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Abstract—In CSL-LICS 2014, Accattoli and Dal Lago [I] sophisticated layer of sharing, calledeful sharingRoughly,
showed that there is an implementation of the ordinary (i.e. a micro substitution step igsefulif it contributes somehow
strong, pure, call-by-name)\-calculus into models like RAM ma- to the creation of a3-redex, anduselessotherwise. Useful

chines which is polynomial in the number of 3-steps, answering . o o
a long-standing question. The key ingredient was the use of a reduction then selects only useful substitution stepsidavp

calculus with useful sharing, a new notion whose complexity the useless ones. Inli[1], the Useful LSC is shown to be
was shown to be polynomial, but whose implementation was polynomially related to botli-calculus (in a quadratic way)

not explored. This paper, meant to be complementary, stud® and RAM machines (with polynomial overhead, conjectured

useful sharing in a call-by-value scenario and from a practal ; ; bt
point of view. We introduce the Fireball Calculus, a natural Ilngar). It thereforfa foII_ows. that there is a polynomiaiatén
ship A — RAM. Pictorially:

extension of call-by-value to open terms, that is an intermgiary
step towards the strong case, and we present three results.

polynomial

First, we adapt and refine useful sharing, refining the meta- A > RAM

theory. Then, we introduce the GLAMoUr a simple abstract ‘

machine implementing the Fireball Calculus extended with seful quadratic %ﬂom,ial (linear?)

sharing. Its key feature is that usefulness of a step is teste— Useful LSC

surprisingly—in constant time. Third, we provide a further

optimisation that leads to an implementation having only ainear Coming back to our questions, the answer [df [1] is yes,
overhead with respect to the number ofj3-steps. B is atomic, up to a polynomial overhead. It is natural to

wonder how big this overhead is. lsreasonably atomic? Or
is the degree of the polynomial big and does the invariance
The A-calculus is an interesting computational model bgesult only have a theoretical value? In particular,[ih 1§ t
cause it is machine-independent, simple to define, and it cogefinition of useful steps relies on separateand global
pactly models functional and higher-order logic programgni test for usefulness, that despite being tractable mightbeot
languages. Its definition has only one rule, theule, and no feasible in practice. Is there an efficient way to implement
data structures. The catch is the fact that therille—which the Useful LSC? Does useful sharinge-the avoidance of
by itself is Turing-complete—is not an atomic rule. Its adti yseless duplications—bring a costly overhead? This paper
namely (\z.t)u —3 t{z+<u}, can make many copies of ananswers these questions. But, in order to stress the pahctic
arbitrarily big sub-programu. In other computational modelsyajue of the study, it shifts to a slightly different setting
like Turing or RAM ma_chines, an atomic operation can only The Fireball Calculus:we recast the problem in terms
move the head on the ribbon or access a registératemic in of the newfireball calculus(FBC), essentially the weak call-
that sense®? _Can one _count the numbeg-steps to the result by-valuel-calculus generalised to handle open terms. It is an
and then claim that it is a reasonable bound on the comple>ﬁ ermediary step towards a strong call-by-valuealculus,

- " . ; .
of tl?eﬂt]erm. Intuition sayts no, becau,gt_eclan tbe_l_r:_‘Sty ' i;gd that can be seen as iterated open weak evaluation. A similar
male he pro%qam growat an exponential rate. 1his I approach to strong evaluation is followed also by Grégoire
€xplosion probiem and Leroy in [8]. It avoids some of the complications of the

Useful Sharing: noneth(.eless_, it is possible o take th%trong case, and at the same time exposes all the subtléties o
number of 5-steps as an invariant cost modéle. as a dealing with open terms

complexity measure polynomially related to RAM or Turing . . . -
machines. While this was known for some notable sub-calcuIiFree _varlables are actually formalised using a d|st|ngad_sh
[2]-[€], the first proof for the general case is a recent rteSL;ﬁynrt]agnc”class, tha_t (n;ylr)nbolsnot_fdcil, b,c. Thlf_a{?progzhés
by Accattoli and Dal Lagd [1]. Similarly to the literaturédney echnically convenient because 1t aflows restricting tose

circumvent size explosion by factoring the problem via afgrms, so that any variable occurrences bound somewhere,

intermediary model in betweexcalculus and machines TheirWhile still having a representation of free variables (amsy
: bols).

model is thelinear substitution calculugLSC) [1], [7], that o ) )
is a simple)-calculus with sharing annotations (also known The basic idea is that—in the presence of symbols—
as explicit substitutions) where the substitution procisss estricting 5-redex tofire only in presence of values is prob-
decomposed in micro steps, replacing one occurrence aea tifgmatic. Consider indeed the following term:

In contrast with the literature, the general case is aftetie

a stronger form of size explosion, requiring an additiorral a t:= ((A\x.Ay.u)(aa))w

I. INTRODUCTION
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where w is normal. For the usual call-by-value operational The Result:our main result is an implementation of FBC
semanticst is normal (becausea is not a value) while for relying on useful sharing and such that it has only a linear
theoretical reasons (seel [9]=[11]) one would like to be abteerhead with respect to the number®teps. To be precise,
to fire the blocked redex, reducing {0\y.u{z«<aa})w, so the overhead ibilinear, i.e. linear in the number ofi-steps
that a new redex is created and the computation can continald in the size of the initial term (roughly the size of the
According to the standard classification of redex creattres input). The dependency from the size of the initial term is
to Lévy [12], this is a creation of type@l induced by the action off on whole subterms, rather than

The solution we propose here is to relax the constraiff atomic pieces of data as in RAM or Turing machines.
about values, allowing-redexes to fire whenever the arguTherefore,3 is not exactly as atomic as accessing a register
ment is a more general structure, a so-cafiegball, defined or moving the head of a Turing machine, and this is the
recursively by extending values witherts i.e. applications Price one must pay for embracing higher-order computations

of symbols to fireballs. In particulana is inert, so thate.g. Bilinearity, however, guarantees that such a price is mild
t = (\y.u{z—aa})w, as desired. and that the number of step—.e. of function calls in a

Functional programming languages are usually modelled fiynctional program—is a faithful measure of the complexity
weak andclosedcalculi, so it is natural to wonder about the? Program. To sum up, our answer is ygss also reasonably
practical relevance of the FBC. Applications are along tw@omic. o . .
axes. On the one hand, the evaluation mechanism at work in A Recipe for Bilinearity, with Three Ingredientsur

proof assistants has to deal with open terms for comparigBi©f technique is dour de forceprogressively combining

and unification. For instance, Gregoire and Leroy's [8], meatogether and adapting to the FBC three recent works invglvin

to improve the implementation of Coq, relies on inerts (¢irer (e LSC, namely the already cited invariance of useful sigari
calledaccumulators On the other hand, symbols may also b8 [1: the tight relationship with abstract machines depeld
interpreted agonstructors meant to represent data as lists opY Accattoli, Barenbaum, and Mazza in [15], and the optimisa
trees. The dynamics of fireballs is in fact consistent with tH'O" of the substitution process studied by the presentaasith

way constructors are handled by Standard MLl [13] and I [16]. The next section will giv_e an overvi(_ew of these works.
several formalisation of core ML, as in_[14]. In this pape?nd of how th(_ay are herg _comblned, stre_ssmg how the_ p_roof IS
we omit destructors, whose dynamics is orthogonal to the ofi2re than a simple stratification of techniques. In paréigut

of B-reduction, and we expect all results presented here W&'s far from evident that the orthogonal sol_ut|0ns intraxtlic
carry-over with minor changes to a calculus with destrusto?Y t1€seé works could be successfully combined together.

Therefore firing redexes involving inerts is also justifiednfi This Paper: th_e paper is meant to b_e self-contained, and
a practical perspective. mostly follows a didactic style. For the first half we warm up

. _ ) by discussing design choices, the difficulty of the problem,
The Relative Usefulness of Fireballss we explained, th_e and the abstract architecture. The second half focuseseon th

generalisation of values to fireballs is motivated by creei results. We also suggest reading the introductionslof [[],
of type 1 induced by the firing of inerts. There is a subtletlé ho

X - 16], as they provide intuitions about concepts that heee ar
however_. Whilesubstitutinga value can create a new rede nly hinted at. Although not essential, they will certainly
(e.g.gs in (Az.(zD))I — (ﬂ){xf_l} = II, where] |s.th§ soften the reading of this work. Omitted proofs are in the
identity—these are called creations of type 3), substigia appendix and related work is discussed in Sedt. Iil.
inert can not. Said differently, duplicating inerts is &sd,
and leads to size explosion. Note the tension between elifter Il. A RECIPE WITHTHREEINGREDIENTS

needs: redexes involving inerts have to be fired (for creatio This section gives a sketch of how the bilinear implemen-
of type 1), and yet the duplication and the substitution efi® tation is built by mixing together tools from three diffeten
should be avoided (since they do not give rise to creations €f;dies on the LSC.

type 3). We solve the tension by turning to sharing, and use 1) Useful Fireballs: we start by introducing the Useful
the simplicity of the framework to explore the implemertati Fireball Calculus (Useful FBC), akin to the Useful LSC, and
of useful sharing. Both values and inerise(fireballs) in provide the proof that the relationship FBG Useful FBC,
argument position will trigger reduction, and both will beanalogously to the arrow — Useful LSC, has a quadratic

shared after the redex is reduced, but only the substitationoverhead. Essentially, this step provides us with the falig
values might be useful, because inerts are always useless. Hiagram:

is what we callthe relative usefulness of fireballk is also
why—in contrast to Gregoire and Leroy—we do not identify FBC RAM
fireballs and values. quadrN

Useful FBC

1The reader unfamiliar with redex creations should not wabngations are \We go beyond simply adapting the study lof [1], as the use of

a key concept in the study of usefulness—which is why we roarthem—  aygluation contexts (tvpical of call-by-value scenariteds
but for the present discussion it is enough to know that tle&rsts two kinds ( yp y t&ﬁ)

of creations (type 1 and the forthcoming type 3, other typédknat play a to the new notion obiseful evalua@ion contexthat simp_lifi(_es
role), no expertise on creations is required. the technical study of useful sharing. Another key pointis t



relative usefulness of fireballaccording to their nature: only remarkable case of a theoretically born concept with releva
values are properly subject to the useful discipline, are practical consequences.
duplicated only when they contribute somehowstoedexes, 3) Unchaining Substitutionsat this point, it is natural to
while inerts are never duplicated. wonder if the bottleneck given by the side of the diagram FBC
2) Distilling Useful Fireballs: actually, we do not follow — Useful FBC, due to the overhead of the decomposition of
[1] for the study of the arrow Useful FB&: RAM. We rather substitutions, can be removed. The bound on the overhead is
refine the whole picture, by introducing a further internagdi in fact tight, and yet the answer is yes, if one refines theracto
model, anabstract machinemediating between the Usefulof the play. Our previous work [16], showed that (in ordinary
FBC and RAM. We adopt thdistillation techniqueof [15], weak and closed settings) the quadratic overhead is due to
that establishes a fine-grained and modular view of abstragalicious chains ofenamingsi.e. of substitutions of variables
machines as strategies in the LSC up to a notion of structufait variables, and that the substitution overhead redueces t
equivalence on terms. The general pattern arising ffomigL5]linear if the evaluation is modified so that variables areemev
that for call-by-name/value/need weak and closed calbwi tsubstitutedj.e. if values do not include variables.
abstract machine adds only a bilinear overhead with respector the fireball calculus the question is tricky. First of all

to the shared evaluation within the LSC: a disclaimer: withvariableswe refer to occurrences of bound
I-Calculus RAM var!ap_les and not to symb_ols/free varla_bles. Now, o_urahm
l T definition of the calculus will exclude variables from firdba
bilinear . . .
bilimean _ but useful sharing will force us to somehow reintroduce them
LSC Abstract Machine Our way out is an optimised form of substitution thaichains

Such distilleries owe their name to the fact that the Ls@enaming chains, and whose overhead is proved linear by
retains only part of the dynamics of a machine. Roughly, & simple amortised analysis. Such a third ingredient is first
isolates the relevant part of the computation, distillingway Mixed with both the Useful FBC and the GLAMoUr, obtaining
from the search for the next redex implemented by abstrdeg Unchaining FBC and the Unchaining GLAMoUr, and then
machines. The search for the redex is mapped to a notionu§ed to prove our main result, an implementation FBC
structural equivalence, a particular trait of the LSC, whodfRAM having an overhead linear in the number/bsteps and
key property is that it can be postponed. Additionally, th#& the size of the initial term:

transitions implementing the search for the next redex are FBC bilinear » RAM

proved to be bilinear in those simulated by the LSC: the LSC

then turns out to be a complexity-preserving abstraction of ”"’“""J T“”"”""
abstract machines. Unchaining FBC—"*"_,  Unchaining GLAMoUr

The second ingredient for the recipe is then a new abstrggt 4.¢ step, the original content is that the unchaining

machine, call_ed_ GLA_I\_/IoUr, that we prove implements thSptimisation—while inspired by [16]—is subtler to definath
Useful FBC within a bilinear overhead. Moreover, the GLAMTn [16], as bound variables cannot be simply removed from

oUr itself can be implemented within a b.|I|near overheadhe definition of fireballs, because of usefulness. Moreover
Therefore, we obtain the following diagram: we also show how such an optimisation can be implemented

quadratic at the machine level.
FBC > RAM

qwd,,m{ Tb, The next section discusses related work. Then there will be a
Useful EBC bilinear GLAMoUr AM long prelln_u_nary part p_rowdlng bas_lc deflnltlons,_an ahstr
decomposition of the implementation, and a quick study of
This is the most interesting and original step of our studgtF both a calculus, the Explicit FBC, and a machine, the GLAM,
it shows that distilleries are compatible with open termd amwithout useful sharing. Both the calculus and the machirke wi
useful sharing. Second, while in [15] distilleries were nai not have any good asymptotical property, but they will be
used to revisit machines in the literature, here the disiilh simple enough to familiarise the reader with the framework
principles are used to guide the design of a new abstragid with the many involved notions.
machine. Third, useful sharing is handled via a refinement
of an ordinary abstract machine relying on a basic form of
labelling. The most surprising fact is that such a labelling In the literature, invariance results for the weak call-by-
(together with invariants induced by the call-by-valuesr®) valuel-calculus have been proved three times, independently.
allows a straightforward and very efficient implementatioRirst, by Blelloch and Greinef [2], while studying cost mixde
of useful sharing. While the calculus is based separate for parallel evaluation. Then by Sands, Gustavsson and Mora
and global tests for the usefulness of a substitution stefi3], while studying speedups for functional languages, and
the labelling allows the machine to din-the-flyand local finally by Dal Lago and Martini [[4], who addressed the
tests, requiring only constant time (!). It then turns owatth invariance thesis far-calculus. Among them|_[3] is the closest
implementing usefulness is much easier than analysing dhe, as it also provides an abstract machine and bounds its
Summing up, useful sharing is easy to implement and thuseerhead. These works however concern closed terms, and so

Ill. RELATED WORK



they deal with a much simpler case. Other simple call-byariables) term. We will often restrict to consider closed
name cases are studied i [5] and [6]. The difficult case tdrms, the idea being that an open termeésy.zy) is rather
the strong-calculus has been studied A [1], which is also theepresented as the closed temf\y.by).
only reference for useful sharing. The ordinary i.e. without symbols) call-by-valué-calculus
The LSC is a variation over &calculus with ES by Robin has a nice operational characterisation of values:
Milner [17], [18], obtained by plugging in some of the ideas
of the structurali-calculus by Accattoli and Kesnef [19],
introduced as a syntactic reformulation of linear logicgiro Now, the introduction of symbols breaks this property,
nets. The LSC is similar to calculi studied by De Bruijn|[20because there are closed normal forma@sc.x) that are not
and Nederpelt[[21]. Its first appearances in the literatuee azalues. In order to restore the situation, we generaliseegal
in [6], [22], but its inception is actually due to Accattolhd to fireball§, that are either values or inerts 4, i.e. symbols
Kesner. possibly applied to fireballs. Associating to the left, fiatb
Many abstract machines can be rephrased as stratedies ind inerts are compactly defined by
calculi with explicit subst-ltut|0n$ES), see at Iea;t [23]-[8]. Fireballs f,g.h == v|A
The related work that is by far closer to ours is the already Inerts AB.C = afy...fn n>0
cited study by Grégoire and Leroy of an abstract machine for T - Lo -
call-by-value weak and open reduction [n [8]. We developdebr instance \z.y and a are fireballs, as well as(\z.z),
our setting independently, and yet the FBC is remarkablgecloab, and (a(Az.z))(bc)(Ay.(zy)). Fireballs can also be defined
to their calculus, in particular ounerts are essentially their more atomically by mixing values and inerts as follows:
accumulators The difference is that our work is complexity-
oriented while theirs is implementation-oriented. On tme o fou=vl4 A w= alAf
hand they do not recognise the relative usefulness of figsbaNote thatAB and A4 are always inerts.
an_d SO their machine is not invariang. our mgchlne IS more  Next, we generalise the call-by-value rufgz.t)v —g,
efficient and on some terms even exponentially faster. On t{@(_v} to substitute fireballsf rather than values. First
other hand, they extend the language up to the calculus f§f 5 we define a notion of evaluation context (not&d
constructions, present a compilation to bytecode, andfgertather thank, reserved to forthcoming global environments),

closed normal forms are values

in Coq the correctness of the implementation. mimicking right-to-left CBV evaluation:

The abstract machines in this paper wgdebal environ- )
ments, an approach followed only by a minority of authors Evaluation Contexts /' == () [ tF" | F'f
(e.9. [, [15], [29], [30]) and essentially identifying the note the casé £, that in CBV would beFv. Last, we define
environment with a store. the £ (fireball) rule — as follows

The distillation technique was developed to better under-
stand the relationship between the KAM and weak linear heaffULE AT TOP LEVEL CONTEXTUAL CLOSURE
reduction pointed out by Danos & Regniér [31]. The idea (l#:1)f —+ t{z—f} F(t) ¢ F(u) i tsu

of distinguishing betweenperational contenandsearch for  our definitions lead to:

the redexin an abstract machine is not new, as it underlies

in particular therefocusing semanticef Danvy and Nielsen 1heorem 1.

[32). Distilleries however bring an original refinement wae 1) Closed normal forms are fireballs.
logic, rewriting, and complexity enlighten the pictureading 2) —: is deterministic.

to formal bou_an on 'T”a.Ch”.‘e qverheads. . .. In the introduction we motivated the notion of fireball both
Our unchaining optimisation is a lazy variant of an optimi

. i ; from theoretical and practical points of view. Theor 1.1
sation that repeatedly appeared in the literature on atbst P b il

. ) ) rBr vides a further, strong justification: it expresses a sor
machines, often with reference to space consumption aﬂ‘f?internal harmony of the FBC, allowing to see it as the
space leaksfor instance in[[3] as well as in Wand's [33] ’

(section 2). Friedman et al’é [34] (section 4), and Se,stoftcanonical completion of call-by-value to the open setting.
[35] (section 4). ) V. SIZE EXPLOSION

Size Explosion is the side effect of a discrepancy between
o the dynamics and the representation of terms. The usual
The setting is the one of the call-by-valuecalculus ex- gypstitutions{z«u} makes copies of for all the occurrences

tended with symbols, b, ¢, meant to denote free variables (Ofy ;. even ifu is uselessi.e. it is normal and it does not create

IV. THE FIREBALL CALCULUS

constructors). The syntax is: redexes after substitution. These copies are the burddmtea
Terms t,u,w,r == x|allzt|tu to the exponential growth of the size. To illustrate the jpeoh
Values v, n= lx.t let's build a size exploding family of terms.

W|th_ t_he usual _nO_tIOI’IS of free and bound_ van:_;tbles, capturéz2apoy fireball: the first choice wadire-ablg but then the spell checker
avoiding substitutiont{z<wu}, and closed i(e. without free suggestedireball.



Table |
SYNTAX, REWRITING RULES, AND STRUCTURAL EQUIVALENCE OF THEEXPLICIT FBC

RULE AT TOPLEVEL CONTEXTUAL CLOSURE
ol tot el | L{lz t)L'(f) —n L{t[z<L'{f)]) F(t) —on F(u) if t—pu
t,u, w,r = z|a|lxt|tu|tlz<u
o = lwd Fla)lzeL{f)] e LIEPlefl)  Ft) o0 Flu) i t 5o u
LU i= ()Ll
AB,C = a| ALY
fr9.h = v|A tlz—u][ycw] =Zcom tly—w][zu] if y ¢ fv(u) andz ¢ fv(w)
F = ()ItF | FL(f) | Floed (tw)reu] =ar  twloeo] it ¢ £v(t)
(tw)[z<u] =aq tz—u]w if o & fv(w)
tlreullycw] = t{r—u[y—w]] if yefv(t)

Note that a inertd, when applied to itself still is a inert The pluggingW (¢) of a termt¢ into a contextiV is de-
AA. In particular, it still is a fireball, and so it can be usedined as(-){(t) := ¢, (lx.W){t) := lz.(W(t)), and so on.
as an argument for redexes. We can then easily build a tefmm usual, plugging in a context can capture variabkesg,
of size linear inn that inn steps evaluates a complete binary((-)y)[y<t]){(y) = (yy)[y<t]. The pluggingW(W’) of a
tree A2". Namely, define the family of terms, for n > 1: contextW’ into a contex®V is defined analogously. Since all
kinds of context we will deal with will be weak, the definition

b = Ary(zm) of plugging applies uniformly to all of them
tn = Api1-(bn(Tn41Tnt1)) piugging app y ' .
+ + A special and frequently used class of contexts is that of

Now considert, A, that for a fixedA has size linear im. substitution contextg ::= (-) | L{z«t].

The next proposition shows that A reduces inn steps to  Switching from the FBC to the Explicit FBC the syntactic
A*", causing size-explosion. categories ofnerts A, fireballs f, andevaluation contextg”

o . L o 49" are generalised in Taldlk | as to include substitution cdatex
Proposition 1 (Size Explosion in the FBC)t, A =z A Note that fireballs may now contain substitutions, hot at
Proof: by induction onn. Let B := A2 = AA. Cases: top leve|] because it is technically convenient to give a separate

status to a firebalf in a substitution contexL: terms of the

bt = (Azr(z121))A e A2 form L(f) are calledanswers An initial term is a closed term
thr = (ATngr1.(tn(Tn17n41)))A =4 _ with no explicit substitutions.
tnéQ =tnB —f . (i.h.) Rewriting Rules:the fireball rule—; is replaced by—os,
B? = A B defined as the union of the two rules, and—o, in Table[:

1) Multiplicative —o,: is a version of—; wherelz.t and
f can have substitution contextsand L’ around, and
In a ordinary weak scenario, sharing of subterms prevents the substitution is delayed.
size explosion. In the FBC however this is no longer true, as2) Exponential—,: the substitution or exponential rile,
we show in this section. Sharing of subterms is here repre- replaces exactly one occurrence of a variabtirrently
sented in a variation over the Linear Substitution Calculus under evaluation (irf") with its definiendumf given by
a formalism with explicit substitutions coming from a limea the substitution. Note the apparently strange position of
logic interpretation of the\-calculus. At the dynamic level, L in the reduct. It is correctl, has to commute outside
the small-stepoperational semantics of the FBC is refined to bind both copies of , otherwise the rule would create
into amicro-stepone, where explicit substitutions replace one free variables.
variable occurrence at a time, similarly to abstract magin The name of the rules are due to the linear logic interpatati
The language of thd&xplicit Fireball Calculus (Explicit of the LSC.
FBC) is: Unfolding: the shared representation is related to the
usual one via the crucial notion ainfolding producing the
l[-term¢] denoted byt and defined by:

VI. FIREBALLS AND EXPLICIT SUBSTITUTIONS

tu,w,r w= xlal|let]tu|tfreu

wheret[z+u] is the explicit substitution (ES) af for z in ¢, ” N (tu) —

that is an alternative notation faet « = u in ¢, and wherer (lz)] i lo.t] Hzeu]| : t{reul}

becomes bound (it). We silently work modulaxv-equivalence

of these bound variables,g. (zy)[yt]{z<y} = (yz)[z«t]. Note thatr,|= A?".

We usefv(t) for the set of free variables df As for the FBC, evaluation is well-defined:
Contexts:the dynamics of explicit substitutions is dEfineq'heorem 5

using (one-hole) context¥/eak contextsubsume all the kinds

of context in the paper, and are defined by

1) Closed normal forms are answers, i.e. fireballs in sub-
stitution contexts.
W,2W' w= () | tW | Wt | W(x<t] | tlz«W] 2) —os is deterministic.



Structural Equivalencethe calculus is endowed with aA. High-Level Implementation
structural equivalence, noted, whose property is to be a
strong bisimulation with respect teo;. It is the least equiv-
alence relation closed by weak contexts defined in Tdble I.

First, terminology and notation®erivationsd, e, ... are
sequences of rewriting steps. Witkl|, |d|,, and |d|e we
denote respectively the length, the number of multiphcgti
Proposition 2 (= is a Strong Bisimulation wrto¢). Letx € and exponential steps af
{sm, se}. Then,t = v andt¢ —, t' implies that there exists’

such thatu —o, v’ and ¢’ = u'. Definition 1. Let—; be a deterministic strategy on FBC-terms

and — a deterministic strategy for terms with ES. The pair

Size Explosion, Againcoming back to the size explosion(_>f, —o) is a high-level implementation system if whenever
example, the idea is that—to circumvent itz—should better ¢ is a I-term andd : t —* u then:

—on-evaluate to: 1) Normal Form if u is a —-normal form thenu] is a
2

o = (@oo)[oe2?|[z1 2] . .. [tn_1 23] [zneA] —¢-normal form.

which is an alternative, compact representationA3f , of 2) Projection d: t = ul and|dl| = |d],.

size linear inn, and with just one occurrence of. Without Moreover, it is

symbols, ES are enough to circumvent size explosion([2]-[4] 1) locally boundedif the length of a sequence of substi-
In our case however they fail. The evaluation we just defined  tution e-steps fromu is linear in the numbetd|, of
indeed does not stop on the desired compact representation, n-steps ind;

and in fact a linear number of steps (namély) may still 2) globally boundedif |d|. is linear in |d|,.

produce an exponential output (in a substitution context). o )
The normal form and projection properties address the

Proposition 3 (Size Explosion in the Explicit FBC) qualitative part, i.e. the part about termination. The normal
tnA(—og—o2)"L{A*"). form property guarantees that does not stop prematurely, so
Proof: by induction onn. Let B := A2 = AA. Cases: that when— terminates— can_not_keep going. The projeption
property guarantees that termination-ef implies termination
ti = (Az1.(z121))4 —n of —. The two properties actually state a stronger faet
(z121)[z1=A] —oe steps can be identified with the,-steps of the— strategy
EIlA) 1Al . The local and global bounds allow to bound the overhead

A=Al = Alar-d] introduced by the Explicit FBC wrt the FBC, because by
thrr = Arpi1.(tn(Tni1Tny1)))A  —op—o? relating —, and —. steps, they relaté&l| and|d|, since—
(tnA?)[r1<A] = L{t,B)  (—op—2)" (i.h.)  and—, steps can be identified.
L'(B¥") = [/(A?"") n The high-level part can now be proved abstractly.

Before introducing useful evaluation—that will liberate UTheorem 3 (High-Leve| |mp|ementa’[ion) Let ¢+ be an ordi-
from size explosion—we are going to fully set up the archhary i-term and(—:, —) a high-level implementation system.

tecture of the problem, by explaining 1) how ES implement I : - e
A 1) Normalisation t is —:-normalising iff it is —o-
a calculus, 2) how an abstract machine implements a calculus normalising

yvith.E.S, and 3)_ how to define an abstract maching for thez) Projection if d : t —o* u thendl: t —% ul,
inefficient Explicit FBC. Only by then (Sedi_XI) we will star f
optimising the framework, first with useful sharing and thelyloreover, the overhead ofe is, depending on the system:
by eliminating renaming chains. 1) locally boundedquadratic, i.e.|d| = O(|d}?).

VII. TWO LEVELS IMPLEMENTATION 2) globally boundedlinear, i.e. |d| = O(|d])).

Here we explain how the the small-step strategy of For the low-level part, in contrast to][1], we rely on abstrac
the FBC is implemented by a micro-step strategy. We machines, introduced in the next section.
are looking for an appropriate strategy with ES which Let us see our framework at work. We have the following
is polynomially related to both-+: and an abstract machine.result:
Then we need two theorems:

1) High-Level Implementatian—; terminates iff— termi-
nates. Moreover»; is implemented by—o with only a Note the absence of complexity bounds. In faebs, —or)
polynomial overhead. Namely,—" v iff ¢ =7 u|with is not even locally bounded. Let® here be defined by
k polynomial in h; t! = t and t"*! = "¢, and u,, = (Az.z")A. Then

2) Low-Level Implementation— is implemented on an d : w, —o,—" A"[z+A] is a counter-example to local
abstract machine with an overhead in time which isoundedness. Moreover, the Explicit FBC also suffers aof siz

Theorem 4. (—¢, —o¢) is a high-level implementation system.

polynomial in bothk and the size of. explosionj.e.implementing a single step may take exponential
We will actually be more accurate, giving linear or quadratitime. In Sect[Xll the introduction of useful sharing will sel
bounds, but this is the general setting. these issues.



B. Low-Level Implementation: Abstract Machines 3) a structural equivalence= on terms s.t. it is a strong

Introducing Distilleries: an abstract machiné is meant bisimulation with respect te-; _
to implement a strategy- via a distillation, i.e. a decoding 4) a distillation -, i.e. a decoding function from states to
function_- . A machine has a state given by acodet, i.e. al- terms, s.t. on reachable states:
term¢ without ES and not considered updeequivalence, and o Principal s ~, s’ impliess —o= s/,
some data-structures like stacks, dumps, environments, an « Commutative s ~. s’ impliess = s'.

eventually heaps. The data-structures are used to imptemenye will soon prove that a distillery implies a simulation the
the search of the nexto-redex and some form of parsimo-5rem, put we want a stronger form of relationship. Additiona
nious substitution, and they distill to evaluation congeldr pyhthesis are required to obtain the converse simulation,
—o. Every states decodes to a term, having the shap&'(i), handle explicit substitution, and talk about complexityihds.
wheret is al-term andF’ is some kind of evaluation context ggome terminology first. Arexecutionp is a sequence of
for —. _ N ~ transition from an initial state. Withp|, |p|,, and |p|. we

A machine computes using transitions, whose union is notgénote respectively the length, the number of principati an

~», of two types. Theprincipal one, notedv,, corresponds commutative transitions of. The sizeof a term is notedt|.
to the firing of a rule defining—-. In doing so, the machine

can differ from the calculus implemented by a transformmatid?€finition 3 (Distillation Qualities) A distillery is
of the evaluation context to an equivalent one, up to a+ Reflectivewhen on reachable states:

structural congruences. The commutativetransitions, noted — Termination ~+. terminates
~¢, implement the search for the next redex to be fired by — Progressif s reduces thers is not final.
rearranging the data-structures to single out a new evatuat « Explicit when
context, and they are invisible on the calculus. The names  _ partition principal transitions are partitioned into
reflect a proof-theoretical view, as machine transitions loa multiplicative ~~,,, and exponentiak~., like for the
seen as cut-elimination steps [15], [28]. Garbage cotbecis strategy—o.
here simply ignored, as in the LSC it can always be postponed.  _ Explicit decoding the partition is preserved by the
To preserve correctness, structural congrueadcerequired decoding, i.e.
to commute with evaluation-, i.e. to satisfy + Multiplicative: s ~,, s’ impliess —op= 5
t—or t—or t t—or + Exponential s ~. s’ impliess —o.= s';
= —dast= = A = sIrst= = « Bilinear when it is reflective and
u u——-~o0¢q u—~o4q u——-~o¢q . . .

— Execution Length given an executiorp from an
for each of the rules of-, preserving the kind of rule. In initial term ¢, the number of commutative stejps.
fact, this means th.a‘E is a strong bisimulatiqn_ (e one is linear in both|¢| and|p|, (with a slightly stronger
step to one step) with respect to—. Strong bisimulations dependency oft|, due to the time needed to recog-
formalise transformations which are transparent with eesp nise a normal formy, i.e. ifp|. = O((1+ |pl,) - |t]).
to the behaviour, even at the level of complexity, becausg th — Commutative ~. is implementable on RAM in a
can be retarded without affecting the length of evaluation: constant number of steps;

Lemma 1 (= Postponement)lf = is a strong bisimulation — Principal ~+, is implementable on RAM i0)(t|)
andt (— U =)* u thent —*= u and the number and kind steps.

of steps of— in the two reduction sequences is the same. A reflective distillery is enough to obtain a bisimulation
between the strategy- and the machinel, that is strong
up to structural equivalence. With |p|, and|p|. we denote
respectively the number of multiplicative and exponential
transitions ofp.

We can finally introduce distilleried,e. systems where a
strategy—o simulates a machine up to structural equivalence
= (via the decoding-).

Definition 2. A distillery D = (M, —, =, - ) is given by:

. . Theorem 5 (Correctness and Completenestet D be a
1) An abstract machin#t, given by

o N reflective distillery ands an initial state.
a) a deterministic labeledransition system~~ on 1) Strong Simulationfor every executiop : s ~* s there
statess; is a derivationd : s —*= s’ s.t.|p|, = |d|.

b) a distinguished class of states deemiedial, in 2y Reverse Strong Simulatiorior every derivationd :
bijection with closed-terms and from which one s —o* t there is an executiop : s ~* s’ st.t = s

obtains thereachablestates by applying~*; and loly = |dI.
)] Zspart|t|on of the labels of the transition system Moreover, ifD is explicit then|pls = |dla and |ple = |d]..
« principal transitions, notedvp, Bilinearity, instead, is crucial for the low-level theorem
« commutativetransitions, noted-; Theorem 6 (Low-Level Implementation Theorem).et — be
2) a deterministicstrategy—o; a strategy on terms with ES s.t. there exists a bilinear sy



Table I
GLAM: DATA-STRUCTURESDECODING AND TRANSITIONS

— i roa_ . e = () [z<t] : E = (()[z<t)E
= Hem BE = elledl: B pin = ((Jo)r B ~  (D@)E
m, = el|l¢p:m s,s’ = (D,t,m, E) T = (B — o T
D.D' — ¢ ‘ D: (z 7-(-) (77 7T) = < >Ef S = 7S< >
’ ’ D:(t,m) = D{E))x) wheres = (D, t,m, E
D tu ™ E ~rey D: (t,m) u € E
D lx.t urT E ~on D t ™ [z<u)E
D: (t,m) a w’ E ~reg D t (a,n’):m E
D: (t,m) lzw € E ey D t lzu:n E
D T T Ei[z<u)E> g D u® T Ei[z<u)E>
whereu® is any codex-equivalent tou that preserves well-naming of the machine, i.e. such thatbaand name ™
is fresh with respect to those P, = and E1 [z<7u] E>.
D = (M, —, =, - ). Then a—o-derivationd is implementable VIII. A N INEFFICIENTDISTILLERY: THE GLAM M ACHINE

on RAM machines iO((1 + |d|) - [¢]) steps, i.e. bilinear in | this section we introduce the GLAM machine and show
the size of the initial termt and the length of the derivation {ha¢ it distills to the Explicit FBC. The distillery is ineffient,

|d]. because Explicit FBC suffers of size explosion, but it is a

Proof: givend : ¢ —" u by Theoren( 2 there is an900d case _study to present distilleries before the opt_tinim .
executionp : s ~* s’ s.t.u = s and |p|, = |d|. The number Moreover, it allows to show an unexpected fac_t: whl_le adding
of RAM steps to implemenp is the sum of the number for usefu! sharmg to the calcullus will be a quite tricky and
the commutative and the principal transitions. By bilirigar technical affair (Seck. XI), adding usefulness to the GLAM w
ple = O((1+]pl,) - [t|) and so all the commutative transitiond®® surprisingly simple (Sedf. Xll), and yet tests of useést
in p requireO((1+1p|,)-|t|) steps, because a single one takes'4ll Only require constant time.
constant number of steps. Again by bilinearity, each ppaci _ 1he machine of this section is the Global LAM (GLAM).
one requires)(|¢|) steps, and so all the principal transitiond "€ nName is due to a similar machine, basedawal envi-
together requir@(|pl, - |t|) steps. m 'onments, mtroduceq in_[15] and call_ed LAM—standmg_for

We will discuss three distilleries, summarised in Tablé 1\€r0y Abstract Machine. The GLAM differs from the LAM in
(pagdTlL), and two of them will be bilinear. The machines willvo respects: 1) it us_eg;lobal rather than local environments,
be sophisticated, so that we will first present a machine f8Rd 2) it has an additional rule to handle constructors.
the inefficient Explicit FBC (Secf_VI, called GLAM), that Data-Structures:at the mgchlne Ievetermsz_;tre replaced
we will later refine with useful sharing (SeELXII, GLAMoUr) PY codes i.e. terms not considered up te-equivalence. To
and with renaming chains elimination (SECL_XIV, UnchamndlStlﬂgUSh codes from terms, we over-line godes like.in
GLAMoU). States (noted, &', . ..) of the abstract machine are made out

Let us point out an apparent discrepancy with the literatur@l @ context dumpD, a codet, an argument stackr, and a
For the simpler case without symbols, the number of corfloPal environment, defined by the grammars in Table Il. To
mutative steps of the abstract machine studied’in [3] ig/truf2Ve SPace, sometimes we write-¢| & for [z+1] : E. Note

linear (and not bilinear),e. it does not dependent on the sizéhat stacks may conta_in Pai($_’ w) of a code and a stack,
of the initial term. Three remarks: used to code the application éfto the stackr. We choose

. . this representation to implement commutative rules in taons
1) Complete Evaluationit is true only for evaluation to ..
normal form, while our low-level theorem is also valid .The Machine: the machine transitions are given in Ta-
for bOth any prefix of the evaluation and d'verg'n%lelﬂl Note that the multiplicative one-, puts a new entry
evaluations. o . in the environment, while the exponential ore, performs a
2) Normal Form Recognmanlt relies on the fact. thaF clashing-avoiding substitution from the environment. Tdiea
closed no_rmal fo”‘?s'-@- values_) can be recognised Nis that the principal transitions-, and ~-», implement—o,
constant time, by simply checking the topmost construg: | —o. while the commutative transitionss.,, ~,, and

t_or. W.'th syr_nb(_)ls checkmg if a tgrm IS nqrma_ll requweswcs locate and expose the next redex following a right-to-left
time linear in its size, and so linearity is simply notstrategy

3 XOSSIble'. v Irrel he d d f he ini The commutative rule~., forces evaluation to be right-to-
) Asymptotically Irrelevantthe dependency from the ini- left on applications: the machine processes first the argtme

tial tgr_m dlsapp(_aars from the number of _cor_nmutatwi saving the left sub ternd on the dump together with its
transitions but still affects the cost of the principal gne

) o . Rurrent stackr. The role of~., and~-., is to backtrack to
becaus_e. every exponentlals_ transition copies a SUbtelrﬁB saved sub-term. Indeed, when the argunenthe current
of the initial term, and thus it takeS([t[) time. code, is finally put in normal form, encoded bystack item



Table il
CONTEXT AND RELATIVE UNFOLDING

Context Unfolding Relative Unfolding Relative Context diding
OL =0 By = W Sy = 54
(tS)] = t|S tl,s = g S s = Sl
(5t)4 = Sy s, = g 5l = S
S]] = SHzt]} ti«s[m_u] = tlg{z—ul} Slis[z(_u] = Sg{zul}

¢, the stack item is pushed on the stack, and the machimeery exponential transition has to have linear compleixity
backtracks to the pair on the dump. the size of the input.

The Distillery: machines start an execution dnitial
statesdefined as(e, i, ¢, €), i.e. obtained by taking the term,
seen now as the codg and setting toe the other machine  Now we define some notions for weak contexts that will be
components. A state represents a term—given by the codémplicitly instantiated to all kind of contexts in the papémn
and an evaluation context, that for the GLAM is obtaineparticular, we define substitution over contexts, and th&sn u
by decodingD, 7, and E. The decoding- (or distillation) it to define the unfolding of a context, and the more general
function is defined in TablE]JIl. Note that stacks are decodedtion of relative unfolding.
to contest in postfix notation for plugging. To improve read- Implicit substitution on weak context®” is defined by
ability, when we decode machines, we will dendk&t) with

IX. INTERLUDE: RELATIVE UNFOLDINGS

(t)W, if the component occurs on the right#ih the machine é%}{vx)?;iu} i §:[>:C<—u}W{:v<—u}
representgnon. . . . (W) {zeu) = W{reult{zeu

A machine state ilosedwhen all free variables in any Wytl{zeu} = Wi{zcu}ly—t{zu}]
component of the state are boundAror, equivalently, whes tyeW{zeu) = t{zeu}ly-W{zu}]

is closed in the usual sense. Itgll-namedwrhen all variables
bound in the state are distinct. We require well-namednesst€mma 3. Let ¢ be a term andi’ a weak context. Then
a machine invariant to allow every environment enfiey-7] W () {z—u} = W{zu}(t{z<u}).
to be global (i.e. tO.b.iI’.ldc everywherelin the machine state). Now, we would like to extend the unfolding to contexts,
From now on, the initial state associated to a terias as pyt in order to do so we have to restrict the notion of context.
code the term obtained-convertingt to make it well-named. Indeed, whenever the hole of a context is inside an ES, the

For every machine we will have invariants, in order t@nfolding may erase or duplicate the hole, producing a term
prove the properties of a distillery. They are always provest a multi-context, which we do not want. Thus, we turn to
by induction over the length of the execution, by a simplgveak)shallow contextsdefined by:
inspection of the transitions. For the GLAM:

S, 8" 8" = () | St | tS | S[z+t].

Lemma 2 (GLAM Invariants) Lets = (D, u, w, E) be a state
reachable from an initial codé. Then: (note the absence of the productitim«S]).

Now, we define in Tabledltontext unfoldingS |, unfolding
tls of a termt relative to a shallow context and unfolding
S'|4 of a shallow context’ relative to a shallow contex§.

Relative unfoldings have a number of properties, summed

1) Closure s is closed and well-named;
2) Value values in components afare sub-terms of;
3) Fireball every term inm, in E, and in every stack itD

is a fireball, _ _ rop _
4) Contextual DecodingE, D, =, and F, are evaluation -P " the appendix (pade P4). Last, a definition that will be
contexts: . ° important in the next section.

Definition 4 (Applicative Context) A shallow contextS is
applicativewhen its hole is applied to a sub term i.e. if
Theorem 7 (GLAM Distillation). (GLAM, —o¢, =, -) is a & =5"(Lu).

reflective explicit distillery. In particular, let be a reachable
state reachable:

The invariants are used to prove the following theorem.

X. INTRODUCING USEFUL SHARING

Beware: this and the next sections will heavily use contexts
and notions about them as defined in Sect. VI and Sett. IX, in
particular the notions o$hallow context,applicative context
andrelative unfolding

Since the Explicit FBC suffers of size-explosion, an expo- Introducing Useful Reductionnote that the substitution
nential step (and thus an exponential transition) may dafgi steps in the size exploding family do not create redexes. We
a subterm that is exponentially bigger than the input. Thevant to restrict the calculus so that thesselesssteps are
(GLAM, —, =, - ) does not satisfy bilinearity, for which avoided. The idea of useful sharing, is to trigger an exptiaen

1) Commutativeif s ~»., ,, s’ thens = s/;
2) Multiplicative: if s ~», s’ thens —o,= s;
3) Exponentialif s ~~, s’ thens —o, 5.

~



redex only if it will somehow contribute to create a multgali  usefulif it is evaluable and applicative. The exponential rule
tive redex. Essentially, one wants only the exponentigisste then should rather be:

Fle)z=L(f)] —ee L{F(f)[z<[]) S(a)reL{uw)] e L{S{u)lz—u])

s.t. ' is applicative andf is a value, so that the firing createsvherew | is avalueand S is useful
a multiplicative redex. Such a change of approach, however4) Context Closure vs Global RuleSuch a definition, while
has consequences on the whole design of the system. Indedake to the right one, still misses a fundamental paiet,
since some substitutions are delayed, the present recemtsmthe global nature of useful steps. Evaluation rules are indeed
for the rules might not be met. Consider: defined by a furtherclosure by contexisi.e. a step takes
place in a certain shallow conte’. Of course,S’ has to
(Az.t)yly—ab] be evaluable, but there is more. Such a context, in fact, may

we want to avoid substitutingsb for the argumenty also give an essential contribution to the usefulness oép. st
but we also want that evaluation does not stap, that Let us give an example. Consider the following exponential

(Az.t)yly—ab] —a tlz—y[y—ab]]. To accomodate such aSteP
dynamics, our definitions have to he to unfolding i.e. (z2)[zey] —oe (yz)[zy]

fireballs have to be replaced bierms unfolding to fireballs gy jiself it is not useful, since is not a value nor unfolds to

There are 4 subtle things about useful reduction. one. If we plug that redex in the conteSt:= (-)[y<I], how-
1) Multiplicatives and VariablesThe idea is that the mul- o, theny unfolds to a value in5, asy/, = v, _
' p ' : - My<Az.z]

tiplicative rule becomes Az.z, and the step becomes:

Lz )Liw  =a - Litlr-Li{u)]) () loyllyrzz] —o Gollaeplly-rzz] @
where itis the unfoldind.’(u) | of the argument/(u) thatis & N multiplicative redex has been created yet, but sip (2) is

. A ;
fireball, and not necessarily (u) itself. Note that sometimes ,;sqfy| pecause it is essential for the creation given byithe
variables are valid arguments of multiplicative redexas] A exponential step:

consequently substitutions may contain variables.
2) Exponentials and Future Creatiorihe exponential rule (yz)|zeylly=Az.z] —oe ((Az.2)x)[zy][y—A2.2]
involves contexts, and is trickier to make it useful. A firs

approximation of useful exponential step is f\lote, indeed, thaf)\z.z)x gives a useful multiplicative redex,

because: unfolds to a fireball in its context) [x—y][y<Az.z].
F(z)[z<L{u)] e L{F{u)[z<ul) Summing up, the useful or useless character of a step
) o ] ~depends crucially on the surrounding context. Therefoeéuls
where L(u)| is a value (i.e. it is not a inert) andF' is yles have to bglobal: rather than given as axioms closed by

applicative, so that—after eventually many substituti®ps, eyvajuable contexts, they will involve the surrounding et
whenxz becomes:|—a multiplicative redex will pop out. itself and impose conditions about it.

Note that an useful exponential step does not alviayse-

diately create a multiplicative redex. Consider the following The Useful FBC, presented in the next section, formalises
step (wherd is the identity): these ideas. We will prove it to be a locally bounded imple-

mentation of—¢, obtaining our fist high-level implementation
(z])[z<ylly=1] —oe (yI)[zylly<I] (1)  theorem.

No multiplicative redex has been created yet, but stép (1) is X|. THE USEFUL FIREBALL CALCULUS
useful because theextexponential step creates a multiplica-

. . For the Useful FBC, terms, values, and substitution coatext
tive redex:

are unchanged (with respect to the Explicit FBC), and we use
(yI)[z=y][y=I] —oo (II)[z+y][y1] shallow contextsS as defined in Seck_IX. Amnitial term is

) ) still a closed term with no explicit substitutions.

useless substitutions impacts also on the notion of evaluat
context F', used in the exponential rule. For instance, thgefiniton 5 (Evaluable and Useful ContextsEvaluable

following exponential step should be useful (shallow) contexts are defined by the inference system in
Table[\f. A context isisefulif it is evaluable and applicative
((@D)y)[rI][y~ab] —oe ((I11)y)[z1][y+ab] (being applicative is easily seen to be preserved by unfgdi

but the context(({-)I)y)[z«<I][y<ab] isolating = is not an Pointd of the following Lemmhgl4 guarantees that evaluable
evaluation context, it only unfolds to one. We then need a noentexts capture the intended semantics suggested in ¢he pr
tion of evaluation context up to unfolding. The intuitionti&t vious section. Poirf]2 instead provides an equivalent itideic

a shallow contexf is evaluablef S| is an evaluation context formulation that does not mention relative unfoldings. The
(see Secf{_IX for the definition of context unfolding), andsit definition in Table[¥ can be thought has be&om the

10



Table IV
DISTILLERIES IN THE PAPER+ REWRITING RULES FOR THEUSEFULFBC

Calculus Machine RULE (ALREADY CLOSED BY CONTEXTS) SIDE CONDITIONS
FBC —: S(L{lx.t)u) —oun S(L(t[x+ul)) S(Luy) is useful
Explicit FBC —o¢ GLAM
Useful FBC —oys GLAMoUr S(S’(z) [z L{u)]) —oue S{L{S’{u)[z<ul)) S(S'[x<L{u)]) is useful
Unchaining FBC—os  Unchaining GLAMoUr u # v [y<w] and Ulgpy =0

outside while the lemma give a characterisatifilom the Proposition 4 (= is a Strong Bisimulation wrt—o,). Let
inside relating sub-terms to their surrounding sub-context. x € {um,ue}. Then,t = v andt —, ¢’ implies that there

existsu’ such thatu —, v’ andt’ = /.

Lemma 4.
1) If S is evaluable therf | is an evaluation context. XIl. THE GLAMOUR MACHINE
2) S is evaluable ifful,, is a fireball wheneverS = ) ) ) )
S'(S"u) or S = §"(S" [z ). Here we refine the GLAM with a very simple tagging of

stacks and environments, in order to implement useful spari
Rewriting Rules:the two rewriting rules—y, and—y.  The idea is that every term in the stack or in the environment
are defined in Table IV, and we useys for —ou U —ouwe.  carries a label € {v, A} indicating if it unfolds (relatively to
The rules areglobal, i.e. they do not factor as a rule followedthe environment) to a value or to a inert.
by a contextual closure. As already explained, the contagt h The grammars are identical to the GLAM, up to labels:
to be taken into account, to understand if the step is useful t
multiplicative redexes. l v|A E,E' = e|lz=¢']:E
In rule —,, the requirement that whole context around ther, ' ou= e ¢t

abstraction is useful guarantees that the argumeunnfolds , , , L
to a fireball in its context. Note also that iAoy, this is The decoding of the various machine components is iden-

not enough, we have to be sure that such an unfolding idig8! t0 that for the GLAM, up to labels that are ignored. The
value, otherwise it will not be useful to multiplicative meces. Stete context, however, now is notéd, as it is not necessary

Moreover, the rule requires # u/[y<w], to avoid copying an evaluat|0_n_ context. _ )
The transitions are in Table_\VI. They are obtained from

substitutions.
A detailed study of useful evaluation (in the appendbgmse of the GLAM by:
shows that: 1) Backtracking instead of performing a useless substitu-
_ ) _ tion: there are two new backtracking cases, and~-_
Theorem 8 (Quadratic High-Level Implementation)— (that in the GLAM were handled by the exponential tran-
,—euz) i$ & locally bounded high-level implementation system,  gjtion), corresponding to avoided useless duplications:
and so it has a quadratic overhead wt;. ~~¢, backtracks when the entryto substitute is marked

A (as it unfolds to a inert) ang-, backtracks when the
term is marked but the stack is emptyi.€. the context
is not applicative).

Moreover, the structural equivaleneeis a strong bisimu-
lation also with respect te-o,;.

Table V
EVALUABLE SHALLOW CONTEXTS

S is eval. t] is a fireball
St is evaluable

() is evaluable

S is evaluable S{z«t|} is eval. t] is a fireball
tS is evaluable S[zt] is evaluable

Table VI
TRANSITIONS OF THEGLAMOUR

E

D tu ™ E ~rey D: (t,m) [ €
D let | ¢t:m E ~um D t T [z=¢!|E
D: (t,m) lzw € E ~rey D t (lzw)v : E
D: (t,m) a i E ~req D t (a, 74 : m E
D: (t,m) x L E1[z<¢?] B2 ey D t (z,7)4 : 7 E1[z<¢?] B2
D: (t,m) x € Ei[z<u]E2 ~reg D t v Ey[z<TY]Eo
D T ol Ei[z<u"]E> ~ue D a® ol Ei|z<u"]E>

whereu® is any codea-equivalent tou that preserves well-naming of the machine.
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2) Substituting only when it is usefuthe exponential XIIl. T HE UNCHAINING FBC

transition is applied onIy_when the term to substitute | this section we start by analysing why the Useful FBC
has label and the stack is non-empty. has a quadratic overhead. We then refine it, obtaining the
Lemma 5 (GLAMoUr Invariants) Lets = (D, @, , E) be a Unchaining FBC, that we will prove to have only a linear
state reachable from an initial code Then: overhead wrt the FBC. The optimisation has to do with the
1) Closure s is closed and well named: order in wh_ich chains of usefu_l sqbstitutio_ns are performed
2) Value values in components af are éub-terms o Analysis of Useful Substitution Chainsn the Useful

3) Fireball E\LE is a fireball (of kind!) for every codé’ in FBC, whenever there is a situation like
m, E, and in every stack ab; (x1A)[x1<22] . . . [Tn—1Xn][Tn<0]
4) Evall_Jab'“ty' E, Qiﬁ’ E@’ and 5, are evaluable con- the —oy; strategy performsn + 1 exponential steps—oy,
texts; . . . h
replacingz; with x5, thenzo with x5, and so on, until

5) En;grgg;r;zng;;z'mhe length of the global enwronmentiS finally substituted on the head

Theorem 9 (GLAMoUr Distillation). (GLAMoUr, —ou¢, =
,-) is a reflective explicit distillery. In particular, let be
a reachable state:
1) Commutativeif s~ ,,,, s thens = s';
2) Multiplicative: if s~y s’ thens —og,= &’;
3) Exponentialif s ~~.. s’ thens —oy s'.

(nA)[x1e22] ... [Tno1eXp][Tnev] —oue
(VA)[x1ex2] . .. [Tn_1¢Tp][Tn<v]

and a multiplicative redex can be fired. Any later occurrence
of 1 will trigger the same chain of exponential steps again.
Because the length of the chain is bounded by the number
of previous multiplicative steps (local bound property)e t
overall complexity of the machine is quadratic in the number

In fact, the distillery is even bilinear, as we now show. Thef multiplicative steps. In our previous work [116], we shalve
proof employs the following definition of size of a state.  that to reduce the complexity to linear it is enough to perfor
substitution steps in reverse order, modifying the chaihdew
traversing them. The idea is that in the previous example
|z| =la] = 1 |t [t| + [z] + 1 one should rather have a smart reduction. (o stays for

lzt] = Jf|+1 |(D,t,m,E)| = [t|+ Y@ nmeplOptimised, am is already used for useful reduction) following
the chain of substitutions and performing:

Definition 6. Thesizeof codes and states is defined by:

Lemma 6 (Size Bounded) Let s = (D,w,n, E) be a state

reached by an execution of initial code?. Then|s| < (1 + (w1 d)[w1e@] . . [Tn_1Tn][Tnv]  —o0e

|plue) [E] — |ple- (@1 A)[z1e2s] .. [Zp—1-0][znev]  —o0e
Proof: by induction over the length of the derivation. The (@1 A)rev] . [ 1ev][znct] o

property trivially holds for the empty derivation. Case lyses (vA)[z10]. .. [xn:(_v] [xn:l_v] *

over the last machine transitio@ommutative rulew,: the ] ) .
rule splits the cod&z between the dump and the code, and tHeAter occurrences of; will no longer trigger the chain,
measure—as well as the rhs of the formula—decreases bpecause it has beamchainedoy traversing it the first time.
because the rule consumes the application nGoeimutative ~ Unfortunately, introducing such an optimisation for usefu
rules ~, , , .- these rules consume the current code, so th&gductioniis hard. In the shown example, that has a very simpl
decrease the measure of at leasViltiplicative: it consumes fOrm, itis quite easy to define whédllowing the chairmeans.
the lambda abstractiorExponential it modifies the current FOr the distillation machinery to work, however, we need our

code by replacing a variable (of size 1) with a vatueoming rewriting rules to be stable by structural equivalence, seho

from the environment. Because of Lempi@ 5:2s a sub-term action is a rearrangement of substitutions through the term
of 7 and the dump size increment is bounded|By m Structure. Then the substitutions;«z; 1] of the example
can be spread all over the term, interleaved by applications

Corollary 1 (Bilinearity of ~.). Lets be a state reached by and other substitutions, and even nested one into the other
an executiorp of initial code?. Then|p|. < (1 + |p|e)Z]. (like in [z;<2;41[zi11<Ti42]]). This makes the specification
of optimised useful reduction a quite technical affair.
Chain Contexts:reconsider a term like in the example,
Theorem 10 (Useful Implementation) (zA)[z1 3] [x2m3] [x334][240]. We want the next step
1) Low-Level Bilinear Implementatiana —o,¢-derivation to substitute onz, so we should give a status to the context
d is implementable on RAM i ((1 + |d|) - [t|) (i.e. C := (xA)[x1<z2][x2<xs][x3(:)]. The problem is that”
bilinear) steps. can be deformed by structural equivalerses
2) Low + High Quadratic Implementatioa —;-derivation ‘
d is implementable on RAM i®((1 + |d|?) - |¢|) steps, "= (aloycaglracas]JA) s ()]
i.e. linear in the size of the initial termand quadratic and so this context has to be caught too. We specify these
in the length of the derivationi). context in Tabld VIl aschain contexts”, defined using the

Finally, we obtain our first implementation theorem.
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Table

Vil

IDENTITY, CHAIN, AND CHAIN-STARTING CONTEXT + REWRITING RULES OF THEUNCHAINING FBC

LU u= () H@)eer) | e

C,C" u= S()|z<I]| Clz)[z<I] | S(C)
SWlyl* = Sly-I(z)]
Clly=1" = C¥lyI{z)]
s{e)y® s5(C*)

auxiliary notion ofidentity contextl, that captures a simpler
form of chain (note that both notions are not shallow).
Given a chain context’, we will need to retrieve the point
where the chain startede. the shallow context isolating the
variable at the left end of the chaim;(in the example). We
are now going to define an operation associating to everyich
context itschain-starting (shallow) contexfo see the two as

contexts of a same term, we need also to provide the sub-term |ul, =, g |wl, <in. e

that we will put in C (that will always be a variable). The

: . et : )
chain-starting contextC'® associated to the chain context
(with respect tar) is defined in Tabl& VII.

Foi_our exampleC' = (zA)[z1<xo][ra—us][r3<(-)] We
have C*+ = ({-)A)[z1<x2][xo—z3][z3-24], @S EXPECtEd.

RULE (ALREADY CLOSED BY CONTEXTS)
S(L(lx.t)u) —oom S{L(t[z<ul))

58" (@) [wL(v)]) —eoes S(L(S'(v)[x+0]))

S(C{x)[z—L(v)]) —oec S{L{C(v)[zv]))

SIDE CONDITION
S((-)u) is useful

S(S'[x<L{v)]) is useful

S(gw[m—L(v)]) is useful

W —Oof U.
Shallow Exponential Stepoyes:
<.Bm
<ih.

lwly — 1

|e|om - |e|oec - 1

. |e|0m - (|e|oec + 1)
%hain Exponential Stepoge.:

|ulo

= |d|om - |d|oec

- |d|om - |d|oec

|om - |e|oec
Multiplicative Step—ooy:

< BE lwh +1

Si.h. |€|om - |e|oec +1
= e+ 1—]e|oec

|ulb

|d|om - |d|oec u

Rewriting Rules:the rules of the Unchaining FBC areCorollary 2 (Linear Bound on Chain Exponential Stepgpt

in Table[VIl. Note that the exponential rule splits in twogeth

t be initial andd : t —o}; u. Then|d|oec < |d|on-

ordinary shallow case—,.s (now constrained to values) and Next, we bound shallow steps

the chain case—o,.. (Where the new definition play a role).

They could be merged, but for the complexity analysis atemma 10(Linear Bound on Shallow Exponential Stepkpt

the relationship with the next machine is better to distislgu
them. We use—o,, for —oges U —0gec, and —oqe fOr —ogy
U —o0.. NOte the use ofC'® in the third side condition.

A. Linearity: Multiplicative vs Exponential Analysis

To prove that—o,: implements—: with a global bound, and

t be initial andd : t —o%; u. Then|d|oes < |d|on-

Proof: first note that ift —o.s © thenu —o, w, because
by definition —,.s can fire only if it creates a—o,-redex.
Such a fact and determinism eb,: together imply|d|ses <
|d|on + 1, because everyo,es step is matched by the eventual
—oon Steps that follows it immediately. However, note that in
t there are no explicit substitutions so that the first step is

thus with a linear overhead, we need to show that the glowécessarily an unmatchedo, step. Thusd|ees < |d| -
om . oes om-*

number of exponential steps,.) in a —o.s-derivation is
bound by the number of multiplicative stepso(,). We need
the following invariant.

Lemma 7 (Subterm Invariant)Let¢ be al-term andd : t —*
u. Then every value im is a value int.

A substitutiont¢[z<u] is basicif u has the formL(y). The
basic sizelt|, of ¢ is the number of its basic substitutions.

Lemma 8 (Steps and Basic Size)

1) If t —oes u then|uly, = [t]s;
2) If t —opec u then|tl, > 0 and |ul, = |ty — 1;
3) If ¢ —Oom U then|u|b = |t|b or |’LL|b = |t|b + 1.

Lemma 9. Let ¢ be initial andd : ¢ —o}; u. Then|ul, <
|d|om - |d|oec-

Proof: by induction on|d|. If |d| = 0 the statement holds.
If |d] > 0 consider the last step —: v of d and the prefix
et —of w of d. By i.h,, |wlpy < |e|on — |€]oec. Cases of
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Theorem 11 (Linear Bound on Exponential Stepd)et ¢t be
initial and d : ¢ —*; u. Then|d|ee < 2 - |d|on-

Proof: by definition, |d|se = |d|oec + |d|oes- By Corol-
lary 2, |d|oec < |d|on and by Lemmad0d|oes < |d|on, @and so
|d|oe S 2. |d|om- u

We presented the interesting bit of the proof of our im-
proved high-level implementation theorem, which followke

remaining details are in the appendix.

Theorem 12(Linear High-Level Implementation) —, —o. )
is a globally bounded high-level implementation systend, an
so it has a linear overhead wrts;.

Last, the structural equivalence is a strong bisimulation
also for the Unchaining FBC.

Proposition 5 (= is a Strong Bisimulation) Let x €
{om, oms, omc}. Then,t = w andt¢ —o, t' implies that there
existsu’ such thatu —o, v/ andt’ = u'.



Table VIl
TRANSITIONS OF THEUNCHAINING GLAM OUR

tu

D € ™ E ~rey D: (¢,m) € u € E
D € lx.t o7 FE ~om D € t s [:m—d)l}E'
D: (t,m) € lzw € E ey D € t (lz@)? : 7 E
D: (t,m) € a i E ey D € t (a, 74 : E
D: (t,m) € x ' Ei[z—¢?)Ey ey D € t (z, 74 7 Ei[z—¢?|F2
D: (t,m) € x € Ei[z<u]|E2 e D € t v Eq[z<T"]|E>
D € T ol Ei[z<v"]|E2 ~oes D € e ol Ei[z<v"]|E>
D H T ol Ei[z<y’|E2 ~reg D H:x y ol Ei[z<y’|E2
D H:y T ol E°® ~oec D H Y ot E°

with E® := E;[z<v"|Esy<z’|E3, E° := E1[z<v"]|E2[y<v*"]|E3, and wherev® is any codea-equivalent tou
that preserves well-naming of the machine.

XIV. UNCHAINING GLAMOUR Lemma 11 (Unchaining GLAMoUr Invariants) Let s =

. L (D, H,u,w, E) be a state reachable from an initial code
The Unchaining GLAMoUr machine, in Tadle VI, behaves 1) Closure s is closed ands is well named:

like the GLAMoUr machine until the code is a variahlg 2) Value values in components afare sub-terms of:

that is hereditarily bound in the global environment to aueal ) o A . .
via the chainz;«as]? ... [z,<v]”. At this point the machine 3) F';enbdag_t@ Is a fireball (of kindl) for every codd" in
™ ;

needs to traverse the chain until it finds the final binding " ]
[x,<v]Y, and then traverse again the chain in the opposite4) Eva!uablllty E’_QiE’ Tlp and.5, are evaluablg cont;
direction replacing every; —z.1]” entry with [z;—v]*. 5) En_wronment Sizethe length of the global environment

The forward traversal of the chain is implemented by a new Es boqnd bylp'_“‘.‘ .
commutative rule~, that pushes the variables encountered in 6) _Compatlble H?ap‘f H 7&_6 ther_1 the stack is not empty,
the chain on a new machine component, calledctragn heap =z, and I is compatible with’s.
The backward traversal is driven by the next variable poppedWe need additional decodings to retrieve the chain-
from the heap, and it is implemented by a new exponentithrting contexC in the side-condition of-,.. rule, that—
rule (thechain exponential rule, corresponding to that of th@nsurprisingly—is given by the chain heap. Let= (D, H :
calculus). Most of the analyses performed on the GLAMoUy,, 7, E') be a state s.tH : y is compatible withE. Note
machine carry over to the Unchaining GLAMoUr withouthat compatibility givesE = E; [y« |E,. Define the chain
modifications. contextC, and the substitution context, as:

Every old grammar is as before, and heaps are simply lists o H .
of variables,i.e. they are defined by ::= ¢ | H : x. Co 1= ADWyDm) Ealy()] L = Iy

Decoding and Invariants:because of chain heaps and The first point of the following lemma guarantees tidat

chain contexts, the decoding is involved. and L are well defined. The second point proves that filling

First of all, note that there is a correlation between tharchals(Cs) with the current term gives exactly the decoding of the
and the environment, as the variables of a chain hiap:  States = S, (y”), and that moreover the chain starts exactly
1 : ... : z, need to have corresponding entrigs«a?,,]. ©On the evaluable context given by the state, that S, =
More precisely, we will show that the following notion ofLs(Cs®).

compatibility is an invariant of the machine. Lemma 12 (Heaps and Contexts).ets = (D, H : y,z,, E)

Definition 7 (Compatibility Heap-Environment)Let E be an be a state s.tH : y is compatible withE. Then:
envionment andd =z, : ... : x, be a heap. We say tha&l 1) L, is a substitution context and is a chain context
is compatiblewith E if either H is empty or[z;<a?,,] € E 2) s. t.s = S (y"") = Ly(Cs(x)) with S, = Ls<&z>

for i <n, [z,<2"] € E, and[z<¢"] € E for someg’. We can now sum up

Given a states = (D, H, 7, 7, E), the dump, the stack andheqrem 13 (Unchaining GLAMoUr  Distillation)

the environment provide a shallow contet := (D(m))E  (ynchaining GLAMoUr—os¢,=, -) is a reflective explicit
that will be shown to be evaluable, as for the GLAMoUr. distillery. In particular, lets be a reachable state:

If the chain heapH is not empty, the current codeis
somewhere in the middle of a chain inside the environment, oy a1, ilsimlimathra i o o o

b _ : . °1h2) Multiplicative: if s ~op 8" thens —og,= s';
and it is not apt to fill the state contest. The right code is 3) Shallow Exponentialif s ~qes &' thens —oges s':
. oes =2 oes =

the variabler; starting the chain heafl = x; : ... : z,,i.e: 4) Chain Exponentialif s ~oec 5" thens —oge. .
=1 = A. Bilinearity: Principal vs Commutative Analysis
Finally, a state decodes to a term as follows:= S, (£"). Bilinearity wrt v, , ; , ; is identical to that of the GLAM-

oUr, thus we omit it and focus om,.
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The size|H| of a chain heap is its length as a list.

Lemma 13 (Linearity of ~».,). Lets = (D, H,t, 7, F) be a
state reached by an executipn Then

1) |p|06 = |H| + |p|oec-
2) |H| < |pla-

3) ples < [pln + [ploce = O(|p|p)-

Proof: 1) By induction over|p| and analysis of the
last machine transition. The-., steps increment the size
of the heap. Thew,.. steps decrement it. All other steps
do not change the heaf) By the compatible heap invariant [1]
(LemmalTIiB)|H| < |E|. By the environment size invariant
(LemmalILB),|E| < |pln. Then |H| < |p|a. 3) Plugging
Point2 into PoinflL. [ ] ]

(3]

we

Corollary 3 (Bilinearity of ~».). Let s be a state reached by
an executiorp of initial codet. Then|p|. < (1 + |plo)]| +

Pl + [ploec = O((1 + [ply) - [T]).

Finally, we obtain the main result of the paper.

(4]

(5]
Theorem 14 (Useful Implementation)

1) Low-Level Bilinear Implementatiana —o,¢-derivation

d is implementable on RAM i®((1 + |d|) - |t]) steps.

2) Low + High Bilinear Implementatiana —:-derivation

d is implementable on RAM i®((1 + |d|) - |t|) steps.

(6]
(7]

(8]

Let us conclude with a remark. For our results to hold
the output of the computation has to be given in compag?]
form, i.e. with ES. The unfolding a termt with ES may [10]
have size exponential in the size ©ofit is important to show,
then, that the common operations dterms, and in particular
equality checking (up tav-conversion), can be implemented
efficiently on the shared representation, avoiding unfadi [12]
In other words, we want to prove that ES aneccinct data
structures in the sense of Jacobsdn [36].

Despite quadratic and quasi-linear recent algorithiis [6],
[37] for testing equality of terms with ES, we discovere
that a linear algorithm can be obtained slightly modifying
an algorithm already known quite some time before (1976!%:
the Paterson-Wegman linear unification algorithm [38] tdoet [15]
explained in[[39]). The algorithm works on first order terms
represented as DAGs, and unification boils down to equaliff]
checking when no metavariable occurs in the involved terms.

To apply the Paterson-Wegmar algorithm, we need to ovér?]
come two difficulties. The first one is that ES implemer}tw]
sharing explicitly: to represent the term sharing the two
occurrences of we need to introduce a variable and an E$19]
obtaining zx[z+t]. On the contrary, the input to Paterson-
Wegmar should be a DAG where the application node poir{gg]
directly twice to the root of. The required change in repre-
sentation can be easily computed in linear time in the size [(2)3]
the input. The second difficulty is that Paterson-Wegmarksor
on first-order terms, while we want to consideiconversion. [22]
If we assume that occurrences dbound variables point to
their binder, two variables are-equivalent when they point

(23]

[23]

for equality. The details of the adaptation of Paterson-véag
are left to a forthcoming publication.
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APPENDIXA
PROOFSOMITTED FROM SECT.[IV]
(THE FIREBALL CALCULUS)

The following lemmas are required to prove Theofdm 1.

Lemma 14. Let ¢ be a closed—¢-normal term. Thert is a
fireball.

Proof: by induction ont. Cases:

1) Variable Impossible, becauseis closed.

2) Symboland Abstraction Thent is a fireball.

3) Application Thent = ww, with v andw both closed and
—¢-normal. Byi.h. they are both fireballs. Moreover,
cannot be a value, otherwisavould not be—¢-normal.
Then it is a inert and is a fireball. ]

Lemma 15. Lett be ainert or a fireball. Thenis —¢-normal.

Proof: by induction ont. If ¢ is a valuev or a symbola
then it is —¢-normal. Otherwisé¢ = Af and byi.h. both A
and f are —¢-normal. SinceA cannot be an abstractionjs
—¢-normal. [ |

Lemma 16 (Determinism of—;). Lett be a term. Then has
at most one—; redex.

Proof: by induction ont. Cases:

1) Variable, Symbol or Abstraction No redexes.
2) Applicationt = uw. By i.h., there are two cases far:

a) w has exactly one—; redex Thent has a—:
redex, because(-) is an evaluation context. More-
over, no—; redex fort can lie inu, because by
LemmalIbw is not a fireball, and sd-)w is not
an evaluation context.

w has no—; redexeslf w is not a fireball thert
has no redexes, becausgw is not an evaluation
context. If w is a fireball we look atu. By i.h.,
there are two cases:

i) u has exactly one~; redex Thent has a—;
redex, becausg)w is an evaluation context and
w is a fireball. Uniqueness comes from the fact
thatw has no—: redexes.

u has no—: redexeslf « is not a fireball (and

thus not a value) thenhas no redexes. If is

a fireball there are two cases:

e wu is ainert A. Thent is a fireball.

e u is a valuelz.r. Thent = (lz.r)w is a
—¢ redex, because is a fireball. Moreover,
there are no others; redexes, because eval-
uation does not go under abstractions and

b)

i)

is a fireball. ]
Proof of Theorem 1 (page 4)
Proof: by Lemma 16 and Lemniall4. [ |
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The following easy properties of substitution will be negde

later.

Lemma 17.

1) Substitutions Commute
Hrcup{y—w} = {ycw{zcufy-w}};

2) Fireballs are Stable by Substitution

a) If u is a inert thenu{x«<t} is a inert, and
b) if u is a fireball thenu{x<t} is a fireball.

3) —: and Substitution Commutef F(t) —: F(u)
with ¢t —¢ w then F{t){z<w} —¢ F(u){z<w} with
t{zew} —; u{z—w}.

Proof:

1) By induction ont.

2) By induction onu.

a) u is a inert. Cases:

i) If uw=athenu{az<t} = a{z<t} = ais a
inert.

i)y If w= L(AL"(f) then byi.h. L'(A){zt}
is a inert and L"{f){x<t} is a fireball,
and souf{xz<t} = (L'{A)L'{f)){z<t} =
L' {AY{xt}L"(f){x<t} is a inert.

b) w is a fireball Cases:

i) v is a value Ax.w. Then u{z«t}
Az.w{z+t}, which is a valuej.e. a fireball.

i) wis ainert A. Then by Poinf 2ai{z«t} is a
inert, i.e. a fireball.

3) By induction onF'. Cases:

a) Empty contextF? = (). If ¢t = (Ayr)f
r{y<f} = u then
t{x<w} =
() f){zew) —  (def. of {-})
Oyer{zew}) floew)
r{zcwi{y-f{z<w}} = (Pointl)
r{yf Haew} =
u{x—w}
b) Application RightF' = rF’. Then
F{t{z—w} =
(rF"(t)){z—w} =
r{zew}F (t){z—w} —¢ (i.h)
r{xcw}F (u){z<w} =
(rF"(u) {z—w} =
Fluf{z-w}
c) Application LeftF = F’f. Then
F{t{zw} =
(F(t) f){z-w} =
F'{t){z<w}f{z-w} —: (i.h. & Point[2B)
Fllup{zcw} f{zcw} =
(F'(u) f{z—w}
Fluf{z-w}
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APPENDIX B
PROOFSOMITTED FROM SECT. V]
(FIREBALLS AND EXPLICIT SUBSTITUTIONS)

A. Closed Normal Forms and Determinism

The first step is to identify the reduction invariants, thesino
important one being the shape of terms—caltedper—that
are produced by the strategy; starting with a term without
ES.

Definition 8 (Proper Term) A termt is properif
1) ES any explicit substitution int contains an answer,
and
2) Value any value int does not contain ES.
We also say that an ES is proper when it contains a proper
answer.

Note that initial terms (having no ES) are proper and so
the next lemma applies in particular when the starting texm i
initial.

Lemma 18 (Proper Invariant)Let¢ be a proper term. If —o}
u thenw is proper.

Proof: by induction on the lengthk of the derivation
t —of wu. If £k = 0 the statement is just the hypothesis.
Otherwise ¢ —o’f“_1 w —o¢ u and byi.h. w is proper.
Note that 1) multiplicative steps create proper ES, and 2)
exponential steps copy proper fireballs only out of values an
ES, preserving properness. [ |

We now characterize normal forms: the next three lemmas
conclude that normal terms are answers, and that answers are
fireballs up to unfolding.

Point 2.a of the next statement is given with respect to
unfolding relative with shallow context (defined in Sect] IX
page[®) because it will be used in this more general form in
later sections.

Lemma 19 (Properties of Answers)Let ¢ = L{u). Answers
are —z-normal, do not decompose d%(x), and (relatively)
unfold to fireballs. More precisely,
1) If w is a inert or a fireball thent is —¢-normal and it
does not decompose &3z),
2) Moreover,
a) If uis a inert thent| is a inert.
b) If u is a fireball thent | is a fireball.

Proof: by induction onL. Cases:
o Empty List(-). By induction onu.
1) w is a inert. Cases:
a) u is a symbola. Then it is normal and clearly
does not decompose @%(x). Moreover,t|, =
al. = a is a inert.
b) w is a inert L’'(A)L"”{(f). Then byi.h. both
L’'(A) and L"(f) are normal. SinceA can-
not be an abstraction, the topmost application
cannot be a——o,-redex, and sou is normal.



For each ofL’(A) and L”(f) i.h. gives that
it does not decompose &(z). Thenu does
not decompose either. Moreover, iy. L'(A4) |

5) Substitutiont = u[z<w]. Since(-)[z<w] is an evalua-
tion context we can apply thieh., and fall into one of
the two following cases:

is a inert andL”(f)]. is a fireball, and so
tle = gom L' (As L"(f)lg is @ inert.
2) u is a fireball Cases:
a) u is a value\z.w. Then it is normal and does
not decompose as'(x). Moreover,t| =; g
Az.w], which is a valuej.e. a fireball.
b) w is a inert A. Given by thei.h..
o Non-Empty ListL = L'[z<w]. By i.h., L'{u) is normal
and cannot be decomposed@ér), and so there cannot
be —, redexes involvingz«<w|. Thust is normal.

a) Point[d holds but not Poirifl2ZThent is an answer,
i.e. Point[d holds. Note that since any non-empty
evaluation context fot comes from an evaluation
context foru, Point(2 holds for: iff it holds for w,

i.e. it does not.

Point[2 holds but not PoirlflIThenw = F’(y) and

we conclude takingF’ := F’'[z<w]. Note that it
may be thatr = y, but in that casev is not an
answer (otherwise there would be a redex). There
is no contradiction, because we are not assuming

For the absence of a decomposition, note that—apart from £ o be proper (case in which one necessarily has
the trivial decompositioqL{u)), that is not of the form T 7 Y) -
F({x)—every decomposition of.(u) is obtained from Corollary 4. Lett be a closed propero¢-normal term. Then

a decomposition of’(u) by appendingz«<w], and so ¢ is an answer and| is —¢-normal.

L{u) does not decompose #%x).

For the moreoverpart, byi.h. L'(u) verifies the state-
ment for no matter which shallow context. Thep, =

L (u)[z—wllg =L BOB L' (W ds (o) 8ISO verifies the
statement.

b)

Proof: if ¢ is —oz-normal then by LemmB_20 eithéris
an answer or it has the forri'(z). Suppose that it has the
form F(z). Sincet is closed,F' has a substitution om, and
sincet is proper, that substitution contains an answer. Then
has a—.-redex, absurd. Thehis an answer. By Lemnial9,

Lemma 20 (Normal Form Characterization).ett be a—;- t|is a fireball. By Lemm&_15;] is —¢-normal. L]

normal term. In order to prove determinism of the calculus, we need the
1) Either¢ is an answer, notion of positionand a final property of answers.
2) ort = F(z). The position of a multiplicative redex is the contekt

in which the rule takes place, and this is standard. The
Proof: by induction ont. Cases: position of an exponential rede®” (F(z)[z—L{f)]) —oe
1) Variable t = z. Here Poin 2 holds, while evidently S’(L(F(f)[z« f])) is the context around the substituted vari-
Point[] is false. able,i.e. F/(F[z<L{f)]).
2) Symbolt = a. Here Poinf]L holds, and Point 2 is false. Given a termt, a redex iscontainedin a sub-termu if
3) Abstractiont = \z.u. Here Poin{dl holds, and Poilt 2the whole rewriting pattern is containedin An exponential
is false. redex ispartially containedin « if » contains the substituted
4) Applicationt = ww. By i.h. we are in one of the variable (and then the position of the redex) but not thengcti
following two cases for the right sub-term: substitution.

a) Point[1 holds but not Poirfl2By LemmalId,w | emma 21(Answers do not (Partially) Contain Redexekgpt

is normal. Note that-)w is an evaluation context. { — F(y) be a term withu an answer. Then no redex btan
Thei.h. gives one of the following two cases forhaye its position in.

the left sub-termu:

i) Point[d holds but not Poirffl2Given that both
u andw do not satisfy Pointl2, neither does
Being an answerw has the formL{f). Two
cases:

A) fis a inert A. Thent = L{A)w is the Lemma 22 (Determinism) Let¢ be a term andr; and F;
application of a inert to an answer, which ighe positions of two redexes in Thenfy = Fy.
a inert—.e. an answer—and Poifil 1 holds.
B) f is avalue Thent is a—, redex, absurd.

i) Point[2 holds but not Poinfl1Then Point P

Proof: by LemmalID,u is —oz-normal and so nG—o,-
redex oft can have its position in.. Moreover,u is not of
the form F'(y) and so no—,-redex oft can be entirely nor
partially contained iru. ]

Proof: let t = Fy(u). By induction onF;. Cases:
1) EmptyF; = (). Cases:
a) Multiplicative Redexi.e. t = L{\z.r)q with ¢ an

holds for¢, because-)w is an evaluation con-
text. Sinceu is not a inert{ is not answer, and
Point[1 does not hold.
b) Point[2 holds but not PoirffliThen Poinf® holds
for ¢, becauseu(-) is an evaluation context, and
Point[1 does not, becauseis not an answer.
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answer. By Lemm@a 21F, cannot lie inL(\z.r)
nor in ¢. Then necessarily, = F; = (-).

b) Exponential Redex his case is impossible because
the position of an exponential redex is the context
around the substituted variable andif = (-) then
t = x and there is no substitution acting en



2) Right Application F;, = rF] andt = rF/(u). By reading the diagram of the other direction bottom-up, mdte
Lemmal2l,F} (u) is not an answer and s, does not than top-down; these cases are simply omitted, we distihgui
lie in r, nor F, can be emptyi(e. ¢ = rF{(u) cannot the two directions only when it is relevant.
be a —,-redex). Then,F» = wFj, and the statement The proof of the strong bisimulation property is by induatio
follows from thei.h. applied toF] and Fy. on —o.

3) Left ApplicationFy = F{L(f) and andt = Fj(u)L(f). 1) Base case 1: multiplicative root step t =

By Lemma21,F, does not lie inL(f). And F» cannot
be empty (.e. the position of a—,-redex), because then
F{{u) would have the fornL({\z.p), i.e.it would be an

L{lx " YL'{f) —n u = L{t'[x<L'{f)]). The nontrivial
cases are when thes step overlaps the pattern of the
redex. Note that by Lemniall3.1, if tke> is internal to

answer, and so by Lemnial21 no redex positions can lie
in Fy{(u), against the hypothesis of the case. Then=
Fjw, and the statement follows from thé. applied to

L'(f), the proof is direct, since theredex is preserved.
More precisely, ifL'(f) & L"(g), we have:

F| and F}. . . . )
4) SubstitutionF; = Fj[z<w]. Then necessarilyf, = L{zt') I'{f) ————° L{'[z=LH)])

Fj[z+<w] (remember the position of-ac.-redex is given = =

by the context around the substituted variable, and not by L{lz ') L"(g) -----2----0 L{t'[z=L"{g)])

the one around the acting substitution) and the statement

follows from thei.h.. - Consider the remaining possibilities fes

a) Commutation of independent substitutioas,,, .
The commutation of substitutions must be in
i.e. L must be of the formL; (Lz[y«u'][z<w'])
with z & fv(u'). Let L := Ly {Lo[z«w'][y<u']).

Corollary 5. Lett¢ be a proper closed term. Then either
contains exactly one-;-redex, ort is an answer.

Proof: by Lemma2R¢ contains at most one redex. If it

contains no redexes, then by Corollaly 4 it is an answda. Then:
L{lzt') L'(f) —————0 L{t'[z=L'(f)])
B. Structural Equivalence =com =com
The aim is to prove the strong bisimulation of structural LAzt L'(f) -----"----0 L{t'[z=L'{f)])

equivalence, whose proof relies on the next lemma. ) ) o
b) Commutation with the left of an applicaticaq;.

Lemma 23. The equivalence relation= preserves the The diagram is:

“shapes” of L({f) and F{x). Formally:
1) If L{f) =t, thent is of the formL’(g).

2) If F(z) = t, with = not bound byF, thent is of the L{lzt')[y—q) L' (f) ————o0 L{t'lz=L'(f)])[yd]
form F’(z), with 2 not bound byF"”. =a =
Proof: (L{lat') L'(f)ly<q] - ---=- -0 L{¥ [z« L'{f)]) [y~d]

¢) Commutation with the right of an applicatieag..
The diagram is:

1) By induction onL.
2) By induction onF'.

[

Now, we are ready for the bisimulation property. L{zt") I'{f)[y—q] * o L{t' [z L' (f)y=dq]))

Proof of Proposition 2 (page 6)
Proof: =[]

Let & be the symmetric closure of the union of the axioms =ai L{t'[z<L"(f)]ly<a])
defining=, i.e. of =com U =a1 U =a, U =(;. Note that= . =lom
is the reflexive—transitive closure @&. The proof is in two (L(la.t") L'(f)y<q] ------- o L{t'[z<L"(f)])[y<d]
parts: d) Composition of substitutions;. The composition

(1) Prove the property holds fo&, i.e. if t —, u and
t & w, there exists s.t. w —o, 7 andu = r.

(1) Prove the property holds for= (i.e. for many steps
of &) by resorting to (1).

of substitutions must be if, i.e. L must be of the
form L (Lo [y<u/][z<w']) with 2 & £v(La(lz.t")).
Let L := Ly (Ls[y<u'[z<w’]]). Then:

The proof of (I1) is immediate by induction on the number of Lla.t") L'(f) - o L{t'lz=L'(f)])
& steps. The proof of (I) goes by induction on the rewriting =0 =0
step — (that, since— is closed by evaluation contexts, > N7 n > /
. . . L{lxt")L'(f) ~—=------- oL <L
becomes a proof by induction on the evaluation conféxtin (zt) L'{f) (Fle=L )
principle, we should always consider the two directiong=sf 2) Base case 2: exponential root step

Most of the time, however, one direction is obtained by sympl t = F(z)[x<L{f)] —e u = L{F{f)[z+f]). Consider
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first the case when the=-redex is internal toF'(z).
By Lemma[28.2 we knows= preserves the shape of
F(z), i.e. F(z) & F{(z). Then:

F(x)[z-L(f)] —————o0 L{F(f)[z<[])
Fla)[xeL(f)] ---===-=--0 L{F(f)[z=f])

If the & -redex is internal to one of the substitutions
in L, the proof is similarly straightforward. Note that

rule is applied from left to right, since it would
imply that F(z) = F'(z)[y<t'] with « & F'(z),
which is a contradiction.

Finally, if the =, rule is applied from right to left,
L is of the form L' [y<t'] and:

F(a)z< L (f)lyt]] ————o L'(F(f)z<fDly<t']

=[]

F@)lweL'(f)lly<t] ----=- -0 L'(Flz)[z-f)y-t]

the < -redex has always a substitution at the root. The 3) Inductive case 1: left of an application ' = F'L{f).

remaining possibilities are that such a substitution is in
L and it interact with constructors outside or that it
is precisely[z<L{f)]. Axiom by axiom:

a) Commutation of independent substituticas,,, .

The case where both commuted substitutions be-

long to L has already been treated. The remaining
possibility is thatF® = F'[y<t'] and [x<L(f)]
commutes withy«t'] (which impliesz & £v(t')).
Then:

F'(@)[yt][z<L{f)] ————o L{F'{f)[y~tT[xf])

=com =*

F @)z L{)lyt'] ----* - - o L (f)we ) [yt

b) Commutation with the left of an application
=qi. The only possibility is that the substitution
[x<L{f)] is commuted with the outermost appli-
cation inF(z), i.e. F = F'L'{g). Then,

(F*(a) L g) e L)) — o0 L{F{f) L'lg) 1)
=a L{F (=111 (g)

FlaYoe L{f)]L/g) - -0 L{F'(f) e f) L/ (g)

The =y, step is justified by the fact that in the
source term(F'(z) L' (g))[z<L{f)] the contextL
is only aroundf, and so it cannot capture variables
in L'{g).

¢) Commutation with the right of an applicatieag..
similarly to the previous case

(t' F'(@))[w—L{f)] ——— L({t' F'(f))[z<f])

- L F (Pl f)

—x

V(@)oo L{f)] — o0 L L{F{f) e f)

The =§,,. step is justified by the fact that in the
source term(F’(x) L' (g))[x< L{f)] the contextL
is only aroundf, and so it cannot capture variables
in¢.

d) Composition of substitutions ;. The only possi-
ble case is thate— L(f)] is the outermost substitu-
tion composed by=(,. This is not possible if the

20

The situation is:
t=F{) L{f) = wL(f) =u

for somew. If the & step is internal toF’(¢'), the
result follows byi.h., and if it is internal toL(f), it is
straightforward to close the diagram by resorting to the
fact that= preserves the shape @f(f) (Lemmal2B).
The nontrivial case is when thes step overlapd™ (t')
and L{f). There are two cases:

a) The substitution comes froth. That is, F' = (-)
andt’ has a substitution at its root. Thehmust
be ar.-redext’ = V" (x)[x<L(f)]. The diagram
then is the same as in cdsd 2b, reading it bottom-
up.

b) The substitution comes fro’. That is: I’/ =
V"|z+<r] and the rewriting step is internal to
V”{t"), reducing it tow’, i.e. w = w'[z<r]. The
proof is then straightforward:

V"t [xwer]) L{f) ————— o w'[z<7] L{f)

=@l =@l
(V") L) wer] == ------ o (w', L(f))[zr]

c) The substitution comes fromh. That is: L =
L'[z+r]. Then

FIE) L'(f)[wer] ————0 wL'(f)[zer]

=ar =ar

(F7 ) L )lwer] ===~ o (w, L'{f))[wer]

4) Inductive case 2: right of an application F' = qF"’.

The situation is:
t=qF'(t') -qr=u

for somer. Reasoning as in the previous caseft(of
an applicatior), if the & step is internal ta?” ('), the
result follows byi.h., and it is immediate also if it is
internal togq.

The remaining possibility is that thes step overlaps
with ¢ or F’(t'). As in the previous case, this is only
be possible because ofc@mmutation with application
rule. Cases:

a) The substitution comes froth. That is, F' = (-)
andt’ is a—-redext’ = V" {y)[y<L'(f)]. The



diagram then is the same as in chsk 2c, reading it

bottom-up.
b) The substitution comes fro’. That is, F/ =
V" |z<w']. This case is then straightforward:
g V" {t")x-w'] ———o gr[z<uw’]

o (grwew]

=qQr

(V" (") [w—w']

c) The substitution comes from. That is, ¢
¢'[z<w']. This case is straightforward:

¢ o) /(') — o ¢[ou]r

=al
o (¢'r)[zew’]

=@l
(@ F/(¢))wew] - -
5) Inductive case 3: left of a substitution F' = F'[z+q].
The situation is:

t=F(t')[req —rlreg =u

If the & step is internal t&#” (¢'), the result follows by
i.h.. If it is internal to ¢, the steps are orthogonal, which
makes the diagram trivial. The remaining possibility is
that the substitutiofiz«<q¢]| is involved in the& redex.
By case analysis on the kind of the step

a) Commutation of independent substitutioas,,, .

while the right case is cagel3c (again bottom-
up).

iii) The application comes from” = ¢ V". Sim-
ilarly to the previous case, it reduces to cases
and’4L.

c) Composition of substitutions;. Two sub-cases:

i) The substitution comes from. That is, F/ =
(-y andt’ is arre-redext’ = V" {y)ly<L(f)],
with = ¢ £v(V"(y)). Then:

V")l L{f)lweq] ————0 LV"{f)ly<f])[z<d]

o LV"(F)ly=fDrdl

=[]
V" {y)ly—L{f)rq]

ii) The substitution comes frofi’. That is, F’ =
V" y«w'] with z & £v(V"(¢')). Then:
V(") [yew'][xeq] ————0 V" (u')[y=w'][x+q]

=
o V(') [y—w'[zql]

=[]
VIt ) [y—w'[zq]]

[ ]
A final lemma about thes relation will be useful later:

Lemma 24 (ES Commute with Evaluation Contexts \ig).

Since F'(t') must have a substitution at the root| ¢t g pe a shallow context s.t: ¢ £v(S) and S doe not

there are two possibilities:

i) The substitution comes from. That is, I’
() andt’ is arse-redext’ = V"' (y)ly<L{f)],
with = & £v(L(f)). Then:

V" ()lyL{f)]lw—q) ———0 L{V"{f) [y« f])[rq]

= %
com ——com

V' y)lw—qllyL{f)] o LV"(f)lz=qlly=f])

ii) The substitution comes froii'. That is, F”
V" [y«w'] with z & £v(w'). This case is direct:

V() [y—w'lfzeq) ————0 V() [ycw'][zq]

=—com =—com

V) w—qlly—w']

b) Commutation with applicatiorq. F’(t') must be
an application. This allows for three possibilities:

i) The application comes fromh. Thatis,F’ = (-)
andt’ is arsy-redext’ = L{ly.t"”) L'(f). two
sub-cases, whethér+g] commutes on the left
or on the right of the application. The left case
is casé_Ib (read bottom-up), while the right case
is casd_Tlc (again bottom-up).

The application comes fromd” = V" L(w’).
There are two sub-cases, whetlesq] com-
mutes on the left or on the right of the applica-
tion. The left case is cagel3b (read bottom-up),
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capture the variables idiv(u). ThenS(t[z<u]) = S(t)[z<u].

Proof: by induction onS.

1) Empty ContextS = (-). Then S(t)[x<u] = t[z<u]
S(t[zeul).
2) Application LeftS = S’w. Then
S(tlz—ul)
S’ (t[z—u])w
S’ (t) [x—u]w
(5" {t)yw)[z<u]
S(t)[w—ul
3) Application RightF' = wF"’.
Stz —ul)
wS’ (t[x—ul)
wS' (t) [x—u]
(wS'(t)) [z u]
S(t)[w—ul
4) SubstitutionF = F’[y«<w]. Then
S(t[zul)
S (tlz—ul) [y<w]
St [w—u][y—w]
S (1) [y<w]lr—u]
S(t)[x—u]
Note that=,,, can be applied because of the hypotheses
x ¢ £v(S) andS doe not capture the variablesfr(u).

(by i.h.)

=al

Then

(by i.h.)

Qr

(by i.h.)

com



APPENDIXC b) Application LeftF = F'L{f). Then

PROOFSOMITTED FROM SUBSECT. [VII-A] F{u)L{f) —on F'(w)L{f) with u >y, w. We
(HIGH-LEVEL IMPLEMENTATION) have:
Flu)] =
First, the High-Level Implementation Theorem. (F'(u)L{f))] =
Proof of Theorem 3 (page 6) F{u)lL{f)L —¢ (.h)
Proof: the proof is a minimal variation over the proof F'{w)][L{f)| =
of Theorem 4.2, page 4, inl[1]. Essentially we merged the (F"(w)L(f)), =
trace and syntactic bound properties of that statementonto F(w)]
locally bound property. Note that for the global bound there o )
is nothing to prove, it follows from the the hypothesis itsel Actually, the— step is justified by theh. and the
and projection. - fact that(-)L(f)] is an evaluation context because

L{f)| is a fireball (by Lemm&~19). Theh. also
givesul,, —s wl,,. To conclude note that| . =

Now, we prove that—¢, —¢) is a high-level implementa-
p ( £ f) g p u\l’F/f = uiF, = wJ,F, = w‘LF/f = WJ,F.

tion system.e. TheorentJ. i ) ) c) Application RightF = wF’. Follows from thei.h.,
The normal form property required for high-levelimplemen- along the lines of the previous case

tation system has already been proved (Thedrem 2). It only d) SubstitutionF = F’[zr]. Then F'{u)[zr] —on

remains to prove the projection property. F'(w)[zer] with u —5 w. We have:

Lemma 25 (Projection of a Rewriting Step)Let ¢t = F'(u)

and F' be an evaluation context. Fu <u>>~L[x<_r] i
1) Multiplicative Projection if ¢ —o, w thent| —; w]|, F'{u) {z<r]} —:¢ (i.h.and Lemmd_17)
More precisely, ifF(u) —o, F{w) with u +, w then Fliw){zer]} =
Fllulp) = Flwlp) With wlp e wlp; Fllw)[zer]] =
2) Exponential Projectianf ¢ —, w thent| = w]; F(w)]
Proof: Thei.h. also givesu|,, —: w],,. To conclude
1) By induction onF'. Cases: note that
a) Empty Context” = (-). Lett = L{lz.r)L'{f) oy u) —
L{r[z<L'{(f)]) = w. By induction on L. Two u\l’i’[;u—r] =
cases: ulp {zer]} ¢ (Lemmally)
i) Empty context = (). Then wl {zerl) =
t = LoD (f) v rle-L'(f)] = w Wpleer) =
t] = e
((ler)L'{(fN] = 2) We prove that if —. w thent| = w/ for any evaluation
(lzrDL'(f)] —: context F. From Lemma30I3 the statement follows.
ri{z<L'{f )} = By induction onF. We havet = F'(x)[z<L{f)] —e
rle«L'(f)]L = L{F'{f)[z+ f]) = w. By induction onL. Two cases:
w] a) Empty contextl = (). Thent = F'(z)[z+ f]
} . Fiflz=fl=w
i) SubstitutionL = L’'[y«<q|. Then
t = L(lz.r)[y—q]L’(f) —n t] =
L{r[z<L'(f)])[y<q] = w. We have o) e flL =
Flo){z<fly =
tl = F'l{alp ) {e<fl} = (by Lemmal30.6)
(L{zr)ly=q L ()] = Flz{efl} =
L{lz.r)ly=qL'(Hl = FLf{z=fl} =
Lilzr){y—q} L' (f)| = F(flpz=fl} =
Lizr)\L'(f){y=al} = Uz f1} =
(L{z.r) L (f)Hy<al} =+ (b F(f)z=flL
and Lemmad_17) w]
Lirle<L" (A Hy<al} = -
Lirfz<L' (f)y<q] = b) Substituton L = L'[y«<q]. Then ¢t =
w] Fra)le=L{fly=dqll =e LIE(f)lzfDly—a] =
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w. o Case~w,

tl — (D, f_ﬂ, 7, F) =
Fla)[z<L{f)ly=qdll = (D((tw))) E =
Fla){z<L(f)ly-ql} = (D{E()m))E =
Fla) {z<L(f)Ry-ql}} = (t,m) : D(WNE =
Flz) e L) IHy-aql} = (@, m): Dem)E =
F ;<fc><[x>ﬁ[13<§]>;¢}%q% = (byih) ((,m): D,u,¢,E)
L(F' Hyalt = :
LFReeMy-dl = P Ccasea
w] (D,lzt,w: 7, E) =
. DEaline =
To prove that(—¢,—oz) is a high-level implementation %%%[;:)ﬂ?ii% ;Om Ebz Lgmm%ﬁ]ﬂ
system we only have to put together the various results. (B<<_t)7r>[:c<—ﬂ]>5 _
Proof of Theorem 4 (page 6) (B((t);»[gm—ﬂ]fE _
Proof: immediate from Corollar{]5 and Lemmal25.m (B sz_’[w_ﬂ] E)

Note that the multiplicative step is justified by poihis 3
and4 of Lemmal2, for whicl is a fireball and D (x)) E

is an evaluation context. Moreover, the step holds
because by Lemnid[2.1 (well-namednessgcurs only in

t and so by LemmB24 the substitutibn—u] commutes
with the environmenD(x).

Proof of Lemma 1 (page 7) » Case~.,

APPENDIXD
PROOFSOMITTED FRoM SuBsECT. [VII-B]
(Low-LEVEL IMPLEMENTATION: ABSTRACT MACHINES)

Proof: straightforward induction on the length of ((,7):D,lz7,e,E) =
t (— U =)* u, using the strong bisimulation property. = (€, 7): Dlc(lzm))E =
D{({tlx.u)m))E =
Proof of Theorem 5 (page 7) 252;;% u;%éﬁ E _
Proof: the proof can be found in [15] (Theorems 4.2 and (57 e T, ET
4.4) up to trivial modifications due to minor changes in the
definition of distilleries and their properties. [ ] o« Casew:
(t,7):D,a,n,E) =
A c ((t,m) : D@ (m)E =
PPENDIX (D(x(t{a)x))E =
PROOFSOMITTED FRoM SECT. [VIIT] (D)t : T@NE =
(AN INEFFICIENT DISTILLERY: THE GLAM M ACHINE) (D1, {a)x’ : 7, E)

The aim of this section is to prove Theorémi2. that o Casev,:
(GLAM,—os, =, - ) is a reflective explicit distillery. (D, 2,7, B[z E»)
(r)m)) Er[wul By =
((B)m) Er[eul) By —oo  (by LemmalZ.BH}
(@*)m)) Er[et]) By =
((@*)z)) B [vu] By
(D,u®, 7, By [x<u|Ey)

Proof of Lemma 2 (page 9) 2
Proof: by induction over the length of the execution. The (
(

|u|u|E“

(
base case holds becausés initial. The inductive step is by <
cases over the kind of transition. All the verifications aiaal
inspections of the transition. [ ]
The first step to prove Theorefd 7 is the distillation ~ Note that the exponential step is justified by poirts 3 and
property. Note from the statement that the distillation is of Lemmal2, for whichz is a fireball andZ, and
explicit (see Definitiod3). E,(D(x)) are evaluation contexts. ]

|@

Lemma 26 (Explicit Distillation). Let s be a reachable state.

Then: Next we prove progress. We first need to redefine the size of

the machine state to ignore the new environment component:
1) Commutativelf s ~, ; s thens = s_; _ - - _
2) Multiplicative: If s ~, s’ thens —o,= s’; Definition 9. |(D,t,7, E)| := || + Z@,meplTl

3) Exponential If s ~, s’ thens —o, 5.

Lemma 27 (Termination) ~-. is terminating

Proof: Proof: just reuse the proof of Corollary?. ]
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Lemma 28 (Determinism) The transition relatior~ of the
GLAM is deterministic.

Proof: a simple inspection of the transitions show no
critical pairs. [ ]

Lemma 29 (Progress) if s is reachablenf.(s) = s and
s —oy t with x € {sm,se}, then there exists’ such that
s~y 8, i.e., s is not final.

Proof: by Lemmal28 and LemmiaR6 it is sufficient to

show that every reachable stuck state decodes to a normal

form. The only stuck forms are:
e (D,z,m, E) wherez is not defined inE. The state is not

reachable because it would violate the Closure invariant

(LemmalZ.1).
e (¢,lz.1,¢, ) that decodes tdiz.T) E, that by the contex-
tual decoding invariant (Lemnid[2.1) is a normal form.
e (¢,a,m, E) that decodes td{(a)x) E, that by the contex-
tual decoding invariant (Lemnid[2.1) is a normal fomn.

Proof of Theorem 7 (page 9)
Proof: it follows from Lemma 26 and LemniaP9. m

APPENDIXF
PROOFSOMITTED FROM SECT.[IX]
(INTERLUDE Il: RELATIVE UNFOLDINGS)

Proof of Lemma 3 (page 9)
Proof: by induction onWV. [ ]

Lemma 30 (Properties of Relative Unfoldings).et ¢ and u
be terms andS be a shallow context.

1) Commutation (Az.t)l, = Avtlg, (tu)ly =
tloulg, Hreulls = tl{reuly}, Hreupls =
tlreullg, SHrtl} = S{z<t|}], and g =
t{xeui}is{mhu‘u.

2) Freedomif S does not capture any free variable bf
thent|, =t].

3) Relativity. if t| = u| thent|, = ul

4) Applicativity: if S is applicative thenS | is applicative.

5) Splitting tlgsy = teds:

6) Factorisation S'(t)|, = S’¢S<t¢5<s,>>, in particular
S(t)L = SU(tlg) and L{t) g = tlg, -

Proof: Routine inductions or$ or S”. [ |

APPENDIXG
PROOFSOMITTED FROM SECT.[XT]
(THE USEFUL FIREBALL CALCULUS)

Proof of Lemma 4 (page 11)
Proof:

1) By induction on the paitnumber of ES inS,S). Cases
of S:
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a) Empty, i.e.S = (-). ThenS| = ()] = () is an
evaluation context.

b) Right Application, i.e.S = ¢5’. Then S| =
t1S'| =in. tJF is an evaluation context.

c) Left Application, i.e.S = St with ¢| a fireball f.
ThenS| = S'|t| =in Ff is an evaluation context.

d) Substitution, i.eS = S’'[z«<t] with ¢| a fireball f
and S"{x«<t|} is evaluable Note that the number
of ES in S'{z«t|} is strictly smaller than the
number of ES inS, because| has no ES. Then
by i.h. S’{x<t|}| is an evaluation context. Now,
SL= S'let), = §'fatl} =, gum Szt

which is an evaluation context.

2) By induction on the paitnumber of ES inS,S). Cases

of S:
a) Empty, i.e.S = (). Directions

i) =, i.e. S is evaluable Nothing to prove.

i) <. ThenS is evaluable.

b) Right Application, i.e.S = wS”. Note thatS’
cannot be empty, otherwisg = wS"”" = S$”u and

S would have two holes. Thefl’ = wS, for some

S4, and the statements follows from thie. applied

to S and S,.

c) Left Application, i.e.S = S""w. Directions:

i) =. SinceS is evaluableuw| is a fireball, and
S is evaluable Note that eithelS’ is empty,
and thenu = w and the statement holds
becausauj«> = w] is a fireball, orS’ = Syw
with Sy s.t.—say—S"" = S4(S” [x<u]). Now,
note thatul, = ulg , = ulg, and the
statement follows by theh. applied to.S”".

i) <. By taking S’ := (), the hypothesis be-
comesw],, = w] is a fireball. We are left to
show thatS”” is evaluable, that is given by the
i.h..

d) Substitution, i.eS’ = 5" [y«<w].
i) =. SincesS is evaluableuw| is a fireball, and
S"{y«<w]} is evaluable Note that eitherS’
is empty, and theny = w and the statement
holds because |, , = w| is a fireball, orS’ =
Saly<w] for someS, that is a prefix ofS””,
i.e.s.t.5" = S5,(8"u) or 8" = S, {S" [x<u]).
Let's say thatS"”" = S4(S"u). Now, applying
thei.h. to
" {ywl} =
Sa(S"u) {y-w]} =
Si{y<wl} (S {y—wl}u{y—wl})

we obtain that u{y<—w¢}¢s4{ykw¢} is

a fireball. We conclude noting that

u{yewi}i& {thi} ~Lemmea [30I]
Ulg,yew) = Wy (the other case,

S = 54(S8"[x<u]), uses the same reasoning).
i) <. By taking S’ := (-), the hypothesis be-
comesw| , = w] is a fireball. We are left



to show thatS"”’{y«<w]} is evaluable, that is in Appendix[B and AppendikIC: first we define proper terms
given by thei.h.. and the invariants of reduction; then we characterize nbrma
m forms; finally we prove projection and we obtain the theorem
The following technical lemma is very useful to decomas a corollary.

pose and construct evaluation contexts compositionally.  pafinition 10 (Proper Term) A term¢ is properif

Lemma 31. 1) Evaluability ¢ = S{u) with S evaluable and: a I-term
1) if S(S’) is evaluable ther$ is evaluable and’ | is an (without ES);
evaluation context. 2) Value no value int contains ES.
2) if S is evaluable,5’|; is an evaluation context andl’ For instance, a proper term cannot have, redexes inside
is without ES thert(S’) is evaluable. ES.
Proof: Note that initial terms are proper and so the next lemma
1) By induction on the paifnumber of ES inS,S). Cases applies in particular when the starting term is initial.
of S: Lemma 32 (Proper Invariant) Let ¢t be a proper and closed

a) Empty, i.e.S = (-). The hypothesis becomes thaterm. If t —; u thenw is proper and closed.
S’ is evaluable, and s¢’|, = S’¢<.> = S']is
an evaluation context by Poiflf 1. Clearly) is
evaluable.

b) Right Application, i.e.S = tS”. By i.h.,, S”
is evaluable, that implie$ evaluable. Moreover,
Sy = S'),gn = S'lg, Which is an evaluation
context byi.h..

c) Left Application, i.eS = S”u. Byi.h., S” is evalu-
able. From the hypothesis th&tS’) = S”(S")u
is evaluable it follows that.| is a fireball, and so
S is evaluable. MoreoveS’iS = SQLS,,U = SQLS,,
which is an evaluation context hyh..

d) Substitution, i.eS = S”[x<u|. From the hypoth-
esis thatS(S’) = S”(S’)[x<u] is evaluable it
follows thatu| is a fireball. SinceS”{zu|} has
strictly less ES thar$ (because.| has none), the
i.h. gives thatS”{z+u]} is evaluable, and s&
is evaluable. ThenS"iS = S’\LS,,[%U] =30

’ ; f ¢ U‘LS(L> = )\y-pi
foif;gl}ls”{%%} that byi.h. is an evaluation u IS closed because is. All values inu are values in

) , , the proper termw, and therefore they have no ES. In
2) We prove thatul, is a fireball wheneveiS(S’) = particular,u has no ES. Thus is proper. -
S"(8"u)y or S(S') = S"(S"[z+<u]), and conclude
by applying Point[R2. Now, sinces’ has no ES, if Lemma 33(Normal Form Characterization).ett = S(u) be
S(S"y = §"(8"[x<u]) then [z—u] occurs inS, and & proper and closed term si. /o, and S is evaluable. Then

S" is a prefix ofS. We obtain that |, is a fireball by 1) eitheru|g is a fireball,
applying Poin{2 toS, that is evaluable by hypothesis. 2) or u|, —:, more precisely exist§’ s.t.

Proof: by induction on the lengthk of the derivation
t —ot. u. The base case is trivial. For the step case, assume
t —of;! w —oy w. By i.h. w is proper and closed. We
distinguish two cases:
1) Casew = S{L{lz.r)q) —ouwn S{L(r[z<q])) = u where
S(Lgq) is evaluable and applicative:
u is closed becausge is. All values inu are values in the
proper termw, and therefore they have no ES. Moreover
r is a sub-term of a value ab, and therefore has no ES.
SinceS(Lq) is evaluableg| is a fireball by Lemmald]2
andS andS(L) are evaluable by LemnialBl.1. Therefore
S(L{{-)[x<q])) is evaluable too by the other direction
of Lemmal4.P and the evaluability &f(L). Therefore
u iS proper.
2) Case
w = 5(5{@) [z L{v)]) —ous S(L(S (v)[x])) = u
where S(S’'[z<L{v)]) is evaluable and applicative and

If S(S") = 5"(S"u)y with S” a prefix of S we reason a) u=S'(z) with
similarly. Otherwise, the applicatiof”’« occurs inS’, b) z € fv(u),

i.e. there is a contextSy s.t. " = S(S4) and §' = c) S(S’) evaluable,
S4(S""u). Then we haveS’ |, = Si(S""u)|s = BOG d) x|y = Ay.w, and
Sals (5" u)ls 5, =LBOM Sads (5" (s, tds (s, e) S’ is applicative.

which by hypothesis is an evaluation context. Therefore,

ulg s, 1S afireball. We conclude with; o \ =, B
ulg lg =1300 ulg, Where the last equality follows

Proof: first of all, let us show that the conditions &
imply u|, —¢. We have:

becauseS,, being a prefix ofS’, has no ES and so ulg =4
cannot capture the variables in [ | S'(x) g =r
S/ls<xis(s/>> =c&r B
The next result to be proved is Theorém 8-, —ous) F<$is<s'>> =01 300
is a locally bounded high-level implementation system). We F(z]) =4
follow closely the same approach used for the Explicit FBC F{y.w)
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and F := S'| is applicative, byc and LL30L.4. Then note an occurrence of, otherwise there would be &o,,-
that PointCl and Poirffl2 are mutually exclusive. Indeed, by  redex inu (because is proper and sa has the form
Lemmé&15, an unfolded term which is a firebalHs-normal. L(v)). Thus, the context’ := S"[z«r] is easily seen
So, if Point[1 holds then Poiriil 2 does not, and vice-versa. to satisfy the statement (inheriting the properties$Stj.
Therefore, in the following proof for we only have to prove -
that Poin{l or Poinl2 holds.

By induction onu. Cases: Corollary 6 (Normal Forms Unfold to Normal Forms) et ¢

1) Variablezx. Sincet is proper and closed,|, is a fireball. be a closed proper term. If is —o,¢-normal thent| is —-

2) Symboland Abstraction Note that by properness, thenormal.

abstraction is an ordinary-term,i.e. it does not contain . .
. ' Proof: note that I L & B3 = ( d
ES. Then in both cases we can apply Lemma 19, roof: note that applying Lemm@ B3 with := (-) an

obtaining that.| . is a fireball u':= t one obtains that| is a fireball, because the second case
ning il } : . cannot happen, given thatnow is closed and so it cannot be
3) Application v = wr. Since S{w(-)) is an evaluable

: T : L
context, we can apply theh. to r, ending in one of written asu = §'{z) with = € £v(u). By Lemma[1b.| is

X —¢-normal. ]
the following two cases: o .
: ! _ To prove the projection lemma we need to prove first as
a) rlg is a fireball Then S((:)r) is an evaluable

. o a technical lemma another sufficient condition for a context
context an.d we can apply thieh. to w obtaining to be evaluable. The condition is based on the definition of
tyvo casgs. . ] ] position of a redex.

) wlgisa f'r?ba"_TWO kinds of fireball: ) The position of a redex is (the contexf exposing) the
s Wlgyy 182 inert A. Thenu|y = Arlg i gpplication that makes applicative the evaluable contexié

a inert,|.§. a fireball. . side condition. For a—y,-redex, it is given byS, while for
o Wl 18 @n abstractionky.q. Thenuly 3 o -redex one needs to do a case analysis, because the
reduces, indeed.|; = wlg,."ls = application may lie inS or in . Note that such a notion of

(A\y.q)rlg —¢. In terms of contexts, note position for —o..-redexes is different with respect to the one
thatw is not itself an abstraction, otherwiseysed in Subsedf_BIA.

u would be a—y,-redex,i.e. w has the o o
form L(z). Moreover, L does not capture Lemma 34. If S(t) has a redex having its position inthen
z, otherwiseu = wr = L<y>7‘ would have S is evaluable.

a —oy.-redex (because is proper and so Proof: then the position of the redex has the form
the substitution on in L can fire). Then g1 for some contexts’. By the hypothesis on redexes

S ff’(“’) (gnd sor € fv(u)) andS’ := Lr 44 Lemmd _3L1S(S’) is evaluable. By LemmBa §1.19 is
satisfies pointg, b, d, e of the statement. For o 451uable. -

¢, we only have to show that the content of
every substitution inL unfolds to a fireball Lemma 35 (Projection) Lett = S(u) —ous S’(w) = 7 by
in its context (by LemmaJdl2). Note that,reducing a redex whose position liesin If the redex is

sincet is proper, there is an evaluable context 1) Myltiplicative: then uly —¢ wlg, andt] —e rl;

containing all the ES i, i.e. the content of 2y Exponential then ulg — andt]=r| —s.

everysubstitution int unfolds in its context . )
In both casesu | is not a fireball.

to a fireball.

i) wlg reduces, i.ewl, —:. We haveul, = Proof: the fact that in both cases|, is not a fireball,
1_UJ€<<,>T>TJ€ = w\LST\L_S —¢ becau_seris is a follows from Lemmd 15 and the fact that,, reduces. Cases:
fireball and so()r g is an evaluation context. 1y \ytiplicative. Note that in this case’ = S. Then
In terms of contexts, sef’ := S"'r, whereS” t] —¢ | follows from ]y —¢ wly. By Lemmal 34
is he context given by thih.. It is easily seen S is evaluable, and by Lemni@#4, is an evaluation
that S’ satisfies the statement. context. so:

b) |, reduces, ie.rl, —:. We haveul, = 1l _

Wy Ts becauseuJG“M() is an evaluation Su)] _

context. In terms of contexts, s&t := wS”, where S ulg) _ff A

S is he context given by theh.. It is easily seen Siw _

that S’ satisfies the statement. S‘<L1<U>Jf/> _F 00

4) Substitutionu = w(z<r]. S{(-)[z+r])] is an evaluation rl
context and we can apply thieh. to w. Note that
sincewlg .y =L B0M wlrer]ly = ulg, this case We now showu|, —¢ wly. Since the redex lies im,

reduces to the.h.. In terms of contexts (for Poiri 2),
note that the contex§” given by thei.h. cannot expose
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we haveu = S’(L(A\x.w)r) andt = S{S'(L{\z.w)r))
with S(S’((-}r)), and thusS(S’), evaluable. Moreover,



by Lemmei__i'-fll:]]zqas,<L<Mw><,>>> = TJ/S(S’) is a fireball
and S’ is an evaluation context. Then
m =
S(L(Az.aw)r) g = (Lemmal30.b)
(L)) g ) —  (Lemmal30L)
S’ g (L{Az. w>¢S<S,>T¢S<S,>> = (Lemmal30.B)
S g (. w)¢5<s/ >>T¢S<S/>> = (Lemmal30.1)
S’ (M. Wlggr >TJ€<S,>> —¢ (95 is anev.
cont. & ls(sn)
is a fireball)
S’¢S<w¢5<s/<L>>{x<—r¢S<S/>}> = (Lemmal30.01)
S'%(w{xer}iﬂs,(m)) = (Lemmal30.0)
S'¢S<w[:§<—r]¢s<s,<L>>> = (Lemmal30.b)
S’¢S<L<w[:c<—r]>is<s,>> = (Lemmal30.B)

SY{L(wlzrer])) g
wls

2) Exponential We taket| = r| for granted, because

be a fireball, while by (properness and) Lemima 19
it does. Nor Sy can lie in ¢, otherwise again
by Lemmal3bq|, would not be a fireball. Then
necessarilyS, = S; = ().
b) Exponential Redexi.e. v = S’(L{x)r). Now,
Sy cannot lie in L{zx), otherwise by Lemma 35
L{x >J,S 53 would not be a fireball, while by the
hypothe5|s on the—o,.-redex it does (it is an
abstraction). NoiS; can lie inr, otherwise again
by Lemmal3br|, would not be a fireball, while
by the hypothesis on theo . -redex it does. Then
necessarilySs = S; = ().

2) Right ApplicationS; = rS; andt = rS;{q). By
Lemma35,5] (¢ )¢S< ) has a—¢-redex and it is not a
fireball, so no redexes can lie to its left, in particufar
does not lie inr. By Lemmal35,5] (¢ >¢S<T§'>> is not a
fireball, and saS, cannot be emptyi.g. rS] (¢) cannot
be the position of a—-,,-redex). Then,S; = u.S5, and
the statement follows from theh. applied toS; and.Sy.

a substitution step by definition does not change the3) Left ApplicationS; = Sjq and¢ = S} (r)q. Note that

unfolding. Similarly to the previous cass, —+ follows
from u], —¢. Indeed, by LemmfAJ1.19 is evaluable,
and by Lemma&lgl1S | is an evaluation context, so:

tl=S{u)l=_pog SHuls) =

Now we proveu| —¢. We haveu = S'(L(x)r) and
t = S{S"(L{z)r)). In t there is somewhere (if, S’, or

S) a substitution[z«< L'{(q)] with the hypothesis thaj

relatively unfolds to some valugy.w in its context. So,
Tlg sy = Ay.w. Moreover, by hypothesi§(S’) is

evaluable and so by Lemrtﬁ]BllSl\Ls is an evaluation
context. Flnallyms |s a fireball, becaus&(S’((-)r))

is evaluable. Then

Uu. =
S (L(z)r) g = (Lemma3{Lb)
Slis<(L< > )\LS S') > = (Lemma@D-)

S’ |4 (L <x>¢s 57y Tis 57y y = (Lemmal30Lb)
SIJ,S<‘T~LS (/L) TLS(S/ ) = (‘TJ/S(S/(L» = \y.w)
5'i5<(/\y-w)r¢5<s,>) —¢ (S is an ev. cont.

& 7¢S<S,> a fireball)
SIJ/5<w[y(_r~L5(S/>]>
[ ]

Determinism of—,; is the last ingredient to prove théts¢
—oy¢ ) IS @ locally bounded high-level implementation systemn)

Lemma 36 (Determinism) Let ¢ be a term andS(S;) and
S(S3) positions of—o¢-redexes. They; = Ss.

Proof: by induction onS;. Cases:
1) EmptyS; = (-). Cases:
a) Multiplicative Redex i.e. u = L{\z.r)q with

qlg a fireball. Now, S, cannot lie in L{\z.r),
otherwise by LemmBi(Ax.r>¢S<52> would not

S cannot lie ing, otherwise by Lemm.&JﬂS, Y
has a—-redex and it is not a fireball, SO no
redexes—in particular the one of posnmﬂ*{Sﬁ—can
lie to its left, absurd. AndS; cannot be emptyi.g. the
position of a—oy,-redex), because thef}(r) would
have the formL{\z.p), which by Lemma 35 cannot
contain the position of a redex, because by Lenina 19
L(Ax.p>J€<<.>q> is a fireball. Then,S; = Shw, and the
statement follows from theh. applied to.S] and Sy.

4) SubstitutionS; = Sj[z<w]. Then necessarilyss =
Shlx<w] (remember the position of aoy.-redex is an
application) and the statement follows from thie. m

Proof of Theorem 8 (page 11)

Proof: the pair(—¢, —oy¢) is an high-level implementa-
tion system because of Lemind 36, Lenimh 35 and Cordllary 6.

We deduce that the implementation system is locally
bounded from the corresponding bound (Leninid 5.5) on the
abstract machine that implements the calculus. An alteenat
direct proof without any reference to abstract machines is
surely possible, but we would need to establish first aduttio
invariants on the ES that occur in the term. Intuitively, aay,
the local bound follows mainly from acyclicity of the exptic
substitutions and the fact that only multiplicative steps c
create a new ES, while exponential steps never duplicatester
containing ES. [ |

Proof of Proposition 4 (page 11)

Proof: omitted. All postponement proofs are similar and
lengthy. In Subsedi. BiB of the Appendix we proved the lemma
for the Explicit FBC. Other examples can be found in the long
version of [15]. [ ]
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A. Proofs Omitted From Se¢t X e Case(D: (t,m),a,7, E) ~¢, (D,,(a, )4 : 7, E)
(The GLAMoUr Machine) (D: { ), 0,7, E)

The aim of this section is to prove Theorefd 9 D (fﬂr)% (;>7T;>>E _
((GLAMoUr, —oy,=, - ) is a reflective explicit distillery) <D<<Z<a>7r’>7_r>>_E S
and Theoreni 10 (the useful implementation has bilinear low <B<<f>(a_ﬂ/)_A :_77>>E _
level and quadratic high level complexity). We start by pngv (B 7. (a 771'/)‘4 ,F ET
that the invariants of the machine holds. — —

o« Case (D : (t,7), 2,7, B[z Ey)  ~,
(D, %, (z, 7)) : 7, By [r¢A]Ey):

Lemma 37 (Contextual Decoding)E is a substitution con-

text; D and & are shallow contexts without ES.

Proof: by induction onE, D andr.

Proof of Lemma 5 (page 12)

(D: (F 7)o, BrfredBy) =

'(b,f, (z,7)A 7, By [re-¢A] E?)

The proof is the one for the previous case.,, by

Proof: by induction over the length of the execution. The  replacinga with z and instantiating with E; [z—¢*] E».
base case holds becausés initial. The inductive step is by

cases over the kind of transition. All the verifications aiadl
apart for Poin{ . For Poiriil 4, evaluability fdt, D|,, 7|,
follows from Point[3 and LemmA&l4.2, while evaluability for

(D(r))E follows from them and Lemmal4.2.

Lemma 38 (Explicit Distillation). Let s be a reachable state.

Then:
1) Commutativeif s ~, , ., s’ thens = s';
2) Multiplicative: if s ~>y, s’ thens —oy,= &';
3) Exponentialif s~ s’ thens —oy s'.

Proof: we list the transition in the order they appear in

the definition of the machine.
o Case(D,tu,m, E) ~¢, (D:(t,7),0,¢,E):
(D,tu,, E) =
D((tu)m))E =

D((t(u))m))E —
D n)E =

lx. ) =

(lzt)p)m)E  —ouy (by Lemmallih
B and Lemmalg]3)
(by Lemma24)

<y B

SRk
le5

a1
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e Case(D : (t,7),z, € FEilx<u’lEy) ~c. (D,t,z° :
W,El[xﬁﬂv]Eg):

(D: (t,7),z, € FE|[z<u’|Ey) =

(D,t,2° : 7, By |[z<u"]| E2)

The proof is the one for the previous casg,, by replac-
ing (lz.w) with = and instantiating? with F [z<u"]|Es.

e Case(D,z,¢! : 7, Ey[xe0"|E) ~oes (D,T% ¢ :
m, B [$<—5U]E2):

(D7x7¢l . 7T7E1[1'<—EU]E2) =
(D{(@)¢" : m) Er [z ]Ey  —oye  (by Lemmahh
and Lemmalgl3)

(D{(@*)¢' : m)) Er [T By =
(D, 7%, ¢' : 7, By [+ 0] E?)

[ |

The next lemma extends the notion of state sigegiven

in Definition[§ by ignoring the new machine componéeiit
The precise definition is Definitidn 6.

Lemma 39 (Determinism) The transition relatior~ of the
GLAMoUr is deterministic.

Proof: a simple inspection of the transitions shows no
critical pairs. ]

Lemma 40 (Progress) if s is reachablenf.(s) = s and
s —oy t with x € {um,ue}, then there exists’ such that
s~y 8, .., s is not final.

Proof: by Lemmal[3P and Lemmia B8 it is sufficient to
show that every reachable stuck state decodes to a normal
form. The only stuck forms are:

« Error states The state con only beéD, z, r, F') wherex
is not defined inF or it is defined to be &° where? is
not a variable or a value.
The state is not reachable because it would violate either
the invariant in Lemm@alBl1 or the invariant in Lemiid 5.3.
o Final states Cases:

1) The result is/lunfolds to a valueThe state is
(,%, €, ) with £ an abstraction or a variable bound

L ]



in F to a¢’. By Lemmal3V,(¢,t,¢,E) = ({)E =
L(t) for someL. Note thatL(t)| = t, is a fireball

by Lemma 3b,L(t) is normal.
2)

indeed ift is an abstraction it is given by Lemrhal19
and if it as a variable it is given by Lemrh# 5.3. Thus

The result is/lunfolds to a inertThe state is

(e,t, 7, F) with £ a symbola or a variable bound

in E to ag?.
By Lemmal3Y,(e,t,m, F) = (({)m)E = L{{{)x)

for some L. Note thatL(#)| = |, is a fireball

indeed ift is a symbol it is given by Lemn{a 19 an

d

if it as a variable it is given by Lemnid[5.3. More-

over, by Lemmalgl3z |, has the form(-)f; ... f,.

Thus, by Lemm&30l1 and the definition of fireballs,

(t)n|, is a fireball too. Therefore by Lemnal35,

L{{t)x) is normal. [ |

Proof of Theorem 9 (page 12)

Proof: the theorem follows from Lemn{a B8, Lemiina 39

and Lemma 40. []

Proof of Theorem 10 (page 12)
Proof: the proof follows from Theorem]3 applied

Theoren{8, and Theoreln 6 applied to Theofém 9 and Corol-
lary [. Bi-linearity of the machine requires to show that the
commutative steps are implementable in constant time,ewhil

to

the principal ones in timeO(|t|). The machine is meant

to be implemented using a representation of codes using

pointers, in particular for variables, so that the enviremin

can be accessed in constant time. Assuming this, all rule
except the exponential one evidently take constant time o
a RAM machine, because they amount to moving pointers.

The exponential rule requirg3(|t|) because it copies ang

renames a value. Both these operations take tir&|v|). The

value invariant (LemmaélB.2) guarantees < |¢|. Additional
considerations on the cost of similar rules can be found in

[15] (page 9 and 11, paragrapAdstract Considerations on

Concrete Implementatiohs ]

APPENDIXH
PROOFSOMITTED FROM SECT. [XTIT]
(OPTIMISING USEFUL REDUCTION:
UNCHAINING FBC AND THE UNCHAINING GLAM OUR)

We prove Lemma& 42 first; then we address Thedrem
((—+¢, —o0¢) is @ globally bounded high-level implementatio

system) and Propositidd 5(is a Strong Bisimulation).

. . — .
For chain-starting context§’”, we need prove that their

hole is indeed the left end of the chain, with the help of gs

preliminary lemma.

Lemma 41. Let I{z) s.t. T does not capture. ThenI(z)| =
xZ.

Proof: by induction on/. Cases:
1) Basel = (:). ThenI(z)| = x| = z.

29

2) Inductivel = I{y)[y«<I']. Then
Ka)| = I(y)[y=I"(x)]l = y)Ky<I"(x)1} =in.
y<I"(@)} =in y{y—z} =2
3) Closurel = I[y«t]. Then
)= Ia)ly<tll = x) {ytl} =in 2{y<t]} ==
[

Lemma 42. Let C{x) s.t. C' does not capture:. Then there
existsy s.t. C(x) = C*(y) andyls, = =.
Proof: by induction onC. Cases:
1) Base, i.eC = S(y)[y<I]. Then
(_
Cla) = Sy)ly-I(z)] = S Wly-I1"(y)

Now, y . = yis[ydé@] =I(z)| = gq®

2) Inductive, i.e.C = C’(z)[z«I]. Then
et
z)|z=1{x =ih,
iz
C*(y)zl(x)] =
C'(2)[z<1]"(y)
Now,
Y.
y\l/gz [z1{x)]
yls Az I{x)]} =ih.

2{zeI(@) )} = ()| =, gy @

rf3) Closure, i.e.C = S’(C"). Then

Clz) = §'(C" () =in §"(T= () = §(C)*(y)

Now,

Y. = Ylg (o) =LBUB WEds =i Tlg =

because”, and thusS’, does not capture. [ ]

Proof of Lemma 7 (page 13)

Proof: by induction over the length of the derivation. A
simple inspection of the rewriting rules shows that all ealu
in the result of a reduction step are copies of values in the

term being reduced. [ ]
roof of Lemma 8 (page 13)
Proof: using the sub-term property (Lemih 7). ®

From now on we follow closely the same approach used
for the Explicit FBC (AppendiXB and AppendixIC) and the
eful FBC (AppendiXx G), without the need to define proper
terms first: we start characterizing normal forms; then we
prove projection and we obtain Theoréml 12+, —o.s) is
a globally bounded high-level implementation system) as a
corollary.

Lemma 43 (Normal Form Characterization).ett = S{u) be
a proper term s.tu is —o,¢-normal andsS' is evaluable.



1) eitherul, is a fireball,

2) or uly —, More precisely exist§’ s.t.
a) u = 5"(x) with
b) xly, =y,
C) y € fv(u),
d) S(S’) evaluable,
e) ylg = Ay.w, and
f) S’ is applicative.

Moreover, the contex$’ in Point[2 is unique.

Proof: first of all, let us show that conditior’sa-f imply
ulg —o. Indeed,

uiS =4

S x)lg =& BO6
S/$S<~’C~Ls<5/>> =a&r B
F<xJ/s<5/>> =b
F<yis> e
F{\y.w)

and F' := S'| is applicative, byd and LL30L4.

Now, we show that 1 and 2 are mutually exclusive. By

Lemma_1b, an unfolded term which is a fireballs-normal.

Then if 1 hold then 2 does not, and if 2 holds 1 does not.
Therefore, in the following proof we only prove that 1 or 2

holds.
By induction onu. Cases:

1) Variable z. Sincet is proper,u/, is a fireball.

ii) 2 holds forw. Then 2 holds foru by taking
S’ := S"r whereS” is the context given by the
i.h., as all the conditions fors’ follows from
those forS”. Unicity follows from thei.h. and
the fact that no other such context can have its
hole inr, because 2 does not hold for it.

2 holds forr. Then 2 holds for: by taking S’ :=
wS” whereS” is the context given by theh., as
all the conditions forS’ follows from those forS”.
Unicity follows from thei.h. and the fact that no
other such context can have its holeun because
1 does not hold for-.

4) Substitutionu = wlz<r]. Then S{{:)[z<r])] is an
evaluation context and we can apply thie to w. Two

b)

cases:

a) 1l holds for w. Note that since
Wlgapery —LBIE wEeTNs = ulg then
1hoids foru.

b) 2 holds forw. Let y € fv(w) be the variable and
S’ be the context given by thien.. Then we have
two cases:

i) y = z. Necessarilyy has the formL(z") with
2'], = y', otherwiseu would not be —oy;-
normal. TakingS” := S’[z«r] it is easily seen
that 2 holds foru with respect tox andy/'.
Unicity follows from thei.h..

2) Symboland Abstraction Note that by properness, the
abstraction is an ordinary-term,i.e. it does not contain
ES. Then in both cases we can apply Lemma 19,

i) y# 2. TakingS” := S'[z«<r] it is easily seen
that 2 holds foru with respect tox and y.
Unicity follows from thei.h.. ]

obtaining thatu| is a fireball.

3) Applicationu = wr. Sincer is normal andS(w(-)) is
an evaluable context, we can apply itte to », ending
in one of the following two cases:

a) 1 holds forr. ThenS{(-)r) is an evaluable context

and we can apply théh. to w and obtain two

cases:

i) 1 holds forw. Two cases:

A) ;.U‘LS«YN = A. Thenu|, is a inert,i.e. a

ireball.
Wlgiypy = Ay.q. Note thatw cannot be
itsel%‘ an abstraction, otherwisewould not

be normal. Thenv = L(y). Now, y|, can-

B)

not be an abstraction, otherwise—again—

would not be normal. Thew|, = x for
somezx € fv(w) (possiblyx = y). Note

Corollary 7 (Normal Forms Unfold to Normal Forms) et ¢
be a closed proper term. If is —o,¢s-normal thent| is —;-
normal.

Proof: note that takingS := () and« := ¢t and applying
Lemmé&438 one obtains thatis a fireball, because the second
case cannot happen, given thatow is closed. By Lemnial5,
t| is —¢-normal. [ |

To prove the projection lemma we need to prove first as
a technical lemma another sufficient condition for a context
to be evaluable. The condition is based on the definition of
position of a redex.

The position of a —o,,-redex isS. The position 0f—oyec
and —..s redexes is the application that makes applicative
the evaluable context in the side condition. Note that the

that ' := Lr is applicative and satisfies position of a redex is always a context exposing an apptinati

the other points of 2. Fat, in particular, we

constructor.

only have to show that the content of every emma 44 (Projection) Let t = S(u) —oe S'(w) = r by

substitution inZ unfolds to a fireball in its requcing a redex whose position liesn If the redex is
context (by Lemmald]2). Note that, since

t is proper, there is an evaluable context
containing all the ES in, i.e. the content of
everysubstitution int unfolds in its context

to a fireball.

1) Multiplicative: then Ulg —r¢ Wl andt| —s r;
2) Shallow or Chain Exponentiathen u|, —¢ andt| =
’I"\L _>f.

In both casesi is not a fireball.
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Proof: the fact that in both cases| is not a fireball,

follows from Lemmd_1b and the fact thay, reduces. Cases:

1) Multiplicative. Exactly as in the proof of Lemnia35.

2) Exponential We taket| = r| for granted, because
a substitution step by definition does not change the

unfolding. Similarly to the previous casé,—: follows
from u], —¢. Indeed, by LemmB_J1.19 is evaluable,
and by Lemmal4]1S | is an evaluation context, so:

tl=S(u)l =, gog SKuls) —+
Now we proveu| —¢. We haveu S'(L{x)r)
and t S(S"(L{x)r)). Let us show that for both
exponential redexes unfolds to an abstraction. In
there is somewhere (ih, S’, or S) a substitutiorjz«q].

Now, if ¢ = L'(v) then we have a—-,.s-redex (because

v is an abstraction). If insteag= L'(y) then we have
a —ooec-redex and: writes also asS”{(C(y)[y<L" (v)])
with C(y) = cv (), vl, =y (by L?_mma@), and
s.t. the two context§(S’(Lr)) and S” (CY[y<L"(v)])
coincide. Then
Tls s/ (L))

x%//(%y[yhl//%l))]) = (Lemmalm)
G oty ydsr
zle, y=L" () Hg, = (2lg, =)

y{y<L"(v)} g, (L"(v)| is an abst.)
yly—v'tg,

V' g
//

Summing UP»Tis SiL = Ay.w. Moreover, by hypoth-
esis S(S') is evaIuabIe and so by Lemn@llsus
is an evaluation context. Flnally;J6 s7) is a fireball,
becauses(S’((-)r)) is evaluable. Then

(Ul%'/ is an abst.)

S'(L(z)r) _ (Lemma30B)
Ss(Llrinig) = (LommedL)
S'ls <x>J/S(S’ Tls(sny ) (Lemma[30.b)

Sisxiss'm Tiss’>
S/J/S (/\y-w)rls(s/ﬂ

(@ls(s0(ry) = Ay-w)
(514 is an ev. cont.
& rlgisn @ fireball)

(
(L
(
(

S s (wlyrlg s)])
| ]

Lemma 45 (Positional Determinism)Let ¢ be a term and
S(S1) and S(Ss) positions of—s-redexes. Thery; = Ss.

Proof: by induction onS;. Cases:
1) EmptyS; = (-). Cases:

a) Multiplicative Redexi.e. u = L{\z.r)q with gl
a fireball. Now, S cannot lie inL{\z.r), other-
wise by Lemma 35.(\zx. r>¢s 52) would not be a
fireball, while by Lemmeij]Q it does No$‘2 can
lie in ¢, otherwise again by Lemnial3g, would
not be a fireball. Then necessaritg = S; = ().

b) Exponential Redexi.e. v = S’(L{x)r). Now,
Sy cannot lie in L{zx), otherwise by Lemma 35
L{x >¢S S2) would not be a fireball, while by the
hypothe5|s on the—o.-redex it does (it is an
abstraction). NorS; can lie inr, otherwise again
by Lemmal[3br|, would not be a fireball, while
by the hypothesis on theo.-redex it does. Then
necessarilySs = S; = ().
2) Right Application S; rS; and t rS1{q). By
Lemmal35,5] (g 2,y has a—s-redexand it is not a
fireball, so no redexes can lie to its left, in particutar
does not lie inr. By Lemmal35,5] (¢ >¢S<Ts )y Is not a
fireball, and saS, cannot be emptyi.g. rS] (¢) cannot
be the position of a—,-redex). Then,S, = wS5, and
the statement follows from theh. applied toS; and.Sy.
Left ApplicationS; = Si¢ andt = S(r)q. Note that
S, cannot lie ing, otherwise by Lemm.&is )
has a—-redex and it is not a fireball, SO no
redexes—in particular the one of posnmﬂ*{Sﬁ—can
lie to its left, absurd. AndS: cannot be emptyi.g.
the position of a—,-redex), because the${ (r) would
have the formL(\z.p), which by Lemma35 cannot
contain the position of a redex, because by Leminia 19
L</\:zc.p>J€<<v>q> is a fireball. Then,S; = Shw, and the
statement follows from theh. applied toS] and .Ss.
SubstitutionS; = S{[x<w]. Then necessarilys; =
Shlz<w] (remember the position of ao.-redex is an
application) and the statement follows from thie. m

Note that we did not yet prove determinism, as two redexes
may a priori have the same position.

3)

4)

Lemma 46 (Redexes Have Different Position#ny two—o,¢-
redexes in a ternt have different positions.

Proof: It is obvious that different multiplicative redexes
have different positions, and that multiplicative and axpo-
tial redexes cannot have the same position. Now consider an
exponential positior6(L{x)t) and let[x<u| be the substitu-
tion onx lying somewhere ir§ or L. If ¢ has the formZL’ (v)
then there is a—..s redex, and obviously there cannot be
other —o,.s Or —o,. redex with the same position. If instead
t has the formL’(y) then we start following the chain of
substitutions leading to the abstraction. Note that therea
choice about the chain, so there can only by eng,..-redex
with that position. ]

Corollary 8 (Determinism) —o,; is deterministic.

Proof: it follows from Lemm&4b and Lemn{a k6. m

Proof of Theorem 12 (page 13)

Proof: the pair(—+, —o.¢) is an high-level implementa-
tion system because of Lemind 45, Lenimh 44 and Cordllary 7.
It is also globally bounded because we already proved the
global linear bound on exponential steps (Theokei 11)m

Proof of Proposition 5 (page 13)
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Proof: omitted. All postponement proofs are similar and Ls<<CTs”>
lengthy. In Subsedi. BiB of the Appendix we proved the lemma LS<2Q<<y>E))El [y=(-)]*) =
for the Explicit FBC. Other examples can be found in the long Ly {((D(x))En|yx]) =
version of [15]. [ | ({D{(m)) E1 [y+z]) F2 =
(D(m)) B [y ] Es =

APPENDIX I g€<ﬂ>>ﬁ

PROOFSOMITTED FROM SECT.[XIV] . Non-empty.ie. H — H' : z By LemmalTLb we
(UNCHAINING GLAM OUR) have E — [y’ Ealyca’]Fs and § := (D(x)E,
The aim of this section is to prove Theoreim] 13 so thats = <Q<<yH’:Z=y>E>>E = 5<yH’=z:y>_ Note

((Unchaining GLAMoUr —¢, =, - ) is a reflective explicit that by Remar ]l we can apply theh. to the state
distillery) and the final result of the paper, Theorem 14 (the s = (D,H’ : z,y,m,E), and we will do it in the
useful implementation has bilinear low level and biline@yth following points.
level complexity). Now,

We follow closely the methodology of AppendixXIl. The 1) L, = E; and forC;, note that we have

first step is proving that the invariants of the machine holds )
Co = (D{(y™ *)m)) Er[2 ()]

Lemma 47. yH:* = pH and that byi.h. C,, is a chain context. Then
Proof: by induction overH. [ ° ..
g (D{(y""*)m)) Eazey | Baly=()] =
Lemma 48 (Contextual Decoding)E is a substitution con- DUy =) By [zey]) Bo[y—(-)] =

text; D and « are shallow contexts without ES. (Cyr () Es[y—(-)]

and soC, is a chain context.

Proof: by induction overE, D andr.
2) Note thatL, = Es[y<z"|E5, and so

Remark 1. if H : x is compatible withE, then alsoH is <L<SC§(?z3<j§)>f>Ez[y<—w])E3 ;
compatible withE. <Cj<y>>E?[y<—:c”]£ _
Ly (Cs (y)) =i.h.
Proof of Lemma 11 (page 14) s
Proof: by induction over the length of the execution. The Then note that

base case holds becausds initial. The inductive step is P =
by cases over the kind of transition. All the verifications ar Co () Eoy—()]* =
trivial. Point[4 is proved as in the useful case (see Lerima 5, CVE ZT(_:C] _
pageTP). - o=y

(o) Baly«s]

Proof of Lemma 12 (page 14) Now we conclude with

Proof: the first point is trivial, we prove the other two. Ls(Cs™)
By induction on the lengtlt of H. Cases: <&m>& =
« His empty,i.e. H = ¢. By Lemma 1L we hav& := <%s/y>&[y<—x]>& =
Ey[y<z”|Es. Let also S := (D{(x))E. We haves = (Co¥YEaly<a®|Es =
(D{(y=¥)m)) E = S{y=v) and La(Cu) —n
1) Ls = Ey andC; = (D{{(y)x)) E1[y<(-)], that (by S =
Lemmal48) has the form§(y)[y<I], and so it is a S,
chain context, ]
2) Now,
i, ey i Lemma 49 (Unchaining GLAMoUr Distillation) Let s be a
5y €:>y _ reachable state. Then:
(D{(y")x)) E = 1 Comet ! thens — o
D{{y)x)E _ ) ommutativeif s ~, ,, ,, s' thens = s';
Dty v 2) Multiplicative: if s ~>y, s’ thens —oy,= &';
(D{(y)m)) Er [y<a® By = 3) Shallow E tialif + thens —o -
(D)) Erly—]) By = el = o 2 s —2oos
— N = —_ ain onentia ~oec en__ooec S .
L(D{)m) Erly—a]) = ) Chain Exponentiail s oo 57 thens ~—cosc 5
L {(Cy{x)) Proof: we list the transition in the order they appear in
and the definition of the machine.
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o Case(D, ¢, tu,m E) ~¢ (D:(t,7),¢1u,¢€ E): We have
(D,e,zﬂ,ﬂ',E) = (D : (zvﬂ.)aev'rvﬂ'/aEl[aﬂ_d)A]EQ) =
D{((tu)")x))E = A
(D((t(u))m))E = The proof is the one for the previous case.,, by
(D : (t,m)(u))E = replacinga with z and instantiating? with E; [z« ¢4] E,.
(D: (t,m){((we)E = « Case
(D : (?7 (@) E = (D: (t,m), €6, ¢ B [x<u’|Eg) ~e,
(D: (t,7),¢6,1,¢ E) (D, e, t,2° : w, By [z<Tu"|Es)
o Case(D,e,\v.t,¢! : 71, FE) ~on (D, ¢, t,m, E[z—¢']): We have B
(D: (t,7n), e ,x,¢ Er[r<u’|Ey) =
(D,e,\xt, ¢! :m E) = _
<Q<</\$-f€>¢l5l cTHE = (D, e,t,x" : m, Fy[x<u’]Es)
<%§§E\§t%;b >: gigﬂ i The proof is the one for the previous casg,, by replac-
25((?[;;@%5))5 _ ing (Az.w) with = and instantiating® with E; [z«<a"]E».
e o B o Case
(D{((Om)[z=ghE =
<Q<<z>;>>ajﬂ«;[%¢l - (D, e, 2, ¢" : 7, E1[£T°] Ba) ~oes
(D(EVTE[regl] = (D,e,7%, ¢! : 7, By [x<70"|Ey)
(D,e,t, 7, Elz—¢']) We have

l. —v
The multiplicative step is justified by Lemm@aliiL.4 (g’e’f’gbvjﬁ’%[x‘_v_l%)
and Lemmd_1I3. The bisimulation step is justified by (D((z >¢i ) 1[5“__: | B
Lemmal24. (D{{(z)¢? : 7)) By [x<0"]| B
(D((v*)¢'
(D

oes (by LIII[4)

I

« Case ()¢’ : m)) Er [2<0"| Ey
. _ (@)@ : ) Er[20"] By
(D : (t,7),e, \e.0, €, E) ~¢, (D,e,t, Azu)’ : m, E) (D, e, 5%, ¢ : 7, By [w<0"| Es)
We have o Case
(D: (?, ), 6, \e. W, e, E) = Eg’g’ $;¢l J’E?;l [EH[ZEES])EW)CG
(D : (f, m{{(AzT)e)E = 1Ty, @7 T B [Ty B
(D : (f, m{{(Azw)e))E = (D,H,z,¢" : w, Ey[v<y"]|Es) =
(D :_(t,w)(A:z:.ﬂ)}E = D@D 1)) Er [y B T
(D((t(A\z.0))m)) E = (D{(y" )0 s m)) Br [y By =
(D Azw)’” - m))E = (D, H :3,y,¢' : 7, Er[z<y"]Es)
(D(E)Qz)’ :m)E =
! o e Cases' := (D,H : y,x,¢! : T, E®) ~oec (D, H,y,¢" :

(Dye,t, Qo)” : 7, B) m, E°) = s, whereyE' = El[y<—$U]E2[fL‘<—5U]E3y, and

« Case E° = Ey[y<v*"|FE>[z+<v"]|E3. Note that we have:

B , B A 1) LS/7y = E2[$<—5U]E3
(D: (t,7),e,a,7,E) ~>c, (D€t (a,7")" : 7, E) 2) Cs/,y:<2<<yH>¢”:7T>>&[y<—<->]
We have Then,
I e a _ (D,H :y,x,¢' : 7, E®) =

(D(fv )7 767 /7E) B <Q<<$HU>¢U7T>>E —
(D: ({,m)((@r)E = o -?C e —L2
(D{{{a)r')m)) E = (Cor (@) Ba w7V B -
<Q<<EZ(G, 2 A: .7T B i <<CSV’,y<$>>E2[$‘_U]>E3 oec
<%<<t_>(a,7rl)A..7T))EE = (Cuy TV Eale—t]) Es _
Dooblom) i) ((D{ly")6": m) By gD BaloT) By =

. Case (D((y™)e" = m)) E° =

(D : (,7),¢,z,7, By [x¢A]Ey) ~ (D.Hy, ¢ m, B”)
(D,'e,fj, (I: 7;/),’4 : ;T,llEl [I<_¢A],2u;2) - The chain exponential step is justified because

33



1) H :y is compatible withE*®, and so we can apply In the remaining of the appendix we prove bilinearity of
L[I2, obtainingLy ,(Cys ) = (D(¢' : 7)) E* ~+. We begin redoing the proof for, , , , ;, that is almost
2) LemmdIIL¥ guarantees that such a context—whittentical to that of the GLAMoUr.

is the context in the side-condition of the rule— iﬁ_emma 52 (Size Bounded)Let s — (D, 7, , E) be a state

evaluable. It is also obviously applicative (becaus|%ached by an executiom of initial code?. Then|s| < (1 +
the stack has the form' : 7). 1loee) [El — || a
oes Ci—5"

Proof: the same reasoning as for the useful case
(Lemmd®) provides the proof fer,,,, ~ses, et o450 WHile

Proof: a simple inspection of the reduction rules showtr the new transitions-., and~-... it is enough to note that
no critical pairs. m they do not change the size of the state. [ |

Lemma 50 (Determinism) The transition relatior~ of the
Unchaining GLAMoUr is deterministic.

Lemma 51 (Progress) if s is reachable,nf.(s) = s and Corollary 9 (Termination and Bilinearity of~, ,,,.). Let
s —o, t With x € {om, oes, oec}, then there exists’ such that s be a state reached by an executjpwof initial codet. Then
S oy SI, i.e., s is not final. |p|0175 < (1 + |p|e)|z| = O(|p|P ! m) In particular, ~7c1,2,3,4,5

o . terminates.
Proof: by Lemmal5D and Lemmia 49 it is sufficient to

show that every reachable stuck state decodes to a normal

form. The only stuck forms are: Proof of Corollary 3 (page 15)
. Error states Proof: combining Corollanf® with Lemmg13. [

1) Problem with the head D, H : y,t,w, E) whent is

. . . Proof of Theorem 14 (page 15)
not a variable bound i to a¢? or 7 is empty or ] .
y is not bound taf in E. The state is not reachable Proof: the proof follows from Theorenil]3 applied to

because it would violate the invariant Leml'GTheorem[j]Z, and Theorefl 6 applied to Theotferh 13 and

2) Problem with the environmentThe state is Corollary[3. For the implementability of the steps we refer
(D,H,z,m, E) wherez is not defined inE or it to the proof of Theoreri 10. u
is defined to be & where? is not a variable or a
value.
The state is not reachable because it would violate
either the invariant in Lemm@a 1.1 or the invariant
in Lemmal1ILB.
o Final states Cases:

1) The result is/lunfolds to a valueThe state is
(e,¢,t,6, E) with T an abstraction or a variable
bound inE to a¢?. By Lemmd3¥ (¢, ¢, 1,6, E) =
(t)E = L(t) for someL. Note thatL(t)| = |, is
a fireball, indeed ift is an abstraction it is given
by Lemma[I® and if it as a variable it is given by
Lemmal1IB. Thus by Lemnial44,t) is normal.

2) The result is/unfolds to a inertThe state is
(¢, ¢,t,m, E) with £ a symbola or a variable bound
in E to ag?.

By Lemmal3Y,(e, ¢,t, 7, F) = ({{)m)E = L{{t)x)
for some L. Note thatL(t)| = t|, is a fireball,
indeed iff is a symbol it is given by Lemma’l9
and if it as a variable it is given by Lemnialill.3.
Thus by Lemma44[(¢) is normal. [

Proof of Theorem 13 (page 14)
Proof: the theorem follows from Lemn{a 49, Lemia 50
and Lemma5]1. []

A. Proofs Omitted From SubseEt_XIV-A
(Bilinearity: Principal vs Commutative Analysis)
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