
1

Algorithms and Data Structures 2010-2011

Lesson 4: Sets, Dictionaries and Hash Tables

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

29/04/2011, Bologna

2Algorithms and Data Structures 2010-2011© Luciano Bononi

Outline of the lesson

� Sets

� Definition

� Abstract Data Type (ADT)

� Implementions

� Dictionaries

� Definition

� Hash tables

2

3Algorithms and Data Structures 2010-2011© Luciano Bononi

Sets: definition

� DEFINITION: a Set is a collection (or family) of elements that

are of the same type

� The elements in a set are also called components or

members

� Sets are one of the most fundamental concepts in mathematics

� The elements of a set are homogeneous

� There is no notion of order among elements

� Multiple instances of the same element are not allowed

4Algorithms and Data Structures 2010-2011© Luciano Bononi

Set: Abstract Data Type

� DEFINITION:

� a set S is an unordered collection of elements from a

universe

� an element cannot appear more than once in S

� The cardinality of S is the number of elements in S

� an empty set is a set whose cardinality is zero

� a singleton is a set whose cardinality is one

3

5Algorithms and Data Structures 2010-2011© Luciano Bononi

Set ADT: some operations

� S, T = sets e = element

� Creates a new Set

� Given (e) returns {e}

� Returns “S union T”

� Returns “S intersection T”

� Returns the “complement of S”

� Returns True if e is in S,

otherwise returns False

� Returns the cardinality of S

…

Create(S)

Singleton(e)

Union(S, T)

Intersection(S, T)

Complement(S)

ElementOf(e, S)

Cardinality(S)

6Algorithms and Data Structures 2010-2011© Luciano Bononi

Set ADT: implementation

� As usual we have many possible implementations that are

suitable for the same ADT: each one with PROs and CONs

� CHOICE 1: Boolean vector

� CHOICE 2: Unordered list

� CHOICE 3: Ordered List

4

7Algorithms and Data Structures 2010-2011© Luciano Bononi

Set ADT: implementation with Boolean vectors

� CHOICE 1: Boolean vector

each Boolean element in the vector (true / false) represents an

element of the set

0

T T TF F F F FSET

ELEMENTS 1 2 3 k N-1… …

� Advantages and disadvantages:

� Memory footprint?

� Implementation of ADT operations

� Cost of the operations?

8Algorithms and Data Structures 2010-2011© Luciano Bononi

Set ADT: implementation with unsorted lists

� CHOICE 2: Unsorted List

� Singly or doubly linked?

� Advantages and disadvantages:

� Memory footprint?

� Implementation of ADT operations

� Cost of the operations?

27
Next

3
Next

99
Next

Head

5

9Algorithms and Data Structures 2010-2011© Luciano Bononi

Set ADT: implementation with sorted lists

� CHOICE 3: Sorted List

� Advantages and disadvantages:

� Memory footprint?

� Implementation of ADT operations

� Cost of the operations?

3
Next

27
Next

99
Next

Head

10Algorithms and Data Structures 2010-2011© Luciano Bononi

Dictionary: definition

� DEFINITION: a Dictionary is a special kind of set

� Only few operations are allowed:

� Find an element

� Insert a new element

� Delete an existing element

� The elements of a dictionary are usually called keys

� Many different implementations are suitable, in the

following we’ll see the hash tables

6

11Algorithms and Data Structures 2010-2011© Luciano Bononi

Dictionary: goal

� GOAL: to define a data structure that permits an efficient

implementation of the find(), insert() and delete() operations

� The universe cardinality is often huge

� It often not known “a priori” the number of elements to

accommodate in the dictionary

� Dictionaries are very often used in software, for example:

compilers and databases

12Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: unrealistic solution

� The hash table T is an array of “pointers”

� Each position (slot) in the hash table (T) corresponds to a key

in the universe of keys

� T[k] corresponds to an element with key k

� If the set contains no element with key k, then T[k]=NULL

7

13Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: unrealistic solution

� Insert(), Delete() and Find() all take O(1) (worst-case) time

� PROBLEM:

� The scheme wastes too much space if the universe is

large compared with the actual number of elements to be

stored

� In many real world cases this solution is impossible to

implement (i.e. each time the cardinality of the universe is

quite large)

14Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: the concept of hashing

� Usually, m << N

� h(Ki) = an integer in [0, …, m-1] called the hash value of Ki

8

15Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: hash function definition

� With hashing, an element having key k is stored in T[h(k)]

� h: hash function definition

� maps the universe U of keys into the slots of a hash table
T[0,1,...,m-1]

� an element of key k hashes to slot h(k)

� h(k) is the hash value of key k

16Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: collisions

� PROBLEM: collision

� two keys may hash to the same slot

� can we ensure that any two distinct keys get different
cells?

� No, if |U|>m, where m is the size of the hash table

1. Design a good hash function

� that is fast to compute and

� minimize the number of collisions

2. Design a method to resolve the collisions when they occur

9

17Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: hash function examples

� The division method

� h(k) = k mod m e.g. m=12, k=100, h(k)=4

� Requires only a single division operation (quite fast)

� Certain values of m should be avoided

� e.g. if m=2p, then h(k) is just the p lowest-order bits of k;
the hash function does not depend on all the bits

� Similarly, if the keys are decimal numbers, should not set
m to be a power of 10

� It’s a good practice to set the table size m to be a prime
number

� Good values for m: primes not too close to exact powers of 2

� e.g. the hash table is to hold 2000 numbers, and we don’t
mind an average of 3 numbers being hashed to the same
entry

� choose m=701

18Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: hash function examples

� Can the keys be strings?

� Most hash functions assume that the keys are natural

numbers

� If keys are not natural numbers, a way must be found to

interpret (translate) them as natural numbers

� EXAMPLE

� Add up the ASCII value of the characters in the string

� Problems:

� different permutations of the same set of characters

would have the same hash value

� the keys are well distributed in the table?

10

19Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: open addressing

� Open addressing hash tables store the records directly within

the array (also called closed hashing)

� Open addressing:

� relocate the key K to be inserted if it collides with an

existing key. That is, we store K at an entry different from

T[h(K)]

� Two issues arise:

� what is the relocation scheme?

� how to search for K later?

� Three common methods for resolving a collision in open

addressing:

1) linear probing, 2) quadratic probing, 3) double hashing

20Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: open addressing

� To insert a key K, compute h0(K)

� if T[h0(K)] is empty, insert it there

� If collision occurs, probe alternative cell h1(K), h2(K),

until an empty cell is found

� hi(K) = (hash(K) + f(i)) mod m, with f(0) = 0

� The function f(): is called collision resolution strategy

11

21Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: open addressing, linear probing

� f(i) =i

� cells are probed sequentially (with wraparound)

� hi(K) = (hash(K) + i) mod m

� Insertion:

� Let K be the new key to be inserted. We compute hash(K)

� for i = 0 to m-1

� compute L = (hash(K) + i) mod m

� if T[L] is empty, then we put K there and stop

� If we cannot find an empty entry to put K, it means that

the table is full and we should report an error

22Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: exercise

� Given an hash table that is initially empty and with:

� size = 17

� H(K) = k mod 17 and with linear probing

� Show the content of the hash table:

� after inserting the keys:

� B, I, O, I, N, F, O, R, M, A, T, I, C, S

� after deleting the keys:

� I, S

� and finally after inserting the keys:

� C, O, O, L

12

23Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: open addressing, clustering

� Quadratic probing

� f(i) = i2

� hi(K) = (hash(K) + i2) mod m

� A block of contiguously occupied table entries is a cluster

� On the average, when we insert a new key K, we may hit the

middle of a cluster. Therefore, the time to insert K would be

proportional to half the size of a cluster. That is, the larger

the cluster, the slower the performance

� Linear probing and quadratic probing are both affected by

problems of clustering (primary and secondary clustering)

24Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: open addressing, double hashing

� To alleviate the problem of clustering, the sequence of probes

for a key should be independent of its primary position =>

use two hash functions: hash() and hash2()

� f(i) = i * hash2(K)

� E.g. hash2(K) = R - (K mod R), with R is a prime number

smaller than m

13

25Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: deletion in open addressing

� How is it possible to implement deletion in open addressing?

� In open addressing the deletion of a key can not be

implemented simply erasing the key from the table,

otherwise this will isolate records further down the

probe sequence

� SOLUTION: add an extra bit to each table entry, and mark a

deleted slot by storing a special value DELETED

� Using this approach, how is it possible to implement the

Find(), Insert() and Delete() operations?

26Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: separate chaining

Instead of a hash table, we use a table of linked lists: keep a

linked list of keys that hash to the same value

14

27Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: separate chaining

� To insert a key K

� compute h(K) to determine which list to traverse

� if T[h(K)] contains a null pointer, initialize this entry to

point to a linked list that contains K alone

� if T[h(K)] is a non-empty list, we add K at the beginning

of this list

� To delete a key K

� compute h(K), then search for K within the list at T[h(K)]

� delete K if it is found

28Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: separate chaining

� Assume that we will be storing n keys. Then we should make

m the next larger prime number. If the hash function works

well, the number of keys in each linked list will be a small

constant

� Therefore, we expect that each search, insertion, and

deletion can be done in constant time. The value of this

constant depends on the average length of lists

� Disadvantage: memory allocation in linked list manipulation

will slow down the program

� Advantage: deletion is easy

15

29Algorithms and Data Structures 2010-2011© Luciano Bononi

Hash tables: separate chaining, exercise

� EXERCISE: in a dictionary some keys are accessed much

more frequently than others (i.e. in Italian some words are

much more frequently used than others)

� The dictionary is implemented using and hash table with

separate chaining

� Is it possible to modify the hash table to reduce the cost of

the Find() operation in the “average case”?

� SUGGESTION: implement a very simple heuristic to modify

the list management and to speed up accesses to the data

structure

30Algorithms and Data Structures 2010-2011© Luciano Bononi

References

� Part of this material is inspired / taken by the following freely

available resources:

� http://www.cs.ust.hk/~huamin/COMP171/index.htm

16

Algorithms and Data Structures 2010 - 2011

Lesson 4: Sets, Dictionaries and Hash Tables

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

29/04/2011, Bologna

