)

5

6 15

11 2

12 3

13 1

14 3

A(2)

A(3)

A(4)

A(5)

31

61Algorithms and Data Structures 2010-2011© Luciano Bononi

Graphs: exercise

� Write the Breadth-First-Search (BFS) procedure in pseudo-

code. Given the directed graph

� G=(N, A)

� N={1, 2, 3, 4,5}

� A={(1, 2), (1, 3), (1,5), (3, 5), (3, 4), (4, 1), (4, 2), (5, 2)}

Execute the BFS procedure starting from the vertex 4

Plot the graph and show its representation based on adjacency

set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors

are in decreasing order

62Algorithms and Data Structures 2010-2011© Luciano Bononi

Connected components

� EXERCISE: write the pseudo-code to find the number and

the composition of connected components in a given graph G

� SUGGESTION: the algorithm could be based on a slightly

modified version of the DFS traversal

32

63Algorithms and Data Structures 2010-2011© Luciano Bononi

References

� Part of this material is inspired / taken by the following freely

available resources:

� http://www.cs.aau.dk/~simas/ad01/slides.html

� http://www.cs.ust.hk/~huamin/COMP171/index.htm

Algorithms and Data Structures 2010 - 2011

Lesson 5: graphs and visits

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

29/04/2011, Bologna

