
Explanation in Natural Language of λ̄µµ̃-terms

Claudio Sacerdoti Coen?

Project PCRI, CNRS, École Polytechnique, INRIA, Université Paris-Sud.
sacerdot@cs.unibo.it

Abstract. The λ̄µµ̃-calculus, introduced by Curien and Herbelin, is a
calculus isomorphic to (a variant of) the classical sequent calculus LK
of Gentzen. As a proof format it has very remarkable properties that we
plan to study in future works. In this paper we embed it with a rendering
semantics that provides explanations in pseudo-natural language of its
proof terms, in the spirit of the work of Yann Coscoy [3] for the λ-calculus.
The rendering semantics unveils the richness of the calculus that allows
to preserve several proof structures that are identified when encoded in
the λ-calculus.

1 Introduction

An important topic of Mathematical Knowledge Management (MKM) is the
definition of standards for the representation of mathematical documents at dif-
ferent semantical levels (presentation, content, semantics using the terminology
of [1]). The current situation for mathematical expressions is almost satisfac-
tory: MathML Presentation is a W3C standard for the presentation level, and
the lack of MathML rendering engines has been solved; OpenMath is a de facto
standard for the content level, and several tools already integrate phrasebooks for
communicating formulae in OpenMath according to a given content dictionary;
the interactive theorem proving community is slowly starting to consider open
formats for replacing the proprietary semantic encodings or just for communica-
tion with external tools. On the contrary, there is no mature format for proofs at
the content level. The only candidate is the OMDoc standard, that integrates a
module for proofs since its first version. However, the original format was not ex-
pressive enough for describing in a natural way the proofs of the HELM1 library.
Thus the proof module was redesigned almost from scratch in the MoWGLI2 Eu-
ropean Project, and the new proposal will be part of the forthcoming OMDoc 1.2
standard [7]. A rendering semantics (i.e. a default explanation of the proofs in
a pseudo-natural language) is also provided by MoWGLI [2]. However, a serious
third party evaluation of the new proposal has not been done and there exists
no test suite of proofs that can be used to assess the flexibility of the format.

? Partially supported by ‘MoWGLI: Math on the Web, Get it by Logic and Interfaces’,
EU IST-2001-33562

1 http://helm.cs.unibo.it
2 http://mowgli.cs.unibo.it

2 Claudio Sacerdoti Coen

To try to improve the situation the first step consists in fixing a few re-
quirements that a proof format for the content level must satisfy. Here is our
list:

1. Flexibility. It must be possible to encode both rigorous, human provided,
proofs and proofs that are generated from their semantics level. The encod-
ing should respect the structure of the proof, avoiding the identification of
proofs that differ in their structure. What the structure of a proof is is al-
ready a non trivial question. For instance, proof nets or natural deduction
identify more proofs than sequent calculus. For presentational purposes we
are interested in identifying as few proofs as possible, up to their structure
only. For instance, a top down proof should not be identified with its bottom
up counterpart. However, a content encoding must identify proofs that have
the same structure and that differ only up to rhetorical text.

2. Annotations. It must be possible to decorate the proof structure with
rhetorical text. The rhetorical text is the presentational counterpart of the
proof content. It is requested only for consumption by humans.

3. Explanation in Natural Language. The format must have a rendering
semantics associated to it. That is, it must be possible to generate rhetorical
text that describes the proof structure. The generated text is not required
to be nice to read or close to the text that a mathematician would choose.
Annotations are explicitly provided to deal with the situation where a nice
presentational proof is required. The rendering semantics is useful, for in-
stance, when the proof is automatically generated from a semantics proof
— say, created using a proof assistant by mimicking a pen&paper proof —
and the user needs to check whether the pen&paper proof that she wants
to formalize and the proof generated by the proof assistant are actually the
same proof.

4. A Clear Semantics. This is surely the most controversial point. On the
one hand we are talking about a content level format, that should not be
restricted to the proof steps that are correct in just one foundation and
one logic; on the contrary it should capture the usual rigorous but informal
style of the proofs of real world mathematicians. On the other hand it must
describe a proof, and not a document with an arbitrary structure; it must
allow for simple checks, as for references to hypotheses out of scope or for the
well nesting of subproofs; it must allow for proof transformations, such as
cut elimination. In other words, it must be as close as possible to a calculus
without becoming a semantic encoding instead of a content level encoding.

The OMDoc 1.2 proof module strives to achieve the points 1–3. However, its
semantics is someway defined a posteriori and it is not fully understood nor
made explicit.

Via the Curry-Howard isomorphism, several λ-calculi can be seen as proof
formats at the semantic level for the logics they are isomorphic to. As proof
formats they can be equipped with a rendering semantics [3] and extending
them with annotations is also a trivial exercise. However, they lack flexibility. A
partial reason is that, being at the semantics level, they are bound to a precise

Explanation in Natural Language of λ̄µµ̃-terms 3

logic. However, there are deeper reasons that are illustrated in Sect. 2 and that
are not related to their focus on a particular logic. Thus they are not a good
model to build a content level proof format on.

In a seminal paper in 2000 [5] Curien and Herbelin proposed the λ̄µµ̃-calculus
that is isomorphic to (a variant of) the classical sequent calculus LK of Gentzen.
I claim that this calculus is a perfect proof format at the semantics level and
that it is inherently very flexible. To obtain a content level calculus from it it
is just necessary to relax a bit its interpretation by decoupling it from its logic.
Moreover, I also claim that it has several remarkable similarities with OMDoc
1.2 and in a future work I plan to make this relation explicit by providing a
bisimulation of OMDoc into the λ̄µµ̃-calculus that respects the rendering se-
mantics. As a preliminary step in that direction, in this paper I will provide a
rendering semantics to the λ̄µµ̃-calculus that is extremely intuitive and unveils
all the good features of the calculus as a proof format.

2 A λ̄µµ̃-calculus Primer.

The λ̄µµ̃-calculus [5] is an extremely elegant synthesis of the λ̄-calculus of Her-
belin [6] and the λµ-calculus of Parigot [9]. The λ̄-calculus of Herbelin is a
λ-calculus that is isomorphic to (a variant of) the intuitionistic sequent calculus
LJ of Gentzen. The λµ-calculus of Parigot is a λ-calculus that is isomorphic to
classical, multi conclusions, natural deduction. The λ̄µµ̃-calculus is isomorphic
to (a variant of) the classical sequent calculus LK of Gentzen. However, the in-
terest of the calculus is that it is not a simple merge of two existing calculi; on
the contrary, it is greatly superior to both of them since it makes explicit for the
first time at the syntactic level two fundamental dualities of the computation:

1. Terms vs Contexts
2. Call-by-name vs Call-by-value

We will explain the two dualities in detail. Before that, however, we notice that
this result is, a posteriori, not very surprising. Indeed the classical sequent cal-
culus is well known for its meta-theoretical properties, since it reveals the deep
symmetries of the logical connectives that are hidden in natural deduction and
since it can also be seen as a fine grained analysis of natural deduction, especially
for cut elimination. Thus it is natural that a λ-calculus isomorphic to LK should
be the best framework for the study of the symmetries of computation. What is
not absolutely obvious, however, is that these two dualities are deeply connected
with the flexibility of the proof format. Let’s explain this.

Terms vs Contexts A context is an expression with exactly one placeholder
� for a “missing’ term. The placeholder can be filled with a term to obtain a
placeholder-free expression. The placeholder can be typed with the type of the
expected term, and only terms of the expected type can fill the placeholder. A
context can apply its placeholder to arguments (� t) or it can bind a name to
it (let x := � in c) to refer to it later on, for instance to pass it to a function.

4 Claudio Sacerdoti Coen

Dually, a term can be seen as an expression with exactly one placeholder] [
for a “missing context” that is “all around” the term. The placeholder can be
filled with a context to obtain a placeholder-free expression. The placeholder can
be typed with the type of the term, and only contexts that expects a term of the
expected type can fill the placeholder. A term can wait for inputs from its context
(]λx.t[) or — in languages with control operators like Scheme’s CALL/CC — it
can bind a name to it (]µα.c[, µ is the binder and α the bound name) to refer
to it later on.

Now consider an expression without placeholders and imagine it to be iso-
morphic to a proof of some thesis from some set of hypotheses. The expression
can be broken to be seen as the composition of a term and a context whose
placeholders are given “the same type” T (actually, a dual type; we will be more
precise later). The term and the context can be thought respectively as “a proof
of T from the hypothesis” and “a proof of the thesis from T”. Thus in the term
the type of the placeholder represents what must be proved as a first step in the
proof, and the placeholder is the rest of the proof. In the context the type of the
placeholder represents what was proved so far and the placeholder is the proof
so far. The operators that are used to bind the placeholder in a term and in a
context can be thought as ways of stating or manipulating the (local) conclu-
sion(s) (for a term), or as ways of stating or manipulating the (local) hypotheses
(for a context). This kind of manipulation is very frequent in pen&paper proofs,
where an intermediate result can be claimed (binding a context), a label can be
associated to intermediate results for further reference (binding a term), a proof
of an intermediate result can be postponed (a context that binds its term is
displayed before the term), or the current thesis can be reduced to another one
by anticipating the rest of the proof (a term that binds a context is displayed
after the context).

Call-by-name vs Call-by-value What are the dynamics of call-by-value and
call-by-name? The first strategy processes the arguments before processing the
function; the second strategy processes the function until it needs to process
the arguments. If you substitute “explains” or “prove” with “process” you will
obtain the definition of the bottom-up and top-down proof styles. A bottom-up
proof proves (process the argument) a result (the type of the argument) before
using it later on (processing the function). A top-down proof prooves the thesis
(process the function) until it has reduced the thesis to an easier one (the type
of the argument) that is then proved (the argument is processed).

Usually, call-by-name and call-by-value are global strategies that are applied
in the reduction of a functional program (a λ-expression). In the λ̄µµ̃-calculus,
instead, there exists at the syntactic level both call-by-value related and call-by-
name related redexes (and a third form of redexes whose strategy is not yet fixed
and that can non-deterministically reduce towards one of the other two redexes,
but this is not important in our discussion). Thus the λ̄µµ̃-calculus is flexible
enough to distinguish between top-down and bottom-up proof steps, while this is
not possible in the plain λ-calculus (unless we play tricks, as using β-expansion

Explanation in Natural Language of λ̄µµ̃-terms 5

to “mark” bottom-up steps or we extend the calculus with a let . . . in construct
that is native of the λ̄µµ̃-calculus).

Since we think that the intuition we just provided is someway deeper than the
gory technical details we are shortly going to present, we prefer to reinforce it by
explaining it again along a different axis. As we already said, the λ̄µµ̃-calculus
is a beautiful synthesis of the λ̄-calculus and the λµ-calculus, made completely
symmetric by adding a µ̃ operator (the let . . . in in a more usual syntax). We
give now the intuition about what is the contribution for flexibility (as a proof
format) of each component.

λ̄ The λ̄-calculus establishes a Curry-Howard isomorphism with a sequent cal-
culus. A sequent calculus identifies far fewer proofs than natural deduction,
which is Curry-Howard isomorphic to the λ-calculus. In particular, top-down
and bottom-up proofs are distinguished in a sequent calculus derivation (where
it is recorded if the user eliminates a rule on the left hand side first or on the
right hand side first). In natural deduction, instead, top-down vs bottom-up cor-
responds to the order of construction of the derivation (from the leafs to the root
or from the root to the leaves), but both procedures at the end produce exactly
the same tree (unless cuts are artificially introduced to mark the bottom-up
steps). This is one reason why the sequent calculus provides a more fine-grained
analysis of the process of construction of the derivation and, in our context, it
gives more flexibility in proof representation.

µ̃ The let x : T := � in c (that we will soon write µ̃x : T.c to show the beautiful
symmetries of the calculus) gives a label (x) to the last result proved (�) and
it makes explicit its type T . The label is used later on to refer to the result.
The type makes explicit what is the conclusion of the last proof step (the “last”
proof step of �).

This construct is necessary for a proof format since it allows to reuse a
subproof more than once, without replicating a proof, and since it is used to
associate to a subproof its thesis. In the λ-calculus a redex can be used for
sharing a proof, partially simulating the µ̃. Moreover, since the semantics of µ̃
is that of a bottom-up proof (since it gives a label to the previous proof step),
redexes can be rendered as bottom-up proofs. Notice that in a typed calculus the
binder in a redex also associates to the proof (the argument of the application in
the redex) its thesis (its type). If we manage to avoid the redex trick, however,
we have to guess the type that is no longer recorded by the binder. If the type
system is decidable, the type can be automatically inferred. However, since we do
not expect applications that adopt a proof format to integrate a type inference
engine and since we want to impose no semantics (no choice of any type system)
to our proof format, we need to pre-compute the type of the argument and
explicitly store it in the proof format. Actually, we need to store the type of
each subterm (we call this an inner-type in [1]).

6 Claudio Sacerdoti Coen

The need for inner-types is evident when we recall that a λ-term is isomorphic
to a derivation in natural language in the sense that you can obtain the λ-term
from the derivation by erasing from the tree all the conclusions of the rule (i.e.
what a user would keep in a pen&paper proof) since they can be inferred from
the rules themselves (i.e. what a user throws away in a pen&paper proof) and
the tree structure. Thus in our proof format we are obliged to reconstruct from
the λ-term every inner-type, we need to keep the structure of the term, but
we can throw away the term! (When the actual terms, i.e. the justifications of
each proof step, are thrown away, we obtained a proof sketch in the terminology
proposed by Wiedijk [10]).

Thus the λ̄µµ̃-calculus is superior to the λ-calculus since recording of the
inner-types and the µ̃ (or let . . . in) is already part of the calculus, while it
needs to be introduced in the λ-calculus.

Just to be precise, notice also that the µ̃ construct can be simulated in the λ-
calculus as a redex only from the point of view of the reduction. On the contrary,
the typing rule for µ̃ is not equivalent since in let x : T := t in c we can type c
under the assumption that x is equal to t, which is stronger than the assumption
x has type T (for instance, when the type system admits dependent types).

µ The control operator µ that binds the context of a term to reuse it later has
a surprising role. It is introduced in the calculus to capture classical logic and,
when the calculus is seen as a proof format, it is used to give a label and to
state explicitly what is the thesis that is going to be proved next. The relation
with classical logic is obvious: when multiple µ are in scope the expression has
visibility of several possible conclusions at once, and it can dynamically choose
to conclude any one of them. This clearly corresponds to a sequent with several
conclusions.

However, a pen&paper proof, even a classical one, never uses multiple con-
clusions. Indeed, natural deduction with several conclusions (the logic the λµ-
calculus of Parigot is Curry-Howard isomorphic to) is not natural at all, as the
classical sequent calculus is not. Most mathematicians prefer to work in an in-
tuitionistic natural deduction setting augmented with one or more equivalent
classical axiom such as excluded middle or double negation elimination.

Thus we can easily argue that a proof format is not requested to support
proofs with multiple conclusions, if not for completeness reasons. Thus we can
argue that we will not need the ability of the µ constructor of associating a label
to the thesis we want to prove next. Indeed in pen&paper proofs a thesis is never
labelled. However a proof format does need a way to state what the user is going
to prove next, since this construct is often used by mathematicians to clarify the
proof or to postpone parts of it. Once again, this construct is already native in
the λ̄µµ̃-calculus, and in the λ-calculus it can only be simulated with a redex.
Notice, however, that too many different things must already be simulated with a
redex in the λ-calculus. In other words, once again we realise that the λ-calculus
is not expressive enough to be a reasonable proof format.

Explanation in Natural Language of λ̄µµ̃-terms 7

Hoping to have transmitted all of our intuitions to the reader, we are now ready
to briefly dive into the details of the calculus. The syntax is described first. The
reduction and typing rules can be found in the appendixes. For the metatheory
and the proof of its remarkable properties the reader can consult the literature,
starting from [5] where the calculus has been defined.

2.1 Syntax

The λ̄µµ̃-calculus has three syntactic categories: terms (that include term vari-
ables x, y, z, . . .); environments — or contexts — (that include context or con-
tinuation variables α, β, γ, . . .); and commands obtained by replacing the place-
holder of an environment with a term (or, dually, by replacing the placeholder
of a term with an environment, as already explained).

For each syntactic category we give both the λ̄µµ̃-calculus and the usual
syntax in λ-calculus notation.

λ̄µµ̃-syntax usual syntax
Term v ::= x x

| λx : T.v λx : T.v
| µα : T.c

Environment E ::= α
| v ◦ E E[(� v)]
| µ̃x : T.c let x : T := � in c

Command c ::= 〈v||E〉 E[v]

The term variable x is bound by λ in v and by µ̃ in c; the environment variable
α is bound by µ in c. Notice the (syntactic for now) duality between µ and µ̃.
The only two constructors that have no syntactic dual are λ and ◦ (pronounced
“cons”). In [5] the calculus is made perfectly symmetric by adding duals for λ
and ◦. This extended version of the calculus is Curry-Howard isomorphic with
classical subtractive sequent calculus [4]. We do not consider the subtractive case
now, but we will comment on that in Sect. 4.

The “intuitionistic” fragment of the calculus, i.e. the fragment that is Curry-
Howard isomorphic to the intuitionistic sequent calculus, is obtained by a simple
syntactic restriction: only one environment variable is allowed (we denote it by
? instead of using a Greek letter to make explicit that it is unique). Since only
one variable is available, every µ constructor will override ?, so that only the
latter continuation is in scope. This corresponds to the fact that the intuition-
istic sequent calculus is obtained by restricting the sequents to have just one
conclusion.

For the sake of completeness we give the reduction and typing rules of the cal-
culus in App. A and B. They are taken without modification from [5]. The typing
and reduction rules will not play any major role in the rest of the paper. How-
ever, we will exploit the possibility of inferring a type for each λ̄µµ̃-expression
(by means of the typing rules) and of recording it directly in the term (by means

8 Claudio Sacerdoti Coen

of a µ or µ̃-expansion rule, see App. A). In the λ-calculus it is also possible to
infer the type of a subexpression, but the type cannot be recorded in the term
without introducing explicit type assignment operators.

3 Structural natural language rendering

We are now ready to provide (pseudo-)natural language rendering rules for the
λ̄µµ̃-calculus. Before that we present similar rules for the λ-calculus, inspired
by [3].

In both cases we attempt a structural translation, i.e. we try to associate
to a term t its pseudo-natural language rendering JtK by structural recursion
over t. We will also struggle to perform recursion over the direct subterms of t
only and we will avoid processing the result of the recursive calls. Forcing the
usual terminology, we will call structural a translation that respects all these
properties.

Ideally, we would also require the translation to preserve the order of the
subterms: if A and B are two sibling subterms in the proof and if A precedes B,
than the rendering of A must precede that of B. This additional constraint —
that surprisingly is satisfied for the λ̄µµ̃-calculus — makes extremely easy for a
human being to “invert the transformation”, building by hand the term from its
rendering.

Our interest in a structural translation derives from our interest in the prop-
erties of the calculus as a proof format. For sure with complex, non-structural
translations we can improve the generated text, aiming at more natural sen-
tences. However, we claim that a good proof format must have a simple render-
ing semantics: if generating natural language for the proofs encoded in the proof
format requires major proof transformations we consider this a serious fault of
the proof format. Moreover, especially when we are interested in generating ex-
planations of formal proofs proved with an interactive or automatic theorem
prover, we do require the rendering semantics to be simple and structural to
avoid loosing confidence on the correctness of the proof we are examining.

For technological reasons, every proof format should be equipped with an
XML concrete syntax, imposing XSLT as the standard language for describing
transformations on the document. Notice that the expressive power of XSLT (1.0)
is, in practice, extremely close to our second definition of structural transforma-
tion. Indeed XSLT does not allow to process the result of a recursive call (a
Result Tree Fragment) and only simple recursive functions can be described in
a concise way3.

3 XSLT is a Turing complete purely functional language. However, Turing complete-
ness derives from the fact that a Result Tree Fragment (a tree) can be converted to
a string for further processing and that every data type (e.g. the state of a Turing
machine) can be encoded in a string and manipulated with general recursion. In
practice, however, working with strings is quite cumbersome in an ad-hoc language
designed to transform trees.

Explanation in Natural Language of λ̄µµ̃-terms 9

3.1 λ-calculus

JxK := consider x

Jλx : T.tK := suppose T (x)
JtK

J(. . . (t t1) . . . tn)K := Jt1K
we proved T1 (H1)
. . .
JtnK
we proved Tn (Hn)
JtK
we proved T (H)
by H, H1, . . . , Hn

At first we observe that the transformation is not really structural since
for the case of application we process the inner term t1 before the outer term
tn. Notice that in the λ̄µµ̃-calculus the application (. . . (t t1) . . . tn) is turned
inside out, becoming 〈t||t1 ◦ (. . .◦ (tn−1 ◦ tn) . . .)〉 and making the transformation
structural!

We can now repeat several of the observations we already made when dis-
cussing the intuitions about the λ̄µµ̃-calculus. In every rule one or more inner-
types T are lacking and type inference is required to reconstruct them before-
hand. Since there is just one construct, application, to derive new facts, bottom-
up and top-down proofs are identified. Thus we need to represent all the proofs
in the same way. The rule we provided renders every proof step in a bottom-up
way, processing the ti before using them to conclude T ′. In this case, not only
inner-types Ti are missing for the ti, but also fresh labels Hi. A structural rule to
render applications in a mixed bottom-up/top-down way can be easily provided:

J(t t1)K := JtK
we proved T (H)
by H we reduce the thesis to T1

Jt1K
where T and T1 are the inner types of t and t1.

However, the latter rule does not solve the lack of flexibility that derives from
having to choose a uniform style of rendering every applications (bottom-up vs
top-down). Notice also that the latter rule introduces a mixed proof style since
t is rendered as a bottom-up step. This cannot be avoided unless an ad-hoc rule
is provided for redexes.

The solution that provides more flexibility by forcing a particular interpre-
tation of redexes can be obtained adding the rule

J(λx : T.t t1)K := Jt1K
we proved T (x)
JtK

and by replacing the rule for application with
J(x t1)K := by x we reduce the thesis to T1

Jt1K
Notice that in this way we impose a normal form on the λ-terms: every ap-

plication (t t1) where t is not a variable must be β-expanded to (λx : T.(x t1) t),
that is semantically equivalent (according to our rendering semantics) to the
mixed top-down bottom-up rule for application given before. We will not spend

10 Claudio Sacerdoti Coen

more time on improvements for the rendering semantics of the λ-calculus, since
in the λ̄µµ̃-calculus these problems simply disappear.

We conclude by showing as a small example the λ-term that corresponds to
a proof of A ⇒ (A ⇒ B) ⇒ (B ⇒ C) ⇒ C and its structural natural language
rendering. We use superscripts to record in the λ-term the inner-type and label
of a sub-term.

λH : A.λAB : A→ B.
λBC : B → C.

(BC (ABAB′:A⇒B HH′:A)K:B):C

suppose A (H), suppose A⇒ B (AB)
suppose B ⇒ C (BC)
consider H; we proved A (H ′)
consider AB; we proved A⇒ B (AB′)
by AB′, H ′ we proved B (K)
consider BC; we proved B ⇒ C (BC ′)
by BC ′, K

Notice again that, due to lack of structurality, it is difficult to transform the
λ-term to its textual counterpart looking at the λ-term only. Building the λ-term
from the text — a plausible operation if we consider the calculus a proof format
— is even more complex. Indeed, the natural language really corresponds to the
equivalent (up to β-expansions) λ-term
λH : A.λAB : A→ B.λBC : B → C.(λH ′ : A.(λAB′ : A→ B.(λK : B.(λBC ′ :
B → C.(BC ′ K) BC) (AB′ H ′)) AB) H) that is simpler for a human to render
in natural language, but still quite annoying since the eyes must wonder back
and forth between the λ-abstractions and their arguments in redexes. Only in-
troducing let . . . in and replacing redexes with them it becomes possible to read
the term in natural language (and to produce the term by hand from the natural
language!) without any major effort.

3.2 λ̄µµ̃-calculus

We provide now a similar but completely structural rendering semantics for the
λ̄µµ̃-calculus. According to the intuitions we provided, we should associate one
or more sentences to a term, a textual context (i.e. a text with a placeholder) to
an environment and we should render a command by filling the placeholder of its
environment with the text obtained by its term. However, we anticipate that our
semantics is so well behaved that the placeholder (that we will leave implicit) is
always at the beginning of the text. Thus rendering a command simply amounts
to concatenating the two generated texts.

J〈v||E〉K := JvK JEK
JxK := by x
Jλx : T.tK := suppose T (x)

JtK
Jµα : T.cK := we need to prove T

↪→ JcK

JαK := ←↩ done
Jt ◦ EK := and JtK

JEK
Jµ̃x : T.cK := we proved T (x)

JcK

The symbols ↪→ and ←↩ stand for the increase/decrease of the indentation.

Explanation in Natural Language of λ̄µµ̃-terms 11

We provide as an example two λ̄µµ̃-terms that correspond to two different
proofs of A⇒ (A⇒ B)⇒ (B ⇒ C)⇒ C.

Fully bottom-up proof:
µ? : A→ (A→ B)→ (B → C)→ C we need to prove A⇒ (A⇒ B)⇒ (B ⇒ C)⇒ C
〈λH : A.λAB : A→ B. suppose A (H); suppose A⇒ B (AB)
λBC : B → C. suppose B ⇒ C (BC)
µ? : C. we need to prove C
〈AB||H ◦ µ̃K : B. by AB and by H we proved B (K)
〈BC||K◦ by BC and by K

?〉〉 done
||?〉 done

Fully top-down proof:
µ? : A→ (A→ B)→ (B → C)→ C we need to prove A⇒ (A⇒ B)⇒ (B ⇒ C)⇒ C
〈λH : A.λAB : A→ B. suppose A (H); suppose A⇒ B (AB)
λBC : B → C. suppose B ⇒ C (BC)
µ? : C. we need to prove C
〈BC|| by BC
µ? : B. and we need to prove B
〈AB|| by AB
µ? : A. and we need to prove A
〈H|| by H
||?〉 done
||?〉 done
||?〉 done
||?〉 done

As made obvious by the two examples, all the rendering rules are not only
structural, but they also preserve the order of the subterms. Thus it is very easy
to read a λ̄µµ̃-term from left to right mentally producing the corresponding nat-
ural language. Dually, it is very easy to translate a proof sketch or a pen&paper
proof to a λ̄µµ̃-term, a fundamental property for a proof format.

Notice also that indentation directives are “already present” in the term:
indentation must be incremented when a µ is found and it must be decremented
when a ? is met. Moreover, an indented sub-proof can easily be hidden to the
user by an interactive interface, showing only its thesis. The HELM library4

adopts this strategy to increase usability by giving to the user a partial form of
control over the level of details. The user can simply click on a hidden proof to
unfold it, requesting more details.

In Sect. 3.1 we did not consider indentation directives. However, indentation
rules cannot be avoided in the transformation to make explicit the scope of the
hypotheses. Indeed the user can be deceived by the too simplified rendering se-
mantics proposed for the λ-calculus. This does not happen for the λ̄µµ̃-calculus.

While the proof of the first example seems very readable, that of the second
example is not. However, if you replace “and we need to prove” with the more
appealing (and equally semantically faithful) sentence “we reduce the thesis to”

4 http://helm.cs.unibo.it

12 Claudio Sacerdoti Coen

you will get a totally reasonable text: “. . . we need to prove C; by BC we reduce
the thesis to B; by AB we reduce the thesis to A; by H done . . . ”. This and
other similar improvements can be implemented by trading off a little bit the
property of the transformation being structural.

4 Generalization and improvements

The structural rendering semantics provided in the previous section confirms
our intuitions about the fact that the λ̄µµ̃-calculus is a natural candidate for
being a good proof format. Indeed it satisfies properties 1 (flexibility), 3 (expla-
nation in natural language) and 4 (a clear semantics) given in the introduction.
Property 2 (annotations) can be easily obtained by associating rhetorical text to
each constructor of an expression. Since expressions are rendered in a structural
way from left to right, associating placeholders in the rhetorical text to subex-
pressions is often as simple as matching the i-th placeholder with the i-th direct
subexpression (instead of permutating the direct subexpressions or picking a
subexpression that is deeper in the term).

As Yann Coscoy did for the λ-calculus [3] and as it has been done in a
more incisive way in the MoWGLI project, we can trade the naturality of the
generated text with the complexity of the rendering semantics. Since we are
already starting from a much more structural and simple semantics and since
the language is much richer, we can hope to obtain better results.

As we did for the λ̄µµ̃-calculus, it is also possible to get rid of expressions
that have a weird explanation in natural language by imposing a normal form on
the terms. An example is the renaming µ̃ redex: 〈H||µ̃K : T.c〉 (“by H we proved
T (K); JcK”) can be reduced to c{K/H}. More generally, redexes correspond to
cuts and cuts are detours in the proof. Cut elimination (i.e. reduction) can be
applied to get rid of the unwanted detours. Due to lack of space we omit the
analysis of the weird redexes associated to the semantics we provide and of the
associated normal form that solves the problem. We only remark that to reach
the normal form it is sufficient to either reduce the redexes or η-like-expand one
subexpression of the redex according to the reduction rules of the calculus.

Of course, a calculus that is Curry-Howard isomorphic to the implicative frag-
ment of the propositional calculus is not very interesting. The λ̄µµ̃-calculus can
be easily extended to be in correspondence with stronger logics. In particular,
we modified Fellowship5, an experimental sequent calculus based proof assis-
tant for first order logic developed by Florent Kirchner, to produce extended
λ̄µµ̃-calculus proof terms. We have also already defined and implemented the
structural rendering semantics for the extended calculus and we plan to enhance
the generated text in the near future. The extension to the constructors that
are related to the other connectives (negation, conjunction, disjunction and first
order universal and existential quantification) have reserved no surprises and
have not broken any good property of the calculus.

5 http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship

Explanation in Natural Language of λ̄µµ̃-terms 13

According to our initial claim, we can exploit the λ̄µµ̃-calculus in two different
ways. Either as a format for proof terms in a proof assistant or as a general
proof format. In the first case we should ask whether the non-standard sequent
calculus the calculus is isomorphic too is reasonable to develop proofs in. Our
short experience with Fellowship shows that as a sequent calculus it is indeed very
interesting and pleasant to work with, especially for automation purposes. Indeed
the distinguished formula acts as the linear hypothesis/continuation that must
be eliminated next, reducing the search space. As a result Fellowship exposes only
three tactics, axiom, cut and elim. The latter does not need as an argument the
formula that must be eliminated, since it always act on the current distinguished
(or focused) formula. More on this subject can be found in the literature about
the calculus.

With respect to natural deduction, we remark that sequent calculus is always
clumsier to work with interactively. We can easily adapt a natural deduction
based system to produce λ̄µµ̃-calculus proof terms, since the sequent calculus
is more fine grained than natural deduction. However, according to our initial
remarks, we need to do it very carefully to obtain proof terms that record all
the details of the process of construction of the proof, without identifying, for
instance, top down and bottom up proofs. Concretely doing it by adapting an
existent proof assistant based on natural deduction is other future work we plan
to start.

We already remarked that classical proofs are usually presented in an intu-
itionistic logic extended with classical axioms, and not by handling multiple con-
clusions at once. Thus, to render classical proofs in Fellowship, we implemented
a simple translation from classical λ̄µµ̃-expressions (i.e. expressions were there
are occurrences of continuation variables that are not bound from the inner-
most enclosing µ binder) to intuitionistic λ̄µµ̃-expressions. Of course, to do so
we need to introduce in the calculus a family of distinguished constants EMT

that inhabits the excluded middle for each type T . The translation can be easily
implemented by structural recursion over the λ̄µµ̃-expressions:
Fσ(µα : T.c) := µα : T.Fσ(c) if α is used intuitionistically
Fσ(µα : T.c) := µα : T.〈EMT ||λH : T.H ◦ λH : ¬T.F(α,T,H)::σ(c) otherwise
Fσ(α) := µ̃x : ¬T.〈H||x ◦ ξ〉 if (α, T,H) ∈ σ
Fσ(α) := α otherwise
All the other cases call Fσ recursively over each subexpression. The distin-

guished constant EMT has type (T → T ′)→ (¬T → T ′)→ T ′ for each type T ′,
and ξ (“ex falso sequitur quodlibet”) is a distinguished continuation of type ⊥
(i.e. a continuation that expects a term of type ⊥ to conclude the proof). When
the calculus is extended with disjunction, EMT can be typed as T ∨¬T and Fσ

must be slightly modified to use the λ̄µµ̃-calculus constructor that corresponds
to case analysis (elimination of ∨ on the left hand side of a sequent).

Notice that the translation is purely syntactical and it does not depend on
the typing judgement or on the reduction rules.

The translation is particularly effective, allowing to unveil the mathematical
intuition that underlies a proof developed in a multi-conclusion sequent calculus
(and that is usually extremely complex to grasp looking at the derivation only).

14 Claudio Sacerdoti Coen

However, the translation often introduces lots of redexes that complicate the
proof. Automatic elimination of weird redexes is probably mandatory as a post-
processing step to obtain natural proofs.

5 Conclusions and perspectives

We have found yet another remarkable property of the λ̄µµ̃-calculus: it admits
a very simple and structural rendering semantics, i.e. a translation from expres-
sions (that are Curry-Howard isomorphic to proofs) to pseudo-natural language
text. The calculus is so rich that it is able to differentiate between bottom-up
and top-down proof steps, and it permits to label each intermediate result, also
stating its thesis. Translating by hand a pen&paper proof sketch into a λ̄µµ̃-
expression preserving the natural language (up to the rhetorical text) is also
quite simple. Annotations can be added later on to the term to retrieve the
original language.

Our impression is that, as a proof format, the λ̄µµ̃-calculus is as flexible as
OMDoc. We plan to make this statement more precise in a forthcoming paper by
providing a mutual translation between OMDoc and the λ̄µµ̃-expressions that
respects the rendering semantics provided to both calculi in this work and in the
MoWGLI project (for OMDoc).

We have also extended Fellowship, a proof assistant prototype developed
by Florent Kirchner for first order logic, to record proofs as λ̄µµ̃-expressions,
and we have equipped it with natural language rendering of the proofs. The
rendering semantics implemented, being almost the one described in this paper,
already produces readable explanations, but we plan to improve them in the
near future by introducing new normal forms for λ̄µµ̃-expressions that avoid
unnatural proof constructions. We have also implemented a translator of λ̄µµ̃-
expressions to Coq proof terms and we are implementing a similar translator to
Mizar and Isabelle/ISAR scripts. Automatic generation of OMDoc documents
is also planned. In all these cases the aim is not only that of showing that a
translation is possible, but also understanding the relative expressivity of these
languages as proof formats by trying to preserve the rendering semantics of the
λ̄µµ̃-expressions. Fellowship can be downloaded from

http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship

References

1. A. Asperti, F. Guidi, L. Padovani, C. Sacerdoti Coen and I. Schena. “Mathemat-
ical Knowledge Management in HELM”. In Annals of Mathematics and Artificial
Intelligence, 38(1): 27–46, May 2003.

2. A. Asperti, C. Sacerdoti Coen. “Stylesheets to intermediate representation” (pro-
totypes D2.c-D2.d) and I. Loeb, “Presentation stylesheets” (prototypes D2.e-D2.f),
technical reports of MoWGLI (project IST-2001-33562).

3. Y. Coscoy. Explication textuelles de preuves pour le calcul des constructions induc-
tives. PhD. thesis, Université de Nice-Sophia-Antipolis, 2000.

Explanation in Natural Language of λ̄µµ̃-terms 15

4. T. Crolard. “Subtractive logic”. In Theoretical computer science, 254:1–2(2001),
151–185.

5. P. Curien, H. Herbelin. “The duality of computation”. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming (ICFP’00),
ACM, SIGPLAN Notices 35(9), ISBN:1-58113-2-2-6, 233–243, 2000.

6. H. Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents
comme calcul de lambda-terms et comme calcul de stratégies gagnantes. PhD. the-
sis, 1995.

7. M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Documents
(Version 1.2).

8. S. Lengrand. “Call-by-value, call-by-name, and strong normalization for the clas-
sical sequent calculus”. In B. Gramlich and S. Lucas editors, Electronic Notes in
Theoretical Computer Science, 86(4), Elsevier, 2003.

9. M. Parigot. “λµ-calculus: An algorithmic interpretation of classical natural de-
duction”. In Proc. of the International Conference on Logic Programming and
Automated Reasoning (LPAR), LNCS 624.

10. F. Wiedijk. “Formal Proof Sketches”. In S. Berardi, M. Coppo and F. Damiani
eds., Types for Proofs and Programs: Third International Workshop, TYPES 2003,
LNCS 3085, 378–393, 2004.

A λ̄µµ̃-calculus Reduction Rules

We present the reduction rules both in λ̄µµ̃-calculus syntax and in the usual λ-
calculus syntax, omitting the contextual rules to propagate reduction everywhere
in an expression. As usual, the reduction rules correspond to cut elimination.

λ̄µµ̃-syntax usual syntax
〈µα : T.c||E〉 B c{E/α} E[µα : T.c] B c{E/α}
〈v||µ̃x : T.c〉 B c{v/x} let x : T := v in c B c{v/x}
〈λx : T.v1||v2 ◦ E〉 B 〈v2||µ̃x : T.v1 ◦ E〉 E[(λx : T.v1 v2)] B E[let x : T := v2 in v1]

We report just a few standard observations on the calculus that can be found
and are explained in [5]. First of all notice that the µ and µ̃ reduction rules are
perfectly dual, whereas the rule for λ is asymmetric. Its dual rule is present in the
subtractive system. Secondly, notice that the µ and µ̃ rules form a critical pair.
Giving priority to the µ rule imposes a call-by-value strategy to the calculus; the
dual priority leads to call-by-name. Finally, observe that any redex is a command,
but that there are commands that are not redexes. There exists a variant of the
calculus where every command is a redex [8]. We have not investigated yet the
property of these as proof formats.

The rules we have just presented are similar (and related) to β-reduction
rules in the λ-calculus. The λ̄µµ̃-calculus can also be extended with rules that
correspond to η-expansion. These rules are important for us since we can use
them to put expressions in a normal form before rendering them in pseudo-
natural language.

µ-expansion: v ⇒ µα : T.〈v||α〉
µ̃-expansion: E ⇒ µ̃x : T.〈x||E〉

16 Claudio Sacerdoti Coen

(cut)
Γ ` v : T |∆ Γ |E : T ` ∆

〈v||E〉 : (Γ ` ∆)

(Ax-r)
Γ ; x : T ` x : T |∆ Γ |α : T ` α : T ; ∆

(Ax-l)

(Impl-r)
Γ ; x : T ` v : T ′|∆

Γ ` λx : T.v : T → T ′|∆
Γ ` v : T |∆ Γ |E : T ′ ` ∆

Γ |v ◦ E : T → T ′ ` ∆
(Impl-l)

(µ̃)
c : (Γ ` α : T ; ∆)

Γ ` µα : T.c : T |∆
c : (Γ ; x : T ` ∆)

Γ |µ̃x : T.c : T ` ∆
(µ)

Table 1. Typing rules

In the previous two rules T is the type of v (respectively of E). Type inference
is required in the general case to compute T . However, for each term v (or
environment E) we can always precompute its type once and for all, recording
it explicitly in the expression by means of a µ-expansion (a µ̃-expansion). This
property is exploited when the calculus is used as a proof format.

B λ̄µµ̃-calculus Typing Rules

A typing judgement is associated to each syntactic category of the calculus:
Γ ` v : T |∆, Γ |E : T ` ∆, c : (Γ ` ∆)

In all three kind of judgements the context Γ is a list of assumptions (i.e. a
list of typed term variables xi : Ti) and ∆ is a list of continuations (i.e. a list
of typed context variables αi : Ti). Notice that types associated to terms are
differentiated from types associated to environments (i.e. the type expected for
the term that will fill the placeholder). The former are written on the left hand
side of the turnstile, whereas the latter are written on the right hand side.

A command is typed with the sequent Γ ` ∆ that associates a type to
every free variable in the command. Terms and environments are typed with
sequents that associate types to every free variable and that are “enriched” with
a distinguished formula, on the right hand side for terms and on the left hand
side for environments. The distinguished formula is the type of the term or,
dually, the type of the placeholder.

The Curry-Howard correspondence with classical sequent calculus should be
evident from the typing rules given in Table 1 (where the distinguished formula
can be considered at first just as a normal formula).

Observe that the symmetries of the calculus are perfectly respected at the
typing level. For instance a term is given type A→ B (on the right hand side of
the sequent) when it waits for an input of type A to provide an output of type
B. Dually an environment is given type A → B (on the left hand side of the
sequent) when it provides an input of type A and waits for an output of type B.

