
sadhana manuscript No.
(will be inserted by the editor)

A compact kernel for the calculus of inductive
constructions

A. Asperti · W. Ricciotti ·
C. Sacerdoti Coen · E. Tassi

the date of receipt and acceptance should be inserted later

Abstract The paper describes the new kernel for the Calculus of Inductive Construc-

tions (CIC) implemented inside the Matita Interactive Theorem Prover. The design

of the new kernel has been completely revisited since the first release, resulting in a

remarkably compact implementation of about 2300 lines of OCaml code. The work is

meant for people interested in implementation aspects of Interactive Provers, and is

not self contained. In particular, it requires good acquaintance with Type Theory and

functional programming languages.

Keywords Interactive Theorem Provers · Calculus of Inductive Constructions ·
Matita · Kernel

Department of Computer Science, University of Bologna (Italy)
E-mail: asperti,ricciott,sacerdot,tassi@cs.unibo.it
The work was written while the first author was on leave at the Microsoft Research-INRIA
Joint Center in Orsay, France. He would like to thank the Center for the hospitality and the
financial support.

2

Contents

1 Introduction . 2
1.1 A software engineering perspective . 3
1.2 The overall structure of the kernel . 4

2 CIC data structures . 6
2.1 Terms . 6

2.1.1 Variables, metavariables and Implicit terms 6
2.1.2 Lambda terms, types and sorts . 7
2.1.3 Constants . 8
2.1.4 Matching . 9

2.2 Context, metasenv and substitution . 9
2.3 Objects . 9
2.4 Other changes w.r.t. the old Matita kernel . 11

3 Iterators . 12
3.1 Lifting and substitution . 14

4 Library environment . 16
4.1 Library module . 16
4.2 Environment module . 17
4.3 Universes hierarchy . 19

5 Reduction and conversion . 21
5.1 Reduction . 21

5.1.1 Reduction Strategies . 23
5.1.2 The implemented reduction strategy . 27

5.2 Conversion . 28
6 Typechecking . 33

6.1 Well typedness of inductive definitions . 43
6.2 Positivity conditions . 45
6.3 Ensuring termination of recursive functions . 50

7 Conclusions . 59
A Syntax-directed type-checking rules . 62

A.1 Environment formation rules . 63
A.2 Metasenv formation rules . 63
A.3 Subst formation rules . 63
A.4 Context formation rules . 63
A.5 Term typechecking rules . 64
A.6 Term conversion rules . 65
A.7 Term reduction rules . 66

B Kernel interface . 67
C Auxiliary functions . 68

1 Introduction

We describe in this paper the new kernel for the Calculus of Inductive Constructions

(CIC) (see Werner (1994); Paulin-Mohring (1996); Giménez (1998)) implemented inside

the Matita Interactive Theorem Prover. The kernel is the most delicate component of

interactive provers, in charge of the verification of proofs. Not all interactive provers

have a kernel in the above sense, and not all systems adhere to the so called de Bruijn

principle, namely the plea for a small kernel (see Wiedijk (2006) for a comparison).

Still, having a small, clear, well documented, freely inspectable and easily replicable

kernel, seems to be the best warranty for the effective reliability of the system.

Somehow surprisingly, even among the developers of systems adopting a kernel-

oriented approach, documentation does not seem to be a priority (that is even more

surprising considering that the kernel is, usually, a particularly stable part of the sys-

tem). As far as we know, our paper is the first extensive description of a system kernel,

3

and in particular the first detailed discussion of the implementation of the Calculus of

Inductive Constructions. This, even before the technical interest of the paper, is the

major novelty of our contribution, promoting a more transparent (and competitive)

attitude to the implementation of interactive provers, and hopefully paving the way to

a stream of similar contributions.

The new Matita kernel is just the first step of a deep revisitation work of the

entire system. Our first implementation of Matita, taking us about 10 man years work,

spread over a period of 5 years (see Asperti et al (2006) for an account), although

already resulting in a competitive system enabling complex formalization efforts (see

e.g. Asperti and Ricciotti (2008)), has been for us mostly an occasion to acquire a direct

experience of the field. Taking advantage of this knowledge, and of all the lessons

learned during the realization of the first Matita prototype, we feel now ready to

restart the work from scratch, and to expose, piece by piece, a coherent and meditated

architectural design of the system, and a detailed description of its implementation.

The new kernel, described in this paper, is the first piece of this program.

1.1 A software engineering perspective

Reliability is not the only reason for having a small kernel. The point is that most of

the data structures of the kernel have a direct impact on the rest of the system. For

instance, the structure of the refiner essentially mimics that of the type-checker; hence,

a simpler type-checker will likely results in a simpler, more maintainable and hence

more adaptable refiner, that in turn could have a beneficial effect on the chaotic realm

of tactics. The complex pipeline of transformations between the low level CIC term

and the user input syntax is still another aspect of the system where a simplification

of the data structures could likely give rise to a sensible simplification of the code.

The point is that interactive provers have an intrinsic complexity that is hard to

understand and hence to master. A priori, the basic user interaction loop implemented

by these applications seems to be quite trivial: the system must read a user command,

execute it, update the system status and present to the user a new view. For this rea-

son, when we completed the implementation of the first Matita prototype, it was for us

a sort of surprise to discover that we wrote no less than 70.000 lines of OCaml code1.

But the point that is really disconcerting is that even a posteriori, and in spite of our

attempts to analyze and systematize the code, the reasons for the complexity of these

systems (comprising our own!) still remain, for us, quite puzzling. Our conclusion is

that it is due to a myriad of minor design choices not sufficiently meditated, cumu-

latively producing a quite aberrant final effect. Trying to correct a posteriori these

wrong choices looks like a desperate effort. Better to restart the implementation from

scratch, following a more careful methodological design. Our final aim is to reduce the

dimension of the system at about 40.000 lines of OCaml code, that is little more than

the half of the current dimension of the system. Of course, we are not seeking to have a

compact code per se; the point is that having a simpler system would reduce the num-

ber of bugs2, improve the maintainability of the system, reduce the training period

for new developers, and make easier to modify the application for experimenting new

1 That is in any case little more than the half of the code of Coq!
2 When implementing the new version of the Matita kernel with simpler data structures and

invariants, we spotted several bugs in the old kernel version that were hidden by the complexity
of its code.

4

techniques or implementing additional functionalities. All features that are essential

for an avant-guard tool like Matita, explicitly meant for experimental prototyping and

mostly developed by students.

The paper does not provide a formal description of the CIC calculus and its meta-

theory for many reasons. One motivation is that a formal presentation of the calculus

and its main properties would escape the software engineering scope of the special

issue. Another major motivation is the fact that there is no coherent exposition of

the meta-theory of the whole CIC as it is currently implemented in Coq and Matita.

Indeed, the CIC calculus is obtained as an extension of the Calculus of Constructions

(COC) with a hierarchy of universes, primitive inductive and coinductive types, case

analysis operators and constrained recursion. The meta-theory of each one of these

extensions has been provided separately by different authors, and the community still

deserves a unified view of it and also models for the whole calculus (the interested

reader can find some documentation in Paulin-Mohring (1996); Geuvers (1993); Werner

(1994); Giménez (1998); Luo (1990); Muoz (1997)). Moreover, many of these extensions

are based on syntactic approximations of undecidable problems, like termination of

recursive functions, which are clearly heuristics. These heuristics have changed during

the years, they have deserved little attention in the literature, and nevertheless their

intimate knowledge is necessary for users to exploit the full capabilities of the system.

To conclude, we have decided to accompany the code of Matita with an high level

description of the positivity conditions and the termination heuristics for recursive

and co-recursive functions. These are given at the beginning of the sections relative to

them, together with examples to help the reader to understand the code. Moreover,

we recall in App. A a syntax directed version of the type-checking rules for CIC. We

do not explain how they are obtained from the standard type-checking rules since this

translation perfectly mimics the one for the Calculus of Constructions. The Calculus of

Constructions is well known and already documented as a pure type system in Baren-

dregt (1992). A syntax directed presentation of its rules has been already addressed

in van Benthem Jutting et al (1994); Pollack (1994) and implemented in at least the

COQ Huet et al (1998) and LEGO Pollack (1994) systems. The code of Matita follows

this presentation for the PTS part of CIC, which remains a functional and full PTS.

1.2 The overall structure of the kernel

Figure 1 describes the structure of the kernel modules, and their dependencies.

We have 8 modules, whose content will be briefly described here. The rest of the

paper contains a detailed documentation of their implementation.

NUri: a small module implementing logical names by means of Uniform Resource Iden-

tifiers (URI). We use URIs to locate objects in a library. The untrusted code that

maps logical names (URIs) to physical names (URLs) before retrieving and parsing

the object is implemented in the NCicLibrary module outside the kernel.

NCicEnvironment: the management of the environment of CIC-objects (Section 4.2).

NReference: the data type descriptor for the different constants of CIC (Section 2.1.3).

NCic: data structures for the Calculus of Inductive Construction, comprising terms,

contexts and objects (Section 2). The kernel uses an untrusted module NCicPp to

pretty-print CIC terms when reporting errors to the user.

NCicUtils CIC-iterators and main utility functions (Section 3).

5

Fig. 1 The solid nodes are the only modules that need to be trusted, and thus belong to
the kernel. The dashed nodes are untrusted. In particular, the information retrieved from the
library is always type-checked by the kernel before usage. For each module we show the lines of
codes required for the implementation and the number of functions exported to other modules
in the interface (listed in App. B). Modules names are usually shortened using the acronyms
in parentheses.

NCicSubstitution: low-level manipulation of terms in DeBruijn notation: lifting and

substitution (Section 3.1).

NCicReduction: the reduction machine for the calculus, and the conversion test (Sec-

tion 5).

NCicTypeChecker: the type synthesis algorithm (Section 6), comprising in particular

positivity conditions for inductive types (Section 6.2) and well guardedness (termi-

nation) conditions for recursive functions (Section 6.3).

6

2 CIC data structures

2.1 Terms

Our description begins with the main data structure we employ for terms of the Calcu-

lus. The concrete syntax adopted by Matita for terms closely reflect the internal data

structure and is very similar to the one adopted by Coq and described in Bertot and

Castéran (2004).� �
type universe = (bool ∗ NUri.uri) list

(∗ Max of non−empty list of named universes, or their successor (when true) ∗)
type sort = Prop | Type of universe
type implicit annotation = [‘Closed | ‘Type | ‘Hole | ‘Term]
type lc kind = Irl of int | Ctx of term list
and local context = int ∗ lc kind (∗ shift (0 → no shift),

subst (Irl n means id of
lenght n) ∗)

and term =
| Rel of int (∗ DeBruijn index, 1 based ∗)
| Meta of int ∗ local context
| Appl of term list (∗ arguments ∗)
| Prod of string ∗ term ∗ term (∗ binder, source, target ∗)
| Lambda of string ∗ term ∗ term (∗ binder, source, target ∗)
| LetIn of string ∗ term ∗ term ∗ term (∗ binder, type, term, body ∗)
| Const of NReference.reference (∗ ref : (indtype |constr)no ∗)
| Sort of sort (∗ sort ∗)
| Implicit of implicit annotation (∗ ... ∗)
| Match of NReference.reference ∗ (∗ ind. reference , ∗)

term ∗ term ∗ (∗ outtype, ind. term ∗)
term list (∗ branches ∗)� �
A term is either a variable (Rel), a metavariable (Meta), an application (Appl), a

product (Prod), a lambda abstraction (Lambda), a let-in construct (LetIn), a defined

constant (Const), a sort (Sort), and implicit term (Implicit), or a case construct (Match).

2.1.1 Variables, metavariables and Implicit terms

Variables are encoded by means of direct DeBruijn notation, i.e. as the position of

the binder (counting from 1) along the path of the abstract syntax tree leading from

the variable occurrence to its binder. Thus, for instance, λf : . . . λd : . . . (f (f x)) is

represented as Lambda(”f”,...,Lambda(”x”,...,Appl ([Rel 2; Appl ([Rel 2; Rel 1])]))) .

A metavariable is a hole in the term. In the Curry-Howard analogy, it also represents

a portion of the proof that has still to be filled-in; the types of metavariables are hence

the goals yet to be solved by the user. The presence of metavariables in the kernel is one

of the distinctive features of Matita w.r.t. Coq: the main advantage is the possibility

to check the well typedness of open terms, resulting in a simpler interface with the

refiner3. The complexity of the management of metavariables is due to the fact that,

after being created (in a given context, that we call canonical context), due to the

possible reduction of the term, they can be duplicated and moved in different contexts

(e.g. moved under different binders). This makes extremely difficult to manage their

successive instantiation, since the instance must be suitably relocated in the current

context of the other occurrences (see McBride (1999); Geuvers and Jojgov (2002)).

3 The refiner is the component, just outside the kernel, in charge of type inference.

7

To solve this problem, it is convenient to equip each metavariable with an explicit

substitution. In Matita, to avoid the use of explicit names, the explicit substitution

is organized as a list of terms, defining a local context for the metavariable: when the

metavariable will be instantiated with a term, the free variables of the term will be

solved in this local context (that hence plays the role of a closure). An additional

structure, the metasenv, contains the list of all metavariables, with their canonical

contexts and their types. To make an example of how this information is exploited

by unification (outside the kernel), suppose to have two instances M1[l1] and M2[l2]

of a given metavariable (with respective local contexts l1 and l2), and that M1 is

instantiated with a term t1. The first step is to find (according to some heuristics) a

term t such that t[l1] = t1, that is to “relocate” t1 in the canonical context of the

metavariable, and then to instantiate M2 with t[l2]. Let us finally stress that, although

we allow the presence of metavariables in the kernel, no unification is running up in it

(in particular, nothing in the kernel depends on heuristics).

The implementation of the local context is one of the novelties of the new Matita

kernel. In fact, by extensive testing of the system, we realized that in most of the cases

the local context (even after duplication) is the identity substitution, while in many

others is just a simple shift operation. Hence we decided to make this two frequent

subcases explicit, in order to take advantage of this information in the implementation

of several functions both in the kernel and outside it.

Implicit terms are a degenerate form of CIC-term (unknown/don’t care term) only

meant for extra-kernel usages. Their degenerate nature is reflected in the fact that no

term processed in kernel should (still) contain an Implicit: all kernel functions return

an exception, in this case. Typical usages are e.g. in prerefinement phases of parsing,

or for expressing paths inside CIC-terms (by “pruning” irrelevant parts).

2.1.2 Lambda terms, types and sorts

Applications, products, lambda abstractions, let-ins and sorts are the basic and well

known ingredients of typed lambda calculi (see Barendregt (1992) for an introduction),

and there is little to add, here. The type discipline of the Calculus of Inductive Con-

structions is based on an impredicative sort Prop of propositions, and a predicative

hierarchy of Universes (Luo (1990)) Typei : Typei+1 (Set = Type0). For flexibil-

ity reasons, it is useful to remove fixed universes (of the form Typei) in favour of

universe variables Typeu (where u is an URI) with explicit user-declared constraints

between universe variables (Courant (2002)). In Matita we also keep outside the kernel

a boolean, associated to universe variables and used during pretty-printing of formulae,

to choose the presentational flavor (type vs. formula) for inhabitants of the universe.

We plan to let the user dynamically configure these aspects of the type system in the

next release of Matita.

In particular, our representation of universes is a major simplification of that of

EPECC (Courant (2002)). The user is allowed to define universe variables (Type being

just one of them) and constraints among universe variables (e.g. Type < Type1). The

boolean value paired with an URI is true when we are taking the successor of a universe

variable. A list of universe variables (or they successors) has to be read as the maximum

of its elements. An empty list represents the smallest universe and is used to type the

sort of propositions. Further informations about this representation of universes will

be given in Section 4.3 where we will also present the data structures employed in the

kernel to represent constraints between universe variables.

8

As for the other terms, let us just remark that it is worth to keep applications in

“flat” normal form, i.e. without applications in head position of other applications (to

be ensured during substitution); we also implicitly assume that the list of arguments

of an application has always length greater then 1. Another points concerns the let-

in construct; in our first implementation of Matita the type of the named term was

optional, and we had to cache the inferred type to avoid duplicate work, for instance

during type-checking; a posteriori it is simpler to have it always explicit, at the price

of inferring it outside the kernel when the user does not want to give it explicitly.

2.1.3 Constants

The design of constants is the point where the new Matita kernel differs more sensibly

from our first implementation and from the current Coq kernel. Under the generic name

of constants we are in fact grouping names referring to six different kind of objects:

declarations (axioms, variables, . . .), definitions (functions, theorems, . . .), recursive

and co-recursive functions, (co)inductive types and constructors of (co)inductive types.

In particular, each constant is equipped with a descriptor of type reference , defined as

follows:� �
type spec =
| Decl
| Def of int (∗ height ∗)
| Fix of int ∗ int ∗ int (∗ fixno , recparamno, height ∗)
| CoFix of int
| Ind of bool ∗ int ∗ int (∗ inductive, indtyno, leftno ∗)
| Con of int ∗ int ∗ int (∗ indtyno, constrno, leftno ∗)

type reference = Ref of NUri.uri ∗ spec� �
A reference is a couple (u, s) where u is its (long) name, and s is the descriptor of the

object, of type spec. The first argument of Fix and CoFix is the number of the function

in a block of mutually recursive (resp. corecursive) ones; in addition, the Fix constructor

also takes the number of the “recursive parameter”, that is of the argument that is

supposed to decrease during reduction (used to trigger the reduction of fixpoints, see

Section 5). The last parameter of Def and Fix is the height of the constant, expressing

the maximum chain of dependencies between the given constant and the library objects

it depends upon. The first parameter of Ind makes a distinction between inductive and

coinductive types: the information is already in the object declaration, but is replicated

in the reference to avoid a few lookups during type-checking. The second parameter

of Ind (the first of Con) is the number of the inductive type in a block of mutually

inductive ones; the second parameter of Con is the number of the given constructor. In

both Ind and Con the number of left parameters (see Sec. 2.3) of the inductive type is

replicated to avoid few lookups during reduction.

The major paradigm shift w.r.t the old kernel concerns the decision to move the

definition of (co)fixpoints from the level of terms to the level of objects, resulting in

a drastic simplification of the kernel code, and with the only drawback of loosing the

possibility to declare nested fixpoints (this does not imply a loss of expressiveness, since

by the technique of lambda lifting (Johnsson (1985)) we may always move up inner

functions).

9

2.1.4 Matching

The last component of the syntax of terms is match. As a first approximation, its

usage is similar to the match-with statement of ML-like languages, where the role

of constructors in patterns is played by inductive type constructors. A match-term

depends on four arguments (u, T, t, pl). t is the matching term, its type must be an

inductive type with name (uri) u; pl is a list of bodies for the different branches of

the match (as many as the number of constructors of the inductive type); each branch

is explicitly abstracted over the input arguments of the corresponding constructor.

Finally, T is the so called result type. Due to the dependent type discipline, the type

checker would not be always able to guess a uniform result type for all branches, and

this must hence be explicitly provided (see Section 6 for a detailed discussion).

2.2 Context, metasenv and substitution

Each term lives in a context containing definitions or declarations for its free variables;

moreover, all its free metavariables are either declared in a metasenv, or instantiated

by a substitution.� �
type context entry = (∗ A declaration or definition ∗)
| Decl of term (∗ type ∗)
| Def of term ∗ term (∗ body, type ∗)

type hypothesis = string ∗ context entry
type context = hypothesis list
type conjecture = string option ∗ context ∗ term
type metasenv = (int ∗ conjecture) list
type subst entry = string option ∗ context ∗ term ∗ term
type substitution = (int ∗ subst entry) list� �

The context entry type should be clear. An hypothesis is just a named context entry,

where the name is simply a string. A context is a list of hypothesis. A conjecture is a

metavariable declaration: it depends on three arguments (s, c, T) where s is an optional

name, c is the canonical context discussed in the previous section, and T is the type of

the metavariable (obviously, w.r.t. its canonical context). A metasenv is a list of pairs

associating to each metavariable (identified by an integer) its declaration.

The natural complement of the metasenv is the substitution, that is a list of pairs

associating to a metavariable a declaration subst entry, that is a tuple (s, c, t, T) where s

is an optional name, c is the canonical context, t is the term instantiating the metavari-

able, and T is the type of t.

2.3 Objects

An object is a possibly incomplete definition, declaration or theorem made of closed

terms. Generic attributes referring to all kind of objects are hence its name (uri), its

depth (defined as the maximum of the depth of the objects occurring in its definition

plus one), a metasenv and a subst (usually empty). Since the depth is mainly used to

drive the unfolding of terms during the conversion test, if the object does not have a

body (axioms, inductive types and so on) the depth is conventionally set to 0.

10

� �
(∗ invariant: metasenv and substitution have disjoint domains ∗)

type obj kind =
| Constant of relevance ∗ string ∗ term option ∗ term ∗ c attr
| Fixpoint of bool ∗ inductiveFun list ∗ f attr

(∗ true → fix, funcs, arrts ∗)
| Inductive of bool ∗ int ∗ inductiveType list ∗ i attr

(∗ true → inductive, leftno , types ∗)
(∗ the int must be 0 if the object has no body ∗)

type obj = NUri.uri ∗ int ∗ metasenv ∗ substitution ∗ obj kind� �
We have three main kinds of objects: (non recursive) Constants, blocks of recursive

(or corecursive) functions, and blocks of inductive (or coinductive) types.

The simplest kind is a Constant, taking five arguments (r, t, T, a). t is an optional

body (for instance, axioms do not have a body), T is its type, and a is a list of attributes,

containing information about the object not relevant for the kernel, but useful for

many other functionalities of the system. r is a new, experimental argument aimed

to integrate proof irrelevance (see e.g. Miquel and Werner (2003); Werner (2008)) into

Matita: it is a list of boolean parameters expressing, for each of the input arguments

of the constant, its “relevance” in view of conversion (see Section 5.2).� �
type relevance = bool list (∗ relevance of arguments for conversion ∗)
type def flavour = (∗ presentational ∗)

[‘ Definition | ‘Fact | ‘Lemma | ‘Theorem | ‘Corollary | ‘Example]
type def pragma = (∗ pragmatic of the object ∗)

[‘Coercion of int
| ‘Elim of sort (∗ elimination principle ; universe is not relevant ∗)
| ‘Projection (∗ record projection ∗)
| ‘ InversionPrinciple (∗ inversion principle ∗)
| ‘Variant
| ‘Local
| ‘Regular] (∗ Local = hidden technicality ∗)

type ind pragma = (∗ pragmatic of the object ∗)
[‘Record of (string ∗ bool ∗ int) list | ‘Regular]
(∗ inductive type that encodes a record; the arguments are the record
∗ fields names and if they are coercions and then the coercion arity ∗)

type generated = [‘Generated | ‘Provided]
type c attr = generated ∗ def flavour ∗ def pragma
type f attr = generated ∗ def flavour
type i attr = generated ∗ ind pragma� �

A Fixpoint is a block of mutually recursive functions (or mutually corecursive, if the

first boolean argument is false). Apart from attributes, it is just a list of (co)recursive

functions, defined by a relevance list for arguments, a local name to distinguish func-

tions of a same block, the number of the recursive parameter (i.e. of the argument

which is supposed to structurally decrease during reduction, in order to guarantee

termination), the body of the function and its type.� �
(∗ relevance, name, recno, ty, bo ∗)

type inductiveFun = relevance ∗ string ∗ int ∗ term ∗ term
(∗ if coinductive, the int has no meaning and must be set to −1 ∗)� �

An Inductive object, is a block of mutually defined inductive types (resp. coin-

ductive, if the first boolean argument is false). Apart from attributes, and the list of

(co)inductive types, it is made of a leftno parameter. Actually, each Inductive object

is a family of types, indexed over a given number of fixed parameters, which are sup-

posed to appear identical as initial sources in all the types of the inductive objects and

11

associated constructors belonging to the block. In lack of an agreed terminology, and

due to their initial positions in types, we simply call these arguments left parameters.

We call right parameters the remaining sources in the type of the inductive definition4.

Hence, leftno is simply the number of left parameters of the block. The use of left

parameters will be explained in Sections 5 and 6.� �
type constructor = relevance ∗ string ∗ term (∗ id, type ∗)
type inductiveType =
relevance ∗ string ∗ term ∗ constructor list
(∗ relevance, typename, arity, constructors ∗)� �

Finally, each inductive type is simply defined by a relevance list, a name, a type

and its constructor list; a constructor has a relevance list, a name and a type.

2.4 Other changes w.r.t. the old Matita kernel

In this section we discuss some other important changes in the CIC datatype, not

directly visible in the new syntax.

The first important modification is in the structure of the contexts. In the old kernel,

the hypothesis composing the contexts were optional, reflecting the fact that they could

no longer be accessible (typically, as a result of an explicit clear command of the user).

This decision (that looked quite natural at the time) has in fact a quite nasty impact in

several parts of the code. The biggest problem is that the clear operation is performed

on a given instance of a metavariable (the current goal), but the clear operation must

be reflected in its canonical context in the metasenv, and hence propagated (possibly,

on demand) to all other instances. In other words, the optional nature of the context

entries, was naturally reflected in the optional nature of the arguments in the local

contexts, and the problem was to keep in synch the local contexts of the different

instances, both between them and with the canonical context.

With the current implementation, a clear operation involves the creation of a fresh

new metavariable with a restricted canonical context, and a unification between this

metavariable and the old one.

At the object level, all object declarations were equipped by a list of parameters,

which played the role of instantiatable axioms. The invocations of an object had an

explicit substitution possibly instantiating these parameters with CIC terms. These

explicit substitutions were the Matita analog of Coq sections, and the instantiatable

axioms corresponded to Coq section variables. They were mostly introduced in Matita

for compatibility purposes. The double role of instantiatable axioms (as axioms and as

binders) interfered with the indexing and searching tools of Matita, since axioms had

to be indexed when used as axioms by the user, but not when used as abstractions.

Moreover, after extensive use of the system, no Matita user has apparently felt the

need of using such a feature, and we believe that it should be possible to find bet-

ter alternatives. Thus we decided to remove it from the new kernel. In general, the

management of sections (and palliatives) inside the kernel seems to be a clear mistake:

it complicates in a sensible way the management of objects, for purposes which are

mostly of an extra-logical (presentational) nature.

4 The terminology adopted by Dybjer in Dybjer (1997) for what we call left parameters is
simply parameters, while he uses indexes in place of right parameter

12

Another major change with respect to the previous kernel is the adoption of al-

gebraic universes to represent inferred types, which we have already discussed, and

the choice of abandon inference of universes, which used to performed in the old ker-

nel and that has been replaced by checking of user provided constraints in the spirit,

and with the same advantages, of EPECC Courant (2002). The new representation

also allowed us to drop the special treatment of the CProp sort in the old kernel. The

CProp sort was a special type universe inhabited by constructive logical connectives.

Notationally, its inhabitants were presented to the user as formulae; semantically, the

universe corresponded to a predicative universe of computationally relevant terms, and

it was contained in Type 0. In the new kernel we can simply represent CProp as a uni-

verse variable, constrained to be strictly smaller than the first universe variable and

recognized outside the kernel by the pretty-printer in order to print its inhabitants as

formulae. Indeed, we can let the user decide whether inhabitants of declared universe

variables are meant to represent formulae or types. This was not possible in the old

kernel where each occurrence of Type was associated to a fresh universe variable whose

URI was not known in advance and whose constraints were dynamically computed by

universe inference.

A minor difference between the old and the new kernel is the management of non de-

pendent binders. In the old kernel, the name carried by binders was optional, resulting

in additional case distinctions all over the code, with the only benefit in pretty-printing

(done outside the kernel). It is the pretty-printer that is now responsible of detecting

anonymous binders (for instance to show non dependent products as implications and

not as universal quantifications).

Another minor difference, that greatly simplified and reduced the size of the type-

checking rules for pattern matching, is having dropped the non dependent form of

pattern matching. In the old kernel, mostly by compatibility with objects from the

Coq library, we used to have a simplified representation for matches whose branches

could be typed without quantifying on the matched term. However, the alternative

representation doubled the number of cases and introduced additional code to infer

whose representation was in use and to compare semantically equivalent terms with

different representations.

We have also purged casts from the new kernel. A cast is a term constructor made

of a term and a type, subject to the typing constraint that requires the provided type

to be convertible with the type inferred for the provided term. Casts are sometimes

added by the user or by tactics that generate terms outside the kernel in order to drive

type inference (also done outside the kernel). In the next version of Matita we plan to

use a let-in (that carry an explicitly given type for the definiens) to provide the same

functionality.

3 Iterators

One of our motivations for writing a new kernel for the Matita prover was to clean

up and factorize the code of the old system, taking advantage of the experience ac-

quired since the first writing. According to this philosophy, we decided to make a more

systematic use of generic iterators over the CIC datatype. The general idea for their

usage is that the programmer is in charge of writing the interesting cases, delegating

then to the iterator the management of the remaining ones. This has the drawback of

repeating pattern matching on the input term at each function call, one in the user

13

function and one in the iterator, but this is largely compensated by the compactness

and readability of the resulting code.

Our first iterator is a fold function, with the following type� �
val fold :

(NCic.hypothesis → ’k → ’k) → ’k →
(’k → ’a → NCic.term → ’a) → ’a → NCic.term → ’a� �

The role of the parameters g, k, f , acc and t is the following: void visit the term

t accumulating in acc the result of the applications of f to subterms; k is an input

parameter for f and should be understood as the information required by f in order

to correctly process a subterm. This information may (typically) change when passing

binders, and in this case the function g is in charge to update k.

Here is the formal definition:� �
let fold g k f acc = function
| C.Meta → assert false
| C.Implicit
| C.Sort
| C.Const
| C.Rel → acc
| C.Appl [] | C.Appl [] → assert false
| C.Appl l → List. fold left (f k) acc l
| C.Prod (n,s,t)
| C.Lambda (n,s,t) → f (g (n,C.Decl s) k) (f k acc s) t
| C.LetIn (n,ty, t ,bo) → f (g (n,C.Def (t,ty)) k) (f k (f k acc ty) t) bo
| C.Match (,oty,t,pl) → List. fold left (f k) (f k (f k acc oty) t) pl� �

The fold function returns an exception in the case of a Meta, in order to force the

use to re-implement this delicate case. Note, the usage of g in the case of binders, to

compute a new value of k in terms of the context entry trespassed.

As an example of its usage, let us consider the function does not occur context n nn t,

in charge of checking that the term t does not contain variables in the interval (n, nn],

under the assumption (precondition) that no variable in (n, nn] occurs in the types of

the variables that are declared in context and that hereditary occur in t.5� �
let does not occur ˜subst context n nn t =

let rec aux k = function
| C.Rel m when m > n+k && m <= nn+k → raise DoesOccur
| C.Rel m when m <= k || m > nn+k → ()
| C.Rel m →

(try match List.nth context (m−1−k) with
| ,C.Def (bo,) → aux (n−m) () bo
| → ()

with Failure → assert false)
| C.Meta (,(,(C.Irl 0 | C.Ctx []))) → (∗ closed meta ∗) ()
| C.Meta (mno,(s,l)) →

(try
let , ,term, = U.lookup subst mno subst in
aux (k−s) () (S.subst meta (0,l) term)

with U.Subst not found →match l with
| C.Irl len → if not (n+k >= s+len || s > nn+k) then raise DoesOccur
| C.Ctx lc → List. iter (aux (k−s) ()) lc)

| t → U.fold (fun k → k + 1) k aux () t

5 In other words, t remains well typed in the context obtained dropping the declaration of
all variables in (n, nn] and all the following declarations and definitions that refer to them.

14

in
try aux 0 () t ; true
with DoesOccur → false� �

The interesting case is that of a variable. Here, we have to check that it is outside the

interval (n, nn] taken in input; however, since we passed k binders, the interval must

be relocated to (n + k, nn + k]. In this case, the number k of binders traversed so far

is the only information required by f , and the g function has just to increment it.

A second important iterator is map.� �
val map:
(NCic.hypothesis → ’k → ’k) → ’k →
(’k → NCic.term → NCic.term) → NCic.term → NCic.term� �

The role of the parameters g, k, f , and t is the following: void visit the term t mapping

subterms via the f function. The function f may depend on an additional parameter

k which is supposed to be updated by g when passing binders. The definition of map is

similar to fold and we omit it; the only interesting peculiarity of our code is that, due

to its frequent use, it has been carefully optimized to preserve sharing of all subterms

left untouched by the map.

3.1 Lifting and substitution

Typical examples of use of the map functions are the elementary operations for the

management of terms with DeBruijn indices: lift and subst.

As it is well known, adopting a syntax based on de Bruijn indices, we do not have

to worry about α-conversion, but

1. we need to introduce a lifting operation to relocate the free variables of a term

when moving it in a different context;

2. when substituting the first DeBruijn index in a term M for an argument N , we

must: (a) lift each replacement copy of N of the suitable quantity (the depth of

the variable occurrence), (b) decrement all free variables of M by 1, to take into

account the fact that one binder reference has been solved.

The definition the lifting operation is completely standard.� �
let lift from k n =
let rec liftaux k = function
| C.Rel m as t → if m < k then t else C.Rel (m + n)
| C.Meta (i,(m,l)) as t when k <= m →

if n = 0 then t else C.Meta (i,(m+n,l))
| C.Meta (,(m,C.Irl l)) as t when k > l + m → t
| C.Meta (i,(m,l)) →

let lctx = NCicUtils.expand local context l in
C.Meta (i, (m, C.Ctx (HExtlib.sharing map (liftaux (k−m)) lctx)))

| C.Implicit → (∗ was the identity ∗) assert false
| t → NCicUtils.map (fun k → k + 1) k liftaux t

in
liftaux k

let lift ?(from=1) n t =
if n = 0 then t
else lift from from n t� �

15

The substitution operation is so important that, in the old Matita code we had four

almost identical versions of it, independently written in different parts of the code, and

by different people: the base case, a parallel substitution operation, another copy to

instantiate a term with a local context of a metavariable, and still another copy to

solve the result of a computation of the reduction machine w.r.t. its environment (see

Section 5). All this versions have been unified by the following function.� �
val psubst :

?avoid beta redexes:bool → (’a → NCic.term) → ’a list → NCic.term → NCic.term� �
In the call psubst ˜avoid beta redexes: false map arg args t the role of arguments is the

following: t is the term inside which we must substitute the elements of the args list;

these elements are not necessarily CIC terms, hence a map arg map is used to transform

them into the right data type (or to just manipulate them, such as lifting them of some

additional value); the optional avoid beta redexes parameter (set to false by default)

automatically reduces any β-redex obtained by instantiation in the spirit of hereditary

substitution. The latter provides some speed-up in the conversion check between an

expected user provided type (like a type in a binder) and an inferred type that is

obtained by substitution for a variable a λ-abstraction. The reason is that the latter

contains β-redexes, which can be deeply nested in the term, whereas the former, being

user provided, is likely to be β-redex free. Small deep differences in the two terms are

sufficient to block certain optimizations performed during conversion (see Section 5.2).� �
let rec psubst ?(avoid beta redexes=false) map arg args =
let nargs = List.length args in
let rec substaux k = function
| C.Rel n as t →

(match n with
| n when n >= (k+nargs) →

if nargs <> 0 then C.Rel (n − nargs) else t
| n when n < k → t
| n (∗ k <= n < k+nargs ∗) →
(try lift (k−1) (map arg (List.nth args (n−k)))
with Failure | Invalid argument → assert false))

| C.Meta (i,(m,l)) as t when m >= k + nargs − 1 →
if nargs <> 0 then C.Meta (i,(m−nargs,l)) else t

| C.Meta (,(m,(C.Irl l))) as t when k > l + m → t
| C.Meta (i,(m,l)) →

let lctx = NCicUtils.expand local context l in
C.Meta (i,(0,

C.Ctx (HExtlib.sharing map (fun x → substaux k (lift m x)) lctx)))
| C.Implicit → assert false (∗ was identity ∗)
| C.Appl (he:: tl) as t →

(∗ Invariant: no Appl applied to another Appl ∗)
let rec avoid he’ = function
| [] → he’
| arg :: tl ’ as args→

(match he’ with
| C.Appl l → C.Appl (l@args)
| C.Lambda (, ,bo) when avoid beta redexes →

(∗ map arg is here \x.x, Obj magic is needed because
∗ we don’t have polymorphic recursion w/o records ∗)

avoid (psubst
˜avoid beta redexes Obj.magic [Obj.magic arg] bo) tl’

| → if he == he’ && args == tl then t else C.Appl (he’::args))
in
let tl = HExtlib.sharing map (substaux k) tl in

16

avoid (substaux k he) tl
| t → NCicUtils.map (fun k → k + 1) k substaux t

in
substaux 1� �

A couple of interesting instances of psubst are the following functions:� �
let subst ?avoid beta redexes arg = psubst ?avoid beta redexes (fun x → x)[arg]
(∗ subst meta (n, C.Ctx [t 1 ; ... ; t n]) t ∗)
(∗ returns the term [t] where [Rel i] is substituted with [t i] lifted by n ∗)
(∗ [t i] is lifted as usual when it crosses an abstraction ∗)
(∗ subst meta (n, (C.Irl | C.Ctx [])) t | → lift n t ∗)
let subst meta = function
| m, C.Irl
| m, C.Ctx [] → lift m
| m, C.Ctx l → psubst (lift m) l� �

4 Library environment

4.1 Library module� �
exception ObjectNotFound of string Lazy.t
val get obj : NUri.uri → NCic.obj� �
The library module provides access to a mathematical repository by means of a func-

tion from names (URIs) to objects. An exception can be raised when a name does

not correspond to any object. The new kernel of Matita relies on the existence of an

implementation for a library module. However, it does not trust in any way this im-

plementation: after retrieving an object from the library, the object is type-checked

before adding it to the environment.

Currently, we provide two implementations of the library. The first one grant access

to a distributed XML repository of objects respecting the format of the new kernel.

The second one is a wrapper around the library of the old kernel implementation. Every

time an old object is requested, we type-check it using the old kernel and we translate

it to the new format. We also exploit memoization to avoid translating the same object

multiple times.

The translation performs two major transformations on the terms. The first one

transforms the Fixpoint terms of the old kernel into Fixpoint objects on the new one.

This requires a λ-lifting technique (Johnsson (1985), see also Peyton-Jones (1987))

to hoist local definitions out of their surrounding context into a fixed set of closed

global functions. The main difficulty is due to the fact that equality of CIC-terms is

structural, while objects are identified by name. Thus, during λ-lifting, we need to map

structurally equal local functions to a single object. We achieve this by means of an

heuristics based on a cache of already translated recursive functions. The heuristics

may fail when a recursive function definition occurs twice in the library, but in one

occurrence some of its free variables have been instantiated. For this reason, we have

been able to test the new kernel on most of the 35000 old objects coming from the Coq

proof assistant library, but not on all of them (the problem is only due to the heuristics

used in the automatic translation, not to a loss of expressiveness of the typing system).

17

The second major transformation consists in fixing universes in the terms. The

old kernel, as the one of Coq, used to perform inference of universes: the user wrote

terms containing a single unspecified universe Type; the kernel made a fresh instance

of each occurrence of the universe and it inferred a graph of constraints whose nodes

were the universes and whose edges were inclusion constraints collected during type-

checking. The detection of a cycle in the graph corresponds to the discovery of a logical

inconsistency and implies the rejection of the object that induces the cycle.

The main drawback of universe inference is that it can become quite expensive,

especially in a system with the granularity of Matita, where each object is a separate

entity requiring its own universe graph (in the old kernel, up to 30% of the type-

checking time was consumed by the management of universes). Moreover, the code

for universe inference, though conceptually simple, is big and error prone. It is also

unclear why the kernel should be responsible of universe inference, since other kind

of inferences are performed outside the kernel. Finally, this technique was invented to

leave freedom to the user of building libraries with very complex constraint graphs, but

it overkills the problem. Indeed, most of the developments to be found in the Coq and

Matita libraries only need 2 universes (and the second one seems to be used mainly to

perform reflection, see Barthe et al (1995)). This should not be a surprise, since the

logical power of using i universes corresponds to the existence of the first i inaccessible

cardinals in Zermelo-Fraenkel set theory (Werner (1997)). Finally, some users like the

predicativists of the Formal Topology school want to have a tight control and visibility

of the universes used, which is exactly what is made transparent by universe inference.

For all these reasons, the new kernel only performs universe constraints checking

in the spirit of Courant (2002). Universe inference is performed once and for all during

translation of old objects to the new syntax. Moreover, the graph is collapsed as much

as possible by identifying nodes that are allowed to be merged. The result on the library

of Matita is just a graph with two nodes.

4.2 Environment module

The environment module is in charge of the management of well typed objects. The

environment module and the type-checking module (described in Section 6) need to be

mutually recursive: when a reference to an object is found during reduction or type-

checking, the object must be retrieved from the environment; when the environment

is asked for an object in the library that has not been typed yet, it must ask the

type-checker to verify it before adding it to the set of verified objects6. To solve the

mutual recursion the following function is provided, in order to allow the typechecker

to properly set the typecheck obj function.� �
let typecheck obj,already set = ref (fun → assert false), ref false
let set typecheck obj f =
if ! already set then assert false
else begin typecheck obj := f; already set := true end� �

The environment maintains two data structures: the set of already typed objects

from the library and the set of objects being typed in this moment. The first set is

6 This top-down management of the environment, where objects are type-checked only on
demand, is a peculiarity of Matita that we keep from the old kernel Sacerdoti Coen (2004b).
Less document-centric and less library oriented proof assistants like Coq typecheck objects in
bottom-up order, starting checking of an object only after that of all its dependencies.

18

assumed to be quite large, since it must eventually contain all the objects in the current

user development and all the objects they refer to. We choose to represent the set using

an hash-table from URIs to objects tagged with ‘WellTyped or to exceptions tagged

with ‘Exn. The choice of a data structure with an efficient retrieval time is fundamental,

since retrieval is performed during reduction and during type-checking almost every

time a reference is considered. Insertion in the data structure is performed only once

for each object that enters the environment, and only after type-checking that is an

expensive operation.

We represent the second set as a stack of pairs (URI,object). Every time the en-

vironment retrieves an object from the library, it pushes it on top of the stack (that

we call the set of frozen objects, or simply the frozen stack). Then it invokes the

type-checker and, after completion, it moves the object from the stack to the set of

type-checked objects. When a reference is met during type-checking, the environment

verifies that the object referred to is not part of the frozen list. If this happens, the

object contains a recursive dependency on itself, which is logically unsound.

The main function of the module is the following get checked obj.� �
let get checked obj u =
if List . exists (fun (k,) → NUri.eq u k) ! frozen list
then
raise (CircularDependency (lazy (NUri.string of uri u)))

else
let obj =
try NUri.UriHash.find cache u
with
Not found →
let saved frozen list = ! frozen list in
try
let obj =
try NCicLibrary.get obj u
with
NCicLibrary.ObjectNotFound m → raise (ObjectNotFound m)

in
frozen list := (u,obj):: saved frozen list ;
!typecheck obj obj;
frozen list := saved frozen list ;
let obj = ‘WellTyped obj in
NUri.UriHash.add cache u obj;
obj

with
| Sys.Break as e →

frozen list := saved frozen list ;
raise e

| Propagate (u’,) as e’ →
frozen list := saved frozen list ;
let exn = ‘Exn (BadDependency (lazy (NUri.string of uri u’ ˆ

” depends (recursively) on ” ˆ NUri. string of uri u ˆ
” which is not well−typed”))) in

NUri.UriHash.add cache u exn;
if saved frozen list = [] then exn else raise e’

| e →
frozen list := saved frozen list ;
let exn = ‘Exn e in
NUri.UriHash.add cache u exn;
if saved frozen list = [] then exn else raise (Propagate (u,e))

in
match obj with

19

‘WellTyped o → o
| ‘Exn e → raise e� �

First of all, the function looks for an URI in the frozen list to detect cycles in the

library, i.e. objects defined in terms of themselves. If this is not the case, the hash-

table is used to retrieve the type-checker verdict, in case the objects was met before. If

this fails, the object is retrieved from the untrusted library, frozen, type-checked and

unfrozen. If type-checking fails, the frozen object is removed from the list, and the

failure is recorded in the cache (but in cases of a Sys.Break7). Moreover, if the frozen

list is not empty, the failure is propagated by means of a local exception propagate,

that allows to have a better diagnostic of the dependency error.� �
exception Propagate of NUri.uri ∗ exn� �
This exception, that cannot escape the function, is caught once for each frozen object,

which is removed from the stack before remembering in the hash-table that the object

is not well-typed since it depends on a bad object.

The get checked obj function may raise one of the three following exceptions:� �
exception CircularDependency of string Lazy.t
exception ObjectNotFound of string Lazy.t
exception BadDependency of string Lazy.t� �
The first exception is raised when an object is defined in terms of itself, either directly

or by means of a loop in the library. The second exception re-defines the library module

exception with the same name. It is raised when the environment is unable to retrieve

an object from the library. The third exception is raised when an object depends on

another object that is not well typed. No other exception can be raised by functions

in this module.

The cache clearly acts as a data structure to memoize previous invocations of the

type-checker. In case of excessive memory consumption, rarely used objects could be

removed from the cache, at the price of remembering at least their MD5 sum in order to

avoid re-typing them when they get referenced again. The MD5 sum is also necessary

in case of modifications to the library, to avoid type-checking an object using two

alternative versions of a second object referenced twice.

4.3 Universes hierarchy

Our data type for algebraic universes was presented in Section 2.1.2. An algebraic

universe is the representation of a universe as a formula over universe variables built

by means of successors of universes (to type an existent universe) and maximum of a

list of universes (to type products). This is the representation of algebraic universes in

EPECC Courant (2002). However, our data structure only allows to represent a small

subset of all algebraic universes. In particular, we can not represent the type of terms

containing universes which are not all variables. Concretely, this allows us to represent

all types inferred for user provided terms, which can only refer to universe variables,

but it does not allow to represent types inferred for already inferred types.

7 This special exception, which is meant to be caught only at the top level, is raised when
the user wants to stop the action currently performed by the system, which is taking too long.

20

This is not a limitation since the typing rules of the calculus never check the type of

an inferred type. The main difference w.r.t. EPECC is, for instance, that we do not allow

the user to write Type + 1 explicitly: he must give a name to that universe and force

it to be bigger than Type. All benefits of EPECC are preserved: the implementation is

rather simple (and much simpler than that of EPECC, see Section 4.2) and good error

messages can be presented to the user, since he explicitly declares constraints and the

kernel just checks that needed constraints are declared. This implies that a universe

inconsistency message is displayed only when the user defines a new type variable,

while a missing constraint exception can be reported during type checking, and that

constraint will act only on universes the user explicitly declared (or on an algebraic

expression involving the maximum and the successor).

Since the user is allowed to declare universe variables, we do not provide any pre-

defined universe. However, since Prop is a sort and since the kernel must be able to

infer a type for it, we need an algebraic universe with the property of being included

in any user declared universe. We simply represent it with type0, which is the neutral

element of the maximum of a list of universes, represented by the empty list.� �
let type0 = []
let le constraints = ref [] (∗ constraints : (strict , a, b) ∗)� �

User provided constraints form the constraints graph, which is simply stored in the

list of constraints le constraints . According to our experience, it is really uncommon

to have more that two universe variables and thus a more sophisticated structure is

not needed. Constraints are triples, the former component is a boolean defining the

constraint (less or equal, strictly less) holding between the second and third components

(two universe variables).� �
let rec le path uri avoid strict a b =
(not strict && NUri.eq a b) ||
List . exists
(fun (strict ’, x,y) →

NUri.eq y b && not (List.exists (NUri.eq x) avoid) &&
le path uri (x :: avoid) (strict && not strict’) a x

) ! le constraints
let leq path a b = le path uri [b] (fst a) (snd a) b� �

Checking for constraints satisfiability amounts at looking for paths between uni-

verse variables walking on constraints. The le path uri function uses the avoid accumu-

lator to store already visited universes to avoid loops, while strict is set to true when

the path we are looking for has to cross at least one strict constraint. The algorithm

is based on the following inductive definitions, where ·1 represent the unitary length

path.
a ≤ b ⇐⇒ ∃c. a ≤ c ∧ (c <1 b ∨ c ≤1 b)

a < b ⇐⇒ ∃c. (a < c ∧ c ≤1 b) ∨ (a ≤ c ∧ c <1 b)� �
let universe leq a b =

match a, b with
| a ,[(false ,b)] → List. for all (fun a → leq path a b) a
| , →

raise (BadConstraint
(lazy ”trying to check if a universe is less or equal than an inferred universe”))

let universe eq a b = universe leq b a && universe leq a b
let add constraint strict a b =

match a,b with

21

| [false ,a2],[false ,b2] →
if not (le path uri [] strict a2 b2) then (

if le path uri [] (not strict) b2 a2 then
(raise (BadConstraint (lazy ”universe inconsistency”)));
le constraints := (strict ,a2,b2) :: ! le constraints)

| → raise (BadConstraint
(lazy ”trying to add a constraint on an inferred universe”))� �

User defined constraints are processed with add constraint, and if the new constraint

leads to inconsistency (i.e. Typej < Typei && Typei <= Typej) an exception is raised.

The two functions universe eq and universe leq are used in the conversion check, see

Section 5, and during the type checking of inductive definitions, see Section 6.1

5 Reduction and conversion

The most distinguishing feature of CIC is its computational nature. The logic embeds

a schematic but powerful functional programming language, hence programs can not

only be encoded in CIC and proved correct, but also run within the logic. This opens

the doors to many applications, like for example reflecting decision procedures inside

the logic, proving them correct and running them to solve open conjectures (see Barthe

et al (1995); Boutin (1997); Werner (2008)). This technique is not only elegant, but

also proved to be essential in huge formalization efforts, like the proof of the four color

theorem (Gonthier (2005)).

The developers of the Coq system (INRIA’s original implementation of the Calculus

of Inductive Constructions) have recently pushed this idea up to equip (a version of) the

kernel with a proper compiler Grégoire (2003) for CIC-terms. This technique, although

debatable when considering the additional non trivial amount of code one has to trust,

provides great computational power, allowing to internalize and run bigger programs.

Matita, being born as light tool for experimentations, adopts a more high-level and

flexible approach to reduction. It uses a generic environment machine abstracted over

the reduction strategy, allowing to define, test and compare different strategies with a

minimal programming effort.

5.1 Reduction

Reduction is defined for CIC terms that are closed in a given environment, described

in Section 4.2, and context, defined in Section 2. CIC has several one step reduction

rules, with different traditional names that we rapidly recall here:

β-reduction This is the classical reduction step of the λ-calculus:

λx : T.M N →M{N/x}

The application of the function λx : T.M to the argument N results in substituting

the argument for the formal parameter x in the body M of the function. In terms

of DeBruijn indexes, the variable x has index 1, and the substitution operation is

that described in Section 3.1.

22

δ-reduction This is constant unfolding. It comprises both the expansion of a top level

constant (i.e. a CIC object built with the Constant constructor) and the unfolding

of a local definition already pushed on the context (i.e. a DeBruijn index pointing

to a Def context entry).

ι-reduction It is a pattern matching step involving terms of the form

Match (, ,kj ,[p1;. . .;pm])

To trigger the reduction, the recursive argument kj must be the constructor of

an inductive type, possibly applied to some arguments, some instantiating the left

arguments followed by some parameters args. A pj branch corresponding to such

constructor is then selected in the list [p1;. . .;pm] and the resulting reduct is the

application of pj to args. A justification for dropping the left parameters is given in

section 6 when discussing the type checking of pattern matching.

µ-unfolding This reduction step unfolds the body of a recursive function and is trig-

gered only when its recursive argument is a constructor. This is usually considered

a constrained δ-reduction step.

ν-unfolding This step unfolds the body of a corecursive function, whenever it occurs

as the matching argument of a ι-rule.

The transitive and reflexive closure of these reduction steps is called reduction

(and thus t is a reduct of itself) and its symmetric closure is the so called conversion

equivalence relation. This relation allows the calculus to identify types, and especially

dependent types (types/proposition containing occurrences of terms) up to reduction.

For instance, with typical arithmetical definitions, the two expressions x = 2 and

x = 1 + 1 would not only be logically equivalent: they would be convertible (i.e.

identical).

Since the reduction relation is strongly normalizing on well typed terms, conversion

is trivially decidable by reducing both terms to their normal form and syntactically

comparing them. Anyway computation is expensive, and it is important to avoid unnec-

essary computations to obtain good type checking performances. This suggests that, to

check if two terms fall in the same equivalence class, a controlled parallel reduction of

both may lead to success before reaching the normal form. For example, having defined

times in terms of plus, 100 ∗ 100 and 100 + 99 ∗ 100 can be judged to be equal only

performing few reduction steps on the former term.

The literature suggests (see Crégut (1990); Asperti (1992); Crégut (2007)) that

(weak) head normal forms provides good intermediate points to break normalization.

We further refine this idea by exploiting the height of constants (Sacerdoti Coen (2007))

(statically computed at the moment of their definition): let E be an environment, the

height h(c) of a constant c such that E(c) = t is defined by h(c) = 1+ max
c′∈t h(c′) where

c′ ∈ t if c′ occurs in t. If no constant occurs in c the height of c is 0.

An empirical observation confirms that a term Appl [c1;t1; . . .;tn] whose δ-reduct

further reduces to Appl [c2;s1; . . .;sm] is most of the time8 characterized by the property

h(c1) > h(c2). We can exploit heights for controlled δ-reduction, that will came into

hand during conversion.

For instance, consider the two convertible terms 100 ∗ 100 and 100 + 99 ∗ 100 that

both have a δ-redex in head position. The former term reduces to the latter and since

product is defined in terms of addition, we have h(∗) > h(+). Thus it is a good idea

8 This may e.g. fail with highly polymorphic functions that, when applied, can reduce to
terms of any type. An example is the polymorphic functions that computes the head of a list.

23

to perform head reduction on the first term unless a δ-redex in head position of height

less or equal than h(+) is found. If the reduced term has height h(+), we can hope

that its head is an addition and that the two terms are now convertible. This is indeed

the case in our not so artificial example.

We believe that the computation of the weak head normal form up to the unfolding

of constants having a given height rarely performs useless reduction steps (not necessary

to check the conversion of two terms).

In the following we first describe the machinery to compute the (δ-reduction con-

strained) weak head normal form of a term, and then we present the conversion algo-

rithm.

5.1.1 Reduction Strategies

To allow the study of different reduction strategies, we used a generic environment

abstract machine (called GKAM in Sacerdoti Coen (2004a)), that allows to implement

almost every reduction strategy properly instantiating an OCaml functor (higher order

module).

A typical environment machine like Krivine’s abstract machine (KAM) is made

of an environment, a code and a stack. The code is the term to be reduced. Its free

variables are assigned values by the environment, that plays the role of an explicit

simultaneous substitution. When an application is processed, its argument is moved

to the stack together with a pointer to the environment, forming a closure. When a

λ-abstraction (part of a β-redex) is processed, the top of the stack is simply moved to

the top of the environment. Finally, when a de Bruijn index n is processed, the n-th

component of the stack is fetched and becomes the new term to be processed (together

with the new environment).

The GKAM generalizes the KAM in three ways:

1. Reduction of the argument is allowed when it is moved to the stack, to the envi-

ronment or in code position. In this way, a large variety of reduction strategies can

be implemented.

2. The data structures of the elements of the stack and of the environment become

parameters. This helps in implementing strategies such as call-by-need. As a con-

sequence, we also introduce as parameters read-back functions from stack and en-

vironment items to terms. The last two functions will not be used directly by the

reduction machine during its computation, but to reconstruct the CIC-term corre-

sponding to a configuration (i.e. when the reduction stops). This is performed by

the following code� �
let rec unwind (k,e,t,s) =

let t =
if k = 0 then t
else

NCicSubstitution.psubst ˜avoid beta redexes:true
(RS.from env for unwind ˜unwind) e t

in
if s = [] then t
else C.Appl(t::(RS.from stack list for unwind ˜unwind s))� �

3. The machine is extended to CIC.

24

The OCaml module system allows to define functors, that are functions from mod-

ules to modules. This mechanism allows to define higher order modules, that can be

instantiated with every module that satisfies the input signature of the functor.

Every reduction strategy, defines the types of objects living in the stack and in the

environment, but their type is not known in advance, thus the generic reduction ma-

chine will be only able to manipulate its stack and environment by means of functions

provided by the reduction strategy. The signature a reduction strategy module has to

inhabit follows.� �
module type Strategy = sig

type stack term
type env term
type config = int ∗ env term list ∗ C.term ∗ stack term list
val to env :
reduce: (config → config ∗ bool) → unwind: (config → C.term) →
config → env term

val from stack : stack term → config
val from stack list for unwind :
unwind: (config → C.term) → stack term list → C.term list

val from env : env term → config
val from env for unwind :
unwind: (config → C.term) → env term → C.term

val stack to env :
reduce: (config → config ∗ bool) → unwind: (config → C.term) →
stack term → env term

val compute to env :
reduce: (config → config ∗ bool) → unwind: (config → C.term) →
int → env term list → C.term → env term

val compute to stack :
reduce: (config → config ∗ bool) → unwind: (config → C.term) →
config → stack term� �
The initial configuration of the reduction machine for the reduction of a term t is

(0, [], t , []) . The first integer is the length of the environment and is used only to

speed up some computations.

Given the unwind function the following requirements are necessary for the sound-

ness of the reduction strategy (but cannot be expressed by the OCaml type system):

1. ∀t, e. from stack list for unwind (RS.to stack t (k,e, t,[])) is a reduct of unwind

(k,e, t,[])

2. ∀s. from env for unwind (RS.to env s) is a reduct of from stack list for unwind s

3. ∀e. unwind (RS.from env e) is a reduct of from env for unwind e

The recursive function reduce takes in input a constant height delta, a context

and a configuration. The context is a CIC context, orthogonal to the one carried in

the reduction machine configuration, and fixed for the whole reduction process. The

subst argument is an optional metavariable substitution. It returns a reduced machine,

along with a boolean which is true if the output machine is in weak head normal form

(reduction could stop earlier because of the delta limit).� �
module Reduction(RS : Strategy) = struct

let rec reduce ˜delta ?(subst = []) context : config → config ∗ bool =
let rec aux = function
| k, e, C.Rel n, s when n <= k →

let k ’, e ’, t ’, s ’ = RS.from env (list nth e (n−1)) in
aux (k’,e ’, t ’, s ’@s)

25

| k, , C.Rel n, s as config (∗ when n > k ∗) →
let x= try Some (List.nth context (n − 1 − k)) with Failure → None in
(match x with
| Some(,C.Def(x,)) → aux (0,[],NCicSubstitution. lift (n − k) x,s)
| → config, true)� �

The auxiliary function defined inside reduce proceeds by pattern matching on the

head term. The first two cases are for DeBruijn indexes. If the index points to a term

stored in the machine environment, RS.from env is called on the n-th element of the

machine environment to obtain a new machine configuration whose stack is prepended

to the current one. If the length of the environment is less then n the variable has

not been substituted by reduction, but it may be bound to a local definition in the

context. In that case the definiens is retrieved, and is expanded lifted in the current

context (moved under n-k binders). Otherwise the term is in head normal form and

the reduction machine stops.� �
| (k, e, C.Meta (n,l), s) as config →

(try
let , , term, = NCicUtils.lookup subst n subst in
aux (k, e, NCicSubstitution.subst meta l term,s)

with NCicUtils.Subst not found → config, true)� �
Metavariables are considered in normal form, unless the input argument subst con-

tains an entry for them. If that entry exists, the substituted term is instantiated in the

actual context using the explicit substitution l, and is recursively reduced.� �
| (, , C.Implicit ,) → assert false
| (, , C.Sort ,)
| (, , C.Prod ,)
| (, , C.Lambda , []) as config → config, true� �

Implicit arguments should never reach the kernel, thus this case is not considered.

Sorts are in normal form by definition, thus no step is performed in these cases. The

same holds for products and unapplied λ-abstractions (i.e. when the stack is empty).� �
| (k, e, C.Lambda (, ,t), p :: s) →

aux (k+1, (RS.stack to env ˜reduce:aux ˜unwind p)::e, t,s)
| (k, e, C.LetIn (, ,m,t), s) →

let m’ = RS.compute to env ˜reduce:aux ˜unwind k e m in
aux (k+1, m’::e, t , s)� �

When a λ-abstraction is encountered with a non empty stack, the first item of the

stack is moved to the environment with the RS.stack to env function, and the body

of the abstraction is recursively processed. When a local definition is encountered, its

definendum is moved directly to the environment (thanks to RS.compute to env) leaving

the stack untouched.� �
| (, , C.Appl ([]|[]),) → assert false
| (k, e, C.Appl (he:: tl), s) →

let tl ’ =
List .map (fun t→ RS.compute to stack ˜reduce:aux ˜unwind (k,e,t,[])) tl

in
aux (k, e, he, tl ’ @ s)� �

When an application is encountered, all arguments are pushed on the stack with

RS.compute to stack and the head is recursively processed. Ill-formed applications are

rejected.

26

� �
| (, , C.Const

(Ref.Ref (,Ref.Def height) as refer), s) as config →
if delta >= height then

config , false
else

let , ,body, , , = NCicEnvironment.get checked def refer in
aux (0, [], body, s)

| (, , C.Const (Ref.Ref (,
(Ref.Decl|Ref.Ind |Ref.Con |Ref.CoFix))),) as config →

config , true� �
A constant can represent very different objects, thus a deep pattern matching is

used to exploit all the information carried by the reference. If the reference points to a

declaration (i.e. an axiom) reduction stops. If the constant has a body and its height is

bigger than the delta parameter it is unfolded and its body is recursively reduced. Note

that the choice of storing the information regarding the height of the context not only

in the environment but also in the reference allows us to ask the environment the body

of the object only when it is strictly necessary, avoiding a possibly expensive lookup.� �
| (, , (C.Const (Ref.Ref

(,Ref.Fix (fixno ,recindex,height)) as refer) as head),s) as config →
(match

try Some (RS.from stack (List.nth s recindex))
with Failure → None

with
| None → config, true
| Some recparam →

let fixes , , = NCicEnvironment.get checked fixes or cofixes refer in
match reduce ˜delta:0 ˜subst context recparam with
| (, ,C.Const (Ref.Ref (,Ref.Con)),) as c,

when delta >= height →
let new s =

replace recindex s (RS.compute to stack ˜reduce:aux ˜unwind c)
in
(0, [], head, new s), false

| (, ,C.Const (Ref.Ref (,Ref.Con)),) as c, →
let new s =

replace recindex s (RS.compute to stack ˜reduce:aux ˜unwind c)
in
let , , , ,body = List.nth fixes fixno in
aux (0, [], body, new s)

| → config, true)� �
The most interesting case is when the reference identifies a block of mutual recursive

definitions. We can again efficiently check if the height of the constant is greater then

the desired one, and if it is the case, we can check if the recursive argument of the

function (whose index is stored in the reference too) is a constructor. Only in that

case the body of the recursive function pointed by the reference is retrieved from the

environment. The body of the recursive function is reduced in a context new s where its

recursive argument (already reduced in weak head normal form to expose a constructor)

has been replaced with the reduct, to avoid computing it again.� �
| (k, e, C.Match (, ,term,pl), s) as config →

let decofix = function
| (, ,C.Const(Ref.Ref(,Ref.CoFix c)as refer), s)→

let cofixes , , = NCicEnvironment.get checked fixes or cofixes refer in
let , , , ,body = List.nth cofixes c in

27

let c, = reduce ˜delta:0 ˜subst context (0,[], body,s) in
c

| config → config
in
let match head = k,e,term,[] in
let reduced, = reduce ˜delta:0 ˜subst context match head in
(match decofix reduced with
| (, , C.Const (Ref.Ref (,Ref.Con (,j ,))),[]) →

aux (k, e, List .nth pl (j−1), s)
| (, , C.Const (Ref.Ref (,Ref.Con (,j , lno))), s ’)→

let ,params = HExtlib.split nth lno s’ in
aux (k, e, List .nth pl (j−1), params@s)
| → config, true)

in
aux

end� �
The reduction of a pattern matching is triggered if the matched term is a construc-

tor or if it is a coinductive function. In the second case the body of the coinductive

function is reduced and the guarded by constructors check (see Section 6.3) performed

by the type checker ensures it will expose a constructor in finite time. The arguments

of the constructor are separated from the left parameters of its inductive type (see Sec-

tion 2) with a call of split nth , and the j-th pattern matching case is reduced pushing

on the stack these parameters.

5.1.2 The implemented reduction strategy

As we already highlighted, to achieve good type checking performances it is usually

better to avoid unnecessary reduction, thus a call-by-need strategy seems to fit our

requirements. When the system is used interactively, and the user asks the system to

reduce a term, such a strategy is however too aggressive. Consider for example the

following term� �
let primes := sieve 100 in
match primes with
[nil ⇒ absurd from gt 0 100
| cons ⇒ pair (last primes) (length primes)]� �

In order to perform ι-reduction, primes is computed, and the second branch is taken.

A by-need reduction strategy remembers the weak head normal form of primes, which

is the list of prime numbers less than 100 if sieve is implemented using an accumulator.

The reduced term is unmanageable: pair (last [2 ; . . . ; 97]) (length [2 ; . . . ; 97]). What

the user probably expects here is head linear reduct Danos and Regnier (2003):

let primes := sieve 100 in pair (last primes) (length primes)

The strategy implemented in Matita carries around both the reduct of a term (to

avoid reducing twice the same term in the spirit of the by-need strategy) and the term

before reduction, used in the unwind process.� �
module CallByValueByNameForUnwind’ = struct

type config = int ∗ env term list ∗ C.term ∗ stack term list
and stack term = config lazy t ∗ C.term lazy t (∗ cbv, cbn ∗)
and env term = config lazy t ∗ C.term lazy t (∗ cbv, cbn ∗)
let to env ˜reduce ˜unwind c = lazy (fst (reduce c)),lazy (unwind c)
let from stack (c,) = Lazy.force c

28

let from stack list for unwind ˜unwind: l =
List .map (function (,c) → Lazy.force c) l

let from env (c,) = Lazy.force c
let from env for unwind ˜unwind: (,c) = Lazy.force c
let stack to env ˜reduce: ˜unwind: config = config
let compute to env ˜reduce ˜unwind k e t =
lazy (fst (reduce (k,e, t ,[]))), lazy (unwind (k,e,t ,[]))

let compute to stack ˜reduce ˜unwind config =
lazy (fst (reduce config)), lazy (unwind config)� �
The stack is a list of pairs: the first component is a closure that may be put in head

normal form according to the by-name strategy, while the second is the unreduced term

obtained unwinding lazily the pristine closure.

The same holds for the environment. The functions used by unwind always use

the second component, while on the first component the compute to function perform

reduction. All computation is delayed using the lazy OCaml keyword, and is forced

only when a configuration is pulled from the stack/environment.

5.2 Conversion

Our statistics show that, when type-checking real world terms, most of the terms

checked for conversion are actually identical. This suggests a simple but very effective

strategy: two terms are recursively compared, without triggering reduction. If the com-

parison fails, they are both reduced to weak head normal form and compared again. In

our implementation of the conversion check, this check is done in the alpha eq function.

The first control === done by alpha eq checks physical equality (identity of memory

location) followed by structural equality (both provided by the OCaml runtime). This

check is weaker then α-equivalence, even if we are using DeBruijn indexes. The cause

is the fact that we store user-provided names inside binders to be able to show the user

the same names he gave in input. Anyway the vast majority of calls to are convertible

ends with that comparison.� �
let are convertible ?(subst=[]) get exact relev =
let rec aux test eq only context t1 t2 =

let rec alpha eq test eq only t1 t2 =
if t1 === t2 then

true
else

match (t1,t2) with
| (C.Sort (C.Type a), C.Sort (C.Type b)) when not test eq only →

NCicEnvironment.universe leq a b
| (C.Sort (C.Type a), C.Sort (C.Type b)) →

NCicEnvironment.universe eq a b
| (C.Sort C.Prop,C.Sort (C.Type)) → (not test eq only)
| (C.Sort C.Prop, C.Sort C.Prop) → true� �

If the two terms are not structurally equal, terms are compared recursively. In

the tradition of the Extended Calculus of Constructions Luo (1990), the conversion

relation is weakened to an order relation called cumulativity that takes into account

the inclusion of lower universes into higher ones. The test eq only parameter is true

when comparing the two sources of two products or the arguments of two applications:

and in that case the universe of propositions is not considered to be included in any

data type universe, and universes are compared by co-inclusion see 4.3.

29

� �
| (C.Prod (name1,s1,t1), C.Prod(,s2,t2)) →

aux true context s1 s2 &&
aux test eq only ((name1, C.Decl s1)::context) t1 t2

| (C.Lambda (name1,s1,t1), C.Lambda(,s2,t2)) →
aux true context s1 s2 &&
aux test eq only ((name1, C.Decl s1)::context) t1 t2

| (C.LetIn (name1,ty1,s1,t1), C.LetIn(,ty2,s2,t2)) →
aux test eq only context ty1 ty2 &&
aux test eq only context s1 s2 &&
aux test eq only ((name1, C.Def (s1,ty1))::context) t1 t2� �

Binders are crossed without comparing the name of the abstracted variable and a

proper context, needed to eventually trigger reduction, is built.� �
| (C.Meta (n1,(s1, C.Irl i1)), C.Meta (n2,(s2, C.Irl i2)))

when n1 = n2 && s1 = s2 → true
| (C.Meta (n1,(s1, l1)), C.Meta (n2,(s2, l2))) when n1 = n2 &&

let l1 = NCicUtils.expand local context l1 in
let l2 = NCicUtils.expand local context l2 in
(try List . for all2

(fun t1 t2 → aux test eq only context
(NCicSubstitution. lift s1 t1)
(NCicSubstitution. lift s2 t2))

l1 l2
with Invalid argument → assert false) → true� �

The comparison of metavariables is tricky. Since conversion does not perform uni-

fication, two metavariables can be considered equal only if they are two occurrences

of the same metavariable (the check n1=n2) or if they are instantiated to convertible

terms (see next code block). If they are both equipped with an identity local context

(lifted by the same amount) they are considered equal without comparing the length of

the local context: the equality of i1 and i2 is ensured by the type checking algorithm.

If at least one local context is not the identity, both l1 and l2 are expanded into an

explicit list of terms (an identity list, in case of Irl) and their elements are pairwise

recursively compared after being properly lifted.� �
| C.Meta (n1,l1), →

(try
let , ,term, = NCicUtils.lookup subst n1 subst in
let term = NCicSubstitution.subst meta l1 term in
aux test eq only context term t2

with NCicUtils.Subst not found → false)
| , C.Meta (n2,l2) →

(try
let , ,term, = NCicUtils.lookup subst n2 subst in
let term = NCicSubstitution.subst meta l2 term in
aux test eq only context t1 term

with NCicUtils.Subst not found → false)� �
Again, since unification is not performed, the only chance to unify a metavariable

with another term is to have a substituted term for that metavariable that is convert-

ible with the other term. This is in general not necessary since reduction to normal

form performs the substitution. Anyway, according to our experience, anticipating the

application of the substitution leads to success early.� �
| (C.Appl ((C.Const r1) as hd1::tl1), C.Appl (C.Const r2::tl2))

when (Ref.eq r1 r2 &&

30

List .length (NCicEnvironment.get relevance r1) >= List.length tl1) →
let relevance = NCicEnvironment.get relevance r1 in
let relevance = match r1 with
| Ref.Ref (,Ref.Con (, , lno)) →

let , relevance = HExtlib.split nth lno relevance in
HExtlib.mk list false lno @ relevance

| → relevance
in
(try

HExtlib. list forall default3 var
(fun t1 t2 b → not b || aux true context t1 t2)
tl1 tl2 true relevance

with Invalid argument → false
| HExtlib.FailureAt fail →

let relevance = get exact relev ˜subst context hd1 tl1 in
let , relevance = HExtlib.split nth fail relevance in
let b,relevance = (match relevance with
| [] → assert false
| b:: tl → b,tl) in

if (not b) then
let , tl1 = HExtlib.split nth (fail +1) tl1 in
let , tl2 = HExtlib.split nth (fail +1) tl2 in

try
HExtlib. list forall default3
(fun t1 t2 b → not b || aux test eq only context t1 t2)
tl1 tl2 true relevance

with Invalid argument → false
else false)

| (C.Appl (hd1::tl1), C.Appl (hd2::tl2)) →
aux test eq only context hd1 hd2 &&
let relevance = get exact relev ˜subst context hd1 tl1 in
(try
HExtlib. list forall default3
(fun t1 t2 b → not b || aux true context t1 t2)
tl1 tl2 true relevance

with Invalid argument → false)� �
In the case of applications, the check should consist of a recursive comparison on

subterms. However, as we already mentioned, we implement a proof-irrelevance-aware

application comparison: irrelevant arguments do not need to be compared since ideally

they do not contribute to the head normal form of closed terms. The type checker will

ensure that the irrelevant argument will never be put in head position independently

of the context the application will be put in.

How do we compute relevance? We distinguish a static and dynamic inference.

The first one is used when comparing two applications whose heads are constants: it

depends on the type of the constant alone and is computed when defining that constant.

The static inference results in a list of booleans which is best understood as a cache,

indicating which argument positions are statically known as irrelevant. The length of

the list is equal to the number of products with which the type of the constant begins;

it is correct (meaning that positions denoted as irrelevant must always be filled by

irrelevant arguments), but possibly incomplete because of two reasons:

– with dependent types the arity of a function is not fixed and can depend on the

actual value of arguments; it is thus impossible to completely specify its relevance

with a fixed length list;

– the actual sort of an argument can depend on the preceding arguments in subtle

ways; suppose for instance you have a constant

31

� �
c: ∀ b. (match f b with [true ⇒ nat | false ⇒True]) → . . .� �
for some function f ranging on booleans: the second arguments of c must be either

of type nat (whose sort is Type) or of type True (whose sort is Prop), i.e. relevant

or irrelevant, depending on the value of f b which is statically unknown.

The statically inferred relevance list can be obtained by means of a call to the

get relevance function of the environment.

The dynamic inference is used for every application, including applications whose

head is a constant, when the relevance list produced by the static inference is not

sufficiently accurate. It is performed by the get exact relev function defined in the

type checker and received as a parameter by are convertible . This function takes as

parameters the head of the application and its arguments and, by substituting the

arguments in the type of the head, computes the types of all the arguments and,

subsequently, their sorts9; it returns a list whose length is equal to the number of

arguments and whose elements are false or true depending on the corresponding sort

being Prop or not.

When comparing two applications whose heads are both constants, we first check

that they are indeed the same constant; then we retrieve from the environment the

statically inferred relevance list and by means of list forall default3 var we compare

in parallel the two list of arguments and the relevance, possibly extending the last

with a default value (true) when needed. If the i-th argument is not relevant no check

is performed, otherwise the arguments are recursively compared. If the check fails at

argument n, a FailureAt n exception is raised: in this case, the check is resumed at

argument n with a dynamic relevance inference.

When comparing applications whose heads are not (both) constants, the check is

performed only according to the dynamic relevance inference, as we have no relevance

cache to exploit.� �
| (C.Match (Ref.Ref (,Ref.Ind (,tyno,)) as ref1 ,outtype1,term1,pl1),

C.Match (ref2,outtype2,term2,pl2)) →
let , , itl , , = NCicEnvironment.get checked indtys ref1 in
let , ,ty, = List.nth itl tyno in
let rec remove prods ˜subst context ty =

let ty = whd ˜subst context ty in
match ty with
| C.Sort → ty
| C.Prod (name,so,ta) → remove prods ˜subst ((name,(C.Decl so))::context) ta
| → assert false

in
let is prop =

match remove prods ˜subst [] ty with
| C.Sort C.Prop → true
| → false

in
Ref.eq ref1 ref2 &&
aux test eq only context outtype1 outtype2 &&
(is prop || aux test eq only context term1 term2) &&
(try List . for all2 (aux test eq only context) pl1 pl2
with Invalid argument → false)

9 Computing the sorts of the arguments of an application by substitution on the type of
the head has proven to be on average more efficient than directly computing the sorts of the
arguments.

32

| (C.Implicit ,) | (, C.Implicit) → assert false
| (,) → false

in� �
In the case of pattern matching, the two terms are compared recursively: however,

should the sort of the term being matched be Prop, that term will not be included in

the recursive comparison.

Implicit arguments should not reach the kernel. Every other pair fails the α-

conversion check.

In case the two terms fail the simple check implemented by alpha eq we need to feed

them to our reduction machine. When the machine stops, we could unwind the result-

ing state and repeat the α-equivalence test, but this is in general expensive because

reduction can exponentially increase terms size. We thus delay as much as possible

unfolding, comparing GKAM statuses.� �
if alpha eq test eq only t1 t2 then true
else convert machines test eq only (put in whd (0,[], t1 ,[]) (0,[], t2 ,[]))

in
aux false� �

The small delta step function is called on machines whose heads are not convertible.

At least one of the machines must not be in weak head normal form. If one machine is

in normal form, reduction is performed on the other. If neither machine is in normal

form, reduction is performed on the machine whose head (of greater height) is more

likely becoming convertible to the other head (of smaller height). When no machine is

candidate for reduction (both have the same height) we reduce both to smaller heights.� �
let small delta step

((, ,t1, as m1), norm1 as x1) ((, ,t2, as m2), norm2 as x2)
=

assert (not (norm1 && norm2));
if norm1 then

x1, R.reduce ˜delta:(height of t2 −1) ˜subst context m2
else if norm2 then

R.reduce ˜delta:(height of t1 −1) ˜subst context m1, x2
else
let h1 = height of t1 in
let h2 = height of t2 in
let delta = if h1 = h2 then max 0 (h1 −1) else min h1 h2 in
R.reduce ˜delta ˜subst context m1,
R.reduce ˜delta ˜subst context m2� �

The conversion check for machine statuses succeeds in the two following cases.� �
let rec convert machines test eq only

((k1,e1,t1,s1),norm1 as m1),((k2,e2,t2,s2), norm2 as m2) =
(alpha eq test eq only (R.unwind (k1,e1,t1 ,[])) (R.unwind (k2,e2,t2 ,[])) &&
let relevance = match t1 with Const r → NE.get relevance r | → [] in
try
HExtlib. list forall default3

(fun t1 t2 b →
not b ||
let t1 = RS.from stack t1 in
let t2 = RS.from stack t2 in
convert machines true (put in whd t1 t2)) s1 s2 true relevance

with Invalid argument → false) ||� �

33

The first case is when the heads of the machines are α-convertible and when all

arguments (the stack components) are pairwise convertible. This test is weaker than full

conversion, for example when the heads are constant functions. Note that arguments

are again compared up to relevance (as it was done in the alpha eq check).� �
(not (norm1 && norm2) && convert machines test eq only (small delta step m1 m2))

in
convert machines test eq only (put in whd (0,[], t1 ,[]) (0,[], t2 ,[]))� �

If the first check fails and at least one of the machines is not in weak head

normal form, we retry the machine conversion after a reduction step performed by

small delta step . This step will be repeated until the terms are in weak head normal

form, and thus are convertible if and only if the first case of convert matchines succeeds.

6 Typechecking

The CicTypeChecker module implements the type-checking judgements for CIC terms

and objects. Terms are type-checked in a context, a metasenv and a substitution.

As explained in Section 2, the context maps the free variables of the term to their

local declaration or definition. Metavariables occurring in the term are either declared

in the metasenv, or they are defined in the subst. We maintain the invariant that

contexts, metasenvs and substitutions passed around in the implementation of the type-

checker have already been type-checked. With this invariant, we avoid type-checking

again a definiens every time we retrieve it from a context or a substitution. When the

programmer invokes the typeof function from outside the kernel, he needs to remember

to respect the invariant since the typeof function does not assert it at the beginning. On

the other hand, when typecheck obj is invoked, the invariant is verified for the metasenv

and substitution that are found in the object.

Each judgement is implemented by a function that raises an exception when fed

with an ill-typed term. The type-checking function on terms also returns the inferred

type. The interface of the module is the following one.� �
exception TypeCheckerFailure of string Lazy.t
exception AssertFailure of string Lazy.t
val typeof:

subst:NCic.substitution → metasenv:NCic.metasenv →
NCic.context → NCic.term → NCic.term

val typecheck obj : NCic.obj → unit� �
We analyze first the type-checking functions for contexts, metavariables and substi-

tutions. These functions are not exposed in the interface, but they are used internally

by typecheck obj.� �
let typecheck context ˜metasenv ˜subst context =
ignore
(List . fold right
(fun d context →

begin
match d with

,C.Decl t → ignore (typeof ˜metasenv ˜subst:[] context t)
| name,C.Def (te,ty) →

ignore (typeof ˜metasenv ˜subst:[] context ty);
let ty’ = typeof ˜metasenv ˜subst:[] context te in

34

if not (R.are convertible ˜subst context ty’ ty) then
raise (AssertFailure (lazy (Printf . sprintf (
”the type of the definiens for %s in the context is not ”ˆˆ
”convertible with the declared one.\n”ˆˆ
”inferred type:\n%s\nexpected type:\n%s”)
name (PP.ppterm ˜subst ˜metasenv ˜context ty’)
(PP.ppterm ˜subst ˜metasenv ˜context ty))))

end;
d :: context

) context [])� �
A context is well-typed if the terms in each context entry are closed in the part of

the context that follows (in list order). The terms may also contain metavariables that

are either declared in the metasenv passed in input, or that are defined in the subst

passed in input. As a precondition, we assume the metasenv and the substitution to

be well-typed. If the context entry is a definition, we must check that the declared

and inferred type for the definiens are convertible. Since reduction and conversion may

diverge on terms that are not well-typed, we must take care of always type-checking a

term before feeding it to the NCicReduction module.� �
let typecheck metasenv metasenv =
ignore
(List . fold left

(fun metasenv (i,(,context,ty) as conj) →
if List .mem assoc i metasenv then
raise (TypeCheckerFailure (lazy (”duplicate meta ” ˆ string of int i ˆ
” in metasenv”)));

typecheck context ˜metasenv ˜subst:[] context;
ignore (typeof ˜metasenv ˜subst:[] context ty);
metasenv @ [conj]

) [] metasenv)� �
A well-typed metasenv is an ordered list of declarations for metavariables. In order

to avoid cycles that do not make sense, the terms in each metavariable declaration

may only contains metavariables declared in the part of metasenv that precedes (in

list order). Note that it is not possible to have metavariables used in the metasenv

but defined in a substitution: an invariant of Matita is that substitutions generated

outside the kernel are fully applied to metasenvs before passing objects to the kernel.

This allows to easily verify the lack of cyclic dependencies between a variable in the

metasenv and a variable in the substitution. A metavariable declaration is given by

its name, context and type. Since the type may contain free variables declared in the

context, we must remember to type-check the context first, and to pass it to typeof

before checking the type.� �
let typecheck subst ˜metasenv subst =
ignore
(List . fold left

(fun subst (i ,(,context,ty,bo) as conj) →
if List .mem assoc i subst then
raise (AssertFailure (lazy (”duplicate meta ” ˆ string of int i ˆ
” in substitution ”)));

if List .mem assoc i metasenv then
raise (AssertFailure (lazy (”meta ” ˆ string of int i ˆ
” is both in the metasenv and in the substitution”)));

typecheck context ˜metasenv ˜subst context;
ignore (typeof ˜metasenv ˜subst context ty);

35

let ty’ = typeof ˜metasenv ˜subst context bo in
if not (R.are convertible ˜subst context ty’ ty) then
raise (AssertFailure (lazy (Printf . sprintf (
”the type of the definiens for %d in the substitution is not ”ˆˆ
”convertible with the declared one.\n”ˆˆ
”inferred type:\n%s\nexpected type:\n%s”)
i
(PP.ppterm ˜subst ˜metasenv ˜context ty’)
(PP.ppterm ˜subst ˜metasenv ˜context ty))));

subst @ [conj]
) [] subst)� �
A well-typed substitution is an ordered list of definitions for metavariables. In order

to avoid cycles that are logically inconsistent and may lead to divergence, the terms in

each substitution definitions may only contains metavariables declared in the metasenv

or in the part of the substitution that precedes (in list order). As we did for contexts,

we must remember to verify the consistency of the inferred and declared types for

the definiens. As we did for metavariables, we must check the context first since the

definiens and its type may contain variables declared in the context.� �
let typecheck obj (uri ,height,metasenv,subst,kind) =
typecheck metasenv metasenv;
typecheck subst ˜metasenv subst;� �

The metasenv and substitution must be checked first and in this order before checking

the terms in the objects.� �
match kind with
| C.Constant (, ,Some te,ty,) →

let = typeof ˜subst ˜metasenv [] ty in
let ty te = typeof ˜subst ˜metasenv [] te in
if not (R.are convertible ˜subst [] ty te ty) then
raise (TypeCheckerFailure (lazy (Printf.sprintf (
”the type of the body is not convertible with the declared one.\n”ˆˆ
”inferred type:\n%s\nexpected type:\n%s”)
(PP.ppterm ˜subst ˜metasenv ˜context:[] ty te)
(PP.ppterm ˜subst ˜metasenv ˜context:[] ty))))� �

A definition or theorem is well-typed when its type and body (definiens) are. Moreover,

the type inferred for the body must be convertible with the user declared type.� �
| C.Constant (, ,None,ty,) → ignore (typeof ˜subst ˜metasenv [] ty)
| C.Inductive (, leftno , tyl ,) →

check mutual inductive defs uri ˜metasenv ˜subst leftno tyl� �
A declaration (an axiom) is well-typed when the declared type is. A block of mu-

tual inductive types must satisfy a number of conditions that deserve their own test

check mutual inductive defs, which will be described in Section 6.2.� �
| C.Fixpoint (inductive, fl ,) →

let types, kl =
List . fold left
(fun (types,kl) (,name,k,ty,) →

let = typeof ˜subst ˜metasenv [] ty in
((name,C.Decl ty)::types, k :: kl)

) ([],[]) fl
in
let len = List.length types in

36

let dfl , kl =
List . split (List .map2

(fun (, , , ,bo) rno →
let dbo = debruijn uri len [] bo in
dbo, Evil rno)

fl kl)
in� �

A Fixpoint represents a block of mutual (co)recursive functions, defined in the fl list.

Each function definition is given by a name, a type ty and a body bo. Since the functions

are mutually defined, a reference to any function in the block may occur in the body

of a function in fl . Since we are still type-checking the object, the object is not yet

part of the environment (if it is not in the library) or, if it was retrieved from the

library, it is in the environment frozen stack (the stack of objects being type-checked,

see Section 4.2). In both cases, the environment will raise an exception if we try to

resolve a reference to a function in the block.

To solve this problem, we use the debruijn function (see Appendix C) that replaces

every recursive reference in a body bo with a DeBruijn index. The URI uri of the

block is used to detect recursive references. The i-th function in the block will be

represented with the (1+len−i)-th DeBruijn index where len is the number of recursively

defined functions. In order to maintain the invariant that a term always comes with

a context that closes it, we pre-compute the context types that collects all function

type declarations. Since we have the invariant that contexts are well-typed, we check

every function type before pushing it on top of the environment. At the same time we

also collect in the kl list all the recursive indices. The recursive index of a recursive

function is the index of the argument the functions performs structural recursion on.

The recursive index is undefined (0 in the implementation) for co-recursive functions.

We are now ready to type-check every recursive function definition.� �
List . iter2 (fun (,name,x,ty,) bo →
let ty bo = typeof ˜subst ˜metasenv types bo in
if not (R.are convertible ˜subst types ty bo ty)
then raise (TypeCheckerFailure (lazy (”(Co)Fix: ill−typed bodies”)))
else� �

For each function definition we also need to perform a different check if the block is

made of recursive of corecursive functions. In the first case, we must check totality

of the functions by verifying syntactically that the functions are defined by structural

recursion on the x-th argument. The check is performed by guarded by destructors de-

scribed in Section 6.3. In the second case we must check syntactically that the function

is productive. The check is performed by guarded by constructors, also described in Sec-

tion 6.3.� �
if inductive then begin

let m, context = eat lambdas ˜subst ˜metasenv types (x + 1) bo in
let r uri , r len =

let he =
match List.hd context with ,C.Decl t → t | → assert false

in
match R.whd ˜subst (List.tl context) he with
| C.Const (Ref.Ref (uri,Ref.Ind) as ref)
| C.Appl (C.Const (Ref.Ref (uri,Ref.Ind) as ref) ::) →

let , , itl , , = E.get checked indtys ref in
uri , List .length itl

37

| → assert false
in
(∗ guarded by destructors conditions D{f,k,x,M} ∗)
let rec enum from k =

function [] → [] | v :: tl → (k,v)::enum from (k+1) tl
in
guarded by destructors r uri r len
˜subst ˜metasenv context (enum from (x+2) kl) m

end else
match returns a coinductive ˜subst [] ty with
| None →

raise (TypeCheckerFailure
(lazy ”CoFix: does not return a coinductive type”))

| Some (r uri, r len) →
(∗ guarded by constructors conditions C{f,M} ∗)
if not
(guarded by constructors ˜subst ˜metasenv types bo r uri r len len)
then

raise (TypeCheckerFailure
(lazy ”CoFix: not guarded by constructors”))

) fl dfl� �
We present now the function typeof that checks if terms are well-typed. Then we

will present the most technical ones. The function is defined by structural recursion on

the term, and it augments the context when binders are met. Since the metasenv and

substitution are constant during the reduction, we perform recursion in an auxiliary

function.� �
let rec typeof ˜subst ˜metasenv context term =

let rec typeof aux context =
fun t → (∗prerr endline (PP.ppterm ˜metasenv ˜subst ˜context t);∗)
match t with
| C.Rel n →

(try
match List.nth context (n − 1) with
| (,C.Decl ty) → S. lift n ty
| (,C.Def (,ty)) → S. lift n ty

with Failure → raise (TypeCheckerFailure (lazy ”unbound variable”)))
| C.Sort (C.Type [false ,u]) → C.Sort (C.Type [true, u])
| C.Sort (C.Type) →

raise (AssertFailure (lazy (”Cannot type an inferred type: ”ˆ
NCicPp.ppterm ˜subst ˜metasenv ˜context t)))

| C.Sort → C.Sort (C.Type NCicEnvironment.type0)
| C.Implicit → raise (AssertFailure (lazy ”Implicit found”))
| C.Meta (n,l) as t →

let canonical ctx ,ty =
try
let ,c, ,ty = U.lookup subst n subst in c,ty

with U.Subst not found → try
let ,c,ty = U.lookup meta n metasenv in c,ty

with U.Meta not found →
raise (AssertFailure (lazy (Printf . sprintf
”%s not found” (PP.ppterm ˜subst ˜metasenv ˜context t))))

in
check metasenv consistency t ˜subst ˜metasenv context canonical ctx l;
S.subst meta l ty

| C.Const ref → type of constant ref� �

38

The type of atoms which are not sorts is retrieved from the context in case of Rels or

from the metasenv or the substitution in case of metavariables.

Type universes are typed with their successor (represented by setting theirs first

component to true). Since the user is only allowed to write type universe variables, it

is impossible that a non singleton universe (or the successor of a universe) is a valid

input for the typing function. Moreover, the typing algorithm never types a synthesized

type, thus it will never need to typecheck the successor of a type. The impredicative

sort Prop is typed with the smallest possible universe type0 (defined as the maximum

of the empty set).

In the latter two cases we must remember to relocate the metavariable definiens

in the local context, but only after checking the consistency between the local and

global metavariable contexts. This is done by the check metasenv consistency function

(see App. C). In principle, the check is very simple:

1. the local context and the canonical contexts must have the same length (or, equiva-

lently, the local context must instantiate every abstraction in the canonical context)

2. if the n-th entry in the canonical context is a declaration xn : T (x1, . . . , xn−1),

then the type of the n-th term tn in the local context must be convertible to

T (t1, . . . , tn−1)

3. if the n-th entry in the canonical context is a definition xn : T (x1, . . . , xn−1) :=

t(x1, . . . , xn−1), then the n-th term tn in the local context must be convertible to

t(t1, . . . , tn−1)

In practice, the code of the function is quite complex since we exploit the optimized

representation of local contexts (see 2.1.1) to speed up the checks as much as possible.

The main reason for these optimizations is that automatic proof search may generate

hundreds of goals containing many metavariables characterized by potentially long

contexts. Thus, even a small speed-up in this test can have a significant effect on the

overall time of automatic proof search.

The type of constant function checks that data cached in the reference is in coherent

with the one stored in the environment and if the constant has never been typed before,

it recursively check its type.� �
| C.Prod (name,s,t) →

let sort1 = typeof aux context s in
let sort2 = typeof aux ((name,(C.Decl s))::context) t in
sort of prod ˜metasenv ˜subst context (name,s) (sort1,sort2)

| C.Lambda (n,s,t) →
let sort = typeof aux context s in
(match R.whd ˜subst context sort with
| C.Meta | C.Sort → ()
| →

raise
(TypeCheckerFailure (lazy (Printf.sprintf

(”Not well−typed lambda−abstraction: ” ˆˆ
”the source %s should be a type; instead it is a term ” ˆˆ
”of type %s”) (PP.ppterm ˜subst ˜metasenv ˜context s)
(PP.ppterm ˜subst ˜metasenv ˜context sort)))));

let ty = typeof aux ((n,(C.Decl s)):: context) t in
C.Prod (n,s,ty)

| C.LetIn (n,ty, t ,bo) →
let ty t = typeof aux context t in
let = typeof aux context ty in
if not (R.are convertible ˜subst context ty t ty) then

raise

39

(TypeCheckerFailure
(lazy (Printf . sprintf

”The type of %s is %s but it is expected to be %s”
(PP.ppterm ˜subst ˜metasenv ˜context t)
(PP.ppterm ˜subst ˜metasenv ˜context ty t)
(PP.ppterm ˜subst ˜metasenv ˜context ty))))

else
let ty bo = typeof aux ((n,C.Def (t,ty)):: context) bo in
S.subst ˜avoid beta redexes:true t ty bo

| C.Appl (he::(:: as args)) →
let ty he = typeof aux context he in
let args with ty = List.map (fun t → t, typeof aux context t) args in
eat prods ˜subst ˜metasenv context he ty he args with ty

| C.Appl → raise (AssertFailure (lazy ”Appl of length < 2”))� �
The rules for dependent products, local definitions, λ-abstractions and applications are

standard for full PTSs. In particular, the sort of prod function (see App. C) computes

the sort of a product according to the PTS product formation rules. The eat prods (also

in App. C) function verifies one at a time that the type of the n-th actual parameters

is convertible with the declared type for the formal parameter. In order to retrieve the

latter information, the head of the application is type-checked and its type is put in

weak head normal form and matched against a dependent product: the type of the

first actual parameter is the source type of the dependent product. The type of the

second parameter is computed from the target of the dependent product where the first

bound parameter has been instantiated with the actual parameter. The same procedure

is used for the following ones.

Case analysis, the only case left to consider, is also the most involved one. This

is partly due to the special management of left (or constant) parameters (see Sec-

tion 2.1.4) during case analysis. We can informally explain the management on a very

trivial example: let’s consider the following example (in the concrete syntax of Matita)

of a non-mutual inductive type having one left parameter, one right parameter and

just one constructor.� �
inductive i (n:nat) : nat → Prop :=

k: ∀w. i n (f w)� �
Now, let’s consider a term u of type (i x y). Its normal form must be (k n w) for some

n and w such that the type (i n (f w)) of (k n w) is convertible to (i x y). Since n

is a constant parameter, we know that x is n and we can exploit this knowledge in

case analysis by avoiding to abstract the case branch on x. On the other hand, the

knowledge about y being (f w) does not provide to us a single value for w. Thus, the

case branch is only abstracted on the constructor parameter w and case analysis on

(k n w) is expressed (in the concrete syntax of Matita) by� �
match k n w return λw1:nat.λx:k n w1.s with [k w2 ⇒ p]� �
The output type λw1:nat.λx:k n w.s, where s is a type for each w1 and x, is a schema of

types for all the right hand sides of the patterns (in this case λw2:nat.p). The interesting

case is when s is a type dependent on the actual value of w1 or x (such as being a natural

number if w1 is positive, or an empty type representing an impossible event if w1 is

zero). Less artificial examples are given by pattern matching over inductive types with

more than one constructor, where it is sometimes useful to return a different type

according to the constructor being matched. In this case, the output type is dependent

on the value of the actual matched value.

40

The check to verify that the output type correctly matches the types inferred

for each pattern is very technical. We first compute the type ∀w2:nat.i n (f w) of the

constructor k applied to the left parameters (here just n); note that the abstraction on

w2 exactly matches the abstraction in the pattern, allowing us to consider the context

w1:nat in which both i n (f w) and p live. Then we instantiate, in the latter context,

the output type schema with the actual right parameters passed to i in the computed

type, i.e. (f w) and with the constructor applied to the passed parameters, obtaining

s [(f w)/w1;(k n w2)/x] which is a sort that is required to type the pattern body (p w2).

To summarize, in OCaml syntax, the same pattern matching example becomes� �
C.Match (i,
C.Lambda(”w2”, nat,
C.Lambda(”x”,C.Appl [C.Const i; n; C.Rel 1],
C.Appl [s; C.Rel 1; C.Rel 2])),

u,
[C.Lambda(”w1”, nat, p)])� �

In this expression, u is the term being matched and i is a reference to its type; the second

line states the return type of the case analysis, and the last line is a list of patterns:

since we are matching over a type having just one constructor, the list of patterns

contains a single pattern, abstracted over right parameters as described above. As for

the return type, it expresses the output type of any branch of a dependently-typed

pattern matching and it is abstracted over the right parameters of the type being

matched but, similarly to a pattern, not on the left ones; it also abstracted on the

actual value being matched.

Now, let’s check the code implementing the typechecking in the case of the pattern

matching.� �
| C.Match (Ref.Ref (,Ref.Ind (,tyno,)) as r ,outtype,term,pl) →

let outsort = typeof aux context outtype in
let inductive , leftno , itl , , = E.get checked indtys r in
let constructorsno =

let , , , cl = List.nth itl tyno in List .length cl
in
let parameters, arguments =

let ty = R.whd ˜subst context (typeof aux context term) in
let r ’, tl =
match ty with

C.Const (Ref.Ref (,Ref.Ind) as r ’) → r ’,[]
| C.Appl (C.Const (Ref.Ref (,Ref.Ind) as r ’) :: tl) → r’, tl
| →

raise
(TypeCheckerFailure (lazy (Printf.sprintf

”Case analysis: analysed term %s is not an inductive one”
(PP.ppterm ˜subst ˜metasenv ˜context term)))) in

if not (Ref.eq r r ’) then
raise
(TypeCheckerFailure (lazy (Printf.sprintf

(”Case analysis : analysed term type is %s, but is expected ” ˆˆ
”to be (an application of) %s”)

(PP.ppterm ˜subst ˜metasenv ˜context ty)
(PP.ppterm ˜subst ˜metasenv ˜context (C.Const r’)))))

else
try HExtlib.split nth leftno tl
with
Failure →
raise (TypeCheckerFailure (lazy (Printf.sprintf

41

”%s is partially applied”
(PP.ppterm ˜subst ˜metasenv ˜context ty)))) in� �

So far we have only checked that all the terms occurring in the pattern matching are

well typed, and that the type of the matched term is the declared inductive type.� �
(∗ let ’s control if the sort elimination is allowed: [(I q1 ... qr)|B] ∗)
let sort of ind type =

if parameters = [] then C.Const r
else C.Appl ((C.Const r)::parameters) in

let type of sort of ind ty = typeof aux context sort of ind type in
check allowed sort elimination ˜subst ˜metasenv r context
sort of ind type type of sort of ind ty outsort;� �

This snippet performs a first key check by calling the check allowed sort elimination

procedure. Before describing it, we look at the description of the second and last key

check, which iterates on all the branches of the case analysis, to verify that the type of

the patterns match the output type schema as previously explained.� �
(∗ let ’s check if the type of branches are right ∗)
if List .length pl <> constructorsno then
raise (TypeCheckerFailure (lazy (”Wrong number of cases in a match”)));

let j ,branches ok,p ty, exp p ty =
List . fold left

(fun (j ,b,old p ty ,old exp p ty) p →
if b then

let cons =
let cons = Ref.mk constructor j r in
if parameters = [] then C.Const cons
else C.Appl (C.Const cons::parameters)

in
let ty p = typeof aux context p in
let ty cons = typeof aux context cons in
let ty branch =

type of branch ˜subst context leftno outtype cons ty cons 0
in
j+1, R.are convertible ˜subst context ty p ty branch,
ty p, ty branch

else
j , false , old p ty ,old exp p ty

) (1,true,C.Sort C.Prop,C.Sort C.Prop) pl
in
if not branches ok then

raise
(TypeCheckerFailure
(lazy (Printf . sprintf (”Branch for constructor %s :=\n%s\n”ˆˆ
”has type %s\nnot convertible with %s”)
(PP.ppterm ˜subst ˜metasenv ˜context

(C.Const (Ref.mk constructor (j−1) r)))
(PP.ppterm ˜metasenv ˜subst ˜context (List.nth pl (j−2)))
(PP.ppterm ˜metasenv ˜subst ˜context p ty)
(PP.ppterm ˜metasenv ˜subst ˜context exp p ty))));

let res = outtype::arguments@[term] in
R.head beta reduce (C.Appl res)
| C.Match → assert false

...
in

typeof aux context term� �

42

Note that the type inferred for the pattern match is the head beta normal form of the

instantiation of the output type on the matched term. Since the output type is always a

λ-abstraction, without performing head beta reduction we will always infer a β-redex,

that we do not want to present to the user. Moreover, inferring a β-redex is likely to

produce a performance loss in reduction, since our heuristics to speed up conversion

fail when comparing two types having in deep positions respectively a β-redex and its

β-reduct.

We focus now on the check allowed sort elimination that does two jobs at once. The

first one is checking that the outtype abstractions match the right parameters of the

inductive type with one additional abstraction for the term being eliminated. The check

is actually done on the type of the outtype (called outsort) which has a product for

each outtype λ-abstraction and ends with the sort of the returned type.

The second job ensures that the elimination of an inductive type can be performed

to obtain the output type. The reason not to allow elimination lies in the distinction

between computationally relevant parts of a proof (when a term has sort Type) and

parts which have no computational content (terms whose sort is Prop). This distinc-

tion is crucial for code exportation and proof-irrelevance: the computationally irrele-

vant subterms are completely forgot during the automatic exportation of code. Thus,

eliminating a non-informative type to obtain an informative type must not be allowed,

unless there is only one way in which the elimination can be performed.� �
and check allowed sort elimination ˜subst ˜metasenv r =
let mkapp he arg =

match he with
| C.Appl l → C.Appl (l @ [arg])
| t → C.Appl [t;arg] in

let rec aux context ind arity1 arity2 =
let arity1 = R.whd ˜subst context arity1 in
let arity2 = R.whd ˜subst context arity2 in

match arity1,arity2 with
| C.Prod (name,so1,de1), C.Prod (,so2,de2) →

if not (R.are convertible ˜subst context so1 so2) then
raise (TypeCheckerFailure (lazy (Printf.sprintf
”In outtype: expected %s, found %s”
(PP.ppterm ˜subst ˜metasenv ˜context so1)
(PP.ppterm ˜subst ˜metasenv ˜context so2)
)));

aux ((name, C.Decl so1)::context)
(mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2

| C.Sort , C.Prod (name,so,ta) →
if not (R.are convertible ˜subst context so ind) then
raise (TypeCheckerFailure (lazy (Printf.sprintf
”In outtype: expected %s, found %s”
(PP.ppterm ˜subst ˜metasenv ˜context ind)
(PP.ppterm ˜subst ˜metasenv ˜context so)
)));

(match arity1, R.whd ˜subst ((name,C.Decl so)::context) ta with
| (C.Sort (C.Type), C.Sort)
| (C.Sort C.Prop, C.Sort C.Prop) → ()
| (C.Sort C.Prop, C.Sort (C.Type)) →

let , leftno , itl , , i = E.get checked indtys r in
let itl len = List.length itl in
let , itname,ittype, cl = List.nth itl i in
let cl len = List.length cl in
(∗ is it a singleton , non recursive and non informative

definition or an empty one? ∗)

43

if not
(cl len = 0 ||
(itl len = 1 && cl len = 1 &&
let , ,constrty = List.hd cl in

is non recursive singleton r itname ittype constrty &&
is non informative leftno constrty))

then
raise (TypeCheckerFailure (lazy
(”Sort elimination not allowed”)));

| , → ())
| , → ()

in
aux� �

The check is performed by the inner recursive function aux, taking the inductive type

ind (already applied to the left arguments) that during recursion gets also applied to

the variables bound by the products of the outsort. Eventually, it will become the type

expected for the matched term, which is the source of the last product of outsort. arity1

is initially the arity of the inductive type applied to the left parameters. An invariant

of the recursion is that arity1 is the type of ind. arity2 is initially the outsort.

If the two arities are products we perform the first job by checking if the source

of the two products (corresponding to a right parameter) are convertible. Then we

proceed recursively on their targets.

If arity1 is a sort and arity2 is a product, then the abstractions on the right parame-

ters are over and we conclude the first job by checking that the outsort ends with a final

product over the type ind of the matched term. This is also the case in which the second

job is done: if the target of the product in arity2 is Type, we ensure that no informative

content escapes a non-informative term, by checking that the eliminated term type of

the elimination either has no constructors (is an empty type) or it has just one non-

recursive constructor (singleton type) depending only on non-informative types. The

procedure is non informative checks that the type of the single constructor of an induc-

tive type is abstracted only over types whose sort is Prop and is non recursive singleton

ensures that the type of the constructor constrty does no recursive calls to the inductive

type.

In any other case, the elimination is admissible.

6.1 Well typedness of inductive definitions

Inductive types are one of key ingredients of CIC, used to model both datatypes and

relations. While the termination conditions for recursive functions have been sensibly

relaxed over the years, the well typedness conditions for inductive types are a more

consolidated subject.� �
and check mutual inductive defs uri ˜metasenv ˜subst leftno tyl =

List . iter (fun (, ,x,) → ignore (typeof ˜subst ˜metasenv [] x)) tyl ;
let len = List.length tyl in
let tys = List.rev map (fun (,n,ty,) → (n,(C.Decl ty))) tyl in� �

The first, easy, check is the well typedness of inductive types arity (the x component

of tyl entries), that have to live in an empty context. The next step is to analyze the

constructors of the inductive types, that live in a context where all the inductive types

44

are defined (tys). Note that since the arity of inductive types is a closed term lifting

them is not needed when generating a context.� �
(List . fold right
(fun (, ,ty, cl) i → (∗ i−th ind. type arity and constructors list ∗)

List . iter
(fun (,name,te) → (∗ constructor name and type ∗)� �

Four different checks have to be performed to accept an inductive type constructor:

1. The left (fixed) parameters have to be used coherently. This implies both that every

constructor must abstract the very same left arguments as the inductive type, and

that the inductive type occurs applied to these parameters. The following code

compares in parallel the initial fragment of the context generated by the binders in

the inductive type arity and the binders in the constructor type.� �
let context, ty sort = split prods ˜subst [] ˜−1 ty in
let sx context ty rev , = HExtlib.split nth leftno (List .rev context) in
let te = debruijn uri len [] te in
let context,te = split prods ˜subst tys leftno te in
let ,chopped context rev =
HExtlib.split nth (List .length tys) (List .rev context) in

let sx context te rev , =
HExtlib.split nth leftno chopped context rev in

(try
ignore (List . fold left2
(fun context item1 item2 →

let convertible =
match item1,item2 with

(n1,C.Decl ty1),(n2,C.Decl ty2) →
n1 = n2 && R.are convertible ˜subst context ty1 ty2

| (n1,C.Def (bo1,ty1)),(n2,C.Def (bo2,ty2)) →
n1 = n2
&& R.are convertible ˜subst context ty1 ty2
&& R.are convertible ˜subst context bo1 bo2

| , → false
in
if not convertible then
raise (TypeCheckerFailure (lazy
(”Mismatch between the left parameters of the constructor ” ˆ
”and those of its inductive type”)))

else
item1::context

) [] sx context ty rev sx context te rev)� �
The check that all inductive type occurrences are applied to the same left param-

eters is performed along with check number 4.

2. The type has to be correct. To check that we use the debruijn function to change

occurrences of the inductive types to references in the tys context. Here te is the

inductive constructor type and context has been previously checked to be well typed

and contains not only the inductive types arities but also the left parameters.� �
let con sort = typeof ˜subst ˜metasenv context te in� �

3. The universe in which the inductive type lives has to be greater (or equal) to the

ones of its constructors.� �
(match R.whd ˜subst context con sort, R.whd ˜subst [] ty sort with

45

(C.Sort (C.Type u1) as s1), (C.Sort (C.Type u2) as s2) →
if not (E.universe leq u1 u2) then
raise
(TypeCheckerFailure

(lazy (”The type ” ˆ PP.ppterm ˜metasenv ˜subst ˜context s1ˆ
” of the constructor is not included in the inductive” ˆ
” type sort ” ˆ PP.ppterm ˜metasenv ˜subst ˜context s2)))

| C.Sort , C.Sort C.Prop
| C.Sort , C.Sort C.Type → ()
| , →

raise
(TypeCheckerFailure

(lazy (”Wrong constructor or inductive arity shape”))));� �
4. The inductive type must occur only positively in the type of its constructors. This

check is far from being trivial, and the whole following section is dedicated to its

implementation.� �
if not

(are all occurrences positive ˜subst context uri leftno
(i+leftno) leftno (len+leftno) te)

then
raise (TypeCheckerFailure

(lazy (”Non positive occurrence in ”ˆNUri. string of uri uri))))� �
6.2 Positivity conditions

It is well known that in the definition of inductive and coinductive types, a positivity

condition on the type of their constructors must be verified, in order to guarantee

the logical consistency of the system. With dependent types, this requirement must

be strengthened to a property known as strict positivity. This notion of positivity

is justified by a translation from general inductive definitions (i.e. mutually defined,

possibly nested inductive types) to a single inductive type, which is guaranteed to be

sound when the input types satisfy the strict positivity condition. The details are both

lengthy and involved: the interested reader may check Paulin-Mohring (1996) for a

detailed account on the issue of inductive types and positivity. In this section we will

just state what strict positivity is and discuss the code implementing the positivity

check, occasionally hinting at the reasons behind the check.

Suppose we are checking an inductive type I, whose definition belongs to a block

of k mutually defined inductive types I1, . . . , Ik. We have

I : Πl1 : T1 . . .Πlm : Tm.Πr1 : U1 . . .Πrn : Un.S

where S is a sort, l1 . . . lm and r1 . . . rn are respectively the m left parameters and n

right parameters of I (T1 . . . Tm and U1 . . . Un being their types). For all constructors

c of I, we want to ensure that any occurrence of the types I1 . . . Ik in the types of

the arguments of c is strictly positive. This is performed by two mutually recursive

procedures are all occurrences positive and strictly positive . The check is triggered by

the typechecker invoking are all occurrences positive on the type of any constructor k.

This procedure is defined by recursion on the type of the constructor, say

c : Πx1 : V1 . . .Πxh : Vh.O

46

For all i = 1, . . . , h, if Πxi : Vi. · · · is a non-dependent product (meaning that xi does

not occur in the target of the product), we will check that I and any other inductive

type mutually defined with I occur only strictly positively in Vi (by means of a call

to strictly positive); if on the other hand it is a dependent product, then I and its

sibling inductive types must not occur in Vi at all. Finally, the procedure also checks

that O = I l1 · · · lm a1 · · · an, such that I and its sibling inductive types do not occur

in a1 . . . an.

The strictly positive procedure checks the inductive types defined in the current

block occur only strictly positively in a type Πx1 : V1 . . .Πxh : Vh.V . The condition is

satisfied if:

1. the inductive types defined in the current block do not occur neither in V1 . . . Vh

nor in V ; or

2. the inductive types defined in the current block do not occur in V1 . . . Vh and

(a) if V = I ′ t1 · · · tp where I ′ ∈ {I1, . . . , Ik}, none of these types occurs in t1 . . . tp;

(b) if V = I ′′ t1 · · · tl u1 · · ·ur where I ′′ is the only inductive type defined in

another block with l left parameters, the types defined in the current block

do not occur in u1 . . . ur and a call to procedure are all occurrences positive to

check that the types defined in the current block occur only positively in the

(appropriately instantiated) constructors of I ′′ t1 · · · tl succeeds.

The point 2b is particularly involved and deserves to be justified. Basically, we

have a priori no knowledge about the way the right parameters of I ′′ are propagated

by constructors in recursive calls, so we do not want the types defined in the current

block to occur in u1 . . . ur. The situation is radically different if these types occur only

in left positions. In this case we can easily track their propagation. For what concerns

the call to are all occurrences positive , it is needed because, as we mentioned before,

the positivity check is justified by a syntactical transformation which we are now going

to show in a simple example. Note that the transformation is not actually performed

in the code; it is only used to show its correctness.

Suppose we are defining two types in two different blocks, with the second type

mentioning the first one.� �
inductive list (A:Type) : Type :=
| nil : list A
| cons : A → list A → list A.
inductive t : Type :=
| k : list t → t .� �
Matita behaves as if the definition of t were converted in a mutual inductive definition

of two types:� �
inductive t’ : Type :=
| k’ : list t ’ → t ’
and list t ’ : Type :=
| nil ’ : list t ’
| cons’ : t ’ → list t ’ → list t ’.� �
list t ’ can be understood as the type whose constructors we are feeding to

are all occurrences positive . In practice we perform the positivity check inside list t ’

as if it were defined in the same block as t ’.

Now let’s see the code implementing the positivity check. are all occurrences positive

takes as input a substitution and a context (as usual), the uri of the inductive definition

47

we are inspecting, the number of left parameters of the inductive type, the index i of

the inductive type whose constructor we are checking (to verify if it really inhabits that

inductive type Ref.Ind(uri , i)), the range (n,nn] of indices referring to the types defined

in the current block, the type te of the constructor and the number of left arguments

indparamsno. The function is defined by recursion on te.� �
(∗ the inductive type indexes are s. t . n < x <= nn ∗)
and are all occurrences positive ˜subst context uri indparamsno i n nn te =

match R.whd context te with
| C.Appl ((C.Rel m)::tl) as reduct when m = i →

check homogeneous call ˜subst context indparamsno n uri reduct tl;
List . for all (does not occur ˜subst context n nn) tl

| C.Rel m when m = i →
if indparamsno = 0 then
true

else
raise (TypeCheckerFailure
(lazy (”Non−positive occurence in mutual inductive definition(s) [3]”ˆ
NUri. string of uri uri)))� �

The first two cases ensure that occurrences of the i-th inductive type are always consis-

tently applied to the left parameters, and that the inductive type itself is not occurring

in any additional constructor argument.� �
| C.Prod (name,source,dest) when

does not occur ˜subst ((name,C.Decl source)::context) 0 1 dest →
strictly positive ˜subst context n nn indparamsno uri source &&
are all occurrences positive ˜subst
((name,C.Decl source)::context) uri indparamsno
(i+1) (n + 1) (nn + 1) dest

| C.Prod (name,source,dest) →
if not (does not occur ˜subst context n nn source) then

raise (TypeCheckerFailure (lazy (”Non−positive occurrence in ”ˆ
PP.ppterm ˜context ˜metasenv:[] ˜subst te)));

are all occurrences positive ˜subst ((name,C.Decl source)::context)
uri indparamsno (i+1) (n + 1) (nn + 1) dest� �

The next two items check the conditions on the leading products of the type of a

constructor. The first one corresponds to the condition on non-dependent products (as

checked by the first call to does not occur), while the second one implements the check

for dependent products.� �
| →

raise
(TypeCheckerFailure (lazy (”Malformed inductive constructor type ” ˆ

(NUri. string of uri uri))))� �
Finally, we assert that in any other case, the type of the constructor is malformed. The

check homogeneous call function is in charge of checking that the list of terms tl has a

prefix of length indparamsno of variables corresponding to the fixed parameters of the

inductive type.� �
let check homogeneous call ˜subst context indparamsno n uri reduct tl =
let last =
List . fold left
(fun k x →

if k = 0 then 0
else

48

match R.whd context x with
| C.Rel m when m = n − (indparamsno − k) → k − 1
| → raise (TypeCheckerFailure (lazy

(”Argument ”ˆstring of int (indparamsno − k + 1) ˆ ” (of ” ˆ
string of int indparamsno ˆ ” fixed) is not homogeneous in ”ˆ

”appl:\n”ˆ PP.ppterm ˜context ˜subst ˜metasenv:[] reduct))))
indparamsno tl

in
if last <> 0 then
raise (TypeCheckerFailure
(lazy (”Non−positive occurence in mutual inductive definition(s) [2]”ˆ
NUri. string of uri uri)))� �

The actual positivity check is delegated to the function strictly positive .� �
and strictly positive ˜subst context n nn indparamsno posuri te =

match R.whd context te with
| t when does not occur ˜subst context n nn t → true
| C.Rel when indparamsno = 0 → true
| C.Appl ((C.Rel m)::tl) as reduct when m > n && m <= nn →

check homogeneous call ˜subst context indparamsno n posuri reduct tl;
List . for all (does not occur ˜subst context n nn) tl

| C.Prod (name,so,ta) →
does not occur ˜subst context n nn so &&

strictly positive ˜subst ((name,C.Decl so)::context) (n+1) (nn+1)
indparamsno posuri ta� �

The first item in the pattern matching corresponds to the case 1 in the informal de-

scription. As for cases 2a and 2b:

– in both cases, the inductive types defined in the current block must not occur in the

sources of leading products (as checked by the third item of the pattern matching);

– if the type we are checking ends with an inductive type with no parameters, cases

2a and 2b collapse and the check is vacuously satisfied (this corresponds to the

second item of the pattern matching);

– the forth item of the pattern matching corresponds to the remaining condition of

case 2a.� �
| C.Appl (C.Const (Ref.Ref (uri,Ref.Ind) as r):: tl) →

let ,paramsno,tyl, , i = E.get checked indtys r in
let ,name,ity,cl = List.nth tyl i in
let ok = List.length tyl = 1 in
let params, arguments = HExtlib.split nth paramsno tl in
let lifted params = List.map (S. lift 1) params in
let cl =

List .map (fun (, ,te) → instantiate parameters lifted params te) cl
in
ok &&
List . for all (does not occur ˜subst context n nn) arguments &&
List . for all
(weakly positive ˜subst ((name,C.Decl ity)::context) (n+1) (nn+1)

uri indparamsno posuri) cl� �
Finally we have to perform the most complex part of the positivity check, corresponding

to case 2b in the informal discussion. The important difference here is that, to check

the nested inductive type occurrence, we do not invoke are all occurrences positive ,

but a specialized function called weakly positive. The code of weakly positive is similar

49

to the code of are all occurrences positive since it is used to check the constructors of

the nested inductive type, but it differs from it since it is supposed to check positivity

with respect to the current block of inductive definitions (which is not the block in

which the nested inductive type was defined). Moreover, weakly positive can exploit the

previous knowledge about the fact that the nested type already passed the strictly

positive check on its constructors with respect to the block in which it was defined.

The description of strictly positive is completed by its default case that captures

all remaining non strictly positive terms:� �
| → false� �
Last, we see the code of the weakly positive function, which is very similar to the

function are all occurrences positive , but performing a slightly different check. The

function is also designed to work on constructor types where recursive parameters

are identified not by indices, but by the appropriate constant.� �
(∗ Inductive types being checked for positivity have ∗)
(∗ indexes x s. t . n < x <= nn. ∗)
let rec weakly positive ˜subst context n nn uri indparamsno posuri te =

(∗CSC: Not very nice. ∗)
let dummy = C.Sort C.Prop in
(∗CSC: to be moved in cicSubstitution? ∗)
let rec subst inductive type with dummy = function
| C.Const (Ref.Ref (uri ’, Ref.Ind (true ,0,))) when NUri.eq uri’ uri → dummy
| C.Appl ((C.Const (Ref.Ref (uri’,Ref.Ind (true ,0, lno)))):: tl)

when NUri.eq uri’ uri →
let , rargs = HExtlib.split nth lno tl in
if rargs = [] then dummy else C.Appl (dummy :: rargs)

| t → U.map (fun x→ x) () subst inductive type with dummy t
in
(∗ this function has the same semantics of are all occurrences positive

but the i−th context entry role is played by dummy and some checks
are skipped because we already know that are all occurrences positive
of uri in te . ∗)

let rec aux context n nn te =
match R.whd context te with
| t when t = dummy → true
| C.Appl (te:: rargs) when te = dummy →

List . for all (does not occur ˜subst context n nn) rargs� �
An occurrence of the type i ’ whose constructors we are checking is weakly positive. To

see if a constant refers to i ’, it is sufficient to check its uri and not its index, since the

inductive type i ’ is not mutually defined with any other type and since i ’ has already

been typechecked in advance (what we are doing now is checking that a reference to i ’

from inside another inductive type i is admissible, not checking that i ’ is well typed).� �
| C.Prod (name,source,dest) when

does not occur ˜subst ((name,C.Decl source)::context) 0 1 dest →
(∗ dummy abstraction, so we behave as in the anonimous case ∗)
strictly positive ˜subst context n nn indparamsno posuri source &&

aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest
| C.Prod (name,source,dest) →

does not occur ˜subst context n nn source &&
aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest� �

In the case of an arrow or a dependent product, we first replace all the occurrences

of i ’ in the source with a dummy. Then, we check that the indices between n and nn

50

(referring to the inductive types defined in another block) occur only positively (in the

case of an arrow) or do not occur (in the case of a dependent product) in the source.� �
| →

raise (TypeCheckerFailure (lazy ”Malformed inductive constructor type”))� �
In any other case, we are checking a malformed constructor type.

6.3 Ensuring termination of recursive functions

We now discuss the guarded by destructors algorithm (GD), which is used by the type-

checker to ensure termination of functions defined by fixpoint. The algorithm checks

that recursive calls are applied to a strictly smaller parameter (in a sense that will be

clear later).

In our setting, fixpoint definitions must be top level objects: this means that nested

recursive definitions are not allowed and should be replaced by multiple top-level fix-

points. To retain the full expressive power of nested recursive definitions, we are com-

pelled to allow a recursive function to pass itself around as an argument to other

recursive functions. Of course, this case needs special care, to make sure that the re-

cursive function passed as an argument is used in a well-founded manner; to ensure

termination even in this case, the algorithm must perform a deep analysis, unfolding

the fixpoints and keeping track of them too.

Before entering the details of the code we give a precise specification in prose to

help the reader understand the termination check.

Let p be a pattern used for matching a term v of inductive type (I largs rargs),

and let x1, . . . , xn0 be the variables bound by the pattern. Recursively at step k

let xnk+1, . . . , xnk+1 be the variables bound in a pattern used for matching either

some xj or some applications of xj (with j ≤ nk). We say that if xi has type

∀z1...zn.I largs′ rargs′ then the term bound by xi applied to n arguments (possi-

bly none) is smaller than v. In this case the typing conditions over I grant that largs′

is equal to largs, and that this order is well founded. In the implementation the vari-

ables xi are called safe and v, which in the interesting case is always a variable, is

called seed.

In the following example, only the terms bound by variables he and he’ are smaller

than v, while l , tl ,hd,hd’, tl ’ are safe.� �
inductive list (T : Type) : Type := nil : list T | cons : T → list T → list T
inductive tree : Type := leaf : tree | node : list tree → nat → tree .
let v := node [leaf ; node [] 2] 3 in

match v with
[leaf ⇒ . . .
| node l ⇒

match l with
[nil ⇒ . . .
| cons he tl ⇒

match tl with [nil ⇒ . . .| cons he’ tl’ ⇒ . . .]]]� �
A more complex example involving higher order constructors is the following, where

terms bound to x, y and terms of the form g n and h n for any n are smaller.� �
inductive ord : Type := Zero : ord | Succ : ord → ord | Lim : (nat → ord) → ord.
let v := Succ (Lim f) in

51

match v with
[Zero ⇒ . . .| Succ x ⇒ . . .
| Lim g ⇒

match g 4 with [Zero ⇒ . . .| Succ y ⇒ . . .| Lim h ⇒ . . .]]� �
The desiderata would be to accept any well founded recursion w.r.t. this order rela-

tion which is in general undecidable. Thus, we only accept functions that honor the fol-

lowing decidable syntactic approximation. We say that a recursive function f x1 . . . xm

is guarded by destructors on the n-th argument when one of the following hold for each

occurrence of f in its definition

– f is applied to at least n arguments v1 . . . vk and vn generates only smaller terms

(GST). Ideally a term vn is in GST if for every possible instantiation with closed

terms of its free variables, it reduces to a term smaller than xn. Because of unde-

cidability, we approximate GST with the following syntactic rules10:

– a term smaller than xn is in GST.

– if t reduces to a term in GST then t is in GST.

– if t is a case analysis end every branch is GST then t is in GST. (†)
– f is passed to another recursive function g (already checked to be terminating) as

the k-th argument and the following conditions hold:

– the first k arguments of g are fixed, that is always passed unmodified to recursive

calls. Since we allow only top level fixpoints, the user can not define deep

fixpoints fixing some arguments by abstracting them outside the fixpoint.

– we build a term b representing a generic recursive invocation of g by unfolding

g and substituting:

• all fixed arguments with the actual ones (in which f may occur). Indeed

these arguments are the same in every recursive call.

• the recursive argument with a fresh variable that is considered safe if the

actual argument passed to g by f is safe. The fact that it remains safe at

each iteration can be proved by induction on g.

• all remaining arguments with fresh variables representing generic terms we

do not statically know anything about.

• all occurrences of g applied to its fixed arguments with a fresh variable to

avoid unfolding g again.

The resulting term b has to be guarded by destructors.

The following example is accepted by Matita. The interesting function is count that

passes itself to fold.� �
inductive list (T : Type) : Type := nil : list T | cons : T → list T → list T
inductive tree : Type := leaf : tree | node : list (name ∗ tree) → name ∗ nat → tree .
let rec fold T f (l : list T) acc :=
match l with
[nil ⇒ acc
| cons he tl ⇒ fold T f tl (f he acc)].

let snd := λ t. match t with [pair b ⇒b].
let rec count (t : tree) : nat :=
match t with
[leaf ⇒O
| node l ⇒ 1 + fold ? (λ t,acc.acc + count (snd t)) l O].� �
10 Clearly our approximation of GST can be improved, for instance considering recursive

functions. The current rules proved to be sufficient to accept any recursive definition in the
libraries of Matita and Coq.

52

What is actually checked for guardedness instead of the original call to fold is the

following term under the assumption that L is safe:� �
match L with
[nil ⇒ACC
| cons he tl ⇒FOLD tl (ACC + count (match he with [pair b ⇒ b]))]].� �

Note that the count call is guarded by destructors because of rule (†).
Matita allows mutually recursive function definitions at the top level. Thus we

have modified the syntactic termination check explained above to the special case of a

block of functions recursive on arguments whose types are also mutually recursive. For

instance it is possible to define the mutually recursive types of forests and trees and

corecursive functions on them:� �
inductive forest : Type := root : tree → forest → forest | empty : forest
with tree : Type := node : nat → forest → tree .
let rec size forest (f : forest) : nat :=

match f with [root t f ⇒ size tree t + size forest f | empty ⇒O]
and size tree (t : tree) : nat :=

match t with [node f ⇒S (size forest f)].� �
The function that implements the GD check is called guarded by destructors and the

one for GST is called is really smaller . The recursive args and get new safes functions

are used in combination to detect safe and smaller terms. Let’s see in detail the code

of these functions.

All the information regarding the seed, safe variables and unfolded fixpoints is kept

in the recfuns parameter of the guarded by destructors function.� �
and guarded by destructors r uri r len ˜subst ˜metasenv context recfuns t =
let recursor f k t = U.fold shift k k (fun k () → f k) () t in
let rec aux (context, recfuns , x as k) t =
try
match t with
| C.Rel m as t when is dangerous m recfuns →

raise (NotGuarded (lazy
(PP.ppterm ˜subst ˜metasenv ˜context t ˆ
” is a partial application of a fix ”)))

| C.Appl ((C.Rel m)::tl) as t when is dangerous m recfuns →
let rec no = get recno m recfuns in
if not (List.length tl > rec no) then

raise (NotGuarded (lazy
(PP.ppterm ˜context ˜subst ˜metasenv t ˆ
” is a partial application of a fix ”)))

else
let rec arg = List.nth tl rec no in
if not (is really smaller r uri r len ˜subst ˜metasenv k rec arg) then

raise (NotGuarded (lazy (Printf.sprintf (”Recursive call %s, %s is not”
ˆˆ ” smaller.\ncontext:\n%s”) (PP.ppterm ˜context ˜subst ˜metasenv
t) (PP.ppterm ˜context ˜subst ˜metasenv rec arg)
(PP.ppcontext ˜subst ˜metasenv context))));

List . iter (aux k) tl� �
First of all, the algorithm checks if the term t to be checked is dangerous, i.e. it is

a recursive call to one of the functions defined in the current fixpoint block. In this

case, it must be applied at least up to the recursive parameter, the actual recursive

argument must be really smaller and all the arguments must be, recursively, guarded

by destructors.

53

� �
| C.Appl ((C.Rel m)::tl) when is unfolded m recfuns →

let fixed args = get fixed args m recfuns in
HExtlib. list iter default2
(fun x b → if not b then aux k x) tl false fixed args� �

In the case of an application of a fixpoint which has already been unfolded, and whose

body we are traversing, the algorithm checks that any argument which has not been

flagged as “fixed” is guarded by destructors.� �
| C.Rel m →

(match List.nth context (m−1) with
| ,C.Decl → ()
| ,C.Def (bo,) → aux k (S. lift m bo))

| C.Meta → ()� �
In the case of an index bound to a LetIn, we check that the body of the local definition

is guarded. As for metavariables, what we should do is to constrain the set of terms

with which a metavariable can be instantiated. Such a job would require some rework

of our data structures, which we felt would be overkill. Instead, we just state that

any metavariable, by itself, is guarded, even if some possible instantiations of it are

not. This does not hamper the logical consistency of the system in any way: the only

drawback is that, when filling in a subproof, the user does not get any hints on the

constraints of well-guardedness, therefore he might provide an unguarded term, which

would initially be accepted by the refiner (outside the kernel), but would be rejected

when fed to the kernel.� �
| C.Appl (C.Const ((Ref.Ref (uri,Ref.Fix (i ,recno,))) as r):: args) →

if List . exists (fun t → try aux k t;false with NotGuarded → true) args
then
let fl , , = E. get checked fixes or cofixes r in
let ctx tys , bos =

List . split (List .map (fun (,name, ,ty,bo) → (name, C.Decl ty), bo) fl)
in
let fl len = List.length fl in
let bos = List.map (debruijn uri fl len context) bos in
let j = List. fold left min max int (List.map (fun (, , i , ,)→ i) fl) in
let ctx len = List.length context in

(∗ we may look for fixed params not only up to j ... ∗)
let fa = fixed args bos j ctx len (ctx len + fl len) in
HExtlib. list iter default2
(fun x b → if not b then aux k x) args false fa;

let context = context@ctx tys in
let ctx len = List.length context in
let extra recfuns =

HExtlib.list mapi (fun i → ctx len − i, UnfFix fa) ctx tys
in
let new k = context, extra recfuns@recfuns, x in
let bos and ks =

HExtlib.list mapi
(fun bo fno →
let bo and k =

eat or subst lambdas ˜subst ˜metasenv j bo fa args new k
in
if
fno = i &&
List .length args > recno &&
(∗case where the recursive argument is already really smaller ∗)

54

is really smaller r uri r len ˜subst ˜metasenv k
(List .nth args recno)

then
let bo,(context, , as new k) = bo and k in
let bo, context’ =
eat lambdas ˜subst ˜metasenv context (recno + 1 − j) bo in

let new context part, =
HExtlib.split nth (List .length context’ − List.length context)
context’ in

let k = List. fold right shift k new context part new k in
let context, recfuns , x = k in
let k = context, (1,Safe):: recfuns , x in

bo,k
else
bo and k

) bos
in
List . iter (fun (bo,k) → aux k bo) bos and ks� �

When we are checking the application of a fixpoint definition, and some of the argu-

ments are not guarded, we perform a deep analysis by unfolding the fixpoint. We keep

track of which arguments are used by the fixpoint as “fixed” parameters, and we check

recursively that those which are not fixed are guarded. Then we extend the recfuns

structure by adding the indices referring to the recursive functions in the unfolded

fixpoint, associated to the list of fixed parameters. Finally we check that the body of

any recursive function defined in the unfolded fixpoint in appropriately updated context

and recfuns.� �
| C.Match (Ref.Ref (uri,Ref.Ind (true, ,)), outtype,term,pl) as t →

(match R.whd ˜subst context term with
| C.Rel m | C.Appl (C.Rel m ::) as t when is safe m recfuns || m = x →

let ty = typeof ˜subst ˜metasenv context term in
let dc ctx, dcl , start , stop =

specialize and abstract constrs ˜subst r uri r len context ty in
let args = match t with C.Appl (::tl) → tl | → [] in
aux k outtype;
List . iter (aux k) args;
List . iter2

(fun p (,dc) →
let rl = recursive args ˜subst ˜metasenv dc ctx start stop dc in
let p, k = get new safes ˜subst k p rl in
aux k p)

pl dcl
| → recursor aux k t)� �

When we encounter a case analysis on a term of an inductive type (say term is the term

being matched and ty its type) and term is (an application of) the seed or a safe index,

term and the outtype of the case analysis must be guarded (recursively) and for each

pattern p = Lambda (x1,t1, (... Lambda (xm,tm,v) ...)) in the pattern list pl, v should be

guarded by destructors under an extended list of safe indices, comprising the indices

referring to each recursive parameter of the corresponding constructor of ty; this is the

case where new safe indices are created, by means of the procedures recursive args and

get new safes.� �
| t → recursor aux k t
with
NotGuarded as exc →

55

let t ’ = R.whd ˜delta:0 ˜subst context t in
if t = t’ then raise exc
else aux k t’

in
try aux (context, recfuns , 1) t
with NotGuarded s → raise (TypeCheckerFailure s)� �

In any other case, the check is propagated through the use of a recursor. In case of

failure, as a last resort, the check is repeated on the weak head normal form of the term:

this allows to capture a strictly larger set of terms, and it cannot be easily dispensed

off. As a major drawback, it accepts also terms that are only weakly normalizing

under a call-by-need strategy, since not guarded diverging calls can be passed to affine

abstractions. In any case, the system remains logically consistent.

Two key tasks in the procedure are checking that a recursive call receives a smaller

argument, and updating the list of safe indices according to each pattern of a Match.

The first task is performed by the is really smaller procedure, that checks if a term,

possibly fed with arguments, will always return smaller arguments.� �
and is really smaller

r uri r len ˜subst ˜metasenv (context, recfuns, x as k) te
=
match R.whd ˜subst context te with
| C.Rel m when is safe m recfuns → true� �

If the term is a safe index, then it is really smaller.� �
| C.Lambda (name, s, t) →

is really smaller r uri r len ˜subst ˜metasenv (shift k (name,C.Decl s) k) t
| C.Appl (he::) →

is really smaller r uri r len ˜subst ˜metasenv k he
| C.Rel
| C.Const (Ref.Ref (, ,Ref.Con)) → false
| C.Appl []
| C.Const (Ref.Ref (, ,Ref.Fix)) → assert false
| C.Meta → true� �

In the case of a lambda abstraction, its target must be really smaller. In the case of an

application, then it is sufficient for its head to be really smaller.

Inductive type constructors and non-safe indices are not really smaller. In the

case of a metavariable, just like inside guarded by destructors, we temporarily accept

any metavariable, accepting the possibility that the kernel will reject the subsequent

instantiation.� �
| C.Match (Ref.Ref (uri,Ref.Ind (isinductive , ,)), outtype,term,pl) →

(match term with
| C.Rel m | C.Appl (C.Rel m ::) when is safe m recfuns || m = x →

if not isinductive then
List . for all (is really smaller r uri r len ˜subst ˜metasenv k) pl

else
let ty = typeof ˜subst ˜metasenv context term in
let dc ctx, dcl , start , stop =

specialize and abstract constrs ˜subst r uri r len context ty in
List . for all2
(fun p (,dc) →

let rl = recursive args ˜subst ˜metasenv dc ctx start stop dc in
let e, k = get new safes ˜subst k p rl in
is really smaller r uri r len ˜subst ˜metasenv k e)

56

pl dcl
| → List. for all (is really smaller r uri r len ˜subst ˜metasenv k) pl)

| → assert false� �
Pattern matching is really smaller if it always produces a really smaller result in each

branch. If the matched term is the seed or it is safe, we extend the list of safe indices

as we did in guarded by destructors.

The term should always fall in one of the categories above. If it doesn’t, it must be

a product or a sort (meaning that its type is neither an inductive type, nor a function

returning an inductive type) or an implicit (which should never reach the kernel).

Therefore, we raise assert false .

The other critical task is to understand which indices should be added to the safe

list when matching the seed or another safe index. Informally, for each pattern in

the case analysis, we add exactly those indices, corresponding to the arguments of a

constructor, whose type is mutually defined with the type of the term being matched.� �
and recursive args ˜subst ˜metasenv context n nn te =

match R.whd context te with
| C.Rel | C.Appl | C.Const → []
| C.Prod (name,so,de) →

(not (does not occur ˜subst context n nn so)) ::
(recursive args ˜subst ˜metasenv

((name,(C.Decl so))::context) (n+1) (nn + 1) de)
| t →

raise (AssertFailure (lazy (”recursive args :” ˆ PP.ppterm ˜subst
˜metasenv ˜context:[] t)))� �

The recursive args procedure takes the type of a constructor and returns a list of

booleans whose length is equal to the arity of the constructor: each boolean is true

if the corresponding argument is recursive, false otherwise.� �
and get new safes ˜subst (context, recfuns , x as k) p rl =

match R.whd ˜subst context p, rl with
| C.Lambda (name,so,ta), b::tl →

let recfuns = (if b then [0,Safe] else []) @ recfuns in
get new safes ˜subst

(shift k (name,(C.Decl so)) (context, recfuns , x)) ta tl
| C.Meta as e, | e, [] → e, k
| → raise (AssertFailure (lazy ” Ill formed pattern”))� �

The get new safes procedure takes a pattern, the booleans obtained from recursive args ,

and the current safe list: it returns the body of the pattern (i.e. the pattern stripped

of the outer lambdas) and the updated safe list against which the body of the pattern

must be checked.

In the case of functions defined by cofixpoint, we want to make sure that even if the

function might return a coinductive term constructed by an infinite tree of applications

of constructors, the system remains strongly normalizing. This is made possible by a

lazy unfolding strategy, performed only when the application of a corecursive function

is observed by means of case analysis: provided that a corecursive call appears only

inside a constructor, the function can be unfolded only a finite number of times, since

the number of observations allowed on a term cannot be infinite, being produced by

recursive functions.

Ideally, the guarded by constructors check, which is dual to the guarded by destruc-

tors check for recursive functions, should accept only all the terms whose head normal

57

form is obtained in a finite number of steps and is the application of a constructor of

some coinductive type. Because of undecidability, we are again obliged to propose a

decidable syntactic criterion.

Let f be a corecursive function11 and t a term in which f occurs. Under the

assumption that f reduces to a constructor of a coinductive type, we need to decide

if it is certain that t, for each substitution of its free variables with closed terms, will

bring the constructor generated by f in head position. We call the set of all such terms

t the certain (CE) set w.r.t. f and we approximate it by the following rules:

– f t1 . . . tn is in CE if f does not occur in t1 . . . tn
– a case analysis whose branches are all in CE is in CE

– an abstraction whose body is in CE is in CE

The set of guarded by constructors (GC) terms w.r.t. a corecursive function f is

thus defined by the following rules:

– t is in GC if f does not occurr in t

– a term k t1 . . . tn where k is a constructor of a coinductive type I with m left

parameters is in GC if one of the following holds for each non-left argument ti (i.e.

when m < i):

– f does not occur in ti
– ti is in CE w.r.t. f

– a case analysis whose branches are all in GC is in GC

– an abstraction whose body is in GC is in CG if f does not occur in the type of the

abstracted variable

Since the rules for the CE and GC sets are quite similar, we have factorized both

checks in the procedure guarded by constructors. The h parameter of the auxiliary func-

tion aux is used to distinguish between the two semantics. Concretely, it records whether

a constructor has been (just) crossed.� �
and guarded by constructors ˜subst ˜metasenv context t indURI indlen nn =
let rec aux context n nn h te =
match R.whd ˜subst context te with
| C.Rel m when m > n && m <= nn → h
| C.Rel | C.Meta → true� �

We always perform the analysis on the weak head normal form of the term: this cap-

tures more recursive functions at the price of accepting terms which are only weakly

normalizing under a call-by-need strategy.

When checking an index corresponding to a corecursive definition belonging to the

current cofixpoint, we return h, i.e. true if we have crossed a constructor. Other indices

and metavariables are always guarded.� �
| C.Sort
| C.Implicit
| C.Prod
| C.Const (Ref.Ref (, ,Ref.Ind))
| C.LetIn → raise (AssertFailure (lazy ”17”))� �

Since the term is in weak head normal form, sorts, implicit terms, products, inductive

types or local definitions are never considered by the algorithm.

11 0-ary function are also accepted

58

� �
| C.Lambda (name,so,de) →

does not occur ˜subst context n nn so &&
aux ((name,C.Decl so)::context) (n + 1) (nn + 1) h de� �

In the case of a lambda-abstraction, the source must not contain any corecursive call

in the source, and the target must be guarded by constructors.� �
| C.Appl ((C.Rel m)::tl) when m > n && m <= nn →

h && List. for all (does not occur ˜subst context n nn) tl
| C.Const (Ref.Ref (, ,Ref.Con)) → true� �

A corecursive call must appear under a constructor, and all of its arguments must be

guarded by constructors. (Co)-inductive constructors are guarded.� �
| C.Appl (C.Const (Ref.Ref (uri, Ref.Con (,j ,paramsno))) :: tl) as t →

let ty t = typeof ˜subst ˜metasenv context t in
let dc ctx, dcl , start , stop =

specialize and abstract constrs ˜subst indURI indlen context ty t in
let , dc = List.nth dcl (j−1) in
let rec params = recursive args ˜subst ˜metasenv dc ctx start stop dc in
let rec analyse instantiated type rec spec args =
match rec spec, args with
| h:: rec spec , he :: args →

aux context n nn h he && analyse instantiated type rec spec args
| ,[] → true
| → raise (AssertFailure (lazy

(”Too many args for constructor: ” ˆ String.concat ” ”
(List .map (fun x→ PP.ppterm ˜subst ˜metasenv ˜context x) args))))

in
let left , args = HExtlib.split nth paramsno tl in
analyse instantiated type rec params args� �

If we are checking an application of a constructor, we ensure that no corecursive calls

appear in the left parameters of the constructor and that all the arguments are guarded.

In this recursive check, h is set to true if the argument we are considering corresponds

to a recursive parameter of the constructor, false otherwise.� �
| C.Appl ((C.Match (,out,te,pl))::)
| C.Match (,out,te,pl) as t →

let tl = match t with C.Appl (::tl) → tl | → [] in
List . for all (does not occur ˜subst context n nn) tl &&
does not occur ˜subst context n nn out &&
does not occur ˜subst context n nn te &&
List . for all (aux context n nn h) pl� �

When considering a case analysis or an applied case analysis, we check that recursive

calls do not appear in the term being matched, in the return type or in the possible

arguments, and that all the patterns be guarded by constructors.� �
| C.Const
| C.Appl as t → does not occur ˜subst context n nn t

in
aux context 0 nn false t� �

If the term being checked is any constant or application different from the ones con-

sidered above, corecursive calls must not occur in the term.

59

7 Conclusions

The actual writing of the new kernel was done in four months, by four people, for a

total effort of about 10 men months12.

Half of the code has been rewritten from scratch, while the remaining part has been

adapted to the new data structures. In the process, we have improved on a large number

of small design decisions that had a major cumulative impact on the complexity of the

old kernel. We have also been able to better delimit the trusted parts by abstracting

them on code (mostly I/O code) that does not need to be trusted. The trusted and

untrusted functionalities were much more interleaved in the old kernel and difficult to

separate. This was the consequence of the evolution of the system and the temptation

to pollute the kernel with minor additional functionalities operating on CIC-terms,

originally meant for extra-kernel usages, but eventually ending up to be invoked in the

kernel too.

At the end, we were able to halve the size of the code and the number of functions

making up the kernel interface, as the following table shows.

New kernel Old kernel Coq † Coq

source size 2300 5000 7900 11400

exported functions 38 75 524 647

The last column is the dimension of the kernel of Coq 8.113 to which we should also add

about 1600 lines of C code implementing an optimized reduction machine. However,

the Coq kernel offers additional features (like a module system) that - deliberately -

are not implemented in Matita. The column marked with † is our, inevitably rough,

attempt to restrict the kernel to the same set of functionalities supported by Matita.

The datum is only indicative, but is just meant to give evidence that the new kernel

is really small.

The main differences between the two versions of CIC implemented in Coq and

Matita are:

– Recursive and co-recursive functions that are arbitrary terms in Coq (and in our

old kernel) and that we admit only as top level definitions. Thanks to λ-lifting, the

expressive power of the calculus is not affected, but more sophisticated termination

checks are required.

– Syntactic termination checks, that are more liberal in the new kernel of Matita

with respect to our old kernel and the one of Coq.

– Universe inference that is implemented in Coq (and in our old kernel) and that we

replaced with universe checking (in the spirit of the Explicit Polymorphic Extended

Calculus of Constructions)

– Computationally irrelevant arguments can be associated to constants, avoiding

their comparison in the conversion check. Neither Coq nor the old kernel had this

feature.

The following table compares the latter functionalities.

Old kernel New kernel Coq

universes 658 35 577

termination check 429 272 514

12 This is in line with our analysis in Asperti et al (2006), where we estimated in 12 men
months the time required to write a CIC-like kernel by a team of trained programmers.
13 Coq is also written in OCaml, so comparing lines is fair.

60

We can remark that our old implementation and the one of Coq, which were based

on similar data types, had similar sizes. In the case of termination checks, the smaller

size of our new kernel can be partially justified by better designed data structures,

that allowed us to collapse many similar cases, and by the choice of dropping recursive

functions at the term level. Universe checking is much simpler than universe inference

despite having much nicer properties (Courant (2002)).

The type-checking performances of a kernel are mostly determined by the effective-

ness of the reduction and conversion heuristics (Sacerdoti Coen (2007)) that may avoid

unnecessary reduction or that may reduce the size of the terms which are compared.

In our tests, the new and old kernel have roughly the same typechecking performances,

with some notable exceptions due to the constants height heuristics and to exploitation

of proof irrelevance.

The present work is a first step towards the complete reimplementation of Matita.

In particular, we expect that the new data structures will have a significant positive

effect also on other parts of the code, starting from the refinement code that closely

mimics the type-checking code. Indeed, the new representation of objects that have

both a metavariable and a substitution have already been thought to simplify the data

structures used outside the kernel to represent proof progress via the Curry-Howard

isomorphism.

Having reduced the size of the kernel, we would like to explore the possibility of

introducing some more complexity by extending the pattern matching construct of CIC

to handle nested patterns, and default patterns. These patterns are currently accepted

by the system, but they are represented internally by nesting multiple pattern match-

ing constructs and by duplicating patterns. The obtained term can be exponentially

larger than the original one, with a major impact on type-checking and conversion

performances. Moreover, being quite different from the one inserted by the user, it

requires more extra-logical information for pretty-printing it back in a readable form.

Thus we feel that it is worthwhile to modify the kernel, even at the price of adding

some complexity to the data type used to represent terms.

Another future research direction for the kernel would be to substitute the current

syntactic termination checks with a type system based on size types Abel (2004).

Although some experiments in this direction has already been performed Barthe et al

(2006), some work is still needed to have a usable and user-friendly system for the

Calculus of Inductive Constructions.

Finally, a compact kernel paves the way to a formalization of the correctness of

the implementation. Experiments in this direction has already been attempted for a

subset of the Calculus of Inductive Constructions Barras (1999). Although a complete

formalization is surely worthwhile, at present our main interest would be in the formal-

ization of the most error prone checks only, which comprise the termination checks for

recursive and co-recursive functions and the positivity conditions for inductive types.

References

Abel A (2004) Termination checking with types. Theoretical informatics and applica-

tions 38:277–319

Asperti A (1992) A categorical understanding of environment machines. J Funct Pro-

gram 2(1):23–59

61

Asperti A, Ricciotti W (2008) About the formalization of some results by chebyshev

in number theory. Invited talk at TYPES’08, Torino, Italy

Asperti A, Sacerdoti Coen C, Tassi E, Zacchiroli S (2006) Crafting a proof assistant.

In: Proceedings of Types 2006: Conference of the Types Project. Nottingham, UK –

April 18-21, Springer-Verlag, Lecture Notes in Computer Science, vol 4502, pp 18–32

Barendregt H (1992) Lambda Calculi with Types. In: Abramsky, Samson and others

(ed) Handbook of Logic in Computer Science, vol 2, Oxford University Press

Barras B (1999) Auto-validation d’un système de preuves avec familles inductives.

Thèse de doctorat, Université Paris 7

Barthe G, Ruys M, Barendregt H (1995) A two-level approach towards lean proof-

checking. In: Types for Proofs and Programs (Types 1995), Springer-Verlag, LNCS,

vol 1158, pp 16–35

Barthe G, Grégoire B, Pastawski F (2006) Type-based termination of recursive defini-

tions in the Calculus of Inductive Constructions. In: Proceedings of the 13th Inter-

national Conference on Logic for Programming Artificial Intelligence and Reasoning

(LPAR’06), Springer-Verlag, Lecture Notes in Artificial Intelligence, to appear

van Benthem Jutting L, McKinna J, Pollack R (1994) Checking algorithms for Pure

Type Systems. In: Barendregt, Nipkow (eds) TYPES’93: Workshop on Types for

Proofs and Programs, Selected Papers, Springer-Verlag, LNCS, vol 806, pp 19–61,

URL http://homepages.inf.ed.ac.uk/rpollack/export/JMPchecking.ps.gz

Bertot Y, Castéran P (2004) Interactive Theorem Proving and Program Development.

Texts in Theoretical Computer Science, Springer Verlag, iSBN-3-540-20854-2

Boutin S (1997) Using reflection to build efficient and certified decision procedures.

In: Abadi M, editors TI (eds) Theoretical Aspect of Computer Software TACS’97,

Lecture Notes in Computer Science, Springer-Verlag, vol 1281, pp 515–529

Courant J (2002) Explicit universes for the calculus of constructions. In: Theorem

Proving in Higher Order Logics: 15th International Conference, pp 115–130

Crégut P (1990) An abstract machine for lambda-terms normalization. In: LISP and

Functional Programming, pp 333–340

Crégut P (2007) Strongly reducing variants of the krivine abstract machine. Higher-

Order and Symbolic Computation 20(3):209–230

Danos V, Regnier L (2003) How abstract machines implement head linear reduction,

submitted for publication

Dybjer P (1997) Inductive families. Formal Aspects of Computing 6(4):440–465

Geuvers H (1993) Logics and Type Systems. Ph.D. dissertation, Catholic University

Nijmegen

Geuvers H, Jojgov GI (2002) Open proofs and open terms: A basis for interactive

logic. In: Bradfield J (ed) Computer Science Logic: 16th International Workshop,

CSL 2002, Springer-Verlag, Lecture Notes in Computer Science, vol 2471, pp 537–

552

Giménez E (1998) Structural recursive definitions in type theory. In: ICALP, pp 397–

408

Gonthier G (2005) A computer-checked proof of the four-colour theorem. Available at

http://research.microsoft.com/ gonthier/4colproof.pdf

Grégoire B (2003) Compilation des termes de preuves: un (nouveau)

mariage entre Coq et ocaml. Thése de doctorat, spécialité informa-

tique, Université Paris 7, école Polytechnique, France, URL http://www-

sop.inria.fr/everest/personnel/Benjamin.Gregoire/Publi/gregoire these.ps.gz

Huet G, Kahn G, Paulin-Mohring C (1998) The Coq Proof Assistant. A Tutorial

62

Johnsson T (1985) Lambda lifting: Transforming programs to recursive equations.

In: Proc. of Functional programming languages and computer architecture. Nancy,

France, Sept 1985.

Luo Z (1990) An Extended Calculus of Constructions. PhD thesis, University of Edin-

burgh

McBride C (1999) Dependently typed functional programs and their proofs. PhD thesis,

University of Edinburgh

Miquel A, Werner B (2003) The not so simple proof-irrelevant model of CC. In: Geuvers

H, Wiedijk F (eds) Types for Proofs and Programs: International Workshop, TYPES

2002, Springer-Verlag, Lecture Notes in Computer Science, vol 2646, pp 240–258

Muoz C (1997) A calculus of substitutions for incomplete-proof representation in type

theory. PhD thesis, INRIA

Paulin-Mohring C (1996) Définitions inductives en théorie des types d’ordre supŕieur.

Habilitation à diriger les recherches, Université Claude Bernard Lyon I, URL

http://www.lri.fr/ paulin/habilitation.ps.gz

Peyton-Jones SL (1987) The Implementation of Functional Programming Languages.

Prentice-Hall

Pollack R (1994) The theory of lego: A proof checker for the extended calculus of

constructions. PhD thesis, PhD thesis, Univ. of Edinburgh

Sacerdoti Coen C (2004a) Mathematical knowledge management and interactive the-

orem proving. PhD thesis, University of Bologna, technical Report UBLCS 2004-5

Sacerdoti Coen C (2004b) Mathematical libraries as proof assistant environments. In:

Andrea Asperti AT Grzegorz Bancerek (ed) Proceedings of Mathematical Knowledge

Management 2004, Springer-Verlag, Lecture Notes in Computer Science, vol 3119,

pp 332–346

Sacerdoti Coen C (2007) Reduction and conversion strategies for the calculus of

(co)inductive constructions: Part i. In: Proceedings of the Sixth International Work-

shop on Reduction Strategies in Rewriting and Programming, Elsevier, ENTCS, vol

174, pp 97–118

Werner B (1994) Une théorie des Constructions Inductives. PhD thesis, Université

Paris VII

Werner B (1997) Sets in types, types in sets. In: Abadi M, editors TI (eds) Theoret-

ical Aspect of Computer Software TACS’97, Lecture Notes in Computer Science,

Springer-Verlag, vol 1281, pp 530–546

Werner B (2008) Faire simple pour pouvoir faire compliqué. contributions à une théorie

des types pratique. Habilitation à diriger les recherches, Université Paris sud, URL

http://www.lix.polytechnique.fr/Labo/Benjamin.Werner/annonceHDR.html

Wiedijk F (2006) The seventeen provers of the world. LNAI 3600

A Syntax-directed type-checking rules

In this section, I will be short for

Πx1 : U1 . . .Πxl : Ul.
{inductive I1 : A1 := c11 : C1

1 . . . C
m1
1 : Tm1

1
with ...
with In : An := c1n : C1

n . . . c
mn
n : Cmn

n }

63

A.1 Environment formation rules (judgement E `WF , function typecheck obj)

∅ `WF

E `WF d undefined in E E,Σ `WF E,Σ,Φ `WF
E,Σ,Φ, ∅ ` T : S E,Σ,Φ, ∅ ` S .whd S

′ where S′ is a sort
E,Σ,Φ, ∅ ` b : T ′ E,Σ,Φ, ∅ ` T ↓ T ′

E ∪ 〈Σ,Φ,definition d : T := b〉 `WF

E `WF d undefined in E E,Σ `WF E,Σ,Φ `WF
E,Σ,Φ, ∅ ` T : S E,Σ,Φ, ∅ ` S .whd S

′ where S′ is a sort

E ∪ 〈Σ,Φ,axiom d : T 〉 `WF

E `WF f1, . . . , fn undefined in E E,Σ `WF E,Σ,Φ `WF
E,Σ,Φ, ∅ ` Ti : Si E,Σ,Φ, ∅ ` Si .whd S

′
i where S′i is a sort

E,Σ,Φ, [f1 : T1; . . . ; fn : Tn] ` bi : T ′i
E,Σ,Φ, [f1 : T1; . . . ; fn : Tn] ` Ti ↓ T ′i b1, . . . , bn guarded by destructors (Sect. 6.3)

E ∪ 〈Σ,Φ, let rec f1 : T1 := b1 and . . . and fn : Tn := bn〉 `WF

E `WF f1, . . . , fn undefined in E E,Σ `WF E,Σ,Φ `WF
E,Σ,Φ, ∅ ` Ti : Si E,Σ,Φ, ∅ ` Si .whd S

′
i where S′i is a sort

E,Σ,Φ, [f1 : T1; . . . ; fn : Tn] ` bi : T ′i
E,Σ,Φ, [f1 : T1; . . . ; fn : Tn] ` Ti ↓ T ′i b1, . . . , bn guarded by constructors (Sect. 6.3)

E ∪ 〈Σ,Φ, let corec f1 : T1 := b1 and . . . and fn : Tn := bn〉 `WF

E `WF I1, . . . , In, c11, . . . , c
mn
n undefined in E E,Σ `WF E,Σ,Φ `WF

all the conditions in Sect. 6.1 are satisfied

E ∪ 〈Φ,Σ, I〉 `WF

A.2 Metasenv formation rules (judgement E,Σ `WF , function typecheck metasenv)

E, ∅ `WF

E,Σ `WF ?i undefined in Σ E,Σ, ∅, Γ `WF
E,Σ, ∅, Γ ` T : S E,Σ, ∅, Γ ` S .whd S

′where S′ is a sort

E,Σ ∪ 〈Γ `?i : T 〉 `WF

A.3 Subst formation rules (judgement E,Σ,Φ `WF , function typecheck subst)

E,Σ, ∅ `WF

E,Σ,Φ `WF ?i undefined in Σ and in Φ E,Σ,Φ, Γ `WF
E,Σ,Φ, Γ ` T : S E,Σ,Φ, Γ ` S .whd S

′ where S′ is a sort
E,Σ,Φ, Γ ` t : T ′ E,Σ,Φ, Γ ` T ↓ T ′

E,Σ,Φ ∪ 〈Γ `?i : T := t〉 `WF

A.4 Context formation rules (judgement E,Σ,Φ, Γ `WF , function typecheck context)

E,Σ,Φ, ∅ `WF

64

E,Σ,Φ, Γ `WF x is undefined in Γ
E,Σ,Φ, Γ ` T : S E,Σ,Φ, Γ ` S .whd S

′ where S′ is a sort

E,Σ,Φ, Γ ∪ 〈x : T 〉 `WF

E,Σ,Φ, Γ `WF x is undefined in Γ
E,Σ,Φ, Γ ` T : S E,Σ,Φ, Γ ` S .whd S

′ where S′ is a sort
E,Σ,Φ, Γ ` t : T ′ E,Σ,Φ, Γ ` T ↓ T ′

E,Σ,Φ, Γ ∪ 〈x : T := t〉 `WF

A.5 Term typechecking rules (judgement E,Σ,Φ, Γ ` t : T , function typeof)

〈x : T 〉 ∈ Γ
E,Σ,Φ, Γ ` x : T

〈x : T := t〉 ∈ Γ
E,Σ,Φ, Γ ` x : T

E,Σ,Φ, Γ ` Typeu : Typeu+1

E,Σ,Φ, Γ ` Prop : Type0

〈Γ ′ `?i : T 〉 ∈ Σ
check metasenv consistency ?i[lc] Φ Σ Γ Γ ′ lc ok (Sect. 6)

E,Σ,Φ, Γ `?i[lc] : T [lc]

〈Γ ′ `?i : T := t〉 ∈ Φ
check metasenv consistency ?i[lc] Φ Σ Γ Γ ′ lc ok (Sect. 6)

E,Σ,Φ, Γ `?i[lc] : T [lc]

〈Σ′, Φ′,definition d : T := b〉 ∈ E
Σ′ = ∅ Φ′ = ∅
E,Σ,Φ, Γ ` d : T

〈Σ′, Φ′,axiom d : T 〉 ∈ E
Σ′ = ∅ Φ′ = ∅
E,Σ,Φ, Γ ` d : T

〈Σ′, Φ′, let rec f1 : T1 := b1 and . . . and fn : Tn := bn〉 ∈ E
Σ′ = ∅ Φ′ = ∅ 1 ≤ i ≤ n

E,Σ,Φ, Γ ` fi : Ti

〈Σ′, Φ′, let corec f1 : T1 := b1 and . . . and fn : Tn := bn〉 ∈ E
Σ′ = ∅ Φ′ = ∅ 1 ≤ i ≤ n

E,Σ,Φ, Γ ` fi : Ti

〈Σ′, Φ′, I〉 ∈ E
Σ′ = ∅ Φ′ = ∅ 1 ≤ k ≤ n

E,Σ,Φ, Γ ` Ik : Πx1 : U1 . . .Πxl : Ul.Ak

〈Σ′, Φ′, I〉 ∈ E
Σ′ = ∅ Φ′ = ∅ 1 ≤ k ≤ n 1 ≤ j ≤ mk

E,Σ,Φ, Γ ` cjk : Πx1 : U1 . . .Πxl : Ul.C
j
k

65

E,Σ,Φ, Γ ` s : S
E,Σ,Φ, Γ ` S .whd S

′ S′ is a sort or a meta
E,Σ,Φ, Γ ∪ 〈n : s〉 ` t : T

E,Σ,Φ, Γ ` λn : s.t : Πn : s.T

E,Σ, Φ, Γ ` s : S
E,Σ,Φ, Γ ∪ 〈n : s〉 ` t : T

u = sort of prod Σ Φ Γ (n, s) (S, T) (Sect. C)

E,Σ,Φ, Γ ` Πn : s.t : u

E,Σ,Φ, Γ ` t : T ′

E,Σ,Φ, Γ ` T : S E,Σ,Φ, Γ ` T ↓ T ′
E,Σ,Φ, Γ ∪ 〈x : T := t〉 ` u : U

E,Σ,Φ, Γ ` let (x : T) := t in u : U [t/x]

E,Σ,Φ, Γ ` h : Πx : T.U
E,Σ,Φ, Γ ` t : T ′ E,Σ,Φ, Γ ` T ↓ T ′

E,Σ,Φ, Γ ` h t : U [t/x]

E,Σ,Φ, Γ ` (h t1) t2 · · · tn : T

E,Σ,Φ, Γ ` h t1 t2 · · · tn : T

〈Σ′, Φ′, I〉 ∈ E Σ′ = ∅ Φ′ = ∅ E,Σ,Φ, Γ ` t : T
E,Σ,Φ, Γ ` T .whd Ik t1 · · · tl t′1 · · · t′q

Ak = Πy1 : Y1 . . .Πyq : Yq .s E,Σ, Φ, Γ ` ot : os
check allowed sort elimination Φ Σ Ik Γ (Ik t1 · · · tl) Ak [t1···tl/x1···xl] os ok (Sect. 6)

for all j = 1, . . . ,mk E,Σ,Φ, Γ ` pj : Tj
for all j = 1, . . . ,mk E,Σ,Φ, Γ ` Tj ↓ ∆{Ckj [t1···tl/x1···xl] , ot, (c

k
j t1 · · · tl)}

E,Σ,Φ, Γ `match t in Ik return ot with [p1|...|pmk] : ot t′1 · · · t′q t

∆{T, U, t} =

8<:U t′1 · · · t′n t if T = I t1 · · · tl t′1 · · · t′n,
where I is an inductive type with l left parameters

Πx : T1.∆{T2, U, t x} if T = Πx : T1.T2}

A.6 Term conversion rules (judgement E,Σ,Φ, Γ ` T ↓ T ′, function are convertible ;

↓= means test eq only = true; ↓• means that the current rule must be intended as two

rules, one with all the ↓• replaced by ↓, the other with all the ↓• replaced by ↓=)

E,Σ,Φ, Γ ` T =α T ′

E,Σ,Φ, Γ ` T ↓= T ′

E,Σ,Φ, Γ ` T ↓= T ′

E,Σ,Φ, Γ ` T ↓ T ′

Typeu ≤ Typev Typev ≤ Typeu are declared constraints (Sect. 4.3)

E,Σ,Φ, Γ ` Typeu ↓= Typev

Typeu ≤ Typev is a declared constraint (Sect. 4.3)

E,Σ,Φ, Γ ` Typeu ↓ Typev

E,Σ,Φ, Γ ` Prop ↓ Typeu

66

lc = t1, . . . , tn lc′ = t′1, . . . , t
′
n

for all i = 1, . . . , n E,Σ, Φ, Γ ` ti ↓• t′i
E,Σ,Φ, Γ `?j [lc] ↓•?j [lc′]

E,Σ,Φ, Γ ` T1 ↓= T ′1 E,Σ,Φ, Γ ∪ 〈x : T1〉 ` T2 ↓• T ′2
E,Σ,Φ, Γ ` Πx : T1.T2 ↓• Πx : T ′1.T

′
2

E,Σ,Φ, Γ ∪ 〈x : T 〉 ` t ↓• t′

E,Σ,Φ, Γ ` λx : T.t ↓• λx : T ′.t′

In the rule above, no check is performed on the source of the abstractions, since we assume we
are comparing well-typed terms whose types are convertible.

E,Σ,Φ, Γ ` h ↓• h′
for all i = 1, . . . , n E,Σ, Φ, Γ ` ti ↓= t′i

E,Σ,Φ, Γ ` h t1 · · · tn ↓• h′ t′1 · · · t′n

E,Σ,Φ, Γ ` t1 ↓• t2 E,Σ,Φ, Γ ` ot1 ↓• ot2
for all i = 1, . . . , n E,Σ, Φ, Γ ` pi ↓• p′i

E,Σ,Φ, Γ ` match t1 in I return ot1 with [p1|...|pn] ↓•
match t2 in I return ot2 with [p′1|...|p′n]

E,Σ,Φ, Γ ` t .whd t
′ E,Σ,Φ, Γ ` u .whd u

′ E,Σ,Φ, Γ ` t′ ↓• u′

E,Σ,Φ, Γ ` t ↓• u

In the previous rule, t′ and u′ need not be weak head normal forms: any term obtained by t
(respectively, u) by reduction (even non head reduction) will do. Indeed, the less reduction is
performed, the more efficient the conversion test usually is.

A.7 Term reduction rules

E,Σ,Φ, Γ ` (λx : T.u) t Bβ u [t/x]

E,Σ,Φ, Γ ` let (x : T) := t in u Bζ u [t/x]

〈∅, ∅,definition d : T := b〉 ∈ E
E,Σ,Φ, Γ ` d Bδ b

〈Γ ′ `?i : T := t〉 ∈ Φ
E,Σ,Φ, Γ `?i[lc] Bδ t[lc]

E,Σ,Φ, Γ `match cik t1 · · · tl t
′
1 · · · t′n in Ik return ot with [p1|...|pmk] Bι pi t

′
1 ... t

′
n

〈∅, ∅, let rec f1 : T1 := b1 and . . . and fn : Tn := bn〉 ∈ E
E,Σ,Φ, Γ ` fk t1 ...(cij u1 ... umj)... tm Bµ bk t1 ...(c

i
j u1 ... umj)... tm

Note that (cij u1 ... umj) must occur in the position of the recursive argument of fk. This

implies that, for this reduction to be performed, fk must be applied at least up to its recursive
argument.

〈∅, ∅, let corec f1 : T1 := b1 and . . . and fn : Tn := bn〉 ∈ E
E,Σ,Φ, Γ ` match fk t1 ... tq in Ij return ot with [p1|...|pmj] Bν

match bk t1 ... tq in Ij return ot with [p1|...|pmj]

Note that here q can be zero.

67

B Kernel interface

The following are the functions exported by the kernel modules. We omit a few uninteresting
functions used only once to set up recursion between modules.� �
module type nUri = sig

val string of uri : uri → string
val name of uri: uri → string
val uri of string : string → uri
val eq: uri → uri → bool

end
module type nReference = sig

val eq: reference → reference → bool
val string of reference : reference → string
val reference of string : string → reference
val mk constructor: int → reference → reference
val mk fix: int → int → reference → reference
val mk cofix: int → reference → reference

end
module type nCicUtils = sig

val expand local context : NCic.lc kind → NCic.term list
val lookup subst: int → NCic.substitution → NCic.subst entry
val lookup meta: int → NCic.metasenv → NCic.conjecture
val fold :

(NCic.hypothesis → ’k → ’k) → ’k →
(’k → ’a → NCic.term → ’a) → ’a → NCic.term → ’a

val map:
(NCic.hypothesis → ’k → ’k) → ’k →
(’k → NCic.term → NCic.term) → NCic.term → NCic.term

end
module type nCicEnvironment = sig

val type0: NCic.universe
val universe eq: NCic.universe → NCic.universe → bool
val universe leq : NCic.universe → NCic.universe → bool
val add constraint: bool → NCic.universe → NCic.universe → unit
val invalidate : unit → unit
val get checked obj: NUri.uri → NCic.obj
(∗ specialized versions of get checked obj ∗)
val get relevance : NReference.reference → bool list
val get checked def :

NReference.reference →
NCic.relevance ∗ string ∗ NCic.term ∗ NCic.term ∗ NCic.c attr ∗ int

val get checked indtys:
NReference.reference → bool ∗ int ∗ NCic.inductiveType list ∗ NCic.i attr ∗ int

val get checked fixes or cofixes :
NReference.reference → NCic.inductiveFun list ∗ NCic.f attr ∗ int

end
module type nCicSubstitution = sig

val lift : ?from:int → int → NCic.term → NCic.term
val subst : ?avoid beta redexes:bool → NCic.term → NCic.term → NCic.term
val psubst :

?avoid beta redexes:bool → (’a → NCic.term) → ’a list → NCic.term → NCic.term
val subst meta : NCic.local context → NCic.term → NCic.term

end
module type nCicReduction = sig

val whd :
?delta :int → ?subst:NCic.substitution → NCic.context → NCic.term → NCic.term

val are convertible :
?subst:NCic.substitution → NCic.context → NCic.term → NCic.term → bool

val head beta reduce: ?delta:int → ?upto:int → NCic.term → NCic.term

68

end
module type nCicTypeChecker = sig

val typecheck obj : NCic.obj → unit
val typeof:

subst:NCic.substitution → metasenv:NCic.metasenv →
NCic.context → NCic.term → NCic.term

end� �
C Auxiliary functions

We do not extensively describe the following minor functions. We already gave intuition about
them when we described the code where they are used. The functions are listed in alphabetical
order.� �
(∗ check metasenv consistency checks that the ”canonical” context of a

metavariable is consitent − up to relocation via the relocation list l −
with the actual context ∗)

and check metasenv consistency
˜subst ˜metasenv term context canonical context l

=
match l with
| shift , C.Irl n →

let context = snd (HExtlib.split nth shift context) in
let rec compare = function
| 0, ,[] → ()
| 0, , ::
| , ,[] →

raise (AssertFailure (lazy (Printf . sprintf
”Local and canonical context %s have different lengths”
(PP.ppterm ˜subst ˜context ˜metasenv term))))

| m ,[], :: →
raise (TypeCheckerFailure (lazy (Printf.sprintf
”Unbound variable −%d in %s” m
(PP.ppterm ˜subst ˜metasenv ˜context term))))

| m,t:: tl , ct :: ctl →
(match t,ct with

(,C.Decl t1), (,C.Decl t2)
| (,C.Def (t1,)), (,C.Def (t2,))
| (,C.Def (,t1)), (,C.Decl t2) →

if not (R.are convertible ˜subst tl t1 t2) then
raise

(TypeCheckerFailure
(lazy (Printf . sprintf

(”Not well typed metavariable local context for %s: ” ˆˆ
”%s expected, which is not convertible with %s”)

(PP.ppterm ˜subst ˜metasenv ˜context term)
(PP.ppterm ˜subst ˜metasenv ˜context t2)
(PP.ppterm ˜subst ˜metasenv ˜context t1))))

| , →
raise

(TypeCheckerFailure (lazy (Printf.sprintf
(”Not well typed metavariable local context for %s: ” ˆˆ
”a definition expected, but a declaration found”)

(PP.ppterm ˜subst ˜metasenv ˜context term)))));
compare (m − 1,tl,ctl)

in
compare (n,context,canonical context)

| shift , lc kind →

69

(∗ we avoid useless lifting by shortening the context∗)
let l ,context = (0,lc kind), snd (HExtlib.split nth shift context) in
let lifted canonical context =

let rec lift metas i = function
| [] → []
| (n,C.Decl t):: tl →

(n,C.Decl (S.subst meta l (S. lift i t)))::(lift metas (i+1) tl)
| (n,C.Def (t,ty)):: tl →

(n,C.Def ((S.subst meta l (S. lift i t)),
S.subst meta l (S. lift i ty)))::(lift metas (i+1) tl)

in
lift metas 1 canonical context in

let l = U.expand local context lc kind in
try
List . iter2
(fun t ct →

match (t,ct) with
| t , (,C.Def (ct,)) →

(∗CSC: the following optimization is to avoid a possibly expensive
reduction that can be easily avoided and that is quite
frequent . However, this is better handled using levels to
control reduction ∗)

let optimized t =
match t with
| C.Rel n →

(try
match List.nth context (n − 1) with
| (,C.Def (te,)) → S. lift n te
| → t
with Failure → t)

| → t
in
if not (R.are convertible ˜subst context optimized t ct)
then

raise
(TypeCheckerFailure

(lazy (Printf . sprintf
(”Not well typed metavariable local context: ” ˆˆ
”expected a term convertible with %s, found %s”)

(PP.ppterm ˜subst ˜metasenv ˜context ct)
(PP.ppterm ˜subst ˜metasenv ˜context t))))

| t , (,C.Decl ct) →
let type t = typeof aux context t in
if not (R.are convertible ˜subst context type t ct) then

raise (TypeCheckerFailure
(lazy (Printf . sprintf
(”Not well typed metavariable local context: ”ˆˆ
”expected a term of type %s, found %s of type %s”)
(PP.ppterm ˜subst ˜metasenv ˜context ct)
(PP.ppterm ˜subst ˜metasenv ˜context t)
(PP.ppterm ˜subst ˜metasenv ˜context type t))))

) l lifted canonical context
with
Invalid argument →

raise (AssertFailure (lazy (Printf . sprintf
”Local and canonical context %s have different lengths”
(PP.ppterm ˜subst ˜metasenv ˜context term))))� �� �

let debruijn uri number of types context =
let rec aux k t =

70

match t with
| C.Meta (i,(s ,C.Ctx l)) →

let l1 = HExtlib.sharing map (aux (k−s)) l in
if l1 == l then t else C.Meta (i,(s,C.Ctx l1))

| C.Meta → t
| C.Const (Ref.Ref (uri1,(Ref.Fix (no, ,) | Ref.CoFix no)))
| C.Const (Ref.Ref (uri1,Ref.Ind (,no,))) when NUri.eq uri uri1 →

C.Rel (k + number of types − no)
| t → U.map (fun k → k+1) k aux t

in
aux (List .length context)� �� �

let rec eat lambdas ˜subst ˜metasenv context n te =
match (n, R.whd ˜subst context te) with
| (0,) → (te, context)
| (n, C.Lambda (name,so,ta)) when n > 0 →

eat lambdas ˜subst ˜metasenv ((name,(C.Decl so))::context) (n − 1) ta
| (n, te) →

raise (AssertFailure (lazy (Printf . sprintf ”eat lambdas (%d, %s)” n
(PP.ppterm ˜subst ˜metasenv ˜context te))))� �� �

let rec eat or subst lambdas ˜subst ˜metasenv n te to be subst args
(context, recfuns , x as k)

=
match n, R.whd ˜subst context te, to be subst, args with
| (n, C.Lambda (name,so,ta),true::to be subst,arg::args) when n > 0 →

eat or subst lambdas ˜subst ˜metasenv (n − 1) (S.subst arg ta)
to be subst args k

| (n, C.Lambda (name,so,ta),false::to be subst,arg :: args) when n > 0 →
eat or subst lambdas ˜subst ˜metasenv (n − 1) ta to be subst args
(shift k (name,(C.Decl so)) k)

| (, te , ,) → te, k
;;� �� �
let eat prods ˜subst ˜metasenv context he ty he args with ty =

let rec aux ty he = function
| [] → ty he
| (arg, ty arg):: tl →

match R.whd ˜subst context ty he with
| C.Prod (n,s,t) →

if R.are convertible ˜subst context ty arg s then
aux (S.subst ˜avoid beta redexes:true arg t) tl

else
raise

(TypeCheckerFailure
(lazy (Printf . sprintf

(”Appl: wrong application of %s: the parameter %s has type”ˆˆ
”\n%s\nbut it should have type \n%s\nContext:\n%s\n”)

(PP.ppterm ˜subst ˜metasenv ˜context he)
(PP.ppterm ˜subst ˜metasenv ˜context arg)
(PP.ppterm ˜subst ˜metasenv ˜context ty arg)
(PP.ppterm ˜subst ˜metasenv ˜context s)
(PP.ppcontext ˜subst ˜metasenv context))))

| →
raise

(TypeCheckerFailure
(lazy (Printf . sprintf

”Appl: %s is not a function, it cannot be applied”

71

(PP.ppterm ˜subst ˜metasenv ˜context
(let res = List.length tl in
let eaten = List.length args with ty − res in
(C.Appl
(he :: List .map fst
(fst (HExtlib.split nth eaten args with ty)))))))))

in
aux ty he args with ty� �� �

let fixed args bos j n nn =
let rec aux k acc = function
| C.Appl (C.Rel i::args) when i−k > n && i−k <= nn →

let rec combine l1 l2 =
match l1,l2 with

[],[] → []
| he1:: tl1 , he2:: tl2 → (he1,he2)::combine tl1 tl2
| he :: tl , [] → (false,C.Rel ˜−1)::combine tl [] (∗ dummy term ∗)
| [], :: → assert false

in
let lefts , = HExtlib.split nth (min j (List .length args)) args in
List .map (fun ((b,x),i) → b && x = C.Rel (k−i))
(HExtlib.list mapi (fun x i → x,i) (combine acc lefts))

| t → U.fold (fun k → k+1) k aux acc t
in
List . fold left (aux 0)
(let rec f = function 0 → [] | n → true :: f (n−1) in f j) bos� �� �

let rec head beta reduce ?(delta=max int) ?(upto=(−1)) t l =
match upto, t, l with
| 0, C.Appl l1, → C.Appl (l1 @ l)
| 0, t , [] → t
| 0, t , → C.Appl (t::l)
| , C.Appl (hd::tl), → head beta reduce ˜delta ˜upto hd (tl @ l)
| , C.Lambda(, ,bo), arg:: tl →

let bo = NCicSubstitution.subst arg bo in
head beta reduce ˜delta ˜upto:(upto − 1) bo tl

| , C.Const (Ref.Ref (, Ref.Def height) as re),
when delta <= height →

let , , bo, , , = NCicEnvironment.get checked def re in
head beta reduce ˜upto ˜delta bo l

| , t , [] → t
| , t , → C.Appl (t::l)� �� �

let rec instantiate parameters params c =
match c, params with
| c ,[] → c
| C.Prod (, ,ta), he :: tl → instantiate parameters tl (S.subst he ta)
| t , l → raise (AssertFailure (lazy ”1”))� �� �
and is non informative paramsno c =
let rec aux context c =

match R.whd context c with
| C.Prod (n,so,de) →

let s = typeof ˜subst :[] ˜metasenv:[] context so in
s = C.Sort C.Prop && aux ((n,(C.Decl so))::context) de

| → true in
let context ’, dx = split prods ˜subst :[] [] paramsno c in
aux context’ dx� �

72

� �
and is non recursive singleton (Ref.Ref (uri ,)) iname ity cty =

let ctx = [iname, C.Decl ity] in
let cty = debruijn uri 1 [] cty in
let len = List.length ctx in
let rec aux ctx n nn t =

match R.whd ctx t with
| C.Prod (name, src, tgt) →

does not occur ˜subst :[] ctx n nn src &&
aux ((name, C.Decl src) :: ctx) (n+1) (nn+1) tgt

| C.Rel k | C.Appl (C.Rel k ::) when k = nn → true
| → assert false

in
aux ctx (len−1) len cty� �� �

let sort of prod ˜metasenv ˜subst context (name,s) (t1, t2) =
let t1 = R.whd ˜subst context t1 in
let t2 = R.whd ˜subst ((name,C.Decl s)::context) t2 in
match t1, t2 with
| C.Sort s1, C.Sort C.Prop → t2
| C.Sort (C.Type u1), C.Sort (C.Type u2) → C.Sort (C.Type (u1@u2))
| C.Sort ,C.Sort (C.Type) → t2
| C.Meta (,(,(C.Irl 0 | C.Ctx []))), C.Sort
| C.Meta (,(,(C.Irl 0 | C.Ctx []))), C.Meta (,(,(C.Irl 0 | C.Ctx [])))
| C.Sort , C.Meta (,(,(C.Irl 0 | C.Ctx []))) → t2
| →

raise (TypeCheckerFailure (lazy (Printf.sprintf
”Prod: expected two sorts, found = %s, %s”
(PP.ppterm ˜subst ˜metasenv ˜context t1)
(PP.ppterm ˜subst ˜metasenv ˜context t2))))

;;� �� �
let specialize and abstract constrs ˜subst r uri r len context ty term =

let cl = specialize inductive type constrs ˜subst context ty term in
let len = List.length context in
let context dcl =

match E.get checked obj r uri with
| , , , , C.Inductive (, , tys ,) →

context @ List.map (fun (,name,arity,) → name,C.Decl arity) tys
| → assert false

in
context dcl ,
List .map (fun (,id,ty) → id, debruijn r uri r len context ty) cl ,
len , len + r len� �� �

let specialize inductive type constrs ˜subst context ty term =
match R.whd ˜subst context ty term with
| C.Const (Ref.Ref (uri,Ref.Ind (, i ,)) as ref)
| C.Appl (C.Const (Ref.Ref (uri,Ref.Ind (, i ,)) as ref) ::) as ty →

let args = match ty with C.Appl (::tl) → tl | → [] in
let is ind , leftno , itl , attrs , i = E.get checked indtys ref in
let left args , = HExtlib.split nth leftno args in
let , , , cl = List.nth itl i in
List .map

(fun (rel ,name,ty) → rel, name, instantiate parameters left args ty) cl
| → assert false� �

73

� �
(∗ if n < 0, then splits all prods from an arity, returning a sort ∗)
let rec split prods ˜subst context n te =

match (n, R.whd ˜subst context te) with
| (0,) → context,te
| (n, C.Sort) when n <= 0 → context,te
| (n, C.Prod (name,so,ta)) →

split prods ˜subst ((name,(C.Decl so))::context) (n − 1) ta
| (,) → raise (AssertFailure (lazy ”split prods”))� �� �

and type of branch ˜subst context leftno outty cons tycons liftno =
match R.whd ˜subst context tycons with
| C.Const (Ref.Ref (,Ref.Ind)) → C.Appl [S.lift liftno outty ; cons]
| C.Appl (C.Const (Ref.Ref (,Ref.Ind)):: tl) →

let ,arguments = HExtlib.split nth leftno tl in
C.Appl (S. lift liftno outty :: arguments@[cons])

| C.Prod (name,so,de) →
let cons =
match S.lift 1 cons with
| C.Appl l → C.Appl (l@[C.Rel 1])
| t → C.Appl [t ; C.Rel 1]

in
C.Prod (name,so,

type of branch ˜subst ((name,(C.Decl so))::context)
leftno outty cons de (liftno +1))

| → raise (AssertFailure (lazy ”type of branch”))� �� �
and type of constant ((Ref.Ref (uri ,)) as ref) =
let error () =
raise (TypeCheckerFailure (lazy ”Inconsistent cached infos in reference”))

in
match E.get checked obj uri, ref with
| (, , , ,C.Inductive(isind1 ,lno1, tl ,)), Ref.Ref(,Ref.Ind (isind2 , i ,lno2))→

if isind1 <> isind2 || lno1 <> lno2 then error ();
let , , arity , = List.nth tl i in arity

| (, , , ,C.Inductive (,lno1, tl ,)), Ref.Ref (,Ref.Con (i, j ,lno2)) →
if lno1 <> lno2 then error ();
let , , , cl = List.nth tl i in
let , , arity = List.nth cl (j−1) in
arity

| (, , , ,C.Fixpoint (false , fl ,)), Ref.Ref (,Ref.CoFix i) →
let , , , arity , = List.nth fl i in
arity

| (,h1, , ,C.Fixpoint (true, fl ,)), Ref.Ref (,Ref.Fix (i ,recno2,h2)) →
let , ,recno1,arity , = List.nth fl i in
if h1 <> h2 || recno1 <> recno2 then error ();
arity

| (, , , ,C.Constant (, , ,ty,)), Ref.Ref (,Ref.Decl) → ty
| (,h1, , ,C.Constant (, , ,ty,)), Ref.Ref (,Ref.Def h2) →

if h1 <> h2 then error ();
ty

| → raise (AssertFailure (lazy ”type of constant: environment/reference”))� �

