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Outline of the lesson

� Graphs 

� Principles 

� Representations

� Adjacency list

� Adjacency matrix

� Adjacency set (implemented as arrays)

� Traversing graphs

� Breadth-First Search (BFS)

� Depth-First Search (DFS)

� Connected components



2

3Algorithms and Data Structures    2010-2011© Luciano Bononi

Graphs: definition

� DEFINITION: a graph G = (V,E) is composed of

� V: set of vertices

� E ⊂ V x V: set of edges connecting the vertices

� An edge e = (u,v) is a pair of vertices

� Undirected graph: a graph G = (V,E) in which every edge is 

undirected
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Graphs: definition

� Directed graph or digraph: a graph G = (V,E) in which E is a 

set of ordered pairs of vertices, called directed edges, arcs, or 

arrows
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Graphs: undirected and directed

� Undirected graph

� G=(V,E) with V={1, 2, 3, 4} and 

E={[1, 2], [1, 3], [2, 4], [3, 2], [4, 2], [4, 3]}

� Directed graph

� G=(V,E) with V={1, 2, 3, 4} and 

E={(1, 2), (1, 3), (2, 4), (3, 2), (4, 2), (4, 3)}
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Graphs: terminology

� adjacent vertices: connected by an edge

� degree (of a vertex): # of adjacent vertices

� path: sequence of vertices V1 ,V2 ,. . .Vk such that consecutive 

vertices Vi and Vi+1 are adjacent

“Since adjacent vertices

each count the adjoining 

edge then it will be 

counted twice”

deg( ) 2(#  of edges)
v V

v

∈

=∑
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Graphs: terminology

� simple path: no repeated vertices
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Graphs: terminology

� cycle: simple path, except that the last vertex is the 

same as the first vertex

� connected graph: any two vertices are connected by 

some path
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Graphs: terminology

� sub-graph: subset of vertices and edges forming a graph

� connected component: maximal connected sub-graph 

� two vertices are in the same connected component if and 

only if there exist a path between them

� e.g., the graph below has 3 connected components
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Graphs: terminology

� A direct graph is called in strongly connected if for every 

pair of vertices u and v there is a path from u to v and from v 

to u

� The strongly connected components of a directed graph are 

its maximal strongly connected sub-graphs

� These form a partition of the graph 
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Graphs: terminology

� tree: connected graph without cycles

� forest: collection of trees
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Graph ADT: some operations

� G = graph, v = vertex, e=edge

� Creates a new Graph

� Returns True if the Graph is empty

or False if it has at lest one vertex

� Inserts a new vertex

� Inserts a new edge

� Deletes an existing vertex

� Deletes an existing edge

� Returns the set of adjacent vertices

…

Create(G)

Empty(G)

InsVertex(G, v)

InsEdge(G, v1, v2)

DelVertex(G, v)

DelEdge(G, v1, v2)

AdjSet(G, v)
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Graphs ADT: implementation – adjacency matrix

Implementation based on adjacency matrix

� Matrix M with entries for all pairs of vertices

� M[i,j] = true if there is an edge (i,j) in the graph

� M[i,j] = false if there is no edge (i,j) in the graph

� Space = O(n2) with n = number of vertices in the graph
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Graphs ADT: implementation – adjacency list

Implementation based on adjacency list

� The adjacency list of a vertex v: the sequence of vertices 

adjacent to v

� The graphs is obtained by the adjacency lists of all its vertices

Space ( deg( )) ( )n v n m= Θ + = Θ +∑
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Graphs ADT: implementation – adjacency set

Implementation based on adjacency set

� Implemented using two vectors

� First vector for vertices

� Second vector for edges

� EXAMPLE:

� Undirected graph

� G=(V,E) with V={1, 2, 3, 4} and 

A={[1, 2], [1, 3], [2, 4], [3, 2], [4, 2], [4, 3]}
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Graphs ADT: implementation – adjacency set

1 2

3 4

1 1

2 3

3 6

4 9

5 11

VERTICES

1 2

2 3

3 1

4 3

5 4

6 1

7 2

8 4

9 2

10 3

EDGES

A(1)

A(2)

A(3)

A(4)

� Space complexity?
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Graphs ADT: implementation

� EXERCISE

What is the cost of the Graph ADT operations seen before in 

presence of an implementation based on:

1. Adjacency matrix

2. Adjacency list

3. Adjacency set (using arrays)
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Graphs traversal

� The graph traversal refers to the problem of visiting all 

vertices in a graph in a particular manner

� Two common graph traversal algorithms:

� Breadth-First Search (BFS)

� application example: finds the shortest paths in an 

unweighted (?) graph

� Depth-First Search (DFS)

� application example: finds strongly connected 

components
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Graphs traversal: Breadth-First Search (BFS)

� Given any source vertex s, the BFS visits the other vertices at 

increasing distances away from s

� In doing so, the BFS discovers paths from s to other vertices

� What do we mean by “distance”?  The number of edges on a 

path from s

2

4

3

5

1

7

6

9

8

0

Consider s=vertex 1

Nodes at distance 1?

2, 3, 7, 91

1

1

1 2

22

2
s

Example:

Nodes at distance 2?

8, 6, 5, 4

Nodes at distance 3?

0
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Graphs traversal: BFS

Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)

MakeMakeMakeMake(Q); EnqueueEnqueueEnqueueEnqueue(Q, u);

while not EmptyEmptyEmptyEmpty(Q) do

u := DequeueDequeueDequeueDequeue(Q);

/* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) */

if (v is not marked) and (v is not in Q) then 

EnqueueEnqueueEnqueueEnqueue(Q, v) 
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Graphs traversal: BFS

Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)Procedure BFS(G : graph; u : vertex)

MakeMakeMakeMake(Q); EnqueueEnqueueEnqueueEnqueue(Q, u);

while not EmptyEmptyEmptyEmpty(Q) do

u := DequeueDequeueDequeueDequeue(Q);

/* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) *//* visit the edge (u, v) *//* visit the edge (u, v) *//* visit the edge (u, v) */

if (v is not marked) and (v is not in Q) then 

EnqueueEnqueueEnqueueEnqueue(Q, v) 
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

F

F

F

F

F

F

F

F

Q = {    }

Initialize visited

table (all False)

Initialize Q to be empty
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Q = {  2   }

Flag that 2 has 

been visited.

Place source 2 on the queue.
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

T

T

F

T

F

F

F

T

F

Q = {2} → {  8, 1, 4 }

Mark neighbors

as visited.

Dequeue 2.  

Place all unvisited neighbors of 2 on the queue

Neighbors
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

T

F

F

F

T

T

Q = {  8, 1, 4 } → { 1, 4, 0, 9 } 

Mark new visited

Neighbors.

Dequeue 8.  

-- Place all unvisited neighbors of 8 on the queue.

-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = {  1, 4, 0, 9 } → { 4, 0, 9, 3, 7 } 

Mark new visited

Neighbors.

Dequeue 1.  

-- Place all unvisited neighbors of 1 on the queue.

-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 } 

Dequeue 4.  

-- 4 has no unvisited neighbors!

Neighbors
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 } 

Dequeue 0.  

-- 0 has no unvisited neighbors!

Neighbors
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 } 

Dequeue 9.  

-- 9 has no unvisited neighbors!

Neighbors
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 } 

Dequeue 3.  

-- place neighbor 5 on the queue.

Neighbors

Mark new visited

Vertex 5.
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 } 

Dequeue 7.  

-- place neighbor 6 on the queue.

Neighbors

Mark new visited

Vertex 6.
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 } 

Dequeue 5.  

-- no unvisited neighbors of 5.

Neighbors
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

Q = { 6 } → {  } 

Dequeue 6.  

-- no unvisited neighbors of 6.

Neighbors
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Graphs traversal: BFS, example

2

4

3

5

1

7

6

9

8

0

source

0

1

2

3

4

5

6

7

8

9

T

T

T

T

T

T

T

T

T

T

Q = {  } STOP!!!   Q is empty!!!

What did we discover?

Look at “visited” tables.

There exists a path from source

vertex 2 to all vertices in the graph
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Time complexity of BFS

� Assuming: n = number of vertices, m = number of edges

� Time complexity of BFS:

� Assuming adjacency lists: O(n+m)

� each vertex in the graph is marked only once

� for each vertex, the AdjSet is visited only once

� Assuming adjacency matrix: O(n2)

� for each vertex it is necessary to scan the whole vector 

of adjacency

� it is independent from the number of edges
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Graphs traversal: Depth-First Search (DFS)

� DFS will continue to visit neighbors in a recursive pattern

� Main principle: 

� whenever we visit v from u, we recursively visit all 

unvisited neighbors of v

� then we backtrack (return) to u
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Graphs traversal: DFS

Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)

/* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) */

if (v is not marked) then DFSDFSDFSDFS(G, v) 
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Graphs traversal: DFS

Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)Procedure DFS(G : graph; u : vertex)

/* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited *//* visit the vertex u and mark it as visited */

for each v in AdjSetAdjSetAdjSetAdjSet(G, u)

/* visit the edge (u, v) *//* visit the edge (u, v) *//* visit the edge (u, v) *//* visit the edge (u, v) */

if (v is not marked) then DFSDFSDFSDFS(G, v) 



20

39Algorithms and Data Structures    2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

F

F

Mark 2 as visited
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Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
F

F

T

F

F

F

F

F

T

F

Mark 8 as visited



21

41Algorithms and Data Structures    2010-2011© Luciano Bononi

Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

F

T

F

F

F

F

F

T

F

Mark 0 as visited
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Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

F

T

F

F

F

F

F

T

F

Back to 8
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Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

F

T

F

F

F

F

F

T

T

Mark 9 as visited
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Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

F

F

F

F

F

T

T

Mark 1 as visited
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Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

F

F

F

F

T

T

Mark 3 as visited

Pred
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Graphs traversal: DFS, example

2
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1

7
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9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

F

T

T

Mark 4 as visited
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Graphs traversal: DFS, example

2

4

3

5

1

7

6

9

8

0 Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

F

F

F

T

T

8

9

-

1

3

-

-

-

2

8

Pred
Back to 3
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Graphs traversal: DFS, example

2

4
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source
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2
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5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

F

F

T

T

Mark 5 as visited
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Graphs traversal: DFS, example
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T
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T

F

T

T
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Graphs traversal: DFS, example
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Visited Table (T/F)
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T
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T
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T
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T

Mark 7 as visited
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Graphs traversal: DFS, example

Adjacency List
0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

2

4

3

5

1

7

6

9

8

0

source
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Graphs traversal: DFS, example

Adjacency List
0

1

2

3

4
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7
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Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T

2

4

3

5

1

7

6

9

8

0
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Graphs traversal: DFS, example

Adjacency List

0

1

2
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Visited Table (T/F)
T

T

T

T

T

T

T

T

T

T
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0
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Graphs traversal: DFS, example

Adjacency List
0
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Visited Table (T/F)
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T
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2

4

3

5

1

7

6

9

8

0

source



28

55Algorithms and Data Structures    2010-2011© Luciano Bononi

Graphs traversal: DFS, example

Adjacency List
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Visited Table (T/F)
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Graphs traversal: DFS, example

Adjacency List
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Graphs traversal: DFS, example

Adjacency List
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Traversal completed!
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Time complexity of DFS

� Assuming: n = number of vertices, m = number of edges

� Time complexity of DFS:

� Assuming adjacency lists: O(n+m)

� we never visited a vertex more than once

� we had to examine all edges of the vertices

� Assuming adjacency matrix: O(n2)

� for each node it is necessary to scan the whole vector 

of adjacency

� it is independent from the number of edges



30

59Algorithms and Data Structures    2010-2011© Luciano Bononi

Graphs: exercise

� Write the Depth-First-Search (DFS) procedure in pseudo-code. 

Given the undirected graph 

� G=(N, A)

� N={1, 2, 3, 4,5}

� A={[1, 2], [1, 3], [1,5], [3, 5], [3, 4], [4, 1], [4, 2]}

Execute the DFS procedure starting from the vertex 5

Plot the graph and show its representation based on adjacency 

set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors 

are in not decreasing order
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DFS exercise resolution

1 2

3 4

1 1

2 5

3 7

4 10

5 13

VERTICES

1 2

2 3

3 4

4 5

5 1

6 4

7 1

8 4

9 5

10 1

EDGES A(1)

DFS(5) = 5 (5, 1) 1 (1, 2) 2 (2, 1) (2, 4) 

4 (4, 1)(4, 2) (4, 3) 3 (3, 1) (3, 4) 

(3, 5) (1, 3) (1, 4) (1, 5) (5, 3)

5

6 15

11 2

12 3

13 1

14 3

A(2)

A(3)

A(4)

A(5)
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Graphs: exercise

� Write the Breadth-First-Search (BFS) procedure in pseudo-

code. Given the directed graph 

� G=(N, A)

� N={1, 2, 3, 4,5}

� A={(1, 2), (1, 3), (1,5), (3, 5), (3, 4), (4, 1), (4, 2), (5, 2)}

Execute the BFS procedure starting from the vertex 4

Plot the graph and show its representation based on adjacency 

set implemented using vertex and edges vectors

Show the visited nodes and edges, assuming that the vectors 

are in decreasing order
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Connected components

� EXERCISE: write the pseudo-code to find the number and 

the composition of connected components in a given graph G

� SUGGESTION: the algorithm could be based on a slightly 

modified version of the DFS traversal
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