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Outline of the lesson

� Trees

� Basics

� Rooted trees

� Binary tress

� Binary tree ADT

� Tree traversal (visits)

� Non-recursive implementation of visits

� Binary Search Trees (BSTs)
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Motivation

� Let’s start with a real world problem:

given three apparently identical coins, two are of the same 

weight, while the other is different. 

How is it possible to find out the different one while using 

only comparisons?

� Solution:

� number the coins, and then compare them
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First example: decision tree

Symmetric to the 

case “1<2”

This structure is a tree: 

a decision tree
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Second example: mathematical expressions

� Given the mathematical expression: 

(4-3)*(2+1)

it can be represented as:
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Tree: formal definition

� A tree is a set of nodes (vertices) connected by edges (links) 

such that there is exactly one way to get from any node to 

any other node

� Example: which of the following are trees?

YES! No, it is 

a graph

No, it is 

a forest 

(i.e. multiple trees)



4

7Algorithms and Data Structures    2010-2011© Luciano Bononi

Theorem

� THEOREM: 

every non-empty tree with n nodes has exactly n-1 edges

� How to prove? It is simple, by induction (n ≥1)

� This theorem can be also used to demonstrate that a given 

data structures is NOT a tree
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Rooted tree

� A tree is called a rooted tree if one of its nodes is 

distinguished as root

� This definition can be used in a 

recursive way: 

� a rooted tree consists of a root node and a 

finite set of sub-trees, which are 

themselves rooted trees
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Trees: terminology

A little of terminology about trees:

� r  is root

� y is a parent of  x (and of z); r is a parent of y

� r, y and x are ancestors of x

� r and y are proper ancestors of x

� x and z are children of y

� x, y, z and u are descendants of r

� x and z are siblings

� all ancestors of u form a path from u to the root

� <u, z, y, r>

� a node without children is called leaf

� in our example: w, x and u are leaves

� others are called internal nodes
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Sub-trees

A sub-tree is:

� a node n plus all its descendants, n is the root 
of the sub-tree

� in the example: y is the root of a sub-tree

� DEFINITION: an ordered tree consists of a 

root node and a finite sequence of sub-trees, 

which are themselves ordered trees

� IMPORTANT NOTES:

� the order is very important!

� also in this case the definition is recursive
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Binary tree

� A binary tree is either empty or it consists of a root node and 

two sub-trees(left and right) which are themselves binary 

trees

� Which are binary trees?
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Binary tree

� Are these two binary trees the same?

� Obviously they are not the same! 

� Remember that binary trees are ordered trees!
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Height and deep in binary trees

� The height of a node n in a binary tree is the number of 

edges on the longest path from n to an external node

� the height of a rooted tree is the height of its root

� the height of an external node is 0

� The depth of a node is the length of the path to the root

� the root has depth 0; depths of external nodes can be different
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Complete binary trees

� A binary tree whereby if the height is h, and all levels, except 

possibly level h, are completely full. If the bottom level is 

incomplete, then it has all nodes to the left side

� That is the tree has been filled in the level order from left to 

right

Complete
NOT

complete

� Given a complete binary tree T with l leaves, what is the 

height h of the tree? What is the mathematical function that 

links the number of leaves in the tree and its height?
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Binary tree ADT: some operations

� Creates a new BinTree

� Creates a new Node

� True if BinTree is empty, 

false otherwise

� Gets the left child of a node

� Gets the right child of a node

� Puts the left child of a node

� Puts the right child of a node

� Puts the root of the BinTree

…

Make(T)

NewNode(l, val, r)

Empty(T)

GetLeftChild(T, x)

GetRightChild(T, x)

PutLeftChild(T, x, y)

PutRightChild(T, x, y)

PutRoot(T, x)
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Exercise: number of nodes in a tree

� EXERCISE: 

given a binary tree T, count the number of nodes in the tree

function count (T, node)

if (node == NULL) then 

sum := 0;

else 

sum := 1 + count(T, GetLeftChild(T, node)) + 

count(T, GetRightChild(T, node)); 

return(sum);
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Pointer-based implementation of binary tree

� A tree is referenced by its root

� Node x is composed by three parts

� In this way, all nodes can be organized into a tree via its 

pointers: it is quite similar to a linked list, but in this case we 

have not a sequence of nodes

� What is the cost of the operations seen before?

� What is the cost of searching a given element in the bintree?

O(1)
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Pointer-based implementation of binary tree

� PROBLEM: 

given a tree T, how is possible to find the parent of a node x?

� SOLUTION: in the proposed implementation the solution is to 

visit all the nodes in the tree

� What is the cost of the GetParent(T, x) operation?

� O(n), where n is the number of nodes of t

� ALTERNATIVE APPROACH:

� add in node x a reference (a pointer) to its parent : O(1)
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Traversing binary trees

� PROBLEM: 

how to visit each node exactly once given a binary tree?

� Starting from the root, you can have three choices:

� visiting the root itself;

� visiting the root’s left sub-tree;

� visiting the root’s right sub-tree;

� Three different orders ―three main paradigms:

� pre-order traversal

� in-order traversal

� post-order traversal

20Algorithms and Data Structures    2010-2011© Luciano Bononi

Binary trees: pre-order visit

function preorder(T, node)

if (node <> NULL) then {

visit(T, node); // visits the node, i.e. prints the data

preorder(T, GetLeftChild(T, node));

preorder(T, GetRightChild(T, node));

}

� What is the cost of the pre-order traversing?

� Is it possible to further reduce the cost of the operation?
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Binary trees: in-order visit

function inorder(T, node)

if (node <> NULL) then {

inorder(T, GetLeftChild(T, node));

visit(T, node); // visits the node, i.e. prints the data

inorder(T, GetRightChild(T, node));

}

� What is the cost of the in-order traversing?

� Is it possible to further reduce the cost of the operation?
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Binary trees: post-order visit

function postorder(T, node)

if (node <> NULL) then {

postorder(T, GetLeftChild(T, node));

postorder(T, GetRightChild(T, node));

visit(T, node); // visits the node, i.e. prints the data

}

� What is the cost of the post-order traversing?

� Is it possible to further reduce the cost of the operation?
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Binary trees: non recursive implementation of visits

� The preorder(), inorder() and postorder() function seen in the 

previous slides are recursive

� Is it possible to write a non-recursive implementation of 

such functions?

� EXERCISE: let’s start with preorder()

� SUGGESTION: use a stack data structure to simulate the 

recursion

� EXERCISE: inorder() and postorder()
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Binary Search Trees (BST)

� DEFINITION: for every node x in the tree, the value of the 

entry at x is greater than the values of all the entries in the 

left sub-tree of x,  and smaller than the value of all the entries 

in the right sub-tree of x

� For the same sequence, we can have different BSTs

� If we do in-order traversal on a BST, we exactly get the 

ordered sequence of all keys!
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Binary Search Trees (BST): examples

� Given a key set {1, 2, 3, 4, 5}
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Binary Search Trees (BST)

PROBLEMS

� what is the cost of:

� searching a value

� inserting a new node

� deleting a node 
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