
1

Algorithms and Data Structures 2010-2011

Lesson 3: trees and visits

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

19/04/2011, Bologna

2Algorithms and Data Structures 2010-2011© Luciano Bononi

Outline of the lesson

� Trees

� Basics

� Rooted trees

� Binary tress

� Binary tree ADT

� Tree traversal (visits)

� Non-recursive implementation of visits

� Binary Search Trees (BSTs)

2

3Algorithms and Data Structures 2010-2011© Luciano Bononi

Motivation

� Let’s start with a real world problem:

given three apparently identical coins, two are of the same

weight, while the other is different.

How is it possible to find out the different one while using

only comparisons?

� Solution:

� number the coins, and then compare them

4Algorithms and Data Structures 2010-2011© Luciano Bononi

First example: decision tree

Symmetric to the

case “1<2”

This structure is a tree:

a decision tree

3

5Algorithms and Data Structures 2010-2011© Luciano Bononi

Second example: mathematical expressions

� Given the mathematical expression:

(4-3)*(2+1)

it can be represented as:

6Algorithms and Data Structures 2010-2011© Luciano Bononi

Tree: formal definition

� A tree is a set of nodes (vertices) connected by edges (links)

such that there is exactly one way to get from any node to

any other node

� Example: which of the following are trees?

YES! No, it is

a graph

No, it is

a forest

(i.e. multiple trees)

4

7Algorithms and Data Structures 2010-2011© Luciano Bononi

Theorem

� THEOREM:

every non-empty tree with n nodes has exactly n-1 edges

� How to prove? It is simple, by induction (n ≥1)

� This theorem can be also used to demonstrate that a given

data structures is NOT a tree

8Algorithms and Data Structures 2010-2011© Luciano Bononi

Rooted tree

� A tree is called a rooted tree if one of its nodes is

distinguished as root

� This definition can be used in a

recursive way:

� a rooted tree consists of a root node and a

finite set of sub-trees, which are

themselves rooted trees

5

9Algorithms and Data Structures 2010-2011© Luciano Bononi

Trees: terminology

A little of terminology about trees:

� r is root

� y is a parent of x (and of z); r is a parent of y

� r, y and x are ancestors of x

� r and y are proper ancestors of x

� x and z are children of y

� x, y, z and u are descendants of r

� x and z are siblings

� all ancestors of u form a path from u to the root

� <u, z, y, r>

� a node without children is called leaf

� in our example: w, x and u are leaves

� others are called internal nodes

10Algorithms and Data Structures 2010-2011© Luciano Bononi

Sub-trees

A sub-tree is:

� a node n plus all its descendants, n is the root
of the sub-tree

� in the example: y is the root of a sub-tree

� DEFINITION: an ordered tree consists of a

root node and a finite sequence of sub-trees,

which are themselves ordered trees

� IMPORTANT NOTES:

� the order is very important!

� also in this case the definition is recursive

6

11Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary tree

� A binary tree is either empty or it consists of a root node and

two sub-trees(left and right) which are themselves binary

trees

� Which are binary trees?

12Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary tree

� Are these two binary trees the same?

� Obviously they are not the same!

� Remember that binary trees are ordered trees!

7

13Algorithms and Data Structures 2010-2011© Luciano Bononi

Height and deep in binary trees

� The height of a node n in a binary tree is the number of

edges on the longest path from n to an external node

� the height of a rooted tree is the height of its root

� the height of an external node is 0

� The depth of a node is the length of the path to the root

� the root has depth 0; depths of external nodes can be different

14Algorithms and Data Structures 2010-2011© Luciano Bononi

Complete binary trees

� A binary tree whereby if the height is h, and all levels, except

possibly level h, are completely full. If the bottom level is

incomplete, then it has all nodes to the left side

� That is the tree has been filled in the level order from left to

right

Complete
NOT

complete

� Given a complete binary tree T with l leaves, what is the

height h of the tree? What is the mathematical function that

links the number of leaves in the tree and its height?

8

15Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary tree ADT: some operations

� Creates a new BinTree

� Creates a new Node

� True if BinTree is empty,

false otherwise

� Gets the left child of a node

� Gets the right child of a node

� Puts the left child of a node

� Puts the right child of a node

� Puts the root of the BinTree

…

Make(T)

NewNode(l, val, r)

Empty(T)

GetLeftChild(T, x)

GetRightChild(T, x)

PutLeftChild(T, x, y)

PutRightChild(T, x, y)

PutRoot(T, x)

16Algorithms and Data Structures 2010-2011© Luciano Bononi

Exercise: number of nodes in a tree

� EXERCISE:

given a binary tree T, count the number of nodes in the tree

function count (T, node)

if (node == NULL) then

sum := 0;

else

sum := 1 + count(T, GetLeftChild(T, node)) +

count(T, GetRightChild(T, node));

return(sum);

9

17Algorithms and Data Structures 2010-2011© Luciano Bononi

Pointer-based implementation of binary tree

� A tree is referenced by its root

� Node x is composed by three parts

� In this way, all nodes can be organized into a tree via its

pointers: it is quite similar to a linked list, but in this case we

have not a sequence of nodes

� What is the cost of the operations seen before?

� What is the cost of searching a given element in the bintree?

O(1)

18Algorithms and Data Structures 2010-2011© Luciano Bononi

Pointer-based implementation of binary tree

� PROBLEM:

given a tree T, how is possible to find the parent of a node x?

� SOLUTION: in the proposed implementation the solution is to

visit all the nodes in the tree

� What is the cost of the GetParent(T, x) operation?

� O(n), where n is the number of nodes of t

� ALTERNATIVE APPROACH:

� add in node x a reference (a pointer) to its parent : O(1)

10

19Algorithms and Data Structures 2010-2011© Luciano Bononi

Traversing binary trees

� PROBLEM:

how to visit each node exactly once given a binary tree?

� Starting from the root, you can have three choices:

� visiting the root itself;

� visiting the root’s left sub-tree;

� visiting the root’s right sub-tree;

� Three different orders ―three main paradigms:

� pre-order traversal

� in-order traversal

� post-order traversal

20Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary trees: pre-order visit

function preorder(T, node)

if (node <> NULL) then {

visit(T, node); // visits the node, i.e. prints the data

preorder(T, GetLeftChild(T, node));

preorder(T, GetRightChild(T, node));

}

� What is the cost of the pre-order traversing?

� Is it possible to further reduce the cost of the operation?

11

21Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary trees: in-order visit

function inorder(T, node)

if (node <> NULL) then {

inorder(T, GetLeftChild(T, node));

visit(T, node); // visits the node, i.e. prints the data

inorder(T, GetRightChild(T, node));

}

� What is the cost of the in-order traversing?

� Is it possible to further reduce the cost of the operation?

22Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary trees: post-order visit

function postorder(T, node)

if (node <> NULL) then {

postorder(T, GetLeftChild(T, node));

postorder(T, GetRightChild(T, node));

visit(T, node); // visits the node, i.e. prints the data

}

� What is the cost of the post-order traversing?

� Is it possible to further reduce the cost of the operation?

12

23Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary trees: non recursive implementation of visits

� The preorder(), inorder() and postorder() function seen in the

previous slides are recursive

� Is it possible to write a non-recursive implementation of

such functions?

� EXERCISE: let’s start with preorder()

� SUGGESTION: use a stack data structure to simulate the

recursion

� EXERCISE: inorder() and postorder()

24Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary Search Trees (BST)

� DEFINITION: for every node x in the tree, the value of the

entry at x is greater than the values of all the entries in the

left sub-tree of x, and smaller than the value of all the entries

in the right sub-tree of x

� For the same sequence, we can have different BSTs

� If we do in-order traversal on a BST, we exactly get the

ordered sequence of all keys!

13

25Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary Search Trees (BST): examples

� Given a key set {1, 2, 3, 4, 5}

26Algorithms and Data Structures 2010-2011© Luciano Bononi

Binary Search Trees (BST)

PROBLEMS

� what is the cost of:

� searching a value

� inserting a new node

� deleting a node

14

27Algorithms and Data Structures 2010-2011© Luciano Bononi

References

� Part of this material is inspired / taken by the following freely

available resources:

� http://www.cs.rutgers.edu/~vchinni/dsa/

� http://www.cs.aau.dk/~luhua/courses/ad07/

Algorithms and Data Structures 2008 - 2009

Lesson 3: trees and visits

Luciano Bononi

<bononi@cs.unibo.it>

http://www.cs.unibo.it/~bononi/
(slide credits: these slides are a revised version of slides created by Dr. Gabriele D’Angelo)

International Bologna Master in
Bioinformatics

University of Bologna

19/04/2011, Bologna

