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Abstract—In CSL-LICS 2014, Accattoli and Dal Lago [1]
showed that there is an implementation of the ordinary (i.e.
strong, pure, call-by-name)λ-calculus into models like RAM ma-
chines which is polynomial in the number ofβ-steps, answering
a long-standing question. The key ingredient was the use of a
calculus with useful sharing, a new notion whose complexity
was shown to be polynomial, but whose implementation was
not explored. This paper, meant to be complementary, studies
useful sharing in a call-by-value scenario and from a practical
point of view. We introduce the Fireball Calculus, a natural
extension of call-by-value to open terms, that is an intermediary
step towards the strong case, and we present three results.
First, we adapt and refine useful sharing, refining the meta-
theory. Then, we introduce the GLAMoUr a simple abstract
machine implementing the Fireball Calculus extended with useful
sharing. Its key feature is that usefulness of a step is tested—
surprisingly—in constant time. Third, we provide a further
optimisation that leads to an implementation having only a linear
overhead with respect to the number ofβ-steps.

I. I NTRODUCTION

The λ-calculus is an interesting computational model be-
cause it is machine-independent, simple to define, and it com-
pactly models functional and higher-order logic programming
languages. Its definition has only one rule, theβ rule, and no
data structures. The catch is the fact that theβ-rule—which
by itself is Turing-complete—is not an atomic rule. Its action,
namely (λx.t)u →β t{x�u}, can make many copies of an
arbitrarily big sub-programu. In other computational models
like Turing or RAM machines, an atomic operation can only
move the head on the ribbon or access a register. Isβ atomic in
that sense? Can one count the number ofβ-steps to the result
and then claim that it is a reasonable bound on the complexity
of the term? Intuition says no, becauseβ can be nasty, and
make the program grow at an exponential rate. This is thesize
explosion problem.

Useful Sharing: nonetheless, it is possible to take the
number of β-steps as an invariant cost model,i.e. as a
complexity measure polynomially related to RAM or Turing
machines. While this was known for some notable sub-calculi
[2]–[6], the first proof for the general case is a recent result
by Accattoli and Dal Lago [1]. Similarly to the literature, they
circumvent size explosion by factoring the problem via an
intermediary model in betweenλ-calculus and machines. Their
model is thelinear substitution calculus(LSC) [1], [7], that
is a simpleλ-calculus with sharing annotations (also known
as explicit substitutions) where the substitution processis
decomposed in micro steps, replacing one occurrence at a time.
In contrast with the literature, the general case is affected by
a stronger form of size explosion, requiring an additional and

sophisticated layer of sharing, calleduseful sharing. Roughly,
a micro substitution step isuseful if it contributes somehow
to the creation of aβ-redex, anduselessotherwise. Useful
reduction then selects only useful substitution steps, avoiding
the useless ones. In [1], the Useful LSC is shown to be
polynomially related to bothl-calculus (in a quadratic way)
and RAM machines (with polynomial overhead, conjectured
linear). It therefore follows that there is a polynomial relation-
ship λ→ RAM. Pictorially:

λ RAM

Useful LSC

polynomial

quadratic polynomial (linear?)

Coming back to our questions, the answer of [1] is yes,
β is atomic, up to a polynomial overhead. It is natural to
wonder how big this overhead is. Isβ reasonably atomic? Or
is the degree of the polynomial big and does the invariance
result only have a theoretical value? In particular, in [1] the
definition of useful steps relies on aseparateand global
test for usefulness, that despite being tractable might notbe
feasible in practice. Is there an efficient way to implement
the Useful LSC? Does useful sharing—i.e. the avoidance of
useless duplications—bring a costly overhead? This paper
answers these questions. But, in order to stress the practical
value of the study, it shifts to a slightly different setting.

The Fireball Calculus:we recast the problem in terms
of the newfireball calculus(FBC), essentially the weak call-
by-valuel-calculus generalised to handle open terms. It is an
intermediary step towards a strong call-by-valuel-calculus,
that can be seen as iterated open weak evaluation. A similar
approach to strong evaluation is followed also by Grégoire
and Leroy in [8]. It avoids some of the complications of the
strong case, and at the same time exposes all the subtleties of
dealing with open terms.

Free variables are actually formalised using a distinguished
syntactic class, that ofsymbols, noteda, b, c. This approach is
technically convenient because it allows restricting to closed
terms, so that any variable occurrencex is bound somewhere,
while still having a representation of free variables (as sym-
bols).

The basic idea is that—in the presence of symbols—
restrictingβ-redex tofire only in presence of values is prob-
lematic. Consider indeed the following term:

t := ((λx.λy.u)(aa))w
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wherew is normal. For the usual call-by-value operational
semanticst is normal (becauseaa is not a value) while for
theoretical reasons (see [9]–[11]) one would like to be able
to fire the blocked redex, reducing to(λy.u{x�aa})w, so
that a new redex is created and the computation can continue.
According to the standard classification of redex creationsdue
to Lévy [12], this is a creation of type 11.

The solution we propose here is to relax the constraint
about values, allowingβ-redexes to fire whenever the argu-
ment is a more general structure, a so-calledfireball, defined
recursively by extending values withinerts, i.e. applications
of symbols to fireballs. In particular,aa is inert, so thate.g.
t→ (λy.u{x�aa})w, as desired.

Functional programming languages are usually modelled by
weak andclosedcalculi, so it is natural to wonder about the
practical relevance of the FBC. Applications are along two
axes. On the one hand, the evaluation mechanism at work in
proof assistants has to deal with open terms for comparison
and unification. For instance, Gregoire and Leroy’s [8], meant
to improve the implementation of Coq, relies on inerts (therein
calledaccumulators). On the other hand, symbols may also be
interpreted asconstructors, meant to represent data as lists or
trees. The dynamics of fireballs is in fact consistent with the
way constructors are handled by Standard ML [13] and in
several formalisation of core ML, as in [14]. In this paper
we omit destructors, whose dynamics is orthogonal to the one
of β-reduction, and we expect all results presented here to
carry-over with minor changes to a calculus with destructors.
Therefore firing redexes involving inerts is also justified from
a practical perspective.

The Relative Usefulness of Fireballs:as we explained, the
generalisation of values to fireballs is motivated by creations
of type 1 induced by the firing of inerts. There is a subtlety,
however. Whilesubstitutinga value can create a new redex
(e.g. as in (λx.(xI))I → (xI){x�I} = II, whereI is the
identity—these are called creations of type 3), substituting a
inert can not. Said differently, duplicating inerts is useless,
and leads to size explosion. Note the tension between different
needs: redexes involving inerts have to be fired (for creations
of type 1), and yet the duplication and the substitution of inerts
should be avoided (since they do not give rise to creations of
type 3). We solve the tension by turning to sharing, and use
the simplicity of the framework to explore the implementation
of useful sharing. Both values and inerts (i.e. fireballs) in
argument position will trigger reduction, and both will be
shared after the redex is reduced, but only the substitutionof
values might be useful, because inerts are always useless. This
is what we callthe relative usefulness of fireballs. It is also
why—in contrast to Gregoire and Leroy—we do not identify
fireballs and values.

1The reader unfamiliar with redex creations should not worry. Creations are
a key concept in the study of usefulness—which is why we mention them—
but for the present discussion it is enough to know that thereexists two kinds
of creations (type 1 and the forthcoming type 3, other types will not play a
role), no expertise on creations is required.

The Result:our main result is an implementation of FBC
relying on useful sharing and such that it has only a linear
overhead with respect to the number ofβ-steps. To be precise,
the overhead isbilinear, i.e. linear in the number ofβ-steps
and in the size of the initial term (roughly the size of the
input). The dependency from the size of the initial term is
induced by the action ofβ on whole subterms, rather than
on atomic pieces of data as in RAM or Turing machines.
Therefore,β is not exactly as atomic as accessing a register
or moving the head of a Turing machine, and this is the
price one must pay for embracing higher-order computations.
Bilinearity, however, guarantees that such a price is mild
and that the number ofβ step—i.e. of function calls in a
functional program—is a faithful measure of the complexityof
a program. To sum up, our answer is yes,β is also reasonably
atomic.

A Recipe for Bilinearity, with Three Ingredients:our
proof technique is atour de forceprogressively combining
together and adapting to the FBC three recent works involving
the LSC, namely the already cited invariance of useful sharing
of [1], the tight relationship with abstract machines developed
by Accattoli, Barenbaum, and Mazza in [15], and the optimisa-
tion of the substitution process studied by the present authors
in [16]. The next section will give an overview of these works
and of how they are here combined, stressing how the proof is
more than a simple stratification of techniques. In particular, it
was far from evident that the orthogonal solutions introduced
by these works could be successfully combined together.

This Paper: the paper is meant to be self-contained, and
mostly follows a didactic style. For the first half we warm up
by discussing design choices, the difficulty of the problem,
and the abstract architecture. The second half focuses on the
results. We also suggest reading the introductions of [1], [15],
[16], as they provide intuitions about concepts that here are
only hinted at. Although not essential, they will certainly
soften the reading of this work. Omitted proofs are in the
appendix and related work is discussed in Sect. III.

II. A R ECIPE WITH THREE INGREDIENTS

This section gives a sketch of how the bilinear implemen-
tation is built by mixing together tools from three different
studies on the LSC.

1) Useful Fireballs: we start by introducing the Useful
Fireball Calculus (Useful FBC), akin to the Useful LSC, and
provide the proof that the relationship FBC→ Useful FBC,
analogously to the arrowl → Useful LSC, has a quadratic
overhead. Essentially, this step provides us with the following
diagram:

FBC RAM

Useful FBC

quadratic

We go beyond simply adapting the study of [1], as the use of
evaluation contexts (typical of call-by-value scenarios)leads
to the new notion ofuseful evaluation context, that simplifies
the technical study of useful sharing. Another key point is the
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relative usefulness of fireballs, according to their nature: only
values are properly subject to the useful discipline,i.e. are
duplicated only when they contribute somehow toβ-redexes,
while inerts are never duplicated.

2) Distilling Useful Fireballs: actually, we do not follow
[1] for the study of the arrow Useful FBC→ RAM. We rather
refine the whole picture, by introducing a further intermediary
model, anabstract machine, mediating between the Useful
FBC and RAM. We adopt thedistillation techniqueof [15],
that establishes a fine-grained and modular view of abstract
machines as strategies in the LSC up to a notion of structural
equivalence on terms. The general pattern arising from [15]is
that for call-by-name/value/need weak and closed calculi the
abstract machine adds only a bilinear overhead with respect
to the shared evaluation within the LSC:

l-Calculus RAM

LSC Abstract Machine
bilinear

bilinear

Such distilleries owe their name to the fact that the LSC
retains only part of the dynamics of a machine. Roughly, it
isolates the relevant part of the computation, distilling it away
from the search for the next redex implemented by abstract
machines. The search for the redex is mapped to a notion of
structural equivalence, a particular trait of the LSC, whose
key property is that it can be postponed. Additionally, the
transitions implementing the search for the next redex are
proved to be bilinear in those simulated by the LSC: the LSC
then turns out to be a complexity-preserving abstraction of
abstract machines.

The second ingredient for the recipe is then a new abstract
machine, called GLAMoUr, that we prove implements the
Useful FBC within a bilinear overhead. Moreover, the GLAM-
oUr itself can be implemented within a bilinear overhead.
Therefore, we obtain the following diagram:

FBC RAM

Useful FBC GLAMoUr AM

quadratic

bilinear

quadratic bilinear

This is the most interesting and original step of our study. First,
it shows that distilleries are compatible with open terms and
useful sharing. Second, while in [15] distilleries were mainly
used to revisit machines in the literature, here the distillation
principles are used to guide the design of a new abstract
machine. Third, useful sharing is handled via a refinement
of an ordinary abstract machine relying on a basic form of
labelling. The most surprising fact is that such a labelling
(together with invariants induced by the call-by-value scenario)
allows a straightforward and very efficient implementation
of useful sharing. While the calculus is based onseparate
and global tests for the usefulness of a substitution step,
the labelling allows the machine to doon-the-flyand local
tests, requiring only constant time (!). It then turns out that
implementing usefulness is much easier than analysing it.
Summing up, useful sharing is easy to implement and thus a

remarkable case of a theoretically born concept with relevant
practical consequences.

3) Unchaining Substitutions:at this point, it is natural to
wonder if the bottleneck given by the side of the diagram FBC
→ Useful FBC, due to the overhead of the decomposition of
substitutions, can be removed. The bound on the overhead is
in fact tight, and yet the answer is yes, if one refines the actors
of the play. Our previous work [16], showed that (in ordinary
weak and closed settings) the quadratic overhead is due to
malicious chains ofrenamings, i.e.of substitutions of variables
for variables, and that the substitution overhead reduces to
linear if the evaluation is modified so that variables are never
substituted,i.e. if values do not include variables.

For the fireball calculus the question is tricky. First of all
a disclaimer: withvariableswe refer to occurrences of bound
variables and not to symbols/free variables. Now, our initial
definition of the calculus will exclude variables from fireballs,
but useful sharing will force us to somehow reintroduce them.
Our way out is an optimised form of substitution thatunchains
renaming chains, and whose overhead is proved linear by
a simple amortised analysis. Such a third ingredient is first
mixed with both the Useful FBC and the GLAMoUr, obtaining
the Unchaining FBC and the Unchaining GLAMoUr, and then
used to prove our main result, an implementation FBC→
RAM having an overhead linear in the number ofβ steps and
in the size of the initial term:

FBC RAM

Unchaining FBC Unchaining GLAMoUr

bilinear

bilinear

linear bilinear

In this step, the original content is that the unchaining
optimisation—while inspired by [16]—is subtler to define than
in [16], as bound variables cannot be simply removed from
the definition of fireballs, because of usefulness. Moreover,
we also show how such an optimisation can be implemented
at the machine level.

The next section discusses related work. Then there will be a
long preliminary part providing basic definitions, an abstract
decomposition of the implementation, and a quick study of
both a calculus, the Explicit FBC, and a machine, the GLAM,
without useful sharing. Both the calculus and the machine will
not have any good asymptotical property, but they will be
simple enough to familiarise the reader with the framework
and with the many involved notions.

III. R ELATED WORK

In the literature, invariance results for the weak call-by-
value l-calculus have been proved three times, independently.
First, by Blelloch and Greiner [2], while studying cost models
for parallel evaluation. Then by Sands, Gustavsson and Moran
[3], while studying speedups for functional languages, and
finally by Dal Lago and Martini [4], who addressed the
invariance thesis forl-calculus. Among them, [3] is the closest
one, as it also provides an abstract machine and bounds its
overhead. These works however concern closed terms, and so
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they deal with a much simpler case. Other simple call-by-
name cases are studied in [5] and [6]. The difficult case of
the strongl-calculus has been studied in [1], which is also the
only reference for useful sharing.

The LSC is a variation over al-calculus with ES by Robin
Milner [17], [18], obtained by plugging in some of the ideas
of the structurall-calculus by Accattoli and Kesner [19],
introduced as a syntactic reformulation of linear logic proof
nets. The LSC is similar to calculi studied by De Bruijn [20]
and Nederpelt [21]. Its first appearances in the literature are
in [6], [22], but its inception is actually due to Accattoli and
Kesner.

Many abstract machines can be rephrased as strategies inl-
calculi with explicit substitutions(ES), see at least [23]–[28].

The related work that is by far closer to ours is the already
cited study by Grégoire and Leroy of an abstract machine for
call-by-value weak and open reduction in [8]. We developed
our setting independently, and yet the FBC is remarkably close
to their calculus, in particular ourinerts are essentially their
accumulators. The difference is that our work is complexity-
oriented while theirs is implementation-oriented. On the one
hand they do not recognise the relative usefulness of fireballs,
and so their machine is not invariant,i.e. our machine is more
efficient and on some terms even exponentially faster. On the
other hand, they extend the language up to the calculus of
constructions, present a compilation to bytecode, and certify
in Coq the correctness of the implementation.

The abstract machines in this paper useglobal environ-
ments, an approach followed only by a minority of authors
(e.g. [3], [15], [29], [30]) and essentially identifying the
environment with a store.

The distillation technique was developed to better under-
stand the relationship between the KAM and weak linear head
reduction pointed out by Danos & Regnier [31]. The idea
of distinguishing betweenoperational contentandsearch for
the redexin an abstract machine is not new, as it underlies
in particular therefocusing semanticsof Danvy and Nielsen
[32]. Distilleries however bring an original refinement where
logic, rewriting, and complexity enlighten the picture, leading
to formal bounds on machine overheads.

Our unchaining optimisation is a lazy variant of an optimi-
sation that repeatedly appeared in the literature on abstract
machines, often with reference to space consumption and
space leaks, for instance in [3] as well as in Wand’s [33]
(section 2), Friedman et al.’s [34] (section 4), and Sestoft’s
[35] (section 4).

IV. T HE FIREBALL CALCULUS

The setting is the one of the call-by-valueλ-calculus ex-
tended with symbolsa, b, c, meant to denote free variables (or
constructors). The syntax is:

Terms t, u, w, r ::= x | a | lx.t | tu
Values v, v′ ::= lx.t

with the usual notions of free and bound variables, capture-
avoiding substitutiont{x�u}, and closed (i.e. without free

variables) term. We will often restrict to consider closed
terms, the idea being that an open term asx(λy.zy) is rather
represented as the closed terma(λy.by).

The ordinary (i.e. without symbols) call-by-valuel-calculus
has a nice operational characterisation of values:

closed normal forms are values

Now, the introduction of symbols breaks this property,
because there are closed normal forms asa(λx.x) that are not
values. In order to restore the situation, we generalise values
to fireballs2, that are either valuesv or inertsA, i.e. symbols
possibly applied to fireballs. Associating to the left, fireballs
and inerts are compactly defined by

Fireballs f, g, h ::= v | A
Inerts A,B,C ::= af1 . . . fn n ≥ 0

For instance,λx.y and a are fireballs, as well asa(λx.x),
ab, and(a(λx.x))(bc)(λy.(zy)). Fireballs can also be defined
more atomically by mixing values and inerts as follows:

f ::= v | A A ::= a | Af

Note thatAB andAA are always inerts.
Next, we generalise the call-by-value rule(λx.t)v →βv

t{x�v} to substitute fireballsf rather than valuesv. First
of all, we define a notion of evaluation context (notedF
rather thanE, reserved to forthcoming global environments),
mimicking right-to-left CBV evaluation:

Evaluation Contexts F ::= 〈·〉 | tF | Ff

note the caseFf , that in CBV would beFv. Last, we define
the f(fireball) rule→f as follows

RULE AT TOP LEVEL CONTEXTUAL CLOSURE

(lx.t)f 7→f t{x�f} F 〈t〉 →f F 〈u〉 if t 7→f u

Our definitions lead to:

Theorem 1.
1) Closed normal forms are fireballs.
2) →f is deterministic.

In the introduction we motivated the notion of fireball both
from theoretical and practical points of view. Theorem 1.1
provides a further, strong justification: it expresses a sort
of internal harmony of the FBC, allowing to see it as the
canonical completion of call-by-value to the open setting.

V. SIZE EXPLOSION

Size Explosion is the side effect of a discrepancy between
the dynamics and the representation of terms. The usual
substitutiont{x�u} makes copies ofu for all the occurrences
of x, even ifu is useless, i.e. it is normal and it does not create
redexes after substitution. These copies are the burden leading
to the exponential growth of the size. To illustrate the problem,
let’s build a size exploding family of terms.

2About fireball: the first choice wasfire-able, but then the spell checker
suggestedfireball.
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Table I
SYNTAX , REWRITING RULES, AND STRUCTURAL EQUIVALENCE OF THE EXPLICIT FBC

t, u,w, r ::= x | a | lx.t | tu | t[x�u]
v, v′ ::= lx.t
L, L′ ::= 〈·〉 | L[x�t]
A,B, C ::= a | L〈A〉L〈f〉
f, g, h ::= v | A
F ::= 〈·〉 | tF | FL〈f〉 | F [x�t]

RULE AT TOP LEVEL CONTEXTUAL CLOSURE
L〈lx.t〉L′〈f〉 7→m L〈t[x�L′〈f〉]〉 F 〈t〉⊸m F 〈u〉 if t 7→m u

F 〈x〉[x�L〈f〉] 7→e L〈F 〈f〉[x�f ]〉 F 〈t〉⊸e F 〈u〉 if t 7→e u

t[x�u][y�w] ≡com t[y�w][x�u] if y /∈ fv(u) andx /∈ fv(w)
(tw)[x�u] ≡@r tw[x�u] if x 6∈ fv(t)
(tw)[x�u] ≡@l t[x�u]w if x 6∈ fv(w)

t[x�u][y�w] ≡[·] t[x�u[y�w]] if y 6∈ fv(t)

Note that a inertA, when applied to itself still is a inert
AA. In particular, it still is a fireball, and so it can be used
as an argument for redexes. We can then easily build a term
of size linear inn that inn steps evaluates a complete binary
treeA2n . Namely, define the family of termstn for n ≥ 1:

t1 := λx1.(x1x1)
tn+1 := λxn+1.(tn(xn+1xn+1))

Now considertnA, that for a fixedA has size linear inn.
The next proposition shows thattnA reduces inn steps to
A2n , causing size-explosion.

Proposition 1 (Size Explosion in the FBC). tnA→
n
f A2n .

Proof: by induction onn. Let B := A2 = AA. Cases:

t1 = (λx1.(x1x1))A →f A2

tn+1 = (λxn+1.(tn(xn+1xn+1)))A →f

tnA
2 = tnB →n

f (i.h.)
B2n = A2n+1

VI. F IREBALLS AND EXPLICIT SUBSTITUTIONS

In a ordinary weak scenario, sharing of subterms prevents
size explosion. In the FBC however this is no longer true, as
we show in this section. Sharing of subterms is here repre-
sented in a variation over the Linear Substitution Calculus,
a formalism with explicit substitutions coming from a linear
logic interpretation of theλ-calculus. At the dynamic level,
the small-stepoperational semantics of the FBC is refined
into amicro-stepone, where explicit substitutions replace one
variable occurrence at a time, similarly to abstract machines.

The language of theExplicit Fireball Calculus (Explicit
FBC) is:

t, u, w, r ::= x | a | lx.t | tu | t[x�u]

wheret[x�u] is the explicit substitution (ES) ofu for x in t,
that is an alternative notation forlet x = u in t, and wherex
becomes bound (int). We silently work moduloα-equivalence
of these bound variables,e.g. (xy)[y�t]{x�y} = (yz)[z�t].
We usefv(t) for the set of free variables oft.

Contexts:the dynamics of explicit substitutions is defined
using (one-hole) contexts.Weak contextssubsume all the kinds
of context in the paper, and are defined by

W,W ′ ::= 〈·〉 | tW |Wt |W [x�t] | t[x�W ]

The pluggingW 〈t〉 of a term t into a contextW is de-
fined as〈·〉〈t〉 := t, (lx.W )〈t〉 := lx.(W 〈t〉), and so on.
As usual, plugging in a context can capture variables,e.g.
((〈·〉y)[y�t])〈y〉 = (yy)[y�t]. The pluggingW 〈W ′〉 of a
contextW ′ into a contextW is defined analogously. Since all
kinds of context we will deal with will be weak, the definition
of plugging applies uniformly to all of them.

A special and frequently used class of contexts is that of
substitution contextsL ::= 〈·〉 | L[x�t].

Switching from the FBC to the Explicit FBC the syntactic
categories ofinertsA, fireballs f , andevaluation contextsF
are generalised in Table I as to include substitution contextsL.
Note that fireballs may now contain substitutions, butnot at
top level, because it is technically convenient to give a separate
status to a fireballf in a substitution contextL: terms of the
form L〈f〉 are calledanswers. An initial term is a closed term
with no explicit substitutions.

Rewriting Rules:the fireball rule→f is replaced by⊸f,
defined as the union of the two rules⊸m and⊸e in Table I:

1) Multiplicative⊸m: is a version of→f where lx.t and
f can have substitution contextsL andL′ around, and
the substitution is delayed.

2) Exponential⊸e: the substitution or exponential rule⊸e

replaces exactly one occurrence of a variablex currently
under evaluation (inF ) with its definiendumf given by
the substitution. Note the apparently strange position of
L in the reduct. It is correct:L has to commute outside
to bind both copies off , otherwise the rule would create
free variables.

The name of the rules are due to the linear logic interpretation
of the LSC.

Unfolding: the shared representation is related to the
usual one via the crucial notion ofunfolding, producing the
l-term t

→

denoted byt and defined by:

x

→

:= x (tu)

→

:= t

→

u

→

(lx.t)

→

:= lx.t

→

t[x�u]

→

:= t

→

{x�u

→

}

Note thatrn

→

= A2n .
As for the FBC, evaluation is well-defined:

Theorem 2.
1) Closed normal forms are answers, i.e. fireballs in sub-

stitution contexts.
2) ⊸f is deterministic.
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Structural Equivalence:the calculus is endowed with a
structural equivalence, noted≡, whose property is to be a
strong bisimulation with respect to⊸f. It is the least equiv-
alence relation closed by weak contexts defined in Table I.

Proposition 2 (≡ is a Strong Bisimulation wrt⊸f). Let x ∈
{sm, se}. Then,t ≡ u and t⊸x t

′ implies that there existsu′

such thatu⊸x u
′ and t′ ≡ u′.

Size Explosion, Again:coming back to the size explosion
example, the idea is that—to circumvent it—tn should better
⊸m-evaluate to:

rn := (x0x0)[x0�x2
1][x1�x2

2] . . . [xn−1�x2
n][xn�A]

which is an alternative, compact representation ofA2n , of
size linear inn, and with just one occurrence ofA. Without
symbols, ES are enough to circumvent size explosion [2]–[4].
In our case however they fail. The evaluation we just defined
indeed does not stop on the desired compact representation,
and in fact a linear number of steps (namely3n) may still
produce an exponential output (in a substitution context).

Proposition 3 (Size Explosion in the Explicit FBC).
tnA(⊸m⊸

2
e)

nL〈A2n〉.

Proof: by induction onn. Let B := A2 = AA. Cases:

t1 = (λx1.(x1x1))A ⊸m

(x1x1)[x1�A] ⊸e

(x1A)[x1�A] ⊸e

(AA)[x1�A] = A2[x1�A]

tn+1 = (λxn+1.(tn(xn+1xn+1)))A ⊸m⊸
2
e

(tnA
2)[x1�A] = L〈tnB〉 (⊸m⊸

2
e)

n (i.h.)
L′〈B2n〉 = L′〈A2n+1

〉

Before introducing useful evaluation—that will liberate us
from size explosion—we are going to fully set up the archi-
tecture of the problem, by explaining 1) how ES implement
a calculus, 2) how an abstract machine implements a calculus
with ES, and 3) how to define an abstract machine for the
inefficient Explicit FBC. Only by then (Sect. XI) we will start
optimising the framework, first with useful sharing and then
by eliminating renaming chains.

VII. T WO LEVELS IMPLEMENTATION

Here we explain how the the small-step strategy→f of
the FBC is implemented by a micro-step strategy⊸. We
are looking for an appropriate strategy⊸ with ES which
is polynomially related to both→f and an abstract machine.
Then we need two theorems:

1) High-Level Implementation:→f terminates iff⊸ termi-
nates. Moreover,→f is implemented by⊸ with only a
polynomial overhead. Namely,t⊸k u iff t→h

f u

→

with
k polynomial inh;

2) Low-Level Implementation: ⊸ is implemented on an
abstract machine with an overhead in time which is
polynomial in bothk and the size oft.

We will actually be more accurate, giving linear or quadratic
bounds, but this is the general setting.

A. High-Level Implementation

First, terminology and notations.Derivations d, e, . . . are
sequences of rewriting steps. With|d|, |d|m, and |d|e we
denote respectively the length, the number of multiplicative,
and exponential steps ofd.

Definition 1. Let→f be a deterministic strategy on FBC-terms
and⊸ a deterministic strategy for terms with ES. The pair
(→f,⊸) is a high-level implementation system if whenever
t is a l-term andd : t⊸∗ u then:

1) Normal Form: if u is a ⊸-normal form thenu

→

is a
→f-normal form.

2) Projection: d

→

: t
→

→∗f u

→

and |d

→

| = |d|m.

Moreover, it is

1) locally bounded: if the length of a sequence of substi-
tution e-steps fromu is linear in the number|d|m of
m-steps ind;

2) globally bounded: if |d|e is linear in |d|m.

The normal form and projection properties address the
qualitative part, i.e. the part about termination. The normal
form property guarantees that⊸ does not stop prematurely, so
that when⊸ terminates→f cannot keep going. The projection
property guarantees that termination of→f implies termination
of ⊸. The two properties actually state a stronger fact:→f

steps can be identified with the⊸m-steps of the⊸ strategy.
The local and global bounds allow to bound the overhead

introduced by the Explicit FBC wrt the FBC, because by
relating⊸m and⊸e steps, they relate|d| and |d

→

|, since→f

and⊸m steps can be identified.
The high-level part can now be proved abstractly.

Theorem 3 (High-Level Implementation). Let t be an ordi-
nary l-term and(→f,⊸) a high-level implementation system.

1) Normalisation: t is →f-normalising iff it is ⊸-
normalising.

2) Projection: if d : t⊸∗ u thend

→

: t→∗f u

→

.

Moreover, the overhead of⊸ is, depending on the system:

1) locally bounded: quadratic, i.e.|d| = O(|d

→

|2).
2) globally bounded: linear, i.e. |d| = O(|d

→

|).

For the low-level part, in contrast to [1], we rely on abstract
machines, introduced in the next section.

Let us see our framework at work. We have the following
result:

Theorem 4. (→f,⊸f) is a high-level implementation system.

Note the absence of complexity bounds. In fact,(→f,⊸f)
is not even locally bounded. Lettn here be defined by
t1 = t and tn+1 = tnt, and un := (λx.xn)A. Then
d : un ⊸m⊸

n
e An[x�A] is a counter-example to local

boundedness. Moreover, the Explicit FBC also suffers of size
explosion,i.e. implementing a single step may take exponential
time. In Sect. XI the introduction of useful sharing will solve
these issues.
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B. Low-Level Implementation: Abstract Machines

Introducing Distilleries: an abstract machineM is meant
to implement a strategy⊸ via a distillation, i.e. a decoding
function · . A machine has a states, given by acodet, i.e. a l-
termt without ES and not considered up toα-equivalence, and
some data-structures like stacks, dumps, environments, and
eventually heaps. The data-structures are used to implement
the search of the next⊸-redex and some form of parsimo-
nious substitution, and they distill to evaluation contexts for
⊸. Every states decodes to a terms, having the shapeF 〈t〉,
wheret is a l-term andF is some kind of evaluation context
for ⊸.

A machine computes using transitions, whose union is noted
 , of two types. Theprincipal one, noted p, corresponds
to the firing of a rule defining⊸. In doing so, the machine
can differ from the calculus implemented by a transformation
of the evaluation context to an equivalent one, up to a
structural congruence≡. The commutativetransitions, noted
 c, implement the search for the next redex to be fired by
rearranging the data-structures to single out a new evaluation
context, and they are invisible on the calculus. The names
reflect a proof-theoretical view, as machine transitions can be
seen as cut-elimination steps [15], [28]. Garbage collection is
here simply ignored, as in the LSC it can always be postponed.

To preserve correctness, structural congruence≡ is required
to commute with evaluation⊸, i.e. to satisfy(
t

u

r

≡ ⇒ ∃q s.t.

t

u

r

q

≡ ≡

)
∧

(
t

u q

≡ ⇒ ∃r s.t.

t

u

r

q

≡ ≡

)

for each of the rules of⊸, preserving the kind of rule. In
fact, this means that≡ is a strong bisimulation (i.e. one
step to one step) with respect to⊸. Strong bisimulations
formalise transformations which are transparent with respect
to the behaviour, even at the level of complexity, because they
can be retarded without affecting the length of evaluation:

Lemma 1 (≡ Postponement). If ≡ is a strong bisimulation
and t (→ ∪ ≡)∗ u then t →∗≡ u and the number and kind
of steps of⊸ in the two reduction sequences is the same.

We can finally introduce distilleries,i.e. systems where a
strategy⊸ simulates a machineM up to structural equivalence
≡ (via the decoding· ).

Definition 2. A distillery D = (M,⊸,≡, · ) is given by:

1) An abstract machineM, given by

a) a deterministic labeledtransition system on
statess;

b) a distinguished class of states deemedinitial, in
bijection with closedl-terms and from which one
obtains thereachablestates by applying ∗;

c) a partition of the labels of the transition system 
as:

• principal transitions, noted p,
• commutativetransitions, noted c;

2) a deterministicstrategy⊸;

3) a structural equivalence≡ on terms s.t. it is a strong
bisimulation with respect to⊸;

4) a distillation · , i.e. a decoding function from states to
terms, s.t. on reachable states:
• Principal: s p s

′ impliess⊸≡ s′,
• Commutative: s c s

′ impliess ≡ s′.

We will soon prove that a distillery implies a simulation the-
orem, but we want a stronger form of relationship. Additional
hypothesis are required to obtain the converse simulation,
handle explicit substitution, and talk about complexity bounds.

Some terminology first. Anexecutionρ is a sequence of
transition from an initial state. With|ρ|, |ρ|p, and |ρ|c we
denote respectively the length, the number of principal, and
commutative transitions ofρ. The sizeof a term is noted|t|.

Definition 3 (Distillation Qualities). A distillery is
• Reflectivewhen on reachable states:

– Termination:  c terminates;
– Progress: if s reduces thens is not final.

• Explicit when
– Partition: principal transitions are partitioned into

multiplicative m and exponential e, like for the
strategy⊸.

– Explicit decoding: the partition is preserved by the
decoding, i.e.
∗ Multiplicative: s m s′ impliess⊸m≡ s′;
∗ Exponential: s e s

′ impliess⊸e≡ s′;
• Bilinear when it is reflective and

– Execution Length: given an executionρ from an
initial term t, the number of commutative steps|ρ|c
is linear in both|t| and |ρ|p (with a slightly stronger
dependency on|t|, due to the time needed to recog-
nise a normal form), i.e. if|ρ|c = O((1 + |ρ|p) · |t|).

– Commutative:  c is implementable on RAM in a
constant number of steps;

– Principal:  p is implementable on RAM inO(|t|)
steps.

A reflective distillery is enough to obtain a bisimulation
between the strategy⊸ and the machineM, that is strong
up to structural equivalence≡. With |ρ|m and |ρ|e we denote
respectively the number of multiplicative and exponential
transitions ofρ.

Theorem 5 (Correctness and Completeness). Let D be a
reflective distillery ands an initial state.

1) Strong Simulation: for every executionρ : s ∗ s′ there
is a derivationd : s⊸∗≡ s′ s.t. |ρ|p = |d|.

2) Reverse Strong Simulation: for every derivationd :
s ⊸∗ t there is an executionρ : s  ∗ s′ s.t. t ≡ s′

and |ρ|p = |d|.
Moreover, ifD is explicit then|ρ|m = |d|m and |ρ|e = |d|e.

Bilinearity, instead, is crucial for the low-level theorem.

Theorem 6 (Low-Level Implementation Theorem). Let⊸ be
a strategy on terms with ES s.t. there exists a bilinear distillery
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Table II
GLAM: DATA -STRUCTURES, DECODING AND TRANSITIONS

φ ::= t | (t, π) E,E′ ::= ǫ | [x�t] : E
π, π′ ::= ǫ | φ : π s, s′ ::= (D, t, π,E)

D,D′ ::= ǫ | D : (t, π)

ǫ := 〈·〉 [x�t] : E := 〈〈·〉[x�t]〉E

φ : π := 〈〈·〉φ〉π Fs := 〈D〈π〉〉E
(t, π) := 〈t〉π s := Fs〈t〉

D : (t, π) := D〈〈t〈〉〉π〉 wheres = (D, t, π,E)

D tu π E  c1 D : (t, π) u ǫ E
D lx.t u : π E  m D t π [x�u]E

D : (t, π) a π′ E  c3 D t (a, π′) : π E
D : (t, π) lx.u ǫ E  c2 D t lx.u : π E

D x π E1[x�u]E2  e D uα π E1[x�u]E2

whereuα is any codeα-equivalent tou that preserves well-naming of the machine, i.e. such that any bound name inuα

is fresh with respect to those inD, π andE1[x�u]E2.

D = (M,⊸,≡, · ). Then a⊸-derivation d is implementable
on RAM machines inO((1 + |d|) · |t|) steps, i.e. bilinear in
the size of the initial termt and the length of the derivation
|d|.

Proof: given d : t ⊸n u by Theorem 5.2 there is an
executionρ : s ∗ s′ s.t. u ≡ s′ and |ρ|p = |d|. The number
of RAM steps to implementρ is the sum of the number for
the commutative and the principal transitions. By bilinearity,
|ρ|c = O((1+ |ρ|p) · |t|) and so all the commutative transitions
in ρ requireO((1+|ρ|p)·|t|) steps, because a single one takes a
constant number of steps. Again by bilinearity, each principal
one requiresO(|t|) steps, and so all the principal transitions
together requireO(|ρ|p · |t|) steps.

We will discuss three distilleries, summarised in Table IV
(page 11), and two of them will be bilinear. The machines will
be sophisticated, so that we will first present a machine for
the inefficient Explicit FBC (Sect. VIII, called GLAM), that
we will later refine with useful sharing (Sect. XII, GLAMoUr)
and with renaming chains elimination (Sect. XIV, Unchaining
GLAMoUr).

Let us point out an apparent discrepancy with the literature.
For the simpler case without symbols, the number of com-
mutative steps of the abstract machine studied in [3] is truly
linear (and not bilinear),i.e. it does not dependent on the size
of the initial term. Three remarks:

1) Complete Evaluation: it is true only for evaluation to
normal form, while our low-level theorem is also valid
for both any prefix of the evaluation and diverging
evaluations.

2) Normal Form Recognition: it relies on the fact that
closed normal forms (i.e. values) can be recognised in
constant time, by simply checking the topmost construc-
tor. With symbols checking if a term is normal requires
time linear in its size, and so linearity is simply not
possible.

3) Asymptotically Irrelevant: the dependency from the ini-
tial term disappears from the number of commutative
transitions but still affects the cost of the principal ones,
because every exponentials transition copies a subterm
of the initial term, and thus it takesO(|t|) time.

VIII. A N INEFFICIENT DISTILLERY: THE GLAM M ACHINE

In this section we introduce the GLAM machine and show
that it distills to the Explicit FBC. The distillery is inefficient,
because Explicit FBC suffers of size explosion, but it is a
good case study to present distilleries before the optimisations.
Moreover, it allows to show an unexpected fact: while adding
useful sharing to the calculus will be a quite tricky and
technical affair (Sect. XI), adding usefulness to the GLAM will
be surprisingly simple (Sect. XII), and yet tests of usefulness
will only require constant time.

The machine of this section is the Global LAM (GLAM).
The name is due to a similar machine, based onlocal envi-
ronments, introduced in [15] and called LAM—standing for
Leroy Abstract Machine. The GLAM differs from the LAM in
two respects: 1) it usesglobal rather than local environments,
and 2) it has an additional rule to handle constructors.

Data-Structures:at the machine level,termsare replaced
by codes, i.e. terms not considered up toα-equivalence. To
distinguish codes from terms, we over-line codes like int.

States (noteds, s′, . . .) of the abstract machine are made out
of a context dumpD, a codet, an argument stackπ, and a
global environmentE, defined by the grammars in Table II. To
save space, sometimes we write[x�t]E for [x�t] : E. Note
that stacks may contain pairs(t, π) of a code and a stack,
used to code the application oft to the stackπ. We choose
this representation to implement commutative rules in constant
time.

The Machine: the machine transitions are given in Ta-
ble II. Note that the multiplicative one m puts a new entry
in the environment, while the exponential one e performs a
clashing-avoiding substitution from the environment. Theidea
is that the principal transitions m and e implement⊸m

and⊸e while the commutative transitions c1 ,  c2 , and
 c3 locate and expose the next redex following a right-to-left
strategy.

The commutative rule c1 forces evaluation to be right-to-
left on applications: the machine processes first the argument
u, saving the left sub termt on the dump together with its
current stackπ. The role of c2 and c3 is to backtrack to
the saved sub-term. Indeed, when the argument,i.e. the current
code, is finally put in normal form, encoded by astack item
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Table III
CONTEXT AND RELATIVE UNFOLDING

Context Unfolding Relative Unfolding Relative Context Unfolding

〈·〉

→

:= 〈·〉
(tS)

→

:= t

→

S

→

(St)

→

:= S

→

t

→

S[x�t]

→

:= S

→

{x�t

→

}

t

→

〈·〉
:= t

→

t

→

uS
:= t

→

S
t

→

Su
:= t

→

S
t

→

S[x�u]
:= t

→

S
{x�u

→

}

S′ →

〈·〉
:= S′ →

S′

→

uS
:= S′

→

S
S′ →

Su
:= S′ →

S
S′ →

S[x�u]
:= S′ →

S
{x�u

→
}

φ, the stack item is pushed on the stack, and the machine
backtracks to the pair on the dump.

The Distillery: machines start an execution oninitial
statesdefined as(ǫ, t, ǫ, ǫ), i.e. obtained by taking the term,
seen now as the codet, and setting toǫ the other machine
components. A state represents a term—given by the code—
and an evaluation context, that for the GLAM is obtained
by decodingD, π, andE. The decoding· (or distillation)
function is defined in Table II. Note that stacks are decoded
to contest in postfix notation for plugging. To improve read-
ability, when we decode machines, we will denoteW 〈t〉 with
〈t〉W , if the component occurs on the right oft in the machine
representation.

A machine state isclosed when all free variables in any
component of the state are bound inE or, equivalently, whens
is closed in the usual sense. It iswell-namedwhen all variables
bound in the state are distinct. We require well-namedness as
a machine invariant to allow every environment entry[x�t]
to be global (i.e. to bindx everywhere in the machine state).
From now on, the initial state associated to a termt has as
code the term obtainedα-convertingt to make it well-named.

For every machine we will have invariants, in order to
prove the properties of a distillery. They are always proved
by induction over the length of the execution, by a simple
inspection of the transitions. For the GLAM:

Lemma 2 (GLAM Invariants). Lets = (D, u, π, E) be a state
reachable from an initial codet. Then:

1) Closure: s is closed and well-named;
2) Value: values in components ofs are sub-terms oft;
3) Fireball: every term inπ, in E, and in every stack inD

is a fireball;
4) Contextual Decoding: E, D, π, andFs are evaluation

contexts;

The invariants are used to prove the following theorem.

Theorem 7 (GLAM Distillation). (GLAM,⊸f,≡, · ) is a
reflective explicit distillery. In particular, lets be a reachable
state reachable:

1) Commutative: if s c1,2,3 s′ thens = s′;
2) Multiplicative: if s m s

′ thens⊸m≡ s′;
3) Exponential: if s e s

′ thens⊸e s
′.

Since the Explicit FBC suffers of size-explosion, an expo-
nential step (and thus an exponential transition) may duplicate
a subterm that is exponentially bigger than the input. Then
(GLAM ,⊸f,≡, · ) does not satisfy bilinearity, for which

every exponential transition has to have linear complexityin
the size of the input.

IX. I NTERLUDE: RELATIVE UNFOLDINGS

Now we define some notions for weak contexts that will be
implicitly instantiated to all kind of contexts in the paper. In
particular, we define substitution over contexts, and then use
it to define the unfolding of a context, and the more general
notion of relative unfolding.

Implicit substitution on weak contextsW is defined by

〈·〉{x�u} := 〈·〉
(tW ){x�u} := t{x�u}W{x�u}
(Wt){x�u} := W{x�u}t{x�u}
W [y�t]{x�u} := W{x�u}[y�t{x�u}]
t[y�W ]{x�u} := t{x�u}[y�W{x�u}]

Lemma 3. Let t be a term andW a weak context. Then
W 〈t〉{x�u} = W{x�u}〈t{x�u}〉.

Now, we would like to extend the unfolding to contexts,
but in order to do so we have to restrict the notion of context.
Indeed, whenever the hole of a context is inside an ES, the
unfolding may erase or duplicate the hole, producing a term
or a multi-context, which we do not want. Thus, we turn to
(weak)shallow contexts, defined by:

S, S′, S′′ ::= 〈·〉 | St | tS | S[x�t].

(note the absence of the productiont[x�S]).
Now, we define in Table IIIcontext unfoldingS

→

, unfolding
t

→

S
of a termt relative to a shallow contextS andunfolding

S′

→

S
of a shallow contextS′ relative to a shallow contextS.

Relative unfoldings have a number of properties, summed
up in the appendix (page 24). Last, a definition that will be
important in the next section.

Definition 4 (Applicative Context). A shallow contextS is
applicativewhen its hole is applied to a sub termu, i.e. if
S = S′〈Lu〉.

X. I NTRODUCING USEFUL SHARING

Beware: this and the next sections will heavily use contexts
and notions about them as defined in Sect. VI and Sect. IX, in
particular the notions ofshallowcontext,applicative context,
and relative unfolding.

Introducing Useful Reduction:note that the substitution
steps in the size exploding family do not create redexes. We
want to restrict the calculus so that theseuselesssteps are
avoided. The idea of useful sharing, is to trigger an exponential
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redex only if it will somehow contribute to create a multiplica-
tive redex. Essentially, one wants only the exponential steps

F 〈x〉[x�L〈f〉]⊸e L〈F 〈f〉[x�f ]〉

s.t.F is applicative andf is a value, so that the firing creates
a multiplicative redex. Such a change of approach, however,
has consequences on the whole design of the system. Indeed,
since some substitutions are delayed, the present requirements
for the rules might not be met. Consider:

(λx.t)y[y�ab]

we want to avoid substitutingab for the argumenty,
but we also want that evaluation does not stop,i.e. that
(λx.t)y[y�ab] →m t[x�y[y�ab]]. To accomodate such a
dynamics, our definitions have to beup to unfolding, i.e.
fireballs have to be replaced byterms unfolding to fireballs.
There are 4 subtle things about useful reduction.

1) Multiplicatives and Variables. The idea is that the mul-
tiplicative rule becomes

L〈lx.t〉L′〈u〉 7→m L〈t[x�L′〈u〉]〉

where it is the unfoldingL′〈u〉

→

of the argumentL′〈u〉 that is a
fireball, and not necessarilyL′〈u〉 itself. Note that sometimes
variables are valid arguments of multiplicative redexes, and
consequently substitutions may contain variables.

2) Exponentials and Future Creations. The exponential rule
involves contexts, and is trickier to make it useful. A first
approximation of useful exponential step is

F 〈x〉[x�L〈u〉] 7→e L〈F 〈u〉[x�u]〉

where L〈u〉

→

is a value (i.e. it is not a inert) andF is
applicative, so that—after eventually many substitution steps,
whenx becomesu

→

—a multiplicative redex will pop out.
Note that an useful exponential step does not alwaysimme-

diately create a multiplicative redex. Consider the following
step (whereI is the identity):

(xI)[x�y][y�I]⊸e (yI)[x�y][y�I] (1)

No multiplicative redex has been created yet, but step (1) is
useful because thenext exponential step creates a multiplica-
tive redex:

(yI)[x�y][y�I]⊸e (II)[x�y][y�I]

3) Evaluation and Evaluable Contexts. The delaying of
useless substitutions impacts also on the notion of evaluation
context F , used in the exponential rule. For instance, the
following exponential step should be useful

((xI)y)[x�I][y�ab]⊸e ((II)y)[x�I][y�ab]

but the context((〈·〉I)y)[x�I][y�ab] isolating x is not an
evaluation context, it only unfolds to one. We then need a no-
tion of evaluation context up to unfolding. The intuition isthat
a shallow contextS is evaluableif S

→

is an evaluation context
(see Sect. IX for the definition of context unfolding), and itis

useful if it is evaluable and applicative. The exponential rule
then should rather be:

S〈x〉[x�L〈u〉] 7→e L〈S〈u〉[x�u]〉

whereu

→

is a valueandS is useful.
4) Context Closure vs Global Rules. Such a definition, while

close to the right one, still misses a fundamental point,i.e.
the global nature of useful steps. Evaluation rules are indeed
defined by a furtherclosure by contexts, i.e. a step takes
place in a certain shallow contextS′. Of course,S′ has to
be evaluable, but there is more. Such a context, in fact, may
also give an essential contribution to the usefulness of a step.
Let us give an example. Consider the following exponential
step

(xx)[x�y]⊸e (yx)[x�y]

By itself it is not useful, sincey is not a value nor unfolds to
one. If we plug that redex in the contextS := 〈·〉[y�I], how-
ever, theny unfolds to a value inS, asy

→

S
= y

→

〈·〉[y�λz.z]
=

λz.z, and the step becomes:

(xx)[x�y][y�λz.z]⊸e (yx)[x�y][y�λz.z] (2)

No multiplicative redex has been created yet, but step (2) is
useful because it is essential for the creation given by thenext
exponential step:

(yx)[x�y][y�λz.z]⊸e ((λz.z)x)[x�y][y�λz.z]

Note, indeed, that(λz.z)x gives a useful multiplicative redex,
becausex unfolds to a fireball in its context〈·〉[x�y][y�λz.z].

Summing up, the useful or useless character of a step
depends crucially on the surrounding context. Therefore useful
rules have to beglobal: rather than given as axioms closed by
evaluable contexts, they will involve the surrounding context
itself and impose conditions about it.

The Useful FBC, presented in the next section, formalises
these ideas. We will prove it to be a locally bounded imple-
mentation of→f, obtaining our fist high-level implementation
theorem.

XI. T HE USEFUL FIREBALL CALCULUS

For the Useful FBC, terms, values, and substitution contexts
are unchanged (with respect to the Explicit FBC), and we use
shallow contextsS as defined in Sect. IX. Aninitial term is
still a closed term with no explicit substitutions.

The new key notion is that ofevaluablecontext.

Definition 5 (Evaluable and Useful Contexts). Evaluable
(shallow) contexts are defined by the inference system in
Table V. A context isuseful if it is evaluable and applicative
(being applicative is easily seen to be preserved by unfolding).

Point 1 of the following Lemma 4 guarantees that evaluable
contexts capture the intended semantics suggested in the pre-
vious section. Point 2 instead provides an equivalent inductive
formulation that does not mention relative unfoldings. The
definition in Table V can be thought has beenfrom the
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Table IV
DISTILLERIES IN THE PAPER + REWRITING RULES FOR THEUSEFULFBC

Calculus Machine
FBC→f

Explicit FBC⊸f GLAM
Useful FBC⊸uf GLAMoUr

Unchaining FBC⊸of Unchaining GLAMoUr

RULE (ALREADY CLOSED BY CONTEXTS) SIDE CONDITIONS

S〈L〈lx.t〉u〉⊸um S〈L〈t[x�u]〉〉 S〈Lu〉 is useful

S〈S′〈x〉[x�L〈u〉]〉⊸ue S〈L〈S′〈u〉[x�u]〉〉 S〈S′[x�L〈u〉]〉 is useful
u 6= u′[y�w] andu

→

S〈L〉
= v

outside, while the lemma give a characterisationfrom the
inside, relating sub-terms to their surrounding sub-context.

Lemma 4.

1) If S is evaluable thenS

→

is an evaluation context.
2) S is evaluable iffu

→

S′
is a fireball wheneverS =

S′〈S′′u〉 or S = S′〈S′′[x�u]〉.

Rewriting Rules:the two rewriting rules⊸um and⊸ue

are defined in Table IV, and we use⊸uf for ⊸um ∪ ⊸ue.
The rules areglobal, i.e. they do not factor as a rule followed
by a contextual closure. As already explained, the context has
to be taken into account, to understand if the step is useful to
multiplicative redexes.

In rule⊸um, the requirement that whole context around the
abstraction is useful guarantees that the argumentu unfolds
to a fireball in its context. Note also that in⊸ue this is
not enough, we have to be sure that such an unfolding is a
value, otherwise it will not be useful to multiplicative redexes.
Moreover, the rule requiresu 6= u′[y�w], to avoid copying
substitutions.

A detailed study of useful evaluation (in the appendix)
shows that:

Theorem 8 (Quadratic High-Level Implementation). (→f

,⊸uf) is a locally bounded high-level implementation system,
and so it has a quadratic overhead wrt→f.

Moreover, the structural equivalence≡ is a strong bisimu-
lation also with respect to⊸uf.

Proposition 4 (≡ is a Strong Bisimulation wrt⊸uf). Let
x ∈ {um, ue}. Then,t ≡ u and t ⊸x t′ implies that there
existsu′ such thatu⊸x u

′ and t′ ≡ u′.

XII. T HE GLAM OUR MACHINE

Here we refine the GLAM with a very simple tagging of
stacks and environments, in order to implement useful sharing.
The idea is that every term in the stack or in the environment
carries a labell ∈ {v,A} indicating if it unfolds (relatively to
the environment) to a value or to a inert.

The grammars are identical to the GLAM, up to labels:

l ::= v | A E,E′ ::= ǫ | [x�φl] : E
π, π′ ::= ǫ | φl : π

The decoding of the various machine components is iden-
tical to that for the GLAM, up to labels that are ignored. The
state context, however, now is notedSs, as it is not necessary
an evaluation context.

The transitions are in Table VI. They are obtained from
those of the GLAM by:

1) Backtracking instead of performing a useless substitu-
tion: there are two new backtracking cases c4 and c5

(that in the GLAM were handled by the exponential tran-
sition), corresponding to avoided useless duplications:
 c4 backtracks when the entryφ to substitute is marked
A (as it unfolds to a inert) and c5 backtracks when the
term is markedv but the stack is empty (i.e. the context
is not applicative).

Table V
EVALUABLE SHALLOW CONTEXTS

〈·〉 is evaluable
S is eval. t

→

is a fireball

St is evaluable

S is evaluable
tS is evaluable

S{x�t

→

} is eval. t

→

is a fireball

S[x�t] is evaluable

Table VI
TRANSITIONS OF THEGLAM OUR

D tu π E  c1 D : (t, π) u ǫ E
D lx.t φl : π E  um D t π [x�φl]E

D : (t, π) lx.u ǫ E  c2 D t (lx.u)v : π E
D : (t, π) a π′ E  c3 D t (a, π′)A : π E
D : (t, π) x π′ E1[x�φA]E2  c4 D t (x, π′)A : π E1[x�φA]E2

D : (t, π) x ǫ E1[x�uv]E2  c5 D t xv : π E1[x�uv]E2

D x φl : π E1[x�uv]E2  ue D uα φl : π E1[x�uv]E2

whereuα is any codeα-equivalent tou that preserves well-naming of the machine.

11



2) Substituting only when it is useful: the exponential
transition is applied only when the term to substitute
has labelv and the stack is non-empty.

Lemma 5 (GLAMoUr Invariants). Let s = (D, u, π, E) be a
state reachable from an initial codet. Then:

1) Closure: s is closed and well named;
2) Value: values in components ofs are sub-terms oft;
3) Fireball: t

→

E
is a fireball (of kindl) for every codet

l
in

π, E, and in every stack ofD;
4) Evaluability: E, D

→

E
, π

→

E
, andSs are evaluable con-

texts;
5) Environment Size: the length of the global environment

E is bound by|ρ|m.

Theorem 9 (GLAMoUr Distillation). (GLAMoUr,⊸uf,≡
, · ) is a reflective explicit distillery. In particular, lets be
a reachable state:

1) Commutative: if s c1,2,3,4,5 s′ thens = s′;
2) Multiplicative: if s um s

′ thens⊸um≡ s′;
3) Exponential: if s ue s

′ thens⊸ue s
′.

In fact, the distillery is even bilinear, as we now show. The
proof employs the following definition of size of a state.

Definition 6. Thesizeof codes and states is defined by:

|x| = |a| := 1 |tu| := |t|+ |u|+ 1
|lx.t| := |t|+ 1 |(D, t, π, E)| := |t|+Σ(u,π)∈D|u|

Lemma 6 (Size Bounded). Let s = (D, u, π, E) be a state
reached by an executionρ of initial code t. Then|s| ≤ (1 +
|ρ|ue)|t| − |ρ|c.

Proof: by induction over the length of the derivation. The
property trivially holds for the empty derivation. Case analysis
over the last machine transition.Commutative rule c1 : the
rule splits the codetu between the dump and the code, and the
measure—as well as the rhs of the formula—decreases by 1
because the rule consumes the application node.Commutative
rules c2,3,4,5 : these rules consume the current code, so they
decrease the measure of at least 1.Multiplicative: it consumes
the lambda abstraction.Exponential: it modifies the current
code by replacing a variable (of size 1) with a valuev coming
from the environment. Because of Lemma 5.2,v is a sub-term
of t and the dump size increment is bounded by|t|.

Corollary 1 (Bilinearity of c). Let s be a state reached by
an executionρ of initial code t. Then|ρ|c ≤ (1 + |ρ|e)|t|.

Finally, we obtain our first implementation theorem.

Theorem 10 (Useful Implementation).

1) Low-Level Bilinear Implementation: a ⊸uf-derivation
d is implementable on RAM inO((1 + |d|) · |t|) (i.e.
bilinear) steps.

2) Low + High Quadratic Implementation: a→f-derivation
d is implementable on RAM inO((1 + |d|2) · |t|) steps,
i.e. linear in the size of the initial termt and quadratic
in the length of the derivation|d|.

XIII. T HE UNCHAINING FBC

In this section we start by analysing why the Useful FBC
has a quadratic overhead. We then refine it, obtaining the
Unchaining FBC, that we will prove to have only a linear
overhead wrt the FBC. The optimisation has to do with the
order in which chains of useful substitutions are performed.

Analysis of Useful Substitution Chains:in the Useful
FBC, whenever there is a situation like

(x1A)[x1�x2] . . . [xn−1�xn][xn�v]

the ⊸uf strategy performsn + 1 exponential steps⊸ue

replacingx1 with x2, then x2 with x3, and so on, untilv
is finally substituted on the head

(xnA)[x1�x2] . . . [xn−1�xn][xn�v] ⊸ue

(vA)[x1�x2] . . . [xn−1�xn][xn�v]

and a multiplicative redex can be fired. Any later occurrence
of x1 will trigger the same chain of exponential steps again.
Because the lengthn of the chain is bounded by the number
of previous multiplicative steps (local bound property), the
overall complexity of the machine is quadratic in the number
of multiplicative steps. In our previous work [16], we showed
that to reduce the complexity to linear it is enough to perform
substitution steps in reverse order, modifying the chains while
traversing them. The idea is that in the previous example
one should rather have a smart reduction⊸oe (o stays for
optimised, asu is already used for useful reduction) following
the chain of substitutions and performing:

(x1A)[x1�x2] . . . [xn−1�xn][xn�v] ⊸oe

(x1A)[x1�x2] . . . [xn−1�v][xn�v] ⊸oe

. . .
(x1A)[x1�v] . . . [xn−1�v][xn�v] ⊸oe

(vA)[x1�v] . . . [xn−1�v][xn�v]

Later occurrences ofx1 will no longer trigger the chain,
because it has beenunchainedby traversing it the first time.

Unfortunately, introducing such an optimisation for useful
reduction is hard. In the shown example, that has a very simple
form, it is quite easy to define whatfollowing the chainmeans.
For the distillation machinery to work, however, we need our
rewriting rules to be stable by structural equivalence, whose
action is a rearrangement of substitutions through the term
structure. Then the substitutions[xi�xi+1] of the example
can be spread all over the term, interleaved by applications
and other substitutions, and even nested one into the other
(like in [xi�xi+1[xi+1�xi+2]]). This makes the specification
of optimised useful reduction a quite technical affair.

Chain Contexts:reconsider a term like in the example,
(xA)[x1�x2][x2�x3][x3�x4][x4�v]. We want the next step
to substitute onx4 so we should give a status to the context
C := (xA)[x1�x2][x2�x3][x3�〈·〉]. The problem is thatC
can be deformed by structural equivalence≡ as

C′ := (x[x1�x2[x2�x3]]A)[x3�〈·〉]

and so this context has to be caught too. We specify these
context in Table VII aschain contextsC, defined using the

12



Table VII
IDENTITY, CHAIN , AND CHAIN -STARTING CONTEXT + REWRITING RULES OF THEUNCHAINING FBC

I, I′ ::= 〈·〉 | I〈x〉[x�I′] | I[x�t]
C,C′ ::= S〈x〉[x�I] | C〈x〉[x�I] | S〈C〉

←−−−−−−−
S〈y〉[y�I]x := S[y�I〈x〉]
←−−−−−−−
C〈y〉[y�I]x :=

←−
C y[y�I〈x〉]

←−−−
S〈C〉x := S〈

←−
C x〉

RULE (ALREADY CLOSED BY CONTEXTS) SIDE CONDITION
S〈L〈lx.t〉u〉⊸om S〈L〈t[x�u]〉〉 S〈〈·〉u〉 is useful

S〈S′〈x〉[x�L〈v〉]〉⊸oes S〈L〈S′〈v〉[x�v]〉〉 S〈S′[x�L〈v〉]〉 is useful

S〈C〈x〉[x�L〈v〉]〉⊸oec S〈L〈C〈v〉[x�v]〉〉 S〈
←−
C x[x�L〈v〉]〉 is useful

auxiliary notion of identity contextI, that captures a simpler
form of chain (note that both notions are not shallow).

Given a chain contextC, we will need to retrieve the point
where the chain started,i.e. the shallow context isolating the
variable at the left end of the chain (x1 in the example). We
are now going to define an operation associating to every chain
context itschain-starting (shallow) context. To see the two as
contexts of a same term, we need also to provide the sub-term
that we will put in C (that will always be a variable). The
chain-starting context

←−
C x associated to the chain contextC

(with respect tox) is defined in Table VII.
For our exampleC := (xA)[x1�x2][x2�x3][x3�〈·〉] we

have
←−
C x4 = (〈·〉A)[x1�x2][x2�x3][x3�x4], as expected.

Rewriting Rules: the rules of the Unchaining FBC are
in Table VII. Note that the exponential rule splits in two, the
ordinaryshallowcase⊸oes (now constrained to values) and
the chain case⊸oec (where the new definition play a role).
They could be merged, but for the complexity analysis and
the relationship with the next machine is better to distinguish
them. We use⊸oe for ⊸oes ∪ ⊸oec, and⊸of for ⊸om

∪⊸oe. Note the use of
←−
C x in the third side condition.

A. Linearity: Multiplicative vs Exponential Analysis

To prove that⊸of implements→f with a global bound, and
thus with a linear overhead, we need to show that the global
number of exponential steps (⊸oe) in a ⊸of-derivation is
bound by the number of multiplicative steps (⊸om). We need
the following invariant.

Lemma 7 (Subterm Invariant). Let t be al-term andd : t⊸∗

u. Then every value inu is a value int.

A substitutiont[x�u] is basic if u has the formL〈y〉. The
basic size|t|b of t is the number of its basic substitutions.

Lemma 8 (Steps and Basic Size).

1) If t⊸oes u then |u|b = |t|b;
2) If t⊸oec u then |t|b > 0 and |u|b = |t|b − 1;
3) If t⊸om u then |u|b = |t|b or |u|b = |t|b + 1.

Lemma 9. Let t be initial and d : t ⊸∗of u. Then |u|b ≤
|d|om − |d|oec.

Proof: by induction on|d|. If |d| = 0 the statement holds.
If |d| > 0 consider the last stepw⊸of u of d and the prefix
e : t ⊸∗of w of d. By i.h., |w|b ≤ |e|om − |e|oec. Cases of

w⊸of u.
Shallow Exponential Step⊸oes:

|u|b ≤L.8.1 |w|b − 1
≤i.h. |e|om − |e|oec − 1
= |e|om − (|e|oec + 1) = |d|om − |d|oec

Chain Exponential Step⊸oec:

|u|b =L.8.2 |w|b ≤i.h. |e|om − |e|oec = |d|om − |d|oec

Multiplicative Step⊸om:

|u|b ≤L.8.3 |w|b + 1
≤i.h. |e|om − |e|oec + 1
= e+ 1− |e|oec = |d|om − |d|oec

Corollary 2 (Linear Bound on Chain Exponential Steps). Let
t be initial andd : t⊸∗of u. Then|d|oec ≤ |d|om.

Next, we bound shallow steps.

Lemma 10(Linear Bound on Shallow Exponential Steps). Let
t be initial andd : t⊸∗of u. Then|d|oes ≤ |d|om.

Proof: first note that ift⊸oes u thenu⊸om w, because
by definition⊸oes can fire only if it creates a⊸om-redex.
Such a fact and determinism of⊸of together imply|d|oes ≤
|d|om+1, because every⊸oes step is matched by the eventual
⊸om steps that follows it immediately. However, note that in
t there are no explicit substitutions so that the first step is
necessarily an unmatched⊸om step. Thus|d|oes ≤ |d|om.

Theorem 11 (Linear Bound on Exponential Steps). Let t be
initial and d : t⊸∗of u. Then|d|oe ≤ 2 · |d|om.

Proof: by definition, |d|oe = |d|oec + |d|oes. By Corol-
lary 2, |d|oec ≤ |d|om and by Lemma 10|d|oes ≤ |d|om, and so
|d|oe ≤ 2 · |d|om.

We presented the interesting bit of the proof of our im-
proved high-level implementation theorem, which follows.The
remaining details are in the appendix.

Theorem 12(Linear High-Level Implementation). (→f,⊸of)
is a globally bounded high-level implementation system, and
so it has a linear overhead wrt→f.

Last, the structural equivalence≡ is a strong bisimulation
also for the Unchaining FBC.

Proposition 5 (≡ is a Strong Bisimulation). Let x ∈
{om, oms, omc}. Then,t ≡ u and t ⊸x t′ implies that there
existsu′ such thatu⊸x u

′ and t′ ≡ u′.
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Table VIII
TRANSITIONS OF THEUNCHAINING GLAM OUR

D ǫ tu π E  c1 D : (t, π) ǫ u ǫ E
D ǫ lx.t φl : π E  om D ǫ t π [x�φl]E

D : (t, π) ǫ lx.u ǫ E  c2 D ǫ t (lx.u)v : π E
D : (t, π) ǫ a π′ E  c3 D ǫ t (a, π′)A : π E
D : (t, π) ǫ x π′ E1[x�φA]E2  c4 D ǫ t (x, π′)A : π E1[x�φA]E2

D : (t, π) ǫ x ǫ E1[x�uv]E2  c5 D ǫ t xv : π E1[x�uv]E2

D ǫ x φl : π E1[x�vv]E2  oes D ǫ vα φl : π E1[x�vv]E2

D H x φl : π E1[x�yv]E2  c6 D H : x y φl : π E1[x�yv]E2

D H : y x φl : π E•  oec D H y φl : π E◦

with E• := E1[x�vv ]E2[y�xv]E3, E◦ := E1[x�vv ]E2[y�vαv]E3, and wherevα is any codeα-equivalent tov
that preserves well-naming of the machine.

XIV. U NCHAINING GLAM OUR

The Unchaining GLAMoUr machine, in Table VIII, behaves
like the GLAMoUr machine until the code is a variablex1

that is hereditarily bound in the global environment to a value
via the chain[x1�x2]

v . . . [xn�v]v. At this point the machine
needs to traverse the chain until it finds the final binding
[xn�v]v, and then traverse again the chain in the opposite
direction replacing every[xi�xi+1]

v entry with [xi�v]v.
The forward traversal of the chain is implemented by a new

commutative rule c6 that pushes the variables encountered in
the chain on a new machine component, called thechain heap.
The backward traversal is driven by the next variable popped
from the heap, and it is implemented by a new exponential
rule (thechain exponential rule, corresponding to that of the
calculus). Most of the analyses performed on the GLAMoUr
machine carry over to the Unchaining GLAMoUr without
modifications.

Every old grammar is as before, and heaps are simply lists
of variables,i.e. they are defined byH ::= ǫ | H : x.

Decoding and Invariants:because of chain heaps and
chain contexts, the decoding is involved.

First of all, note that there is a correlation between the chain
and the environment, as the variables of a chain heapH =
x1 : . . . : xn need to have corresponding entries[xi�xv

i+1].
More precisely, we will show that the following notion of
compatibility is an invariant of the machine.

Definition 7 (Compatibility Heap-Environment). Let E be an
environment andH = x1 : . . . : xn be a heap. We say thatH
is compatiblewith E if either H is empty or[xi�xv

i+1] ∈ E
for i < n, [xn�xv] ∈ E, and [x�φv] ∈ E for someφv.

Given a states = (D,H, t, π, E), the dump, the stack and
the environment provide a shallow contextSs := 〈D〈π〉〉E
that will be shown to be evaluable, as for the GLAMoUr.

If the chain heapH is not empty, the current codet is
somewhere in the middle of a chain inside the environment,
and it is not apt to fill the state contextSs. The right code is
the variablex1 starting the chain heapH = x1 : . . . : xn, i.e.:

t
ǫ

:= t t
x1:...:xn := x1

Finally, a state decodes to a term as follows:s := Ss〈t
H
〉.

Lemma 11 (Unchaining GLAMoUr Invariants). Let s =
(D,H, u, π, E) be a state reachable from an initial codet.

1) Closure: s is closed ands is well named;
2) Value: values in components ofs are sub-terms oft;
3) Fireball: t

→

E
is a fireball (of kindl) for every codet

l
in

π andE;
4) Evaluability: E, D

→

E
, π

→

E
, andSs are evaluable cont.;

5) Environment Size: the length of the global environment
E is bound by|ρ|m.

6) Compatible Heap: if H 6= ǫ then the stack is not empty,
u = x, andH is compatible withE.

We need additional decodings to retrieve the chain-
starting contextC in the side-condition of⊸oec rule, that—
unsurprisingly—is given by the chain heap. Lets = (D,H :
y, t, π, E) be a state s.t.H : y is compatible withE. Note
that compatibility givesE = E1[y�t

v
]E2. Define the chain

contextCs and the substitution contextLs as:

Cs := 〈D〈〈yH〉π〉〉E1[y�〈·〉] Ls := E2

The first point of the following lemma guarantees thatCs

andLs are well defined. The second point proves that filling
Ls〈Cs〉 with the current term gives exactly the decoding of the
states = Ss〈y

H〉, and that moreover the chain starts exactly
on the evaluable context given by the state,i.e. that Ss =

Ls〈
←−
Cs

x〉.

Lemma 12 (Heaps and Contexts). Let s = (D,H : y, x, π, E)
be a state s.t.H : y is compatible withE. Then:

1) Ls is a substitution context andCs is a chain context
2) s. t. s = Ss〈y

H〉 = Ls〈Cs〈x〉〉 with Ss = Ls〈
←−
Cs

x〉

We can now sum up.

Theorem 13 (Unchaining GLAMoUr Distillation).
(Unchaining GLAMoUr,⊸of,≡, · ) is a reflective explicit
distillery. In particular, lets be a reachable state:

1) Commutative: if s c1,2,3,4,5,6 s′ thens = s′;
2) Multiplicative: if s om s

′ thens⊸om≡ s′;
3) Shallow Exponential: if s oes s

′ thens⊸oes s
′;

4) Chain Exponential: if s oec s
′ thens⊸oec s

′.

A. Bilinearity: Principal vs Commutative Analysis

Bilinearity wrt c1,2,3,4,5 is identical to that of the GLAM-
oUr, thus we omit it and focus on c6 .
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The size|H | of a chain heap is its length as a list.

Lemma 13 (Linearity of c6). Let s = (D,H, t, π, E) be a
state reached by an executionρ. Then

1) |ρ|c6 = |H |+ |ρ|oec.
2) |H | ≤ |ρ|m.
3) |ρ|c6 ≤ |ρ|m + |ρ|oec = O(|ρ|p).

Proof: 1) By induction over |ρ| and analysis of the
last machine transition. The c6 steps increment the size
of the heap. The oec steps decrement it. All other steps
do not change the heap.2) By the compatible heap invariant
(Lemma 11.6),|H | ≤ |E|. By the environment size invariant
(Lemma 11.5),|E| ≤ |ρ|m. Then |H | ≤ |ρ|m. 3) Plugging
Point 2 into Point 1.

Corollary 3 (Bilinearity of c). Let s be a state reached by
an executionρ of initial code t. Then |ρ|c ≤ (1 + |ρ|e)|t| +
|ρ|m + |ρ|oec = O((1 + |ρ|p) · |t|).

Finally, we obtain the main result of the paper.

Theorem 14 (Useful Implementation).

1) Low-Level Bilinear Implementation: a ⊸of-derivation
d is implementable on RAM inO((1 + |d|) · |t|) steps.

2) Low + High Bilinear Implementation: a →f-derivation
d is implementable on RAM inO((1 + |d|) · |t|) steps.

Let us conclude with a remark. For our results to hold,
the output of the computation has to be given in compact
form, i.e. with ES. The unfolding a termt with ES may
have size exponential in the size oft. It is important to show,
then, that the common operations onλ-terms, and in particular
equality checking (up toα-conversion), can be implemented
efficiently on the shared representation, avoiding unfolding.
In other words, we want to prove that ES aresuccinct data
structures, in the sense of Jacobson [36].

Despite quadratic and quasi-linear recent algorithms [6],
[37] for testing equality of terms with ES, we discovered
that a linear algorithm can be obtained slightly modifying
an algorithm already known quite some time before (1976!):
the Paterson-Wegman linear unification algorithm [38] (better
explained in [39]). The algorithm works on first order terms
represented as DAGs, and unification boils down to equality
checking when no metavariable occurs in the involved terms.

To apply the Paterson-Wegmar algorithm, we need to over-
come two difficulties. The first one is that ES implement
sharing explicitly: to represent the termtt sharing the two
occurrences oft we need to introduce a variable and an ES,
obtaining xx[x�t]. On the contrary, the input to Paterson-
Wegmar should be a DAG where the application node points
directly twice to the root oft. The required change in repre-
sentation can be easily computed in linear time in the size of
the input. The second difficulty is that Paterson-Wegmar works
on first-order terms, while we want to considerα-conversion.
If we assume that occurrences ofλ-bound variables point to
their binder, two variables areα-equivalent when they point
to nodes that have already been determined to be candidates

for equality. The details of the adaptation of Paterson-Wegmar
are left to a forthcoming publication.
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APPENDIX A
PROOFSOMITTED FROM SECT. IV

(THE FIREBALL CALCULUS)

The following lemmas are required to prove Theorem 1.

Lemma 14. Let t be a closed→f-normal term. Thent is a
fireball.

Proof: by induction ont. Cases:

1) Variable. Impossible, becauset is closed.
2) SymbolandAbstraction. Thent is a fireball.
3) Application. Thent = uw, with u andw both closed and
→f-normal. By i.h. they are both fireballs. Moreover,u
cannot be a value, otherwiset would not be→f-normal.
Then it is a inert andt is a fireball.

Lemma 15. Let t be a inert or a fireball. Thent is→f-normal.

Proof: by induction ont. If t is a valuev or a symbola
then it is→f-normal. Otherwiset = Af and by i.h. both A
andf are→f-normal. SinceA cannot be an abstraction,t is
→f-normal.

Lemma 16 (Determinism of→f). Let t be a term. Thent has
at most one→f redex.

Proof: by induction ont. Cases:

1) Variable, Symbol, or Abstraction. No redexes.
2) Applicationt = uw. By i.h., there are two cases forw:

a) w has exactly one→f redex. Then t has a→f

redex, becauseu〈·〉 is an evaluation context. More-
over, no→f redex fort can lie inu, because by
Lemma 15w is not a fireball, and so〈·〉w is not
an evaluation context.

b) w has no→f redexes. If w is not a fireball thent
has no redexes, because〈·〉w is not an evaluation
context. If w is a fireball we look atu. By i.h.,
there are two cases:

i) u has exactly one→f redex. Thent has a→f

redex, because〈·〉w is an evaluation context and
w is a fireball. Uniqueness comes from the fact
thatw has no→f redexes.

ii) u has no→f redexes. If u is not a fireball (and
thus not a value) thent has no redexes. Ifu is
a fireball there are two cases:

• u is a inertA. Thent is a fireball.
• u is a value lx.r. Then t = (lx.r)w is a
→f redex, becausew is a fireball. Moreover,
there are no other→f redexes, because eval-
uation does not go under abstractions andw
is a fireball.

Proof of Theorem 1 (page 4)
Proof: by Lemma 16 and Lemma 14.
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The following easy properties of substitution will be needed
later.

Lemma 17.
1) Substitutions Commute:

t{x�u}{y�w} = t{y�w}{x�u{y�w}};
2) Fireballs are Stable by Substitution:

a) If u is a inert thenu{x�t} is a inert, and
b) if u is a fireball thenu{x�t} is a fireball.

3) →f and Substitution Commute: if F 〈t〉 →f F 〈u〉
with t 7→f u then F 〈t〉{x�w} →f F 〈u〉{x�w} with
t{x�w} 7→f u{x�w}.

Proof:

1) By induction ont.
2) By induction onu.

a) u is a inert. Cases:
i) If u = a then u{x�t} = a{x�t} = a is a

inert.
ii) If u = L′〈A〉L′′〈f〉 then by i.h. L′〈A〉{x�t}

is a inert and L′′〈f〉{x�t} is a fireball,
and so u{x�t} = (L′〈A〉L′′〈f〉){x�t} =
L′〈A〉{x�t}L′′〈f〉{x�t} is a inert.

b) u is a fireball. Cases:
i) u is a value λx.w. Then u{x�t} =

λx.w{x�t}, which is a value,i.e. a fireball.
ii) u is a inert A. Then by Point 2au{x�t} is a

inert, i.e. a fireball.
3) By induction onF . Cases:

a) Empty contextF = 〈·〉. If t = (λy.r)f 7→f

r{y�f} = u then

t{x�w} =
((λy.r)f){x�w} = (def. of ·{·�·})
(λy.r{x�w})f{x�w} →f

r{x�w}{y�f{x�w}} = (Point 1)
r{y�f}{x�w} =
u{x�w}

b) Application RightF = rF ′. Then

F 〈t〉{x�w} =
(rF ′〈t〉){x�w} =
r{x�w}F ′〈t〉{x�w} →f (i.h.)
r{x�w}F ′〈u〉{x�w} =
(rF ′〈u〉){x�w} =
F 〈u〉{x�w}

c) Application LeftF = F ′f . Then

F 〈t〉{x�w} =
(F ′〈t〉f){x�w} =
F ′〈t〉{x�w}f{x�w} →f (i.h. & Point 2b)
F ′〈u〉{x�w}f{x�w} =
(F ′〈u〉f){x�w} =
F 〈u〉{x�w}

APPENDIX B
PROOFSOMITTED FROM SECT. VI

(FIREBALLS AND EXPLICIT SUBSTITUTIONS)

A. Closed Normal Forms and Determinism

The first step is to identify the reduction invariants, the most
important one being the shape of terms—calledproper—that
are produced by the strategy⊸f starting with a term without
ES.

Definition 8 (Proper Term). A term t is properif
1) ES: any explicit substitution int contains an answer,

and
2) Value: any value int does not contain ES.

We also say that an ES is proper when it contains a proper
answer.

Note that initial terms (having no ES) are proper and so
the next lemma applies in particular when the starting term is
initial.

Lemma 18 (Proper Invariant). Let t be a proper term. Ift⊸∗f
u thenu is proper.

Proof: by induction on the lengthk of the derivation
t ⊸∗f u. If k = 0 the statement is just the hypothesis.
Otherwise t ⊸k−1

f w ⊸f u and by i.h. w is proper.
Note that 1) multiplicative steps create proper ES, and 2)
exponential steps copy proper fireballs only out of values and
ES, preserving properness.

We now characterize normal forms: the next three lemmas
conclude that normal terms are answers, and that answers are
fireballs up to unfolding.

Point 2.a of the next statement is given with respect to
unfolding relative with shallow context (defined in Sect. IX,
page 9) because it will be used in this more general form in
later sections.

Lemma 19 (Properties of Answers). Let t = L〈u〉. Answers
are⊸f-normal, do not decompose asF 〈x〉, and (relatively)
unfold to fireballs. More precisely,

1) If u is a inert or a fireball thent is⊸f-normal and it
does not decompose asF 〈x〉,

2) Moreover,

a) If u is a inert thent

→

S
is a inert.

b) If u is a fireball thent

→

S
is a fireball.

Proof: by induction onL. Cases:
• Empty List〈·〉. By induction onu.

1) u is a inert. Cases:
a) u is a symbola. Then it is normal and clearly

does not decompose asF 〈x〉. Moreover,t

→

S
=

a

→

S
= a is a inert.

b) u is a inert L′〈A〉L′′〈f〉. Then by i.h. both
L′〈A〉 and L′′〈f〉 are normal. SinceA can-
not be an abstraction, the topmost application
cannot be a⊸m-redex, and sou is normal.
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For each ofL′〈A〉 and L′′〈f〉 i.h. gives that
it does not decompose asF 〈x〉. Then u does
not decompose either. Moreover, byi.h.L′〈A〉

→

S

is a inert andL′′〈f〉

→

S
is a fireball, and so

t

→

S
=L.30.1 L′〈A〉

→

S
L′′〈f〉

→

S
is a inert.

2) u is a fireball. Cases:

a) u is a valueλx.w. Then it is normal and does
not decompose asF 〈x〉. Moreover,t

→

=L.30.1
λx.w

→

, which is a value,i.e. a fireball.
b) u is a inertA. Given by thei.h..

• Non-Empty ListL = L′[x�w]. By i.h., L′〈u〉 is normal
and cannot be decomposed asF 〈x〉, and so there cannot
be⊸e redexes involving[x�w]. Thust is normal.
For the absence of a decomposition, note that—apart from
the trivial decomposition〈L〈u〉〉, that is not of the form
F 〈x〉—every decomposition ofL〈u〉 is obtained from
a decomposition ofL′〈u〉 by appending[x�w], and so
L〈u〉 does not decompose asF 〈x〉.
For the moreoverpart, by i.h. L′〈u〉 verifies the state-
ment for no matter which shallow context. Thent

→

S
=

L′〈u〉[x�w]

→

S
=L.30.6 L′〈u〉

→

S〈〈·〉[x�w]〉
also verifies the

statement.

Lemma 20 (Normal Form Characterization). Let t be a⊸f-
normal term.

1) Either t is an answer,
2) or t = F 〈x〉.

Proof: by induction ont. Cases:

1) Variable t = x. Here Point 2 holds, while evidently
Point 1 is false.

2) Symbolt = a. Here Point 1 holds, and Point 2 is false.
3) Abstractiont = λx.u. Here Point 1 holds, and Point 2

is false.
4) Application t = uw. By i.h. we are in one of the

following two cases for the right sub-termw:

a) Point 1 holds but not Point 2. By Lemma 19,w
is normal. Note that〈·〉w is an evaluation context.
The i.h. gives one of the following two cases for
the left sub-termu:

i) Point 1 holds but not Point 2. Given that both
u andw do not satisfy Point 2, neither doest.
Being an answer,w has the formL〈f〉. Two
cases:

A) f is a inert A. Then t = L〈A〉w is the
application of a inert to an answer, which is
a inert—i.e. an answer—and Point 1 holds.

B) f is a value. Thent is a⊸m redex, absurd.

ii) Point 2 holds but not Point 1. Then Point 2
holds fort, because〈·〉w is an evaluation con-
text. Sinceu is not a inert,t is not answer, and
Point 1 does not hold.

b) Point 2 holds but not Point 1. Then Point 2 holds
for t, becauseu〈·〉 is an evaluation context, and
Point 1 does not, becausew is not an answer.

5) Substitutiont = u[x�w]. Since〈·〉[x�w] is an evalua-
tion context we can apply thei.h., and fall into one of
the two following cases:

a) Point 1 holds but not Point 2. Thent is an answer,
i.e. Point 1 holds. Note that since any non-empty
evaluation context fort comes from an evaluation
context foru, Point 2 holds fort iff it holds for u,
i.e. it does not.

b) Point 2 holds but not Point 1. Thenu = F ′〈y〉 and
we conclude takingF := F ′[x�w]. Note that it
may be thatx = y, but in that casew is not an
answer (otherwise there would be a redex). There
is no contradiction, because we are not assuming
t to be proper (case in which one necessarily has
x 6= y).

Corollary 4. Let t be a closed proper⊸f-normal term. Then
t is an answer andt

→

is →f-normal.

Proof: if t is ⊸f-normal then by Lemma 20 eithert is
an answer or it has the formF 〈x〉. Suppose that it has the
form F 〈x〉. Sincet is closed,F has a substitution onx, and
sincet is proper, that substitution contains an answer. Thent
has a⊸e-redex, absurd. Thent is an answer. By Lemma 19,
t

→

is a fireball. By Lemma 15,t

→

is→f-normal.
In order to prove determinism of the calculus, we need the

notion of positionand a final property of answers.
The position of a multiplicative redex is the contextF

in which the rule takes place, and this is standard. The
position of an exponential redexF ′〈F 〈x〉[x�L〈f〉]〉 ⊸e

S′〈L〈F 〈f〉[x�f ]〉〉 is the context around the substituted vari-
able, i.e. F ′〈F [x�L〈f〉]〉.

Given a termt, a redex iscontained in a sub-termu if
the whole rewriting pattern is contained inu. An exponential
redex ispartially containedin u if u contains the substituted
variable (and then the position of the redex) but not the acting
substitution.

Lemma 21 (Answers do not (Partially) Contain Redexes). Let
t = F 〈u〉 be a term withu an answer. Then no redex oft can
have its position inu.

Proof: by Lemma 19,u is ⊸f-normal and so no⊸m-
redex of t can have its position inu. Moreover,u is not of
the formF 〈y〉 and so no⊸e-redex oft can be entirely nor
partially contained inu.

Lemma 22 (Determinism). Let t be a term andF1 and F2

the positions of two redexes int. ThenF1 = F2.

Proof: let t = F1〈u〉. By induction onF1. Cases:
1) EmptyF1 = 〈·〉. Cases:

a) Multiplicative Redex, i.e. t = L〈λx.r〉q with q an
answer. By Lemma 21,F2 cannot lie inL〈λx.r〉
nor in q. Then necessarilyF2 = F1 = 〈·〉.

b) Exponential Redex. This case is impossible because
the position of an exponential redex is the context
around the substituted variable and ifF1 = 〈·〉 then
t = x and there is no substitution acting onx.
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2) Right ApplicationF1 = rF ′1 and t = rF ′1〈u〉. By
Lemma 21,F ′1〈u〉 is not an answer and soF2 does not
lie in r, nor F2 can be empty (i.e. t = rF ′1〈u〉 cannot
be a⊸m-redex). Then,F2 = uF ′2, and the statement
follows from thei.h. applied toF ′1 andF ′2.

3) Left ApplicationF1 = F ′1L〈f〉 and andt = F ′1〈u〉L〈f〉.
By Lemma 21,F2 does not lie inL〈f〉. And F2 cannot
be empty (i.e. the position of a⊸m-redex), because then
F ′1〈u〉 would have the formL〈λx.p〉, i.e. it would be an
answer, and so by Lemma 21 no redex positions can lie
in F ′1〈u〉, against the hypothesis of the case. Then,F2 =
F ′2w, and the statement follows from thei.h. applied to
F ′1 andF ′2.

4) SubstitutionF1 = F ′1[x�w]. Then necessarilyF2 =
F ′2[x�w] (remember the position of a⊸e-redex is given
by the context around the substituted variable, and not by
the one around the acting substitution) and the statement
follows from thei.h..

Corollary 5. Let t be a proper closed term. Then eithert
contains exactly one⊸f-redex, ort is an answer.

Proof: by Lemma 22,t contains at most one redex. If it
contains no redexes, then by Corollary 4 it is an answer.

B. Structural Equivalence

The aim is to prove the strong bisimulation of structural
equivalence, whose proof relies on the next lemma.

Lemma 23. The equivalence relation≡ preserves the
“shapes” of L〈f〉 andF 〈x〉. Formally:

1) If L〈f〉 ≡ t, thent is of the formL′〈g〉.
2) If F 〈x〉 ≡ t, with x not bound byF , then t is of the

form F ′〈x〉, with x not bound byF ′.

Proof:

1) By induction onL.
2) By induction onF .

Now, we are ready for the bisimulation property.
Proof of Proposition 2 (page 6)

Proof:
Let⇚⇛ be the symmetric closure of the union of the axioms

defining≡, i.e. of ≡com ∪ ≡@l ∪ ≡@r ∪ ≡[·]. Note that≡
is the reflexive–transitive closure of⇚⇛. The proof is in two
parts:

(I) Prove the property holds for⇚⇛, i.e. if t ⊸a u and
t⇚⇛ w, there existsr s.t.w⊸a r andu ≡ r.
(II) Prove the property holds for≡ (i.e. for many steps
of ⇚⇛) by resorting to (I).

The proof of (II) is immediate by induction on the number of
⇚⇛ steps. The proof of (I) goes by induction on the rewriting
step⊸ (that, since⊸ is closed by evaluation contexts,
becomes a proof by induction on the evaluation contextF ). In
principle, we should always consider the two directions of⇚⇛.
Most of the time, however, one direction is obtained by simply

reading the diagram of the other direction bottom-up, instead
than top-down; these cases are simply omitted, we distinguish
the two directions only when it is relevant.

The proof of the strong bisimulation property is by induction
on⊸.

1) Base case 1: multiplicative root step t =
L〈lx.t′〉L′〈f〉 7→m u = L〈t′[x�L′〈f〉]〉. The nontrivial
cases are when the⇚⇛ step overlaps the pattern of them-
redex. Note that by Lemma 23.1, if the⇚⇛ is internal to
L′〈f〉, the proof is direct, since them-redex is preserved.
More precisely, ifL′〈f〉⇚⇛ L′′〈g〉, we have:

L〈lx.t′〉L′〈f〉 L〈t′[x�L′〈f〉]〉

L〈lx.t′〉L′′〈g〉 L〈t′[x�L′′〈g〉]〉

⇚⇛ ⇚⇛

m

m

Consider the remaining possibilities for⇚⇛:
a) Commutation of independent substitutions≡com.

The commutation of substitutions must be inL,
i.e. L must be of the formL1〈L2[y�u′][z�w′]〉
with z 6∈ fv(u′). Let L̂ := L1〈L2[z�w′][y�u′]〉.
Then:

L〈lx.t′〉L′〈f〉 L〈t′[x�L′〈f〉]〉

L̂〈lx.t′〉L′〈f〉 L̂〈t′[x�L′〈f〉]〉

≡com ≡com

m

m

b) Commutation with the left of an application≡@l.
The diagram is:

L〈lx.t′〉[y�q]L′〈f〉 L〈t′[x�L′〈f〉]〉[y�q]

(L〈lx.t′〉L′〈f〉)[y�q] L〈t′[x�L′〈f〉]〉[y�q]

≡@ =

m

m

c) Commutation with the right of an application≡@r.
The diagram is:

L〈lx.t′〉L′〈f〉[y�q] L〈t′[x�L′〈f〉[y�q]]〉

L〈t′[x�L′〈f〉][y�q]〉

(L〈lx.t′〉L′〈f〉)[y�q] L〈t′[x�L′〈f〉]〉[y�q]

≡@l

≡[·]

≡∗com

e

e

d) Composition of substitutions≡[·]. The composition
of substitutions must be inL, i.e.L must be of the
formL1〈L2[y�u′][z�w′]〉 with z 6∈ fv(L2〈lx.t

′〉).
Let L̂ := L1〈L2[y�u′[z�w′]]〉. Then:

L〈lx.t′〉L′〈f〉 L〈t′[x�L′〈f〉]〉

L̂〈lx.t′〉L′〈f〉 L̂〈t′[x�L′〈f〉]〉

≡[·] ≡[·]

m

m

2) Base case 2: exponential root step
t = F 〈x〉[x�L〈f〉] 7→e u = L〈F 〈f〉[x�f ]〉. Consider
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first the case when the⇚⇛-redex is internal toF 〈x〉.
By Lemma 23.2 we know⇚⇛ preserves the shape of
F 〈x〉, i.e. F 〈x〉⇚⇛ F̂ 〈x〉. Then:

F 〈x〉[x�L〈f〉] L〈F 〈f〉[x�f ]〉

F̂ 〈x〉[x�L〈f〉] L〈F̂ 〈f〉[x�f ]〉

⇚⇛ ≡

e

e

If the ⇚⇛-redex is internal to one of the substitutions
in L, the proof is similarly straightforward. Note that
the⇚⇛-redex has always a substitution at the root. The
remaining possibilities are that such a substitution is in
L and it interact with constructors outsideL, or that it
is precisely[x�L〈f〉]. Axiom by axiom:

a) Commutation of independent substitutions≡com.
The case where both commuted substitutions be-
long toL has already been treated. The remaining
possibility is thatF = F ′[y�t′] and [x�L〈f〉]
commutes with[y�t′] (which impliesx 6∈ fv(t′)).
Then:

F ′〈x〉[y�t′][x�L〈f〉] L〈F ′〈f〉[y�t′][x�f ]〉

F ′〈x〉[x�L〈f〉][y�t′] L〈F ′〈f〉[x�f ]〉[y�t′]

≡com ≡∗com

e

e

b) Commutation with the left of an application
≡@l. The only possibility is that the substitution
[x�L〈f〉] is commuted with the outermost appli-
cation inF 〈x〉, i.e. F = F ′L′〈g〉. Then,

(F ′〈x〉L′〈g〉)[x�L〈f〉] L〈(F ′〈f〉L′〈g〉)[x�f ]〉

L〈F ′〈f〉[x�f ]L′〈g〉〉

F ′〈x〉[x�L〈f〉]L′〈g〉 L〈F ′〈f〉[x�f ]〉L′〈g〉

≡@l

≡@l

≡∗@l

e

e

The ≡∗@l step is justified by the fact that in the
source term(F ′〈x〉L′〈g〉)[x�L〈f〉] the contextL
is only aroundf , and so it cannot capture variables
in L′〈g〉.

c) Commutation with the right of an application≡@r.
similarly to the previous case

(t′ F ′〈x〉)[x�L〈f〉] L〈(t′ F ′〈f〉)[x�f ]〉

L〈t′F ′〈f〉[x�f ]〉

t′F ′〈x〉[x�L〈f〉] t′L〈F ′〈f〉[x�f ]〉

≡@r

≡@r

≡∗@r

e

e

The ≡∗@r step is justified by the fact that in the
source term(F ′〈x〉L′〈g〉)[x�L〈f〉] the contextL
is only aroundf , and so it cannot capture variables
in t′.

d) Composition of substitutions≡[·]. The only possi-
ble case is that[x�L〈f〉] is the outermost substitu-
tion composed by≡[·]. This is not possible if the

rule is applied from left to right, since it would
imply that F 〈x〉 = F ′〈x〉[y�t′] with x 6∈ F ′〈x〉,
which is a contradiction.
Finally, if the≡[·] rule is applied from right to left,
L is of the formL′[y�t′] and:

F 〈x〉[x�L′〈f〉[y�t′]] L′〈F 〈f〉[x�f ]〉[y�t′]

F 〈x〉[x�L′〈f〉][y�t′] L′〈F 〈x〉[x�f ]〉[y�t′]

≡[·] =

e

e

3) Inductive case 1: left of an applicationF = F ′L〈f〉.
The situation is:

t = F ′〈t′〉L〈f〉⊸ wL〈f〉 = u

for somew. If the ⇚⇛ step is internal toF ′〈t′〉, the
result follows byi.h., and if it is internal toL〈f〉, it is
straightforward to close the diagram by resorting to the
fact that≡ preserves the shape ofL〈f〉 (Lemma 23).
The nontrivial case is when the⇚⇛ step overlapsF ′〈t′〉
andL〈f〉. There are two cases:

a) The substitution comes fromt′. That is,F ′ = 〈·〉
and t′ has a substitution at its root. Thent′ must
be a 7→e-redext′ = V ′′〈x〉[x�L〈f〉]. The diagram
then is the same as in case 2b, reading it bottom-
up.

b) The substitution comes fromF ′. That is: F ′ =
V ′′[x�r] and the rewriting step is internal to
V ′′〈t′〉, reducing it tow′, i.e. w = w′[x�r]. The
proof is then straightforward:

V ′′〈t′〉[x�r]L〈f〉 w′[x�r]L〈f〉

(V ′′〈t′〉L〈f〉)[x�r] (w′, L〈f〉)[x�r]

≡@l ≡@l

c) The substitution comes fromL. That is: L =
L′[x�r]. Then

F ′〈t′〉L′〈f〉[x�r] wL′〈f〉[x�r]

(F ′〈t′〉L′〈f〉)[x�r] (w,L′〈f〉)[x�r]

≡@r ≡@r

4) Inductive case 2: right of an application F = qF ′.
The situation is:

t = q F ′〈t′〉⊸ q r = u

for somer. Reasoning as in the previous case (left of
an application), if the⇚⇛ step is internal toF ′〈t′〉, the
result follows by i.h., and it is immediate also if it is
internal toq.
The remaining possibility is that the⇚⇛ step overlaps
with q or F ′〈t′〉. As in the previous case, this is only
be possible because of acommutation with application
rule. Cases:

a) The substitution comes fromt′. That is,F ′ = 〈·〉
and t′ is a 7→e-redex t′ = V ′′〈y〉[y�L′〈f〉]. The
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diagram then is the same as in case 2c, reading it
bottom-up.

b) The substitution comes fromF ′. That is, F ′ =
V ′′[x�w′]. This case is then straightforward:

q V ′′〈t′〉[x�w′] q r[x�w′]

(q V ′′〈t′〉)[x�w′] (q r)[x�w′]

≡@r ≡@r

c) The substitution comes fromq. That is, q =
q′[x�w′]. This case is straightforward:

q′[x�w′]F ′〈t′〉 q′[x�w′] r

(q′ F ′〈t′〉)[x�w′] (q′ r)[x�w′]

≡@l ≡@l

5) Inductive case 3: left of a substitutionF = F ′[x�q].
The situation is:

t = F ′〈t′〉[x�q]⊸ r[x�q] = u

If the⇚⇛ step is internal toF ′〈t′〉, the result follows by
i.h.. If it is internal toq, the steps are orthogonal, which
makes the diagram trivial. The remaining possibility is
that the substitution[x�q] is involved in the⇚⇛ redex.
By case analysis on the kind of the step≡:

a) Commutation of independent substitutions≡com.
SinceF ′〈t′〉 must have a substitution at the root,
there are two possibilities:

i) The substitution comes fromt′. That is,F ′ =
〈·〉 and t′ is a 7→e-redext′ = V ′′〈y〉[y�L〈f〉],
with x 6∈ fv(L〈f〉). Then:

V ′′〈y〉[y�L〈f〉][x�q] L〈V ′′〈f〉[y�f ]〉[x�q]

V ′′〈y〉[x�q][y�L〈f〉] L〈V ′′〈f〉[x�q][y�f ]〉

≡com ≡∗com

e

e

ii) The substitution comes fromF ′. That is,F ′ =
V ′′[y�w′] with x 6∈ fv(w′). This case is direct:

V ′′〈t′〉[y�w′][x�q] V ′′〈u′〉[y�w′][x�q]

V ′′〈t′〉[x�q][y�w′] V ′′〈u′〉[x�q][y�w′]

≡com ≡com

e

e

b) Commutation with application≡@. F ′〈t′〉 must be
an application. This allows for three possibilities:

i) The application comes fromt′. That is,F ′ = 〈·〉
and t′ is a 7→m-redext′ = L〈ly.t′′〉L′〈f〉. two
sub-cases, whether[x�q] commutes on the left
or on the right of the application. The left case
is case 1b (read bottom-up), while the right case
is case 1c (again bottom-up).

ii) The application comes fromF ′ = V ′′ L〈w′〉.
There are two sub-cases, whether[x�q] com-
mutes on the left or on the right of the applica-
tion. The left case is case 3b (read bottom-up),

while the right case is case 3c (again bottom-
up).

iii) The application comes fromF ′ = q V ′′. Sim-
ilarly to the previous case, it reduces to cases
4b and 4c.

c) Composition of substitutions≡[·]. Two sub-cases:

i) The substitution comes fromt′. That is,F ′ =
〈·〉 and t′ is a 7→e-redext′ = V ′′〈y〉[y�L〈f〉],
with x 6∈ fv(V ′′〈y〉). Then:

V ′′〈y〉[y�L〈f〉][x�q] L〈V ′′〈f〉[y�f ]〉[x�q]

V ′′〈y〉[y�L〈f〉[x�q]] L〈V ′′〈f〉[y�f ]〉[x�q]

≡[·] =

e

e

ii) The substitution comes fromF ′. That is,F ′ =
V ′′[y�w′] with x 6∈ fv(V ′′〈t′〉). Then:

V ′′〈t′〉[y�w′][x�q] V ′′〈u′〉[y�w′][x�q]

V ′′〈t′〉[y�w′[x�q]] V ′′〈u′〉[y�w′[x�q]]

≡[·] ≡[·]

A final lemma about the≡ relation will be useful later:

Lemma 24 (ES Commute with Evaluation Contexts via≡).
Let S be a shallow context s.t.x /∈ fv(S) and S doe not
capture the variables infv(u). ThenS〈t[x�u]〉 ≡ S〈t〉[x�u].

Proof: by induction onS.

1) Empty ContextS = 〈·〉. ThenS〈t〉[x�u] = t[x�u] =
S〈t[x�u]〉.

2) Application LeftS = S′w. Then
S〈t[x�u]〉 =
S′〈t[x�u]〉w = (by i.h.)
S′〈t〉[x�u]w ≡@l

(S′〈t〉w)[x�u] =
S〈t〉[x�u]

3) Application RightF = wF ′. Then
S〈t[x�u]〉 =
wS′〈t[x�u]〉 = (by i.h.)
wS′〈t〉[x�u] ≡@r

(wS′〈t〉)[x�u] =
S〈t〉[x�u]

4) SubstitutionF = F ′[y�w]. Then

S〈t[x�u]〉 =
S′〈t[x�u]〉[y�w] = (by i.h.)
S′〈t〉[x�u][y�w] ≡com

S′〈t〉[y�w][x�u] =
S〈t〉[x�u]

Note that≡com can be applied because of the hypotheses
x /∈ fv(S) andS doe not capture the variables infv(u).
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APPENDIX C
PROOFSOMITTED FROM SUBSECT. VII-A

(HIGH-LEVEL IMPLEMENTATION)

First, the High-Level Implementation Theorem.
Proof of Theorem 3 (page 6)

Proof: the proof is a minimal variation over the proof
of Theorem 4.2, page 4, in [1]. Essentially we merged the
trace and syntactic bound properties of that statement intoour
locally bound property. Note that for the global bound there
is nothing to prove, it follows from the the hypothesis itself
and projection.

Now, we prove that(→f,⊸f) is a high-level implementa-
tion system,i.e. Theorem 4.

The normal form property required for high-level implemen-
tation system has already been proved (Theorem 2). It only
remains to prove the projection property.

Lemma 25 (Projection of a Rewriting Step). Let t = F 〈u〉
andF be an evaluation context.

1) Multiplicative Projection: if t ⊸m w then t

→

→f w
→

.
More precisely, ifF 〈u〉 ⊸m F 〈w〉 with u 7→m w then
F

→

〈u

→

F
〉 →f F

→

〈w

→

F
〉 with u

→

F
7→f w

→

F
;

2) Exponential Projection: if t⊸e w then t

→

= w
→

;

Proof:

1) By induction onF . Cases:

a) Empty ContextF = 〈·〉. Let t = L〈lx.r〉L′〈f〉 7→m

L〈r[x�L′〈f〉]〉 = w. By induction onL. Two
cases:

i) Empty contextL = 〈·〉. Then
t = lx.rL′〈f〉 7→m r[x�L′〈f〉] = w

t

→

=
((lx.r)L′〈f〉)

→

=
(lx.r

→

)L′〈f〉

→

→f

r

→

{x�L′〈f〉

→

} =
r[x�L′〈f〉]

→

=
w

→

ii) SubstitutionL = L′[y�q]. Then
t = L〈lx.r〉[y�q]L′〈f〉 7→m

L〈r[x�L′〈f〉]〉[y�q] = w. We have

t

→

=
(L〈lx.r〉[y�q]L′〈f〉)

→

=
L〈lx.r〉[y�q]

→

L′〈f〉

→

=
L〈lx.r〉

→

{y�q

→

}L′〈f〉

→

=
L〈lx.r〉

→

L′〈f〉

→

{y�q

→

} =
(L〈lx.r〉L′〈f〉)

→

{y�q

→

} 7→f (i.h.
and Lemma 17)

L〈r[x�L′〈f〉]〉

→

{y�q

→

} =
L〈r[x�L′〈f〉]〉[y�q]

→

=
w

→

b) Application LeftF = F ′L〈f〉. Then
F ′〈u〉L〈f〉 ⊸m F ′〈w〉L〈f〉 with u 7→m w. We
have:

F 〈u〉

→

=
(F ′〈u〉L〈f〉)

→

=
F ′〈u〉

→

L〈f〉

→

→f (i.h.)
F ′〈w〉

→

L〈f〉

→

=
(F ′〈w〉L〈f〉)

→
=

F 〈w〉

→
Actually, the→f step is justified by thei.h. and the
fact that〈·〉L〈f〉

→
is an evaluation context because

L〈f〉

→

is a fireball (by Lemma 19). Thei.h. also
givesu

→
F ′
7→f w

→

F ′
. To conclude note thatu

→

F
=

u

→

F ′f
= u

→

F ′
7→f w

→

F ′
= w

→

F ′f
= w

→

F
.

c) Application RightF = wF ′. Follows from thei.h.,
along the lines of the previous case.

d) SubstitutionF = F ′[x�r]. ThenF ′〈u〉[x�r] ⊸m

F ′〈w〉[x�r] with u 7→m w. We have:

F 〈u〉

→

=
F ′〈u〉[x�r]

→

=
F ′〈u〉

→

{x�r

→

} →f (i.h. and Lemma 17)
F ′〈w〉

→

{x�r

→

} =
F ′〈w〉[x�r]

→

=
F 〈w〉

→

The i.h. also givesu

→

F ′
7→f w

→

F ′
. To conclude

note that

u

→

F
=

u

→

F ′[x�r]
=

u

→

F ′
{x�r

→

} 7→f (Lemma 17)
w

→

F ′
{x�r

→

} =
w

→

F ′[x�r]
=

w

→

F

2) We prove that ift 7→e w thent

→

= w

→

for any evaluation
context F . From Lemma 30.3 the statement follows.
By induction onF . We havet = F ′〈x〉[x�L〈f〉] 7→e

L〈F ′〈f〉[x�f ]〉 = w. By induction onL. Two cases:

a) Empty contextL = 〈·〉. Thent = F ′〈x〉[x�f ] 7→e

F ′〈f〉[x�f ] = w

t

→

=
F ′〈x〉[x�f ]

→

=
F ′〈x〉

→

{x�f

→

} =
F ′

→

〈x

→

F ′
〉{x�f

→

} = (by Lemma 30.6)
F ′

→

〈x〉{x�f

→

} =
F ′

→

〈f

→

〉{x�f

→

} =
F ′

→

〈f

→

F ′
〉{x�f

→

} =
F ′〈f〉

→

{x�f

→

} =
F ′〈f〉[x�f ]

→

w

→

b) Substitution L = L′[y�q]. Then t =
F ′〈x〉[x�L〈f〉[y�q]] 7→e L〈F ′〈f〉[x�f ]〉[y�q] =
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w.

t

→

=
F ′〈x〉[x�L〈f〉[y�q]]

→

=
F ′〈x〉

→

{x�L〈f〉[y�q]

→

} =
F ′〈x〉

→

{x�L〈f〉

→

{y�q

→

}} =
F ′〈x〉

→

{x�L〈f〉

→

}{y�q

→

} =
F ′〈x〉[x�L〈f〉]

→

{y�q

→

} = (by i.h.)
L〈F ′〈f〉[x�f ]〉

→

{y�q

→

} =
L〈F ′〈f〉[x�f ]〉[y�q]

→

=
w

→

To prove that(→f,⊸f) is a high-level implementation
system we only have to put together the various results.
Proof of Theorem 4 (page 6)

Proof: immediate from Corollary 5 and Lemma 25.

APPENDIX D
PROOFSOMITTED FROM SUBSECT. VII-B

(LOW-LEVEL IMPLEMENTATION: ABSTRACT MACHINES)

Proof of Lemma 1 (page 7)
Proof: straightforward induction on the length of

t (→ ∪ ≡)∗ u, using the strong bisimulation property.

Proof of Theorem 5 (page 7)
Proof: the proof can be found in [15] (Theorems 4.2 and

4.4) up to trivial modifications due to minor changes in the
definition of distilleries and their properties.

APPENDIX E
PROOFSOMITTED FROM SECT. VIII

(AN INEFFICIENT DISTILLERY: THE GLAM M ACHINE)

The aim of this section is to prove Theorem 7,i.e. that
(GLAM,⊸f,≡, · ) is a reflective explicit distillery.

Proof of Lemma 2 (page 9)
Proof: by induction over the length of the execution. The

base case holds becauset is initial. The inductive step is by
cases over the kind of transition. All the verifications are trivial
inspections of the transition.

The first step to prove Theorem 7 is the distillation
property. Note from the statement that the distillation is
explicit (see Definition 3).

Lemma 26 (Explicit Distillation). Let s be a reachable state.
Then:

1) Commutative: If s c1,2,3 s′ thens = s′;
2) Multiplicative: If s m s

′ thens⊸m≡ s′;
3) Exponential: If s e s

′ thens⊸e s
′.

Proof:

• Case c1 :

(D, tu, π, E) =

〈D〈〈tu〉π〉〉E =
〈D〈〈t〈·〉〉π〉〈u〉〉E =
〈(t, π) : D〈〈u〉〉〉E =

〈(t, π) : D〈ǫ〈u〉〉〉E =

((t, π) : D, u, ǫ, E)

• Case m:

(D, lx.t, u : π,E) =

〈D〈u : π〈lx.t〉〉〉E =
〈D〈π〈(lx.t)u〉〉〉E ⊸m (by Lemma 2.3,4)
〈D〈π〈t[x�u]〉〉〉E ≡ (by Lemma 24)
〈D〈〈t〉π〉[x�u]〉E =
〈D〈〈t〉π〉〉[x�u] : E =

(D, t, π, [x�u] : E)

Note that the multiplicative step is justified by points 3
and 4 of Lemma 2, for whichu is a fireball and〈D〈π〉〉E
is an evaluation context. Moreover, the≡ step holds
because by Lemma 2.1 (well-namedness)x occurs only in
t and so by Lemma 24 the substitution[x�u] commutes
with the environmentD〈π〉.

• Case c2 :

((t, π) : D, lx.u, ǫ, E) =

〈(t, π) : D〈ǫ〈lx.u〉〉〉E =

〈D〈〈tlx.u〉π〉〉E =
〈D〈lx.u : π〈t〉〉〉E =
(D, t, lx.u : π,E)

• Case c3 :

((t, π) : D, a, π′, E) =

〈(t, π) : D〈π′〈a〉〉〉E =

〈D〈π〈t〈a〉π′〉〉〉E =
〈D〈〈a〉π′ : π〈t〉〉〉E =

(D, t, 〈a〉π′ : π,E)

• Case e:

(D, x, π, E1[x�u]E2) =

〈D〈〈x〉π〉〉E1[x�u]E2 =

〈〈D〈〈x〉π〉〉E1[x�u]〉E2 ⊸e (by Lemma 2.3,4)
〈〈D〈〈uα〉π〉〉E1[x�u]〉E2 =
〈D〈〈uα〉π〉〉E1[x�u]E2 =

(D, uα, π, E1[x�u]E2)

Note that the exponential step is justified by points 3 and
4 of Lemma 2, for whichu is a fireball andE2 and
E1〈D〈π〉〉 are evaluation contexts.

Next we prove progress. We first need to redefine the size of
the machine state to ignore the new environment component:

Definition 9. |(D, t, π, E)| := |t|+Σ(u,π)∈D|u|

Lemma 27 (Termination).  c is terminating

Proof: just reuse the proof of Corollary??.
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Lemma 28 (Determinism). The transition relation of the
GLAM is deterministic.

Proof: a simple inspection of the transitions show no
critical pairs.

Lemma 29 (Progress). if s is reachable,nfc(s) = s and
s ⊸x t with x ∈ {sm, se}, then there existss′ such that
s x s

′, i.e., s is not final.

Proof: by Lemma 28 and Lemma 26 it is sufficient to
show that every reachable stuck state decodes to a normal
form. The only stuck forms are:
• (D, x, π, E) wherex is not defined inE. The state is not

reachable because it would violate the Closure invariant
(Lemma 2.1).

• (ǫ, lx.t, ǫ, E) that decodes to〈lx.t〉E, that by the contex-
tual decoding invariant (Lemma 2.1) is a normal form.

• (ǫ, a, π, E) that decodes to〈〈a〉π〉E, that by the contex-
tual decoding invariant (Lemma 2.1) is a normal form.

Proof of Theorem 7 (page 9)
Proof: it follows from Lemma 26 and Lemma 29.

APPENDIX F
PROOFSOMITTED FROM SECT. IX

(INTERLUDE II: RELATIVE UNFOLDINGS)

Proof of Lemma 3 (page 9)
Proof: by induction onW .

Lemma 30 (Properties of Relative Unfoldings). Let t and u
be terms andS be a shallow context.

1) Commutation: (λx.t)
→

S
= λx.t

→

S
, (tu)

→

S
=

t

→

S
u

→

S
, t{x�u}

→
S

= t

→

S
{x�u

→

S
}, t{x�u}

→

S
=

t[x�u]

→

S
, S

→
{x�t

→

} = S{x�t

→

}

→

, and t

→

S[x�u]
=

t{x�u

→

}
→

S{x�u

→

}
.

2) Freedom: if S does not capture any free variable oft
then t

→
S
= t

→

.
3) Relativity: if t

→

= u

→

then t

→

S
= u

→

S
.

4) Applicativity: if S is applicative thenS

→

is applicative.
5) Splitting: t

→

S〈S′〉
= t

→

S′

→

S
.

6) Factorisation: S′〈t〉

→

S
= S′

→

S
〈t

→

S〈S′〉
〉, in particular

S〈t〉

→

= S

→

〈t

→

S
〉 andL〈t〉

→

S
= t

→

S〈L〉
.

Proof: Routine inductions onS or S′.

APPENDIX G
PROOFSOMITTED FROM SECT. XI

(THE USEFUL FIREBALL CALCULUS)

Proof of Lemma 4 (page 11)
Proof:

1) By induction on the pair(number of ES inS,S). Cases
of S:

a) Empty, i.e.S = 〈·〉. ThenS

→

= 〈·〉

→

= 〈·〉 is an
evaluation context.

b) Right Application, i.e.S = tS′. Then S

→

=
t

→

S′

→

=i.h. t

→

F is an evaluation context.
c) Left Application, i.e.S = S′t with t

→
a fireball f .

ThenS

→

= S′

→

t

→

=i.h. Ff is an evaluation context.
d) Substitution, i.e.S = S′[x�t] with t

→

a fireball f
and S′{x�t

→

} is evaluable. Note that the number
of ES in S′{x�t

→

} is strictly smaller than the
number of ES inS, becauset

→

has no ES. Then
by i.h. S′{x�t

→

}
→

is an evaluation context. Now,
S

→

= S′[x�t]
→

= S′

→

{x�t

→

} =L.30.1 S′{x�t

→

}

→

which is an evaluation context.
2) By induction on the pair(number of ES inS,S). Cases

of S:
a) Empty, i.e.S = 〈·〉. Directions

i) ⇒, i.e. S is evaluable. Nothing to prove.
ii) ⇐. ThenS is evaluable.

b) Right Application, i.e.S = wS′′′. Note thatS′

cannot be empty, otherwiseS = wS′′′ = S′′u and
S would have two holes. ThenS′ = wS4 for some
S4, and the statements follows from thei.h. applied
to S′′′ andS4.

c) Left Application, i.e.S = S′′′w. Directions:
i) ⇒. SinceS is evaluable,w

→

is a fireball, and
S′′′ is evaluable. Note that eitherS′ is empty,
and thenu = w and the statement holds
becausew

→

〈·〉
= w

→

is a fireball, orS′ = S4w

with S4 s.t.—say—S′′′ = S4〈S
′′[x�u]〉. Now,

note that u

→

S′
= u

→

S4w
= u

→

S4
and the

statement follows by thei.h. applied toS′′′.
ii) ⇐. By taking S′ := 〈·〉, the hypothesis be-

comesw

→

〈·〉
= w

→

is a fireball. We are left to
show thatS′′′ is evaluable, that is given by the
i.h..

d) Substitution, i.e.S′ = S′′′[y�w].
i) ⇒. SinceS is evaluable,w

→

is a fireball, and
S′′′{y�w

→

} is evaluable. Note that eitherS′

is empty, and thenu = w and the statement
holds becausew

→

〈·〉
= w

→

is a fireball, orS′ =
S4[y�w] for someS4 that is a prefix ofS′′′,
i.e. s.t.S′′′ = S4〈S

′′u〉 or S′′′ = S4〈S
′′[x�u]〉.

Let’s say thatS′′′ = S4〈S
′′u〉. Now, applying

the i.h. to

S′′′{y�w

→

} =
S4〈S

′′u〉{y�w

→

} =
S4{y�w

→

}〈S′′{y�w

→

}u{y�w

→

}〉

we obtain that u{y�w

→

}

→

S4{y�w

→

}
is

a fireball. We conclude noting that
u{y�w

→

}

→

S4{y�w

→

}
=Lemma 30.1

u

→

S4[y�w]
= u

→

S
(the other case,

S′′′ = S4〈S
′′[x�u]〉, uses the same reasoning).

ii) ⇐. By taking S′ := 〈·〉, the hypothesis be-
comesw

→

〈·〉
= w

→

is a fireball. We are left
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to show thatS′′′{y�w

→

} is evaluable, that is
given by thei.h..

The following technical lemma is very useful to decom-
pose and construct evaluation contexts compositionally.

Lemma 31.
1) if S〈S′〉 is evaluable thenS is evaluable andS′

→

S
is an

evaluation context.
2) if S is evaluable,S′

→

S
is an evaluation context andS′

is without ES thenS〈S′〉 is evaluable.

Proof:
1) By induction on the pair(number of ES inS,S). Cases

of S:
a) Empty, i.e.S = 〈·〉. The hypothesis becomes that

S′ is evaluable, and soS′

→

S
= S′

→

〈·〉
= S′

→

is
an evaluation context by Point 1. Clearly〈·〉 is
evaluable.

b) Right Application, i.e.S = tS′′. By i.h., S′′

is evaluable, that impliesS evaluable. Moreover,
S′

→

S
= S′

→

tS′′
= S′

→

S′′
which is an evaluation

context byi.h..
c) Left Application, i.e.S = S′′u. By i.h., S′′ is evalu-

able. From the hypothesis thatS〈S′〉 = S′′〈S′〉u
is evaluable it follows thatu

→

is a fireball, and so
S is evaluable. Moreover,S′

→

S
= S′

→
S′′u

= S′

→

S′′

which is an evaluation context byi.h..
d) Substitution, i.e.S = S′′[x�u]. From the hypoth-

esis thatS〈S′〉 = S′′〈S′〉[x�u] is evaluable it
follows thatu

→

is a fireball. SinceS′′{x�u

→

} has
strictly less ES thanS (becauseu

→

has none), the
i.h. gives thatS′′{x�u

→

} is evaluable, and soS
is evaluable. ThenS′

→

S
= S′

→

S′′[x�u]
=L.30.1

S′{x�u

→

}

→
S′′{x�u

→

}
that by i.h. is an evaluation

context.
2) We prove thatu

→

S′′
is a fireball wheneverS〈S′〉 =

S′′〈S′′′u〉 or S〈S′〉 = S′′〈S′′′[x�u]〉, and conclude
by applying Point 2. Now, sinceS′ has no ES, if
S〈S′〉 = S′′〈S′′′[x�u]〉 then [x�u] occurs inS, and
S′′ is a prefix ofS. We obtain thatu

→

S′′
is a fireball by

applying Point 2 toS, that is evaluable by hypothesis.
If S〈S′〉 = S′′〈S′′′u〉 with S′′ a prefix ofS we reason
similarly. Otherwise, the applicationS′′′u occurs inS′,
i.e. there is a contextS4 s.t. S′′ = S〈S4〉 and S′ =
S4〈S

′′′u〉. Then we haveS′

→

S
= S4〈S

′′′u〉

→

S
=L.30.6

S4

→

S
〈(S′′′u)

→

S〈S4〉
〉 =L.30.1 S4

→

S
〈S′′′

→

S〈S4〉
u

→

S〈S4〉
〉,

which by hypothesis is an evaluation context. Therefore,
u

→

S〈S4〉
is a fireball. We conclude withu

→

S〈S4〉
=L.30.5

u

→

S4

→

S
=L.30.2 u

→

S
, where the last equality follows

becauseS4, being a prefix ofS′, has no ES and so
cannot capture the variables inu.

The next result to be proved is Theorem 8 ((→f,⊸uf)
is a locally bounded high-level implementation system). We
follow closely the same approach used for the Explicit FBC

in Appendix B and Appendix C: first we define proper terms
and the invariants of reduction; then we characterize normal
forms; finally we prove projection and we obtain the theorem
as a corollary.

Definition 10 (Proper Term). A term t is properif
1) Evaluability: t = S〈u〉 with S evaluable andu a l-term

(without ES);
2) Value: no value int contains ES.

For instance, a proper term cannot have⊸um redexes inside
ES.

Note that initial terms are proper and so the next lemma
applies in particular when the starting term is initial.

Lemma 32 (Proper Invariant). Let t be a proper and closed
term. If t⊸∗uf u thenu is proper and closed.

Proof: by induction on the lengthk of the derivation
t ⊸∗uf u. The base case is trivial. For the step case, assume
t ⊸k−1

uf w ⊸uf u. By i.h. w is proper and closed. We
distinguish two cases:

1) Casew = S〈L〈lx.r〉q〉 ⊸um S〈L〈r[x�q]〉〉 = u where
S〈Lq〉 is evaluable and applicative:
u is closed becausew is. All values inu are values in the
proper termw, and therefore they have no ES. Moreover
r is a sub-term of a value ofw, and therefore has no ES.
SinceS〈Lq〉 is evaluable,q

→

S
is a fireball by Lemma 4.2

andS andS〈L〉 are evaluable by Lemma 31.1. Therefore
S〈L〈〈·〉[x�q]〉〉 is evaluable too by the other direction
of Lemma 4.2 and the evaluability ofS〈L〉. Therefore
u is proper.

2) Case
w = S〈S′〈x〉[x�L〈v〉]〉⊸ue S〈L〈S

′〈v〉[x�v]〉〉 = u
whereS〈S′[x�L〈v〉]〉 is evaluable and applicative and
v

→

S〈L〉
= λy.p:

u is closed becausew is. All values inu are values in
the proper termw, and therefore they have no ES. In
particular,v has no ES. Thusu is proper.

Lemma 33 (Normal Form Characterization). Let t = S〈u〉 be
a proper and closed term s.t.u 6⊸uf andS is evaluable. Then

1) either u

→

S
is a fireball,

2) or u

→

S
→f, more precisely existsS′ s.t.

a) u = S′〈x〉 with
b) x ∈ fv(u),
c) S〈S′〉 evaluable,
d) x

→

S
= λy.w, and

e) S′ is applicative.

Proof: first of all, let us show that the conditions onS′

imply u

→

S
→f. We have:

u

→

S
=a

S′〈x〉

→

S
=L.30.6

S′

→

S
〈x

→

S〈S′〉
〉 =c&L.31.1

F 〈x

→

S〈S′〉
〉 =b&L.30.2

F 〈x

→

S
〉 =d

F 〈λy.w〉
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and F := S′

→

S
is applicative, byc and L.30.4. Then note

that Point 1 and Point 2 are mutually exclusive. Indeed, by
Lemma 15, an unfolded term which is a fireball is→f-normal.
So, if Point 1 holds then Point 2 does not, and vice-versa.
Therefore, in the following proof for we only have to prove
that Point 1 or Point 2 holds.

By induction onu. Cases:
1) Variablex. Sincet is proper and closed,u

→

S
is a fireball.

2) Symboland Abstraction. Note that by properness, the
abstraction is an ordinaryλ-term, i.e. it does not contain
ES. Then in both cases we can apply Lemma 19,
obtaining thatu

→

S
is a fireball.

3) Application u = wr. Since S〈w〈·〉〉 is an evaluable
context, we can apply thei.h. to r, ending in one of
the following two cases:

a) r

→

S
is a fireball. Then S〈〈·〉r〉 is an evaluable

context and we can apply thei.h. to w obtaining
two cases:
i) w

→

S
is a fireball. Two kinds of fireball:

• w

→

S〈〈·〉r〉
is a inert A. Thenu

→

S
= Ar

→

S
is

a inert, i.e. a fireball.
• w

→

S〈〈·〉r〉
is an abstractionλy.q. Then u

→
S

reduces, indeedu

→

S
= w

→

S〈〈·〉r〉
r

→
S

=

(λy.q)r

→

S
→f. In terms of contexts, note

thatw is not itself an abstraction, otherwise
u would be a⊸um-redex, i.e. w has the
form L〈x〉. Moreover,L does not capture
x, otherwiseu = wr = L〈y〉r would have
a ⊸ue-redex (becauset is proper and so
the substitution onx in L can fire). Then
x ∈ fv(w) (and sox ∈ fv(u)) andS′ := Lr
satisfies pointsa, b, d, e of the statement. For
c, we only have to show that the content of
every substitution inL unfolds to a fireball
in its context (by Lemma 4.2). Note that,
sincet is proper, there is an evaluable context
containing all the ES int, i.e. the content of
everysubstitution int unfolds in its context
to a fireball.

ii) w

→

S
reduces, i.e.w

→

S
→f. We haveu

→

S
=

w

→

S〈〈·〉r〉
r

→

S
= w

→

S
r

→

S
→f becauser

→

S
is a

fireball and so〈·〉r

→

S
is an evaluation context.

In terms of contexts, setS′ := S′′r, whereS′′

is he context given by thei.h.. It is easily seen
thatS′ satisfies the statement.

b) r

→

S
reduces, i.e.r

→

S
→f. We have u

→

S
=

w

→

S〈〈·〉r〉
r

→

S
becausew

→

S〈〈·〉r〉
〈·〉 is an evaluation

context. In terms of contexts, setS′ := wS′′, where
S′′ is he context given by thei.h.. It is easily seen
thatS′ satisfies the statement.

4) Substitutionu = w[x�r]. S〈〈·〉[x�r]〉

→

is an evaluation
context and we can apply thei.h. to w. Note that
sincew

→

S〈〈·〉[x�r]〉
=L.30.6 w[x�r]

→

S
= u

→

S
, this case

reduces to thei.h.. In terms of contexts (for Point 2),
note that the contextS′′ given by thei.h. cannot expose

an occurrence ofx, otherwise there would be a⊸ue-
redex inu (becauset is proper and sor has the form
L〈v〉). Thus, the contextS′ := S′′[x�r] is easily seen
to satisfy the statement (inheriting the properties ofS′′).

Corollary 6 (Normal Forms Unfold to Normal Forms). Let t
be a closed proper term. Ift is ⊸uf-normal thent

→

is →f-
normal.

Proof: note that applying Lemma 33 withS := 〈·〉 and
u := t one obtains thatt

→

is a fireball, because the second case
cannot happen, given thatu now is closed and so it cannot be
written asu = S′〈x〉 with x ∈ fv(u). By Lemma 15,t

→

is
→f-normal.

To prove the projection lemma we need to prove first as
a technical lemma another sufficient condition for a context
to be evaluable. The condition is based on the definition of
position of a redex.

The position of a redex is (the contextS exposing) the
application that makes applicative the evaluable context in the
side condition. For a⊸um-redex, it is given byS, while for
a ⊸ue-redex one needs to do a case analysis, because the
application may lie inS or in S′. Note that such a notion of
position for⊸ue-redexes is different with respect to the one
used in Subsect. B-A.

Lemma 34. If S〈t〉 has a redex having its position int then
S is evaluable.

Proof: then the position of the redex has the form
S〈S′〉 for some contextS′. By the hypothesis on redexes
and Lemma 31.1,S〈S′〉 is evaluable. By Lemma 31.1,S is
evaluable.

Lemma 35 (Projection). Let t = S〈u〉 ⊸uf S′〈w〉 = r by
reducing a redex whose position lies inu. If the redex is

1) Multiplicative: then u

→

S
→f w

→

S′
and t

→

→f r

→

;
2) Exponential: then u

→

S
→f and t

→

= r

→

→f.

In both casesu

→

S
is not a fireball.

Proof: the fact that in both casesu

→

S
is not a fireball,

follows from Lemma 15 and the fact thatu

→

S
reduces. Cases:

1) Multiplicative. Note that in this caseS′ = S. Then
t

→

→f r

→

follows from u

→

S
→f w

→

S
. By Lemma 34,

S is evaluable, and by Lemma 4.1S

→

is an evaluation
context, so:

t

→

=
S〈u〉

→

=L.30.6
S

→

〈u

→

S
〉 →f

S

→

〈w

→

S′
〉 =L.30.6

S〈w〉

→

=
r

→

We now showu

→

S
→f w

→

S
. Since the redex lies inu,

we haveu = S′〈L〈λx.w〉r〉 and t = S〈S′〈L〈λx.w〉r〉〉
with S〈S′〈〈·〉r〉〉, and thusS〈S′〉, evaluable. Moreover,
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by Lemma 31.1r

→

S〈S′〈L〈λx.w〉〈·〉〉〉
= r

→

S〈S′〉
is a fireball

andS′

→

S
is an evaluation context. Then

u

→

S
=

S′〈L〈λx.w〉r〉

→

S
= (Lemma 30.6)

S′

→

S
〈(L〈λx.w〉r)

→

S〈S′〉
〉 = (Lemma 30.1)

S′

→

S
〈L〈λx.w〉

→

S〈S′〉
r

→

S〈S′〉
〉 = (Lemma 30.6)

S′

→

S
〈(λx.w)

→

S〈S′〈L〉〉
r

→

S〈S′〉
〉 = (Lemma 30.1)

S′

→

S
〈λx.w

→

S〈S′〈L〉〉
r

→

S〈S′〉
〉 →f (S′

→

S
is an ev.

cont. & r

→

S〈S′〉

is a fireball)
S′

→

S
〈w

→

S〈S′〈L〉〉
{x�r

→

S〈S′〉
}〉 = (Lemma 30.1)

S′

→

S
〈w{x�r}

→

S〈S′〈L〉〉
〉 = (Lemma 30.1)

S′

→

S
〈w[x�r]

→

S〈S′〈L〉〉
〉 = (Lemma 30.6)

S′

→

S
〈L〈w[x�r]〉

→

S〈S′〉
〉 = (Lemma 30.6)

S′〈L〈w[x�r]〉〉

→

S
=

w

→

S

2) Exponential. We take t

→

= r

→

for granted, because
a substitution step by definition does not change the
unfolding. Similarly to the previous case,t

→

→f follows
from u

→

S
→f. Indeed, by Lemma 31.1,S is evaluable,

and by Lemma 4.1S

→

is an evaluation context, so:

t

→

= S〈u〉

→

=L.30.6 S

→

〈u

→

S
〉 →f

Now we proveu

→

→f. We haveu = S′〈L〈x〉r〉 and
t = S〈S′〈L〈x〉r〉〉. In t there is somewhere (inL, S′, or
S) a substitution[x�L′〈q〉] with the hypothesis thatq
relatively unfolds to some valueλy.w in its context. So,
x

→

S〈S′〈L〉〉
= λy.w. Moreover, by hypothesisS〈S′〉 is

evaluable, and so by Lemma 31.1S′

→

S
is an evaluation

context. Finally,r

→

S〈S′〉
is a fireball, becauseS〈S′〈〈·〉r〉〉

is evaluable. Then

u

→

S
=

S′〈L〈x〉r〉
→

S
= (Lemma 30.6)

S′

→

S
〈(L〈x〉r)

→

S〈S′〉
〉 = (Lemma 30.1)

S′
→

S
〈L〈x〉

→

S〈S′〉
r

→

S〈S′〉
〉 = (Lemma 30.6)

S′
→

S
〈x

→

S〈S′〈L〉〉
r

→

S〈S′〉
〉 = (x

→

S〈S′〈L〉〉
= λy.w)

S′

→

S
〈(λy.w)r

→

S〈S′〉
〉 →f (S′

→

S
is an ev. cont.

& r

→

S〈S′〉
a fireball)

S′

→

S
〈w[y�r

→

S〈S′〉
]〉

Determinism of⊸uf is the last ingredient to prove that(→f

,⊸uf) is a locally bounded high-level implementation system.

Lemma 36 (Determinism). Let t be a term andS〈S1〉 and
S〈S2〉 positions of⊸uf-redexes. ThenS1 = S2.

Proof: by induction onS1. Cases:

1) EmptyS1 = 〈·〉. Cases:

a) Multiplicative Redex, i.e. u = L〈λx.r〉q with
q

→

S
a fireball. Now, S2 cannot lie in L〈λx.r〉,

otherwise by Lemma 35L〈λx.r〉

→

S〈S2〉
would not

be a fireball, while by (properness and) Lemma 19
it does. Nor S2 can lie in q, otherwise again
by Lemma 35q

→

S
would not be a fireball. Then

necessarilyS2 = S1 = 〈·〉.
b) Exponential Redex, i.e. u = S′〈L〈x〉r〉. Now,

S2 cannot lie inL〈x〉, otherwise by Lemma 35
L〈x〉

→

S〈S2〉
would not be a fireball, while by the

hypothesis on the⊸ue-redex it does (it is an
abstraction). NorS2 can lie in r, otherwise again
by Lemma 35r

→

S
would not be a fireball, while

by the hypothesis on the⊸ue-redex it does. Then
necessarilyS2 = S1 = 〈·〉.

2) Right ApplicationS1 = rS′1 and t = rS′1〈q〉. By
Lemma 35,S′1〈q〉

→

S〈r〈·〉〉
has a→f-redex and it is not a

fireball, so no redexes can lie to its left, in particularS2

does not lie inr. By Lemma 35,S′1〈q〉

→

S〈r〈·〉〉
is not a

fireball, and soS2 cannot be empty (i.e. rS′1〈q〉 cannot
be the position of a⊸um-redex). Then,S2 = uS′2, and
the statement follows from thei.h. applied toS′1 andS′2.

3) Left ApplicationS1 = S′1q and t = S′1〈r〉q. Note that
S2 cannot lie inq, otherwise by Lemma 35q

→

S〈S′

1〈r〉〈·〉〉

has a→f-redex and it is not a fireball, and so no
redexes—in particular the one of positionS〈S1〉—can
lie to its left, absurd. AndS2 cannot be empty (i.e. the
position of a⊸um-redex), because thenS′1〈r〉 would
have the formL〈λx.p〉, which by Lemma 35 cannot
contain the position of a redex, because by Lemma 19
L〈λx.p〉

→

S〈〈·〉q〉
is a fireball. Then,S2 = S′2w, and the

statement follows from thei.h. applied toS′1 andS′2.
4) SubstitutionS1 = S′1[x�w]. Then necessarilyS2 =

S′2[x�w] (remember the position of a⊸ue-redex is an
application) and the statement follows from thei.h..

Proof of Theorem 8 (page 11)

Proof: the pair(→f,⊸uf) is an high-level implementa-
tion system because of Lemma 36, Lemma 35 and Corollary 6.

We deduce that the implementation system is locally
bounded from the corresponding bound (Lemma 5.5) on the
abstract machine that implements the calculus. An alternative,
direct proof without any reference to abstract machines is
surely possible, but we would need to establish first additional
invariants on the ES that occur in the term. Intuitively, anyway,
the local bound follows mainly from acyclicity of the explicit
substitutions and the fact that only multiplicative steps can
create a new ES, while exponential steps never duplicate terms
containing ES.

Proof of Proposition 4 (page 11)

Proof: omitted. All postponement proofs are similar and
lengthy. In Subsect. B-B of the Appendix we proved the lemma
for the Explicit FBC. Other examples can be found in the long
version of [15].
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A. Proofs Omitted From Sect. XII
(The GLAMoUr Machine)

The aim of this section is to prove Theorem 9
((GLAMoUr,⊸uf,≡, · ) is a reflective explicit distillery)
and Theorem 10 (the useful implementation has bilinear low
level and quadratic high level complexity). We start by proving
that the invariants of the machine holds.

Lemma 37 (Contextual Decoding). E is a substitution con-
text; D and π are shallow contexts without ES.

Proof: by induction onE, D andπ.

Proof of Lemma 5 (page 12)
Proof: by induction over the length of the execution. The

base case holds becauset is initial. The inductive step is by
cases over the kind of transition. All the verifications are trivial
apart for Point 4. For Point 4, evaluability forE, D

→

E
, π

→

E

follows from Point 3 and Lemma 4.2, while evaluability for
〈D〈π〉〉E follows from them and Lemma 4.2.

Lemma 38 (Explicit Distillation). Let s be a reachable state.
Then:

1) Commutative: if s c1,2,3,4,5 s′ thens = s′;
2) Multiplicative: if s um s

′ thens⊸um≡ s′;
3) Exponential: if s ue s

′ thens⊸ue s
′.

Proof: we list the transition in the order they appear in
the definition of the machine.

• Case(D, tu, π, E) c1 (D : (t, π), u, ǫ, E):

(D, tu, π, E) =

〈D〈〈tu〉π〉〉E =
〈D〈〈t〈u〉〉π〉〉E =
〈D : (t, π)〈u〉〉E =

〈D : (t, π)〈〈u〉ǫ〉〉E =

(D : (t, π), u, ǫ, E)

• Case(D, lx.t, φl : π,E) um (D, t, π, [x�φl]E):

(D, lx.t, φl : π,E) =

〈D〈〈lx.t〉φl : π〉〉E =
〈D〈〈(lx.t)φ〉π〉〉E ⊸um (by Lemma 5.4

and Lemma 5.3)
〈D〈〈t[x�φ]〉π〉〉E ≡ (by Lemma 24)
〈D〈〈t〉π〉[x�φ]〉E =
〈D〈〈t〉π〉〉[x�φl]E =

(D, t, π, [x�φl]E)

• Case(D : (t, π), lx.u, ǫ, E) c2 (D, t, (lx.u)v : π,E) :

(D : (t, π), lx.u, ǫ, E) =

〈D : (t, π)〈〈lx.u〉ǫ〉〉E =

〈D : (t, π)〈lx.u〉〉E =

〈D〈〈t(lx.u)〉π〉〉E =
〈D〈〈t〉(lx.u)v : π〉〉E =

(D, t, (lx.u)v : π,E)

• Case(D : (t, π), a, π′, E) c3 (D, t, (a, π′)A : π,E):

(D : (t, π), a, π′, E) =

〈D : (t, π)〈〈a〉π′〉〉E =

〈D〈〈t〈a〉π′〉π〉〉E =
〈D〈〈t〉(a, π′)A : π〉〉E =

(D, t, (a, π′)A : π,E)

• Case (D : (t, π), x, π′, E1[x�φA]E2)  c4

(D, t, (x, π′)A : π,E1[x�φA]E2):

(D : (t, π), x, π′, E1[x�φA]E2) =

. . . =
(D, t, (x, π′)A : π,E1[x�φA]E2)

The proof is the one for the previous case c3 , by
replacinga with x and instantiatingE with E1[x�φA]E2.

• Case (D : (t, π), x, ǫ, E1[x�uv]E2)  c5 (D, t, xv :
π,E1[x�uv]E2):

(D : (t, π), x, ǫ, E1[x�uv]E2) =

. . . =
(D, t, xv : π,E1[x�uv]E2)

The proof is the one for the previous case c4 , by replac-
ing (lx.u) with x and instantiatingE with E1[x�uv]E2.

• Case (D, x, φl : π,E1[x�vv]E2)  oes (D, vα, φl :
π,E1[x�vv]E2):

(D, x, φl : π,E1[x�vv]E2) =

〈D〈〈x〉φv : π〉〉E1[x�vv]E2 ⊸ue (by Lemma 5.4
and Lemma 5.3)

〈D〈〈vα〉φl : π〉〉E1[x�vv]E2 =

(D, vα, φl : π,E1[x�vv]E2)

The next lemma extends the notion of state size|s| given
in Definition 9 by ignoring the new machine componentE.
The precise definition is Definition 6.

Lemma 39 (Determinism). The transition relation of the
GLAMoUr is deterministic.

Proof: a simple inspection of the transitions shows no
critical pairs.

Lemma 40 (Progress). if s is reachable,nfc(s) = s and
s ⊸x t with x ∈ {um, ue}, then there existss′ such that
s x s

′, i.e., s is not final.

Proof: by Lemma 39 and Lemma 38 it is sufficient to
show that every reachable stuck state decodes to a normal
form. The only stuck forms are:

• Error states. The state con only be(D, x, π, E) wherex
is not defined inE or it is defined to be at

v
wheret is

not a variable or a value.
The state is not reachable because it would violate either
the invariant in Lemma 5.1 or the invariant in Lemma 5.3.

• Final states. Cases:

1) The result is/unfolds to a value. The state is
(ǫ, t, ǫ, E) with t an abstraction or a variable bound
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in E to a φv. By Lemma 37,(ǫ, t, ǫ, E) = 〈t〉E =

L〈t〉 for someL. Note thatL〈t〉

→

= t

→

L
is a fireball,

indeed ift is an abstraction it is given by Lemma 19
and if it as a variable it is given by Lemma 5.3. Thus
by Lemma 35,L〈t〉 is normal.

2) The result is/unfolds to a inert. The state is
(ǫ, t, π, E) with t a symbola or a variable bound
in E to aφA.
By Lemma 37,(ǫ, t, π, E) = 〈〈t〉π〉E = L〈〈t〉π〉

for someL. Note thatL〈t〉

→

= t

→

L
is a fireball,

indeed ift is a symbol it is given by Lemma 19 and
if it as a variable it is given by Lemma 5.3. More-
over, by Lemma 5.3,π

→

L
has the form〈·〉f1 . . . fn.

Thus, by Lemma 30.1 and the definition of fireballs,
〈t〉π

→

L
is a fireball too. Therefore by Lemma 35,

L〈〈t〉π〉 is normal.

Proof of Theorem 9 (page 12)
Proof: the theorem follows from Lemma 38, Lemma 39

and Lemma 40.

Proof of Theorem 10 (page 12)
Proof: the proof follows from Theorem 3 applied to

Theorem 8, and Theorem 6 applied to Theorem 9 and Corol-
lary 1. Bi-linearity of the machine requires to show that the
commutative steps are implementable in constant time, while
the principal ones in timeO(|t|). The machine is meant
to be implemented using a representation of codes using
pointers, in particular for variables, so that the environment
can be accessed in constant time. Assuming this, all rules
except the exponential one evidently take constant time on
a RAM machine, because they amount to moving pointers.
The exponential rule requiresO(|t|) because it copies andα-
renames a valuev. Both these operations take timeO(|v|). The
value invariant (Lemma 5.2) guarantees|v| ≤ |t|. Additional
considerations on the cost of similar rules can be found in
[15] (page 9 and 11, paragraphsAbstract Considerations on
Concrete Implementations).

APPENDIX H
PROOFSOMITTED FROM SECT. XIII
(OPTIMISING USEFUL REDUCTION:

UNCHAINING FBC AND THE UNCHAINING GLAM OUR)

We prove Lemma 42 first; then we address Theorem 12
((→f,⊸of) is a globally bounded high-level implementation
system) and Proposition 5 (≡ is a Strong Bisimulation).

For chain-starting contexts
←−
C x, we need prove that their

hole is indeed the left end of the chain, with the help of a
preliminary lemma.

Lemma 41. Let I〈x〉 s.t. I does not capturex. ThenI〈x〉

→

=
x.

Proof: by induction onI. Cases:
1) BaseI = 〈·〉. ThenI〈x〉

→

= x

→

= x.

2) InductiveI = I〈y〉[y�I ′]. Then

I〈x〉

→

= I〈y〉[y�I ′〈x〉]

→

= I〈y〉

→

{y�I ′〈x〉

→

} =i.h.

y{y�I ′〈x〉

→

} =i.h. y{y�x} = x

3) ClosureI = I[y�t]. Then

I〈x〉

→

= I〈x〉[y�t]

→

= I〈x〉

→

{y�t
→

} =i.h. x{y�t

→

} = x

Lemma 42. Let C〈x〉 s.t. C does not capturex. Then there
existsy s.t.C〈x〉 =

←−
C x〈y〉 and y

→

←−
C x = x.

Proof: by induction onC. Cases:

1) Base, i.e.C = S〈y〉[y�I]. Then

C〈x〉 = S〈y〉[y�I〈x〉] =
←−−−−−−−
S′〈y〉[y�I]x〈y〉

Now, y
→

←−
C x = y

→

S[y�I〈x〉]
= I〈x〉

→

=L.41 x

2) Inductive, i.e.C = C′〈z〉[z�I]. Then

C〈x〉 =
C′〈z〉[z�I〈x〉] =i.h.
←−
C′z〈y〉[z�I〈x〉] =
←−−−−−−−
C′〈z〉[z�I]x〈y〉

Now,

y

→

←−
C x =

y

→

←−
C′z[z�I〈x〉]

=

y

→

←−
C′z
{z�I〈x〉

→

} =i.h.

z{z�I〈x〉

→

} = I〈x〉

→

=L.41 x

3) Closure, i.e.C = S′〈C′〉. Then

C〈x〉 = S′〈C′〈x〉〉 =i.h. S
′〈
←−
C x〈y〉〉 =

←−−−
S′〈C〉x〈y〉

Now,

y

→

←−
C x = y

→

S′〈
←−
C x〉

=L.30.5 y

→

←−
C x

→

S′
=i.h. x

→

S′
= x

becauseC, and thusS′, does not capturex.

Proof of Lemma 7 (page 13)
Proof: by induction over the length of the derivation. A

simple inspection of the rewriting rules shows that all values
in the result of a reduction step are copies of values in the
term being reduced.

Proof of Lemma 8 (page 13)
Proof: using the sub-term property (Lemma 7).
From now on we follow closely the same approach used

for the Explicit FBC (Appendix B and Appendix C) and the
Useful FBC (Appendix G), without the need to define proper
terms first: we start characterizing normal forms; then we
prove projection and we obtain Theorem 12 ((→f,⊸of) is
a globally bounded high-level implementation system) as a
corollary.

Lemma 43 (Normal Form Characterization). Let t = S〈u〉 be
a proper term s.t.u is⊸of-normal andS is evaluable.
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1) either u

→

S
is a fireball,

2) or u

→

S
→f, more precisely existsS′ s.t.

a) u = S′〈x〉 with
b) x

→

S′
= y,

c) y ∈ fv(u),
d) S〈S′〉 evaluable,
e) y

→

S
= λy.w, and

f) S′ is applicative.

Moreover, the contextS′ in Point 2 is unique.

Proof: first of all, let us show that conditions2.a-f imply
u

→

S
⊸. Indeed,

u

→

S
=a

S′〈x〉

→

S
=c&L.30.6

S′

→

S
〈x

→

S〈S′〉
〉 =d&L.31.1

F 〈x

→

S〈S′〉
〉 =b

F 〈y

→

S
〉 =e

F 〈λy.w〉

andF := S′

→

S
is applicative, byd and L.30.4.

Now, we show that 1 and 2 are mutually exclusive. By
Lemma 15, an unfolded term which is a fireball is→f-normal.
Then if 1 hold then 2 does not, and if 2 holds 1 does not.
Therefore, in the following proof we only prove that 1 or 2
holds.

By induction onu. Cases:

1) Variablex. Sincet is proper,u

→

S
is a fireball.

2) Symboland Abstraction. Note that by properness, the
abstraction is an ordinaryλ-term, i.e. it does not contain
ES. Then in both cases we can apply Lemma 19,
obtaining thatu

→

S
is a fireball.

3) Applicationu = wr. Sincer is normal andS〈w〈·〉〉 is
an evaluable context, we can apply thei.h. to r, ending
in one of the following two cases:

a) 1 holds forr. ThenS〈〈·〉r〉 is an evaluable context
and we can apply thei.h. to w and obtain two
cases:

i) 1 holds forw. Two cases:

A) w

→

S〈〈·〉r〉
= A. Then u

→

S
is a inert, i.e. a

fireball.
B) w

→

S〈〈·〉r〉
= λy.q. Note thatw cannot be

itself an abstraction, otherwiseu would not
be normal. Thenw = L〈y〉. Now, y

→

L
can-

not be an abstraction, otherwise—again—u
would not be normal. Theny

→

L
= x for

somex ∈ fv(w) (possibly x = y). Note
that S′ := Lr is applicative and satisfies
the other points of 2. Forc, in particular, we
only have to show that the content of every
substitution inL unfolds to a fireball in its
context (by Lemma 4.2). Note that, since
t is proper, there is an evaluable context
containing all the ES int, i.e. the content of
everysubstitution int unfolds in its context
to a fireball.

ii) 2 holds forw. Then 2 holds foru by taking
S′ := S′′r whereS′′ is the context given by the
i.h., as all the conditions forS′ follows from
those forS′′. Unicity follows from thei.h. and
the fact that no other such context can have its
hole in r, because 2 does not hold for it.

b) 2 holds forr. Then 2 holds foru by takingS′ :=
wS′′ whereS′′ is the context given by thei.h., as
all the conditions forS′ follows from those forS′′.
Unicity follows from the i.h. and the fact that no
other such context can have its hole inw, because
1 does not hold forr.

4) Substitutionu = w[z�r]. Then S〈〈·〉[z�r]〉

→

is an
evaluation context and we can apply thei.h. to w. Two
cases:

a) 1 holds for w. Note that since
w

→

S〈〈·〉[z�r]〉
=L.30.6 w[z�r]

→

S
= u

→

S
, then

1 holds foru.
b) 2 holds forw. Let y ∈ fv(w) be the variable and

S′ be the context given by thei.h.. Then we have
two cases:

i) y = z. Necessarily,r has the formL〈x′〉 with
x′

→

L
= y′, otherwiseu would not be⊸uf-

normal. TakingS′′ := S′[z�r] it is easily seen
that 2 holds foru with respect tox and y′.
Unicity follows from thei.h..

ii) y 6= z. TakingS′′ := S′[z�r] it is easily seen
that 2 holds foru with respect tox and y.
Unicity follows from thei.h..

Corollary 7 (Normal Forms Unfold to Normal Forms). Let t
be a closed proper term. Ift is ⊸of-normal thent

→

is →f-
normal.

Proof: note that takingS := 〈·〉 andu := t and applying
Lemma 43 one obtains thatt

→

is a fireball, because the second
case cannot happen, given thatu now is closed. By Lemma 15,
t

→

is →f-normal.

To prove the projection lemma we need to prove first as
a technical lemma another sufficient condition for a context
to be evaluable. The condition is based on the definition of
position of a redex.

The position of a⊸om-redex isS. The position of⊸oec

and⊸oes redexes is the application that makes applicative
the evaluable context in the side condition. Note that the
position of a redex is always a context exposing an application
constructor.

Lemma 44 (Projection). Let t = S〈u〉 ⊸of S′〈w〉 = r by
reducing a redex whose position lies inu. If the redex is

1) Multiplicative: then u

→

S
→f w

→

S′
and t

→

→f r

→

;
2) Shallow or Chain Exponential: then u

→

S
→f and t

→

=
r

→

→f.

In both casesu

→

S
is not a fireball.
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Proof: the fact that in both casesu

→

S
is not a fireball,

follows from Lemma 15 and the fact thatu

→

S
reduces. Cases:

1) Multiplicative. Exactly as in the proof of Lemma 35.
2) Exponential. We take t

→

= r

→

for granted, because
a substitution step by definition does not change the
unfolding. Similarly to the previous case,t

→

→f follows
from u

→

S
→f. Indeed, by Lemma 31.1,S is evaluable,

and by Lemma 4.1S

→

is an evaluation context, so:

t

→

= S〈u〉

→

=L.30.6 S

→

〈u

→

S
〉 →f

Now we prove u

→

→f. We have u = S′〈L〈x〉r〉
and t = S〈S′〈L〈x〉r〉〉. Let us show that for both
exponential redexesx unfolds to an abstraction. Int
there is somewhere (inL, S′, or S) a substitution[x�q].
Now, if q = L′〈v〉 then we have a⊸oes-redex (because
v is an abstraction). If insteadq = L′〈y〉 then we have
a⊸oec-redex andt writes also asS′′〈C〈y〉[y�L′′〈v〉]〉

with C〈y〉 =
←−
C y〈x〉, x

→

←−
C y = y (by Lemma 42), and

s.t. the two contextsS〈S′〈Lr〉〉 andS′′〈
←−
C y[y�L′′〈v〉]〉

coincide. Then
x

→

S〈S′〈Lr〉〉
=

x

→

S′′〈
←−
C y [y�L′′〈v〉]〉

= (Lemma 30.5)

x

→

←−
C y [y�L′′〈v〉]

→

S′′
=

x

→

←−
C y{y�L′′〈v〉

→

}

→

S′′
= (x

→

←−
C y = y)

y{y�L′′〈v〉

→

}

→

S′′
= (L′′〈v〉

→

is an abst.)
y{y�v′}

→

S′′
=

v′

→

S′′
= (v′

→
S′′

is an abst.)
v′′

Summing up,x

→

S〈S′〈L〉〉
= λy.w. Moreover, by hypoth-

esis S〈S′〉 is evaluable, and so by Lemma 31.1S′

→

S

is an evaluation context. Finally,r

→

S〈S′〉
is a fireball,

becauseS〈S′〈〈·〉r〉〉 is evaluable. Then

u

→

S
=

S′〈L〈x〉r〉
→

S
= (Lemma 30.6)

S′

→

S
〈(L〈x〉r)

→

S〈S′〉
〉 = (Lemma 30.1)

S′

→
S
〈L〈x〉

→

S〈S′〉
r

→

S〈S′〉
〉 = (Lemma 30.6)

S′
→

S
〈x

→

S〈S′〈L〉〉
r

→

S〈S′〉
〉 = (x

→

S〈S′〈L〉〉
= λy.w)

S′
→

S
〈(λy.w)r

→

S〈S′〉
〉 →f (S′

→

S
is an ev. cont.

& r

→

S〈S′〉
a fireball)

S′

→

S
〈w[y�r

→

S〈S′〉
]〉

Lemma 45 (Positional Determinism). Let t be a term and
S〈S1〉 andS〈S2〉 positions of⊸of-redexes. ThenS1 = S2.

Proof: by induction onS1. Cases:
1) EmptyS1 = 〈·〉. Cases:

a) Multiplicative Redex, i.e. u = L〈λx.r〉q with q

→

S

a fireball. Now,S2 cannot lie inL〈λx.r〉, other-
wise by Lemma 35L〈λx.r〉

→

S〈S2〉
would not be a

fireball, while by Lemma 19 it does. NorS2 can
lie in q, otherwise again by Lemma 35q

→

S
would

not be a fireball. Then necessarilyS2 = S1 = 〈·〉.

b) Exponential Redex, i.e. u = S′〈L〈x〉r〉. Now,
S2 cannot lie inL〈x〉, otherwise by Lemma 35
L〈x〉

→

S〈S2〉
would not be a fireball, while by the

hypothesis on the⊸e-redex it does (it is an
abstraction). NorS2 can lie in r, otherwise again
by Lemma 35r

→

S
would not be a fireball, while

by the hypothesis on the⊸e-redex it does. Then
necessarilyS2 = S1 = 〈·〉.

2) Right ApplicationS1 = rS′1 and t = rS′1〈q〉. By
Lemma 35,S′1〈q〉

→

S〈r〈·〉〉
has a→f-redex and it is not a

fireball, so no redexes can lie to its left, in particularS2

does not lie inr. By Lemma 35,S′1〈q〉

→

S〈r〈·〉〉
is not a

fireball, and soS2 cannot be empty (i.e. rS′1〈q〉 cannot
be the position of a⊸m-redex). Then,S2 = uS′2, and
the statement follows from thei.h. applied toS′1 andS′2.

3) Left ApplicationS1 = S′1q and t = S′1〈r〉q. Note that
S2 cannot lie inq, otherwise by Lemma 35q

→

S〈S′

1〈r〉〈·〉〉

has a→f-redex and it is not a fireball, and so no
redexes—in particular the one of positionS〈S1〉—can
lie to its left, absurd. AndS2 cannot be empty (i.e.
the position of a⊸m-redex), because thenS′1〈r〉 would
have the formL〈λx.p〉, which by Lemma 35 cannot
contain the position of a redex, because by Lemma 19
L〈λx.p〉

→

S〈〈·〉q〉
is a fireball. Then,S2 = S′2w, and the

statement follows from thei.h. applied toS′1 andS′2.
4) SubstitutionS1 = S′1[x�w]. Then necessarilyS2 =

S′2[x�w] (remember the position of a⊸e-redex is an
application) and the statement follows from thei.h..

Note that we did not yet prove determinism, as two redexes
may a priori have the same position.

Lemma 46(Redexes Have Different Positions). Any two⊸of-
redexes in a termt have different positions.

Proof: It is obvious that different multiplicative redexes
have different positions, and that multiplicative and exponen-
tial redexes cannot have the same position. Now consider an
exponential positionS〈L〈x〉t〉 and let[x�u] be the substitu-
tion onx lying somewhere inS or L. If t has the formL′〈v〉
then there is a⊸oes redex, and obviously there cannot be
other⊸oes or⊸oec redex with the same position. If instead
t has the formL′〈y〉 then we start following the chain of
substitutions leading to the abstraction. Note that there is no
choice about the chain, so there can only by one⊸oec-redex
with that position.

Corollary 8 (Determinism). ⊸of is deterministic.

Proof: it follows from Lemma 45 and Lemma 46.

Proof of Theorem 12 (page 13)
Proof: the pair(→f,⊸of) is an high-level implementa-

tion system because of Lemma 45, Lemma 44 and Corollary 7.
It is also globally bounded because we already proved the
global linear bound on exponential steps (Theorem 11).

Proof of Proposition 5 (page 13)
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Proof: omitted. All postponement proofs are similar and
lengthy. In Subsect. B-B of the Appendix we proved the lemma
for the Explicit FBC. Other examples can be found in the long
version of [15].

APPENDIX I
PROOFSOMITTED FROM SECT. XIV

(UNCHAINING GLAM OUR)

The aim of this section is to prove Theorem 13
((Unchaining GLAMoUr,⊸of,≡, · ) is a reflective explicit
distillery) and the final result of the paper, Theorem 14 (the
useful implementation has bilinear low level and bilinear high
level complexity).

We follow closely the methodology of Appendix XII. The
first step is proving that the invariants of the machine holds.

Lemma 47. yH:x = xH

Proof: by induction overH .

Lemma 48 (Contextual Decoding). E is a substitution con-
text; D and π are shallow contexts without ES.

Proof: by induction overE, D andπ.

Remark 1. if H : x is compatible withE, then alsoH is
compatible withE.

Proof of Lemma 11 (page 14)
Proof: by induction over the length of the execution. The

base case holds becauset is initial. The inductive step is
by cases over the kind of transition. All the verifications are
trivial. Point 4 is proved as in the useful case (see Lemma 5,
page 12).

Proof of Lemma 12 (page 14)
Proof: the first point is trivial, we prove the other two.

By induction on the lengthk of H . Cases:

• H is empty,i.e. H = ǫ. By Lemma 11.6 we haveE :=
E1[y�xv]E2. Let alsoS := 〈D〈π〉〉E. We haves =
〈D〈〈yǫ:y〉π〉〉E = S〈yǫ:y〉 and

1) Ls = E2 andCs = 〈D〈〈y〉π〉〉E1[y�〈·〉], that (by
Lemma 48) has the formS〈y〉[y�I], and so it is a
chain context,

2) Now,
s =
Ss〈y

ǫ:y〉 =
〈D〈〈yǫ:y〉π〉〉E =
〈D〈〈y〉π〉〉E =
〈D〈〈y〉π〉〉E1[y�xv]E2 =

〈〈D〈〈y〉π〉〉E1[y�x]〉E2 =
Ls〈〈D〈〈y〉π〉〉E1[y�x]〉 =
Ls〈Cs〈x〉〉

and

Ls〈
←−
Cs

x〉 =

Ls〈
←−−−−−−−−−−−−−−
〈D〈〈y〉π〉〉E1[y�〈·〉]

x〉 =
Ls〈〈D〈π〉〉E1[y�x]〉 =
〈〈D〈π〉〉E1[y�x]〉E2 =
〈D〈π〉〉E1[y�xv]E2 =

〈D〈π〉〉E =
Ss

• Non-empty, i.e. H = H ′ : z. By Lemma 11.6 we
haveE = E1[z�yv]E2[y�xv]E3 and S := 〈D〈π〉〉E,
so that s = 〈D〈〈yH

′ :z:y〉π〉〉E = S〈yH
′:z:y〉. Note

that by Remark 1 we can apply thei.h. to the state
s′ = (D,H ′ : z, y, π, E), and we will do it in the
following points.
Now,

1) Ls = E3 and forCs, note that we have

Cs′ = 〈D〈〈y
H′ :z〉π〉〉E1[z�〈·〉]

and that byi.h. Cs′ is a chain context. Then
Cs =

〈D〈〈yH
′:z〉π〉〉E1[z�yv]E2[y�〈·〉] =

〈〈D〈〈yH
′ :z〉π〉〉E1[z�y]〉E2[y�〈·〉] =

〈Cs′ 〈y〉〉E2[y�〈·〉]
and soCs is a chain context.

2) Note thatLs′ = E2[y�xv]E3, and so

Ls〈Cs〈x〉〉 =
〈〈Cs′ 〈y〉〉E2[y�x]〉E3 =
〈Cs′ 〈y〉〉E2[y�xv]E3 =

Ls′〈Cs′〈y〉〉 =i.h.

s
Then note that

←−
Cs

x =
←−−−−−−−−−−−−
〈Cs′〈y〉〉E2[y�〈·〉]

x =
←−−−−−
〈Cs′〉E2

y[y�x] =

〈
←−
Cs′

y〉E2[y�x]
Now we conclude with

Ls〈
←−
Cs

x〉 =

〈
←−
Cs

x〉E3 =

〈〈
←−
Cs′

y〉E2[y�x]〉E3 =

〈
←−
Cs′

y〉E2[y�xv]E3 =

Ls′〈
←−
Cs′

y〉 =i.h.

Ss′ =
Ss

Lemma 49 (Unchaining GLAMoUr Distillation). Let s be a
reachable state. Then:

1) Commutative: if s c1,2,3,4,5 s′ thens = s′;
2) Multiplicative: if s um s

′ thens⊸um≡ s′;
3) Shallow Exponential: if s oes s

′ thens⊸oes s
′;

4) Chain Exponential: if s oec s
′ thens⊸oec s

′.

Proof: we list the transition in the order they appear in
the definition of the machine.
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• Case(D, ǫ, tu, π, E) c1 (D : (t, π), ǫ, u, ǫ, E):

(D, ǫ, tu, π, E) =

〈D〈〈(tu)
ǫ
〉π〉〉E =

〈D〈〈tu〉π〉〉E =
〈D〈〈t〈u〉〉π〉〉E =
〈D : (t, π)〈u〉〉E =

〈D : (t, π)〈〈u〉ǫ〉〉E =

〈D : (t, π)〈〈uǫ〉ǫ〉〉E =

(D : (t, π), ǫ, u, ǫ, E)

• Case(D, ǫ, λx.t, φl : π,E) om (D, ǫ, t, π, E[x�φl]):

(D, ǫ, λx.t, φl : π,E) =

〈D〈〈λx.t
ǫ
〉φl : π〉〉E =

〈D〈〈λx.t〉φl : π〉〉E =
〈D〈〈(λx.t)φ〉π〉〉E ⊸um

〈D〈〈t[x�φ]〉π〉〉E ≡
〈D〈〈t〉π〉[x�φ]〉E =
〈D〈〈t〉π〉〉E[x�φl] =

〈D〈〈t
ǫ
〉π〉〉E[x�φl] =

(D, ǫ, t, π, E[x�φl])

The multiplicative step is justified by Lemma 11.4
and Lemma 11.3. The bisimulation step is justified by
Lemma 24.

• Case

(D : (t, π), ǫ, λx.u, ǫ, E) c2 (D, ǫ, t, (λx.u)v : π,E)

We have

(D : (t, π), ǫ, λx.u, ǫ, E) =

〈D : (t, π)〈〈λx.uǫ〉ǫ〉〉E =

〈D : (t, π)〈〈λx.u〉ǫ〉〉E =

〈D : (t, π)〈λx.u〉〉E =

〈D〈〈t(λx.u)〉π〉〉E =
〈D〈〈t〉(λx.u)v : π〉〉E =

〈D〈〈t
ǫ
〉(λx.u)v : π〉〉E =

(D, ǫ, t, (λx.u)v : π,E)

• Case

(D : (t, π), ǫ, a, π′, E) c3 (D, ǫ, t, (a, π′)A : π,E)

We have

(D : (t, π), ǫ, a, π′, E) =

〈D : (t, π)〈〈aǫ〉π′〉〉E =

〈D : (t, π)〈〈a〉π′〉〉E =

〈D〈〈t〈a〉π′〉π〉〉E =
〈D〈〈t〉(a, π′)A : π〉〉E =

〈D〈〈t
ǫ
〉(a, π′)A : π〉〉E =

(D, ǫ, t, (a, π′)A : π,E)

• Case

(D : (t, π), ǫ, x, π′, E1[x�φA]E2) c4

(D, ǫ, t, (x, π′)A : π,E1[x�φA]E2)

We have

(D : (t, π), ǫ, x, π′, E1[x�φA]E2) =

. . .
(D, ǫ, t, (x, π′)A : π,E1[x�φA]E2)

The proof is the one for the previous case c3 , by
replacinga with x and instantiatingE with E1[x�φA]E2.

• Case

(D : (t, π), ǫ, x, ǫ, E1[x�uv]E2) c5

(D, ǫ, t, xv : π,E1[x�uv]E2)

We have

(D : (t, π), ǫ, x, ǫ, E1[x�uv]E2) =

. . . =
(D, ǫ, t, xv : π,E1[x�uv]E2)

The proof is the one for the previous case c4 , by replac-
ing (λx.u) with x and instantiatingE with E1[x�uv]E2.

• Case

(D, ǫ, x, φl : π,E1[x�vv]E2) oes

(D, ǫ, vα, φl : π,E1[x�vv]E2)

We have

(D, ǫ, x, φl : π,E1[x�vv]E2) =

〈D〈〈xǫ〉φv : π〉〉E1[x�vv]E2 =

〈D〈〈x〉φv : π〉〉E1[x�vv]E2 ⊸oes (by L.11.4)
〈D〈〈vα〉φl : π〉〉E1[x�vv]E2 =

〈D〈〈vαǫ〉φl : π〉〉E1[x�vv]E2 =

(D, ǫ, vα, φl : π,E1[x�vv]E2)

• Case

(D,H, x, φl : π,E1[x�yv]E2) c6

(D,H : x, y, φl : π,E1[x�yv]E2)

(D,H, x, φl : π,E1[x�yv]E2) =

〈D〈〈xH〉φl : π〉〉E1[x�yv]E2 =L.47
〈D〈〈yH:x〉φl : π〉〉E1[x�yv]E2 =

(D,H : x, y, φl : π,E1[x�yv]E2)

• Cases′ := (D,H : y, x, φl : π,E•)  oec (D,H, y, φl :
π,E◦) = s, whereE• = E1[y�xv]E2[x�vv]E3, and
E◦ = E1[y�vαv]E2[x�vv]E3. Note that we have:

1) Ls′,y = E2[x�vv]E3

2) Cs′,y = 〈D〈〈yH〉φv : π〉〉E1[y�〈·〉]

Then,

(D,H : y, x, φl : π,E•) =

〈D〈〈xH:y〉φv : π〉〉E• =
〈D〈〈yH〉φv : π〉〉E• =L.12
Ls′,y〈Cs′,y〈x〉〉 =
〈Cs′,y〈x〉〉E2[x�vv]E3 =

〈〈Cs′,y〈x〉〉E2[x�v]〉E3 ⊸oec

〈〈Cs′,y〈v
α〉〉E2[x�v]〉E3 =

〈〈〈D〈〈yH〉φv : π〉〉E1[y�vα]〉E2[x�v]〉E3 =
〈D〈〈yH〉φv : π〉〉E◦ =
(D,H, y, φl : π,E◦)

The chain exponential step is justified because
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1) H : y is compatible withE•, and so we can apply
L.12, obtainingLs′,y〈

←−−
Cs′,y

x〉 = 〈D〈φl : π〉〉E•

2) Lemma 11.4 guarantees that such a context—which
is the context in the side-condition of the rule— is
evaluable. It is also obviously applicative (because
the stack has the formφl : π).

Lemma 50 (Determinism). The transition relation of the
Unchaining GLAMoUr is deterministic.

Proof: a simple inspection of the reduction rules shows
no critical pairs.

Lemma 51 (Progress). if s is reachable,nfc(s) = s and
s⊸x t with x ∈ {om, oes, oec}, then there existss′ such that
s x s

′, i.e., s is not final.

Proof: by Lemma 50 and Lemma 49 it is sufficient to
show that every reachable stuck state decodes to a normal
form. The only stuck forms are:

• Error states.

1) Problem with the heap. (D,H : y, t, π, E) whent is
not a variable bound inE to aφv or π is empty or
y is not bound tot in E. The state is not reachable
because it would violate the invariant Lemma 11.6.

2) Problem with the environment. The state is
(D,H, x, π, E) wherex is not defined inE or it
is defined to be at

v
wheret is not a variable or a

value.
The state is not reachable because it would violate
either the invariant in Lemma 11.1 or the invariant
in Lemma 11.3.

• Final states. Cases:

1) The result is/unfolds to a value. The state is
(ǫ, ǫ, t, ǫ, E) with t an abstraction or a variable
bound inE to aφv. By Lemma 37,(ǫ, ǫ, t, ǫ, E) =

〈t〉E = L〈t〉 for someL. Note thatL〈t〉

→

= t

→

L
is

a fireball, indeed ift is an abstraction it is given
by Lemma 19 and if it as a variable it is given by
Lemma 11.3. Thus by Lemma 44,L〈t〉 is normal.

2) The result is/unfolds to a inert. The state is
(ǫ, ǫ, t, π, E) with t a symbola or a variable bound
in E to aφA.
By Lemma 37,(ǫ, ǫ, t, π, E) = 〈〈t〉π〉E = L〈〈t〉π〉

for someL. Note thatL〈t〉

→

= t

→

L
is a fireball,

indeed if t is a symbol it is given by Lemma 19
and if it as a variable it is given by Lemma 11.3.
Thus by Lemma 44,L〈t〉 is normal.

Proof of Theorem 13 (page 14)
Proof: the theorem follows from Lemma 49, Lemma 50

and Lemma 51.

A. Proofs Omitted From Subsect. XIV-A
(Bilinearity: Principal vs Commutative Analysis)

In the remaining of the appendix we prove bilinearity of
 c. We begin redoing the proof for c1,2,3,4,5 , that is almost
identical to that of the GLAMoUr.

Lemma 52 (Size Bounded). Let s = (D, u, π, E) be a state
reached by an executionρ of initial code t. Then|s| ≤ (1 +
|ρ|oes)|t| − |ρ|c1−5 .

Proof: the same reasoning as for the useful case
(Lemma 6) provides the proof for m, oes, c1,2,3,4,5 , while
for the new transitions c6 and oec it is enough to note that
they do not change the size of the state.

Corollary 9 (Termination and Bilinearity of c1,2,3,4,5 ). Let
s be a state reached by an executionρ of initial codet. Then
|ρ|c1−5 ≤ (1+ |ρ|e)|t| = O(|ρ|p · |t|). In particular, c1,2,3,4,5

terminates.

Proof of Corollary 3 (page 15)
Proof: combining Corollary 9 with Lemma 13.

Proof of Theorem 14 (page 15)
Proof: the proof follows from Theorem 3 applied to

Theorem 12, and Theorem 6 applied to Theorem 13 and
Corollary 3. For the implementability of the steps we refer
to the proof of Theorem 10.
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