
µMPS3
Principles of Operation

The Virtual Square Lab

Michael Goldweber
Xavier University

Renzo Davoli
Università di Bologna

µMPS3, µMPS2, µMPS, MPS, µARM, Pandos, Kaya are products of
the Virtual Square Lab.
See virtualsquare.org/
The µMPS3 home page is virtualsquare.org/umps

Copyright ©2020, 2011, 2009, and 2004 Michael Goldweber, Renzo Davoli, and
the Virtual Square Lab. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with the ex-
ception of the Front-Cover text, the Title Page with the Logo (recto of this page),
and the Back-Cover text. As per the Virtual Square Logo: all rights reserved.

Contents

Preface xi

I The Architecture of µMPS3 1

1 Introduction to µMPS3 1
1.1 µMPS3 and The MIPS R2/3000 2
1.2 Notational conventions . 3

2 System Structure and Overview 5
2.1 Components of µMPS3 . 5
2.2 Processor State . 8
2.3 The Status Register . 8

3 Exception Handling 11
3.1 Processor Actions on Exception and TLB-Refill Events 13
3.2 BIOS Actions on Exception and TLB-Refill Events 15
3.3 The Cause Register . 18

4 Bus Device & Registers 20
4.1 System Clocks . 20
4.2 Bus Register Area . 23

5 Peripheral Devices 25
5.1 Device Registers . 27
5.2 Device Bit Maps . 28
5.3 Disk Devices . 31
5.4 Flash Devices . 34
5.5 Network (Ethernet) Adapters . 36

iii

iv CONTENTS

5.6 Printer Devices . 39
5.7 Terminal Devices . 41

6 Memory Management 44
6.1 The Physical View of Memory 45
6.2 The Conceptual View: The Address Space 47
6.3 Virtual Address Translation in µMPS3 49
6.4 CP0 Registers and Instructions for TLB Management 54

7 Library Services - libumps 58
7.1 Accessing CP0 Registers in C 59
7.2 Accessing MIPS Assembly in C 60
7.3 New libumps Instructions . 63
7.4 LDST, LDCXT & the Status Register 66
7.5 Summary of libumps Services 67

8 BIOS Services 69
8.1 BIOS Overview . 69
8.2 System Startup and The Bootstrap Exception Vector 70
8.3 Functionality of the Supplied BIOS Routines 71
8.4 The Default exec.rom.umps . 72
8.5 The BIOS Data Page . 72
8.6 The Default coreboot.rom.umps 75
8.7 Creating or Modifying BIOS Routines 76
8.8 Understanding This Chapter . 76

9 µMPS3 Multiprocessor Support 78
9.1 Machine Control Registers . 78
9.2 Interrupt Delivery Control . 81
9.3 Device Register Memory Map - The Complete Picture 85
9.4 Inter-Processor Interrupts (IPI’s) 86
9.5 Processor Initialization . 87

II Interacting with µMPS3 89

10 Compiling for µMPS3 90
10.1 A Word About Endian-ness . 91
10.2 C Language Software Development 92

CONTENTS v

10.3 µMPS3 File Formats . 94
10.4 The umps3-elf2umps Object File Conversion Utility 98
10.5 The umps3-objdump Object File Analysis Utility 99
10.6 Putting It All Together: The Development Toolchain 100

11 Using The umps3-mkdev Device Creation Utility 104
11.1 Creating Disk Devices . 105
11.2 Creating Flash Devices . 106

12 The umps3 Emulator 108
12.1 The umps3 Simulator . 108
12.2 umps3 Invocation and Machine Configurations 109
12.3 Using umps3 . 113

13 Debugging in µMPS3 119
13.1 µMPS3 Debugging Strategies . 120
13.2 Common Pitfalls to Watch Out For 121

Appendices 123

A C Struct Definitions 124
A.1 Processor State . 125
A.2 Bus & Device Registers . 126
A.3 The Pass Up Vector . 127

B libumps Header File 128

C System-wide Constants 131

D The BIOS Memory Region 134

E Sample Makefile 136
E.1 Makefile for a kernel.core.umps File 137
E.2 Makefile for Pre-loaded Flash Device 138

F Compare and Swap: CAS 139

G Encapsulation Strategy for C Programming 141

vi CONTENTS

H Installing umps3 and the Development Tools 143
H.1 Installation of the Gnu Cross Compiler and Dependent Libraries . 143
H.2 Installation of umps3 . 144
H.3 Installation Directories . 145

I Format of Key CP0 Registers 146

List of Figures

2.1 Status Register . 9

3.1 KU/IE Stack Push . 14
3.2 Layout of the BIOS Data Page 17
3.3 Cause CP0 Register . 18

4.1 Bus Register Area Location . 24

5.1 Installed Devices Bit Map Word 29
5.2 Device Registers Area . 31
5.3 Disk Device DATA1 Field . 31
5.4 Disk Device COMMAND Field 33
5.5 Flash Device DATA1 Field . 34
5.6 Flash Device COMMAND Field 35
5.7 Network Adapter DATA0 Field 38
5.8 Network Adapter DATA1 Field 38
5.9 Printer Device DATA0 Field . 39
5.10 Printer COMMAND Field . 40
5.11 Terminal Device TRANSM STATUS and RECV STATUS Fields 41
5.12 Terminal TRANSM COMMAND and RECV COMMAND Fields 43

6.1 Address Format . 44
6.2 Layout of the BIOS Region (kseg0) 45
6.3 Physical Memory . 46
6.4 Logical Address Space . 48
6.5 TLB Floor Address Configuration Panel 50
6.6 EntryHi . 51
6.7 EntryLo . 51
6.8 The TLB . 52

vii

viii LIST OF FIGURES

6.9 Address Translation Flowchart 54
6.10 Random CP0 Control Register 55
6.11 Index CP0 Control Register . 55

7.1 KU/IE Stack Pop . 66

8.1 Layout of the BIOS Region (kseg0) 70
8.2 Layout of the BIOS Data Page 74

9.1 Processor Power States . 80
9.2 Interrupt Delivery Control Subsystem Functional Block Diagram . 81
9.3 IRT Entry Format . 82
9.4 Interrupt Routing Table Register Address Map 83
9.5 The TPR register . 84
9.6 Device Register Memory Map 85
9.7 Outbox Register . 86
9.8 Inbox Register . 87

10.1 .aout File Format . 95

12.1 umps3 Welcome Screen . 109
12.2 New, Open, Edit Configuration Toolbar Icons, respectively 110
12.3 General Configuration Parameters 110
12.4 Device Configuration Parameters 112
12.5 The Processor Control Bar . 113
12.6 The Processors Tab . 114
12.7 The Memory Tab . 115
12.8 The Devices Tab . 116
12.9 The Processor Window . 117
12.10The TLB “tear off” Window . 118
12.11A Multi-Window View of a Debugging Session 118

D.1 The BIOS Region: The Complete Picture 135

I.1 EntryHi . 146
I.2 EntryLo . 146
I.3 Status Register . 146
I.4 Cause CP0 Register . 147

List of Tables

3.1 Pass Up Vector Layout . 18
3.2 Cause Register Status Codes . 19

4.1 Bus Register Area . 23

5.1 Interrupt Line and Device Class Mapping 26
5.2 Device Register Layout . 28
5.3 Installed Devices Bit Map Addresses 29
5.4 Interrupting Devices Bit Map Addresses 30
5.5 Disk Drive Status Codes . 32
5.6 Disk Drive Command Codes . 32
5.7 Flash Device Status Codes . 34
5.8 Flash Device Command Codes 35
5.9 Network Adapter Status Codes 37
5.10 Network Adapter Command Codes 37
5.11 Printer Device Status Codes . 39
5.12 Printer Device Command Codes 39
5.13 Terminal Device Register Layout 41
5.14 Terminal Device Status Codes 42
5.15 Terminal Device Command Codes 42

6.1 Summary of TLB-related Commands 57
6.2 Summary of TLB-related CP0 Registers 57

7.1 Control Register Read Commands 59
7.2 Control Register Write Commands 60
7.3 TLB Commands . 60
7.4 Wait Command . 61
7.5 User-Mode Commands/Instructions 67

ix

x LIST OF TABLES

7.6 Kernel-Mode Commands/Instructions 68

8.1 Pass Up Vector Layout . 73

9.1 Machine Control Register Address Map 78
9.2 Interrupt Delivery Controller Processor Interface Register Map . . 84

10.1 .aout File Format Detail . 96

I.1 Cause Register Status Codes . 147

Preface

In my junior year as an undergraduate I took a course titled “Systems Program-
ming.” The goal of this course was for each student to write a small, simple multi-
tasking operating system, in S/360 assembler, for an IBM S/360. The students
were given use of a machine emulator, Assist-V, for the development process.
Assist, was a S/360 assembler programming environment. (Think SPIM for the
70’s.) Assist-V was an extension of Assist that supported privileged instructions in
addition to various emulated “attached” devices. The highlight of the course was
if your operating system ran correctly (or at least without discernible errors), you
would be granted the opportunity, in the dead of night, to boot the University’s
mainframe, an IBM S/370, with your operating system. (Caveat: The Univer-
sity used VM, IBM’s virtual machine technology. Hence students didn’t actually
boot the whole machine with their OS’s, but just one VM partition. Nevertheless,
booting/running a VM partition and booting/running the whole machine are iso-
morphic tasks.) No question, booting and running a handful of tasks concurrently
on the University’s mainframe with my own OS was one of the highlights of my
undergraduate education!

For my senior project I undertook to update Assist-V to the S/370 ISA. Since
neither Assist nor Assist-V supported floating point instructions, this basically
meant adding virtual memory support to Assist-V. I recall my surprise in the mid-
1980’s receiving an email from some institution that was still using Assist-V/370
to support their operating systems course.

My experience of writing a complete operating system repeated itself in grad-
uate school. In this case the machine emulator was the Cornell Hypothetical In-
struction Processor (CHIP); a made up architecture that was a cross between a
PDP-11 and an IBM S/370. The operating system design was a three phase/layer
affair called HOCA by its creator. While there was no real machine to test with,
the thrill and sense of accomplishment of successfully completing the task, to say
nothing of the many lessons learned throughout the experience were no less than
the earlier experience.

xi

xii PREFACE

Time passed and like Assist-V/370, CHIP fell out of use. (It only ran on Dec
Vaxen or Sun 3’s. It also defied at least two serious attempts at being ported to
more current platforms.) A professor myself, now teaching operating systems, I
experimented with the courseware systems of the day. Sadly these tools, while
of very high quality, all fell short of the pedagogic experience of having students
write a complete operating system supporting virtual memory, a host of device
types, and being able to run a set of tasks concurrently.

In the late 1990’s Professor Renzo Davoli and one of his graduate students,
Mauro Morsiani, in the spirit of both Assist-V/370 and CHIP, created MPS, a
MIPS 3000 machine emulator that not only authentically emulated the processor
(still no floating point), but also faithfully emulated five different device cate-
gories. Furthermore, they updated the HOCA project for this new architecture.
Once again, students could take their operating system, developed and debugged
on MPS (which also contained an excellent debugging facility) and run it un-
changed on a real machine.

Unfortunately, modern architectures like the MIPS 3000 which are designed
to achieve super high speed operation can be overly complex in their detail, ob-
scuring the basic underlying features and unnecessarily complicating students’
understanding. Hence we (Professor Davoli and myself) learned via class test-
ing that MPS due to the complexity of MIPS’ virtual memory management was
unsuitable for undergraduates. In the MIPS architecture, virtual memory is al-
ways on, all address translation is performed through a small fixed size TLB, and
hence even the OS maintained page tables for itself and user processes are kept
in virtual memory. Furthermore, the physical address space for the kernel and
its data structures are permanently disjoint from its virtual address space. While
these RISC-design features allow for an extremely fast processor they complicate
introductory students’ understanding; in particular with the circularity of an OS
always running with VM on and whose page tables are kept in virtual memory.

In 2004, Renzo and I set out to create µMPS – a pedagogically appropri-
ate machine emulator suitable for use by undergraduates. The primary design
goal of µMPS was to implement a virtual memory management subsystem that
more closely matched the conceptual description found in popular introductory
OS texts.

µMPS3, in a very real sense, represents our third, though depending on how
one counts, one might say, fourth iteration of designing an architecture based on
a real-world architecture, and creating an emulator for that architecture that sup-
ports both peripheral devices, and an excellent debugging environment. Interested
readers are invited to read the Principles of Operation for

PREFACE xiii

• µMPS - Our first attempt at solving this problem. This version introduced
a VM-bit, BIOS code to handle TLB-Refill events, a CISC-style exception
vector, and a paged-segmentation virtual memory architecture.

• µMPS2 - Multiprocessor support was added along with a major upgrade of
the GUI and debugging facilities.

• µARM - The systems educational community started to experiment with
architectures more familiar to students, e.g. ARM. As part of this move-
ment, we created µARM, the ARM-inspired version of µMPS based on the
ARM7TDMI variant.

Lessons learned over the 16 year span between µMPS and µMPS3 (in brief):

• The MIPS architecture, though less familiar by name to students, is still the
cleanest and easiest to understand for undergraduate students. Pedagogy
should always triumph over familiarity.

• Hard and fast rules, with respect to address translation, work best. We sub-
stituted the VM-bit for a machine configurable TLB Floor Address; a fixed
address below which address translation is disabled.

• Less is more. Having the BIOS routines handle TLB-Refill events ulti-
mately obscured student understanding.

• Don’t mix architectural philosophies. The CISC-style exception vector did
not match what students were seeing in their OS texts. The same was true
for segmentation. µMPS3 implements paging without segmentation.

• Students understanding of tape devices is equivalent to their experience with
8-track players. Support for tape devices was replaced with support for flash
memory devices.

• Students prefer to work on their own machines, rather than off of a depart-
mental server. While all night coding sessions remain “standard practice,”
these now occur in student dormitories, apartments, and bedrooms, rather
than in a university lab. Hence, installation procedures and software depen-
dencies need to be manageable to an undergraduate student. µMPS3 now
uses the standard gnu gcc MIPS cross compiler and is itself compiled and
installed using CMake.

xiv PREFACE

Renzo and I wish to offer our heartfelt thanks and gratitude to:

• Mauro Morsiani. Mauro generously donated his time to modify MPS into
µMPS. µMPS and the accompanying Kaya Project Guide were originally
released in 2004.

• Tomislav Jonjic, who updated the GUI and added multiprocessor support,
creating µMPS2. µMPS2 is 100% backward compatible with µMPS.

• Marco Melletti, who in 2017, created µARM.

• Mattia Biondi, who graciously and competently undertook the development
work in updating µMPS2 to µMPS3.

µMPS3 is NOT backwards compatible with µMPS2 (nor µMPS). We believe
that our third time is a charm and that the architecture is simple, but not too sim-
ple and that all the relevant issues related to machine organization and operating
systems are clearly visible and not clouded by unnecessary detail.

µMPS3 is designed to host any number of architecture and operating systems
related projects. One in particular is Pandos, which like µMPS3 was created and
is supported by the Virtual Square Lab.

As the date below indicates, the µMPS3 project took place during the 2020
Covid-19 pandemic. While I and my wife planned on residing in Bologna, Italy
for six months, we returned home to Cincinnati, OH after two and a half months,
in March of 2020. Though our time in Bologna was cut short, I wish to thank
the University of Bologna in general and Renzo Davoli, my long-time friend and
partner in “CS” crime in particular for their hospitality and support.

Finally we wish to thank our wives, Alessandra and Mindy without whose
inexhaustible patience projects such as this would never see the light of day.

Michael Goldweber
May, 2020

PREFACE xv

Part I
The Architecture of µMPS3

Computer system architecture is the attributes of a computing system as
seen by the programmer, i.e. the conceptual structure and functional be-
havior, as distinct from the organization of the data flows and controls,
the logic design, and the physical implementation.
Brooks & Amdahl, Blaauw & Brooks - on the Architecture of the IBM

System/360

1
Introduction to µMPS3

µMPS3 is not a real chip, nor a real machine, though there is no reason why
it could not be. µMPS3 is an architecture/system specification designed to aid
students in their study of operating systems. As such, it is based on the MIPS
R2/3000 RISC architecture.

umps3 is a software artifact, that faithfully emulates a µMPS3 machine. umps3
faithfully executes µMPS3/MIPS assembly created by the standard gnu gcc MIPS
cross compiler.1

Part I of this manual describes the µMPS3 system as it might come deliv-
ered from a manufacturer: complete with a description of supported peripheral
devices, included BIOS routines and a software library. As such, it blurs the line
between the umps3 emulator (e.g. the µMPS3 Machine Configuration Panel),
and a hypothetical µMPS3 machine.

Part II of this manual focuses on toolchain development (which theoretically
could have been included in Part I) and the use of the umps3 emulator.

1Unlike previous versions, µMPS3 does not rely on a special development toolchain.

1

2 CHAPTER 1. INTRODUCTION TO µMPS3

1.1 µMPS3 and The MIPS R2/3000
µMPS3 takes the MIPS R2/3000 architecture as its starting point and introduces
a number of changes/simplifications. Interested readers are referred to the official
MIPS processor handbook to fully understand our starting point.

In particular, µMPS3 differs from a MIPS R2/3000 device in the following
ways:

• No support for floating point operations.

• No pipelining; all instructions execute in a single clock cycle.

• A simplified, though comprehensive device interface. µMPS3 supports up
to eight instances of five different classes of emulated peripheral devices:
disks, printers, terminals, network cards, and flash storage devices. [Chapter
5]

• A sophisticated, integrated debugging environment. [Chapter 12]

• A simplified address space. As with a MIPS R2/3000, µMPS3 divides the
conceptual address space into four chunks: three kernel address spaces (two
.5 GB and one 1 GB, kseg0, kseg1, and kseg2 respectively) and one 2 GB
user space - kuseg. However, their address ordering has been reversed.
[Chapter 6]

• User configurable TLB size and RAM size. The number of slots in the TLB
(associative cache used in virtual address translation) as well as the number
of 4 KB frames of RAM are user configurable via the µMPS3 Machine
Configuration Panel. [Section 12.2.1]

• User configurable TLB Floor Address. [Section 6.3.1] Unlike the MIPS
R2/3000 where address translation is always enabled for all address, µMPS3
implements a user configurable parameter, TLB Floor Address. All ad-
dresses below TLB Floor Address are understood as physical addresses,
while all addresses greater than or equal to TLB Floor Address are subject
to a logical to physical address translation. There are four possible settings
for TLB Floor Address:

– VM Off.

– 0x8000.0000: VM is off for all three kernel address spaces and on for
kuseg.

1.2. NOTATIONAL CONVENTIONS 3

– 0x4000.0000: VM is off for kseg0 and kseg1, and on for kseg2 and
kuseg.

– RAMTOP: VM is off for kseg0 and part of kseg1. VM is on for kuseg,
kseg2, and the (upper) portion of kseg1 above RAMTOP. If the logical
address also exists as a physical address, then that address is used,
otherwise, an MMU address translation is performed.

• User programmable/replaceable BIOS/firmware code. The behavior of the
default BIOS code provided with µMPS3 is described in this guide. How-
ever, given the pedagogical purpose of µMPS3, students have the opportu-
nity to examine, alter or even rewrite the BIOS routines, which are provided
via MIPS assembly files. [Chapter 8]

All other aspects of µMPS3 behavior mimics a real R2/3000 MIPS processor. This
includes, branch-delay slots (invisible to programmers working in C), exception
handling, CP0 co-processors including MMU processing, and multi-processor
support/control.

This manual, along with a MIPS processor handbook to document the integer
instruction set of µMPS3, presents a complete description of the µMPS3 virtual
machine. Since development for the µMPS3 is typically done in C using a cross
compiler to generate µMPS3 code, it is unlikely that one will make much (any?)
use of the MIPS processor handbook.

There are times at which the student programmer, writing in C, needs to di-
rectly access specific machine registers, or assembly instructions. The µMPS3
installation includes a library (libumps) to facilitate these assembly-level oper-
ations from a C program. [Chapter 7]

1.2 Notational conventions
• Words being defined are italicized.

• Register, fields and instructions are bold-marked.

• Field F of register R is denoted R.F.

• Bits of storage are numbered right-to-left, starting with 0.

• The i-th bit of a storage unit named N is denoted N[i].

4 CHAPTER 1. INTRODUCTION TO µMPS3

• Memory addresses and operation codes are given in hexadecimal and pre-
sented in big-endian format.

• All diagrams illustrate memory and going from low addresses to high ad-
dresses using a left to right, bottom to top orientation.

• Cross references to other Sections or Chapters where one can find more
detailed information are enclosed in square brackets: [Section 1.2]

Teachers open the door. You enter by yourself.
Chinese Proverb

2
System Structure and Overview

2.1 Components of µMPS3
µMPS3 contains

• A processor. µMPS3 provides support for up to 16 processors. By default,
at system start/restart only Processor 0 is active. [Chapter 9]

• A system control coprocessor, CP0, incorporated into each processor.

• A memory device. A volatile random-access memory device, divided into
4 KB frames, whose size is user configurable from 32 KB up to 2 MB in
size - 512 frames of RAM. While the (artificial) limit of 2 MB may seem
small, it is more than adequate for the kind of projects µMPS3 was created
to support.

Memory is “installed” starting from address 0x2000.0000. The first 0.5 GB
of the physical address space, called kseg0 (0x0000.0000 - 0x2000.0000),
is always present and is, for the most part, “Read Only.” [Section 6.1]

• BIOS routines (e.g. firmware). In addition to bootstrap code, a routine au-
tomatically executed at system start/restart, µMPS3 automatically invokes

5

6 CHAPTER 2. SYSTEM STRUCTURE AND OVERVIEW

various BIOS routines as part of its exception handling protocol. [Chapters
3 and 8]

All of the BIOS routines (e.g. bootstrap and exception handlers) are user
programmable. A default BIOS is provided, but can be modified or re-
placed.

• Peripheral devices: up to eight instances for each of five device classes:
disks, flash storage devices, printers, terminals, and network interface de-
vices. [Chapter 5]

• A system bus connecting all the system components.

• The libumps library to facilitate C-language access to the CP0 regis-
ters and certain MIPS assembly instructions. libumps also “extends” the
MIPS ISA with seven new instructions particularly useful for writing oper-
ating systems. The libumps library is fully described in Chapter 7.

Each of µMPS3’s processors implements an accurate emulation of a MIPS
R2/3000 RISC processor, providing

• A RISC-type integer instruction set based on the load/store paradigm.

• A 32-bit word length for both instructions and registers. All physical ad-
dresses are 32 bits wide. The address space therefore is 232 = 4 GB; every
single 8-bit byte has its own address. doublewords are 64 bits and halfwords
are 16 bits.

• 32 general purpose registers (GPR) denoted $0. . .$31

– Register $0 is hardwired to zero (0). This register ignores writes and
always returns zero on read.

– Registers $1. . .$31 support both loads and stores. In addition to a
numeric designation, each register is also referenced via its standard
MIPS mnemonic designation. Ten of these registers are for general
computations while the rest are reserved for various purposes. The
most important reserved register is stack pointer $28, denoted SP.
Registers $26 and $27, denoted k0 and k1 respectively are reserved
solely for kernel use.

• Two special registers, HI and LO, are for holding the results from multipli-
cation and division operations.

2.1. COMPONENTS OF µMPS3 7

• A program counter, PC, for instruction addressing.

• A system control coprocessor, CP0, which provides:

– Support for two processor operation modes: kernel-mode and user-
mode. [Section 2.3]

– Support for exception handling. [Chapter 3]

– A processor Local Timer capable of generating interrupts. [Section
4.1.4]

– A Memory Management Unit (MMU) for the translation of addresses
above the TLB Floor Address. [Section 6.3]

CP0 implements ten control registers.

– Five support MMU operations: Index, Random, EntryHi, EntryLo,
and BadVAddr. [Section 6.4]

– Two support exception handling: Cause [section 3.3] and EPC.

– PRID – a read-only processor ID register (an integer i ∈ [0..15])

– Timer – the processor Local Timer. [Section 4.1.4]

– Status – the processor status register. [Section 2.3]

2.1.1 The µMPS3 Address Space
The 4 GB address space is divided into four chunks as follows [Section 6.2]:

• kseg0 (0x0000.0000 - 0x2000.0000): This mostly “read only” 0.5 GB sec-
tion is the “installed EPROM” BIOS memory region. kseg0 holds the BIOS
routines, device registers, bus device registers, and multiprocessor commu-
nication/support structures.

• kseg1 (0x2000.0000 - 0x4000.0000): This 0.5 GB section is designed to
hold the kernel/OS.

• kseg2 (0x4000.0000 - 0x8000.0000): This 1 GB section is for use when
implementing a sophisticated operating system.

• kuseg (0x8000.0000- 0xFFFF.FFFF): This 2 GB section is for user pro-
grams.

8 CHAPTER 2. SYSTEM STRUCTURE AND OVERVIEW

Access to to kseg0, kseg1, and kseg2 require the processor to be in kernel-mode.
Access to kuseg is possible from both the kernel-mode and user-mode processor
setting.

2.2 Processor State
A processor state is defined as the set of values that must be saved when an ex-
ecuting process is interrupted so that it can be restarted at a later point in time
as if it had not been interrupted. Essentially, a processor state is the contents of
all the user and control registers: the current state of the processor. Reloading a
processor state allows a process to continue executing from where it left off.

A processor state in µMPS3 is defined as a 35 word block that contains the
following registers:

• The EntryHi CP0 register. This register contains the current ASID, which
is essentially the process ID (EntryHi.ASID). [Section 6.3.2]

• The Cause CP0 register. [Section 3.3]

• The Status CP0 register. [Section 2.3]

• The PC.

• 29 words for the GPR registers. GPR registers $0, $k0, and $k1 are ex-
cluded.

• The HI and LO registers.

Appendix A illustrates a C language struct definition of a processor state
(state t).

2.3 The Status Register
Status is a read/writable CP0 register that controls the usability of the coproces-
sors, the processor mode of operation (kernel vs. user), and the interrupt masking
bits.

All bit fields in the Status register are read/writable. In particular:

2.3. THE STATUS REGISTER 9

0123456781516212223242526272831

CU TE BE
V

Interrupt Mask (IM) KU
o

IE
o

KU
p

IE
p

KU
c

IE
c

Figure 2.1: Status Register

• IEc: bit 0 - The “current” global interrupt enable bit. When 0, regardless
of the settings in Status.IM all interrupts are disabled. When 1, interrupt
acceptance is controlled by Status.IM.

• KUc: bit 1 - The “current” kernel-mode user-mode control bit. When Sta-
tus.KUc=0 the processor is in kernel-mode.

• IEp & KUp: bits 2-3 - the “previous” settings of the Status.IEc and Sta-
tus.KUc.

• IEo & KUo: bits 4-5 - the “previous” settings of the Status.IEp and Sta-
tus.KUp - denoted the “old” bit settings.

These six bits; IEc, KUc, IEp, KUp, IEo, and KUo act as 3-slot deep
KU/IE bit stacks. Whenever an exception is raised the stack is pushed
[Section 3.1] and whenever an interrupted execution stream is restarted, the
stack is popped. [Section 7.4]

• IM: bits 8-15 - The Interrupt Mask. An 8-bit mask that enables/disables
external interrupts. When a device raises an interrupt on the i-th line, the
processor accepts the interrupt only if the corresponding Status.IM[i] bit is
on.

• BEV: bit 22 - The Bootstrap Exception Vector. This bit determines which
BIOS routines get called by the hardware when an exception is raised.
When Status.BEV=1, the bootstrap BIOS exception handlers are called.
When Status.BEV=0, the normal runtime BIOS exception handlers are
called. [Section 8.2.1]

• TE: Bit 27 - the processor Local Timer enable bit. A 1-bit mask that en-
ables/disables the processor’s Local Timer. [Section 4.1.4]

• CU: Bits 28-31 - a 4-bit field that controls coprocessor usability. The bits
are numbered 0 to 3; Setting Status.CU[i] to 1 allows the use of the i-th
co-processor. Since µMPS3 only implements CP0 only Status.CU[0] is
writable; the other three bits are read-only and permanently set to 0.

10 CHAPTER 2. SYSTEM STRUCTURE AND OVERVIEW

Trying to make use of a coprocessor (via an appropriate instruction) with-
out the corresponding coprocessor control bit set to 1 will raise a Copro-
cessor Unusable exception. In particular untrusted processes can be pre-
vented from CP0 access by setting Status.CU[0]=0. CP0 is always acces-
sible/usable when in kernel mode (Status.KUc=0), regardless of the value
of Status.CU[0].

There cannot be greater rudeness than to interrupt another in the current
of his discourse.

John Locke

3
Exception Handling

An exception is defined as an event that interrupts the current execution stream.
There are two broad categories of exceptions:

• TLB-Refill events, a relatively frequent occurrence which is triggered dur-
ing address translation when no matching entries are found in the TLB.
[Section 6.3.3]

• All other exception types, including device interrupts, which, by definition,
occur infrequently.

For ease of exposition, the first category will be referred to as TLB-Refill
events, while the second category will simply be referred to as exceptions. So,
even though a TLB-Refill event is technically an “exception,” our use of the term
exception will refer to all exception types exclusive of TLB-Refill events.

Exceptions can be further broken down as follows:

• I/O Interrupts (Int): A peripheral I/O device or System Timer [Section 4.1]
signals that it has completed a previously started operation by causing an
interrupt exception. These asynchronous interruptions to the current execu-
tion stream are only rarely associated with the current executing process.

µMPS3 allows for 8 interrupt lines to be monitored, with each line support-
ing a number of devices connected to it. Interrupt lines are numbered 0–7. A

11

12 CHAPTER 3. EXCEPTION HANDLING

lower interrupt line indicates a higher servicing precedence for the devices
connected to that line. Only 5 interrupt lines are available for peripheral
devices.

– Interrupt line 0 is reserved for inter-processor interrupts. [Section 9.4]
– Line 1 is reserved for the processor Local Timer interrupts. [Section

4.1.4]
– Line 2 is reserved for system-wide Interval Timer interrupts. [Section

4.2]
– Interrupt lines 3–7 are for monitoring interrupts from peripheral de-

vices. [Chapter 5]

• System Calls (Sys): A system call exception occurs whenever the non-
privileged SYSCALL MIPS assembly instruction is executed. The SYSCALL
instruction is used by processes to request operating system services.

• Breakpoint Calls (Bp): A breakpoint call exception occurs whenever the
non-privileged BREAK MIPS assembly instruction is executed. The BREAK
instruction is used by processes to request operating system services.

The SYSCALL and BREAK instructions essentially perform the same
function. By convention, SYSCALL is used to request operating system
services, while BREAK is used to support debugging.

• Page Faults: In paged, virtual memory systems such as µMPS3, a page
fault exception occurs whenever the executing process attempts to access a
page not currently resident in RAM, known in the MIPS/µMPS3 world as
a TLB-Invalid exception (TLBL for loads & TLBS for stores). Specifically,
for µMPS3 a page fault exception is raised whenever the TLB entry for the
referenced page is marked invalid. [Chapter 6]

Each TLB entry also contain a read/write permission bit. A TLB-Modification
exception (Mod) is raised whenever the executing process attempts to write
to a read-only page. In addition to protecting against inadvertent writes, this
exception also aids in the implementation of sophisticated page replacement
algorithms.

• Program Traps: Typically these are associated with errors that the execut-
ing process commits. These “self-inflicted” errors include the Address Er-
ror, Bus Error, Reserved Instruction, Coprocessor Unusable, and Arithmetic
Overflow exceptions.

3.1. PROCESSOR ACTIONS ON EXCEPTION AND TLB-REFILL EVENTS13

– Address Error (AdEL & AdES): This exception is raised whenever

* A load/store/instruction fetch of a word is not aligned on a word
boundary.

* A load/store of a halfword is not aligned on a halfword boundary.

* A user-mode access is made to an address below 0x8000.0000
(kseg0, kseg1, or kseg2).

– Bus Error (IBE & DBE): This exception is raised whenever an access
is attempted on a non-existent physical memory location (i.e. an ad-
dress above RAMTOP) or during a kernel-mode access to any of the
undefined or inaccessible portions of the BIOS region. [Section 6.1]

– Reserved Instruction (RI): This exception is raised whenever an in-
struction is ill-formed, not recognizable, or is privileged and is exe-
cuted in user-mode (Status.KUc=1).

– Coprocessor Unusable (CpU): This exception is raised whenever an
instruction requiring the use of or access to an uninstalled or currently
unavailable coprocessor is executed. Since all µMPS3 control regis-
ters are implemented as part of CP0, access to these registers when
Status.KUc=1 and Status.CU[0]=0 will raise this exception. CP0 is
always available when in kernel-mode (Status.KUc=0).

– Arithmetic Overflow (OV): This exception whenever an ADD or SUB
instruction execution results in a 2’s-compliment overflow.

3.1 Processor Actions on Exception and TLB-Refill
Events

Three of the primary design principles for RISC architectures such as the MIPS
R2/3000 and µMPS3 are:

• Keep it simple.

• Make common/frequently occurring operations fast.

• Generalize design and avoid special cases.

While there are both TLB-Refill events and exceptions, the processor performs
the same actions for both - designed around the more common TLB-Refill event.

14 CHAPTER 3. EXCEPTION HANDLING

Specifically, the µMPS3 processor will always perform the following actions
atomically for both exceptions and TLB-Refill events:

1. Load the Exception PC (EPC) CP0 register with the current PC value.

2. Set the exception cause code in Cause.ExcCode. [Section 3.3]

3. Shift/Push the KU/IE stacks in the Status CP0 register in the following
manner:

KUp KUcKUo IEo IEp IEC

KUo IEo KUp IEp KUc IEC

Before Exception Event

Processor Action
on Exception

00A

A

B

B

C

C

D

DYX

Figure 3.1: KU/IE Stack Push

The “previous” bits of the Status.KU and Status.IE bits are “pushed” down
to the “old” slots, respectively and the “current” bits are “pushed” down to
the “previous” slots. Finally, the Status.KUc and Status.IMc bits are set to
zero: kernel-mode with all interrupts masked.

4. Load the PC with a new value. This value is

• 0x0000.0000 for TLB-Refill events. (i.e. The BIOS-TLB-Refill han-
dler)

• 0x0000.0080 for exceptions. (i.e. The BIOS-Excpt handler)

These addresses are fixed and immutable and are where the BIOS handlers
are loaded. [Chapter 8]

Important Point: The processor always enters the BIOS-TLB-Refill handler and
BIOS-Excpt handler in kernel-mode with all interrupts disabled.

Important Point: Returning to a previously interrupted execution stream is ac-
complished via the LDST command which performs the complementary pop op-

3.2. BIOS ACTIONS ON EXCEPTION AND TLB-REFILL EVENTS 15

eration on the KU/IE stacks. Thus returning the processor to whatever interrupt
state and mode was in effect when the exception occurred. [Section 7.4]

3.1.1 Additional Processor Actions on Exceptions
Additionally, the µMPS3 processor will also perform the following operations:

• Address Error and Bus Error exceptions: Load the BadVAddr CP0 register
with the offending address.

• Coprocessor Unusable exceptions: Place the appropriate coprocessor num-
ber in the Cause.CE field.

• Interrupt exceptions: Update the Cause.IP field bits to show which lines
interrupts are pending.

• MMU-based exceptions (TLB-Refill events, TLB-Modification, and TLB-
Invalid exceptions): Load the BadVAddr CP0 register with the virtual ad-
dress value that failed translation and load EntryHi.VPN with the virtual
page number from the virtual address that failed translation.

In summary, when an exception is raised, the processor performs a small num-
ber of steps atomically. These include a push operation on the KU/IE Status reg-
ister stacks, saving off the current PC, setting the exception code in the Cause
register, possibly setting some other CP0 registers (e.g. BadVAddr), and finally
loading the PC with one of two addresses depending on whether the exception
was a TLB-Refill event or not. What happens next is up to the BIOS handler
whose address is placed in the PC.

3.2 BIOS Actions on Exception and TLB-Refill Events
Since the BIOS code sits between the hardware and the kernel, understanding its
integration with both the hardware and the kernel is important. However, given
the instructional focus of µMPS3, the default/supplied BIOS exception handlers
do very little.

As described above, the hardware performs some key tasks. (e.g. Update
Cause.ExcCode, save the PC, turn off interrupts, and enter kernel-mode.) After
that the PC is loaded with one of two hard-wired BIOS-based addresses:

16 CHAPTER 3. EXCEPTION HANDLING

• 0x0000.0000 for TLB-Refill events. (i.e. The BIOS-TLB-Refill handler)

• 0x0000.0080 for exceptions. (i.e. The BIOS-Excpt handler)

For both TLB-Refill events and exceptions, the default/supplied BIOS han-
dlers perform two tasks and then passes processing along to the kernel.

The source code for the default/supplied BIOS-Excpt handler and BIOS-TLB-
Refill handler can be found in exec.S. [Chapter 8]

3.2.1 BIOS Actions on TLB-Refill Events
The default/supplied BIOS code for TLB-Refill events, the BIOS-TLB-Refill han-
dler (i.e. the code found at address 0x0000.0000 will:

• Save off the complete processor state at the time of the TLB-Refill event in
a BIOS data structure on the BIOS Data Page. For Processor 0, the address
of this processor state is 0x0FFF.F000.

• Set the PC and SP registers; i.e. pass control to the kernel TLB-Refill event
handler. The new values for the PC and SP registers are found in the BIOS
Data Page in the Pass Up Vector. For Processor 0, the address of the Pass
Up Vector is 0x0FFF.F900. [Section 8.5]

Important Point: One of the first tasks the operating system code needs to per-
form at startup is the loading of the Pass Up Vector with the address of the ap-
propriate kernel handler for TLB-Refill events and the value of the SP for the
kernel.

Important Point: The BIOS-TLB-Refill handler is always entered in kernel-mode
with interrupts disabled - see above. Since the BIOS-TLB-Refill handler does not
modify the Status register, control is therefore passed to the kernel with interrupts
disabled and in kernel-mode.

3.2.2 BIOS Actions on Exceptions
The default/supplied BIOS code for exceptions, the BIOS-Excpt handler (i.e. the
code found at address 0x0000.0080) will:

• Save off the complete processor state at the time of the exception in a BIOS
data structure on the BIOS Data Page. For Processor 0, the address of this
processor state is 0x0FFF.F000.

3.2. BIOS ACTIONS ON EXCEPTION AND TLB-REFILL EVENTS 17

0x0FFF.F8C0

Exception State

0x0FFF.F000

0x1000.0000

Processor 0

0x0FFF.F900

Processor 15

Processor 1
Exception State

Exception State

Processor 0
Pass Up Vector

Pass Up Vector

Pass Up Vector

b
b

b
b
b

Processor 1

Processor 15

0x0FFF.F910

0x0FFF.F08C

0x0FFF.F118

0x0FFF.F920

0x0FFF.FA00

0x0FFF.F9F0

Unused

Unused

Figure 3.2: Layout of the BIOS Data Page

• Set the PC and SP registers; i.e. pass control to the kernel exception handler.
The new values for the PC and SP registers are found in the BIOS Data Page
in the Pass Up Vector. For Processor 0, the address of the Pass Up Vector is
0x0FFF.F900. [Section 8.5]

Important Point: One of the first tasks the operating system code needs to per-
form at startup is the loading of the Pass Up Vector with the address of the appro-
priate kernel handler for exceptions and the value of the SP for the kernel.

Important Point: The BIOS-Excpt handler is always entered in kernel-mode with
interrupts disabled - see above. Since the BIOS-Excpt handler does not modify the
Status register, control is therefore passed to the kernel with interrupts disabled
and in kernel-mode.

Appendix A.3 details a C-language struct for a Pass Up Vector.

18 CHAPTER 3. EXCEPTION HANDLING

Field # Address Field Name
3 (base) + 0xc SP for the kernel event handler
2 (base) + 0x8 kernel exception handler address
1 (base) + 0x4 SP for the kernel TLB-Refill event handler
0 (base) + 0x0 kernel TLB-Refill event handler address

Table 3.1: Pass Up Vector Layout

3.3 The Cause Register

01267815162728293031

BD CE Interrupts Pending (IP) ExcCode

Figure 3.3: Cause CP0 Register

Cause is a CP0 register containing information about the current exception
and/or pending device interrupts. As described above it is set by the hardware at
the time an exception is raised.

The Cause fields are all read-only and are defined as follows:

• ExcCode (bits 2-6): a 5-bit field that provides a code as to which exception
was raised. [Table 3.3]

• IP (bits 8-15): an 8-bit field indicating on which interrupt lines interrupts
are currently pending. If an interrupt is pending on interrupt line i, then
Cause.IP[i] is set to 1.

Important Point: Many interrupt lines may be active at the same time. Fur-
thermore, many devices on the same interrupt line may be requesting ser-
vice. Cause.IP is always up to date, immediately responding to external
(peripheral device) and internal (e.g. system timers) device events.

• CE (bits 28-29): A 2 bit field which indicates which coprocessor was ille-
gally accessed when a Coprocessor Unusable exception is raised.

• BD (bit 31): This bit indicates the last exception raised occurred in a Branch
Delay slot. Delayed loads and branch delay slots are conventions/techniques

3.3. THE CAUSE REGISTER 19

used by fast RISC processors to prevent pipeline slowdowns or stalls.1 While
there are no pipeline stages nor overlapped instruction execution in µMPS3,
delayed loads and branch delay slots are correctly handled. Hence, the BD
bit can safely be ignored.

The 13 codes used in Cause.ExcCode are:

Number Code Description
0 Int External Device Interrupt
1 Mod TLB-Modification Exception
2 TLBL TLB Invalid Exception: on a Load instr. or instruction fetch
3 TLBS TLB Invalid Exception: on a Store instr.
4 AdEL Address Error Exception: on a Load or instruction fetch
5 AdES Address Error Exception: on a Store instr.
6 IBE Bus Error Exception: on an instruction fetch
7 DBE Bus Error Exception: on a Load/Store data access
8 Sys Syscall Exception
9 Bp Breakpoint Exception

10 RI Reserved Instruction Exception
11 CpU Coprocessor Unusable Exception
12 OV Arithmetic Overflow Exception

Table 3.2: Cause Register Status Codes

1See “MIPS RISC Architecture” by Gary Kane and Joe Heinrich, Prentice Hall, 1992 for more
information.

Any sufficiently advanced technology is indistinguishable from magic.
Arthur C. Clarke

4
Bus Device & Registers

In addition to the peripheral devices discussed in Chapter 5 µMPS3 also imple-
ments a Bus Device.

The Bus Device acts as the interface between the processor(s), memory, and all
supported devices; both internal and peripheral. In particular this device performs
the following tasks:

• Clocking services. This includes the two Bus Device clocks: the Time of
Day (TOD) clock and Interval Timer, as well as each processor’s Local
Timer. [Section 4.1]

• Arbitration among the interrupt lines, the devices attached to each interrupt
line and the device registers. [Chapter 5]

• Repository of basic system information. As with peripheral devices, the
kseg0 memory area contains special registers associated with the Bus De-
vice called the Bus Register Area [Section 4.2]

4.1 System Clocks
µMPS3, via the Bus Device, provides two system-wide clocks, the Time of Day
Clock and Interval Timer, plus one local clock per processor.

20

4.1. SYSTEM CLOCKS 21

4.1.1 Time Scale
The clock speed, or Time Scale, is a user configurable value set via the µMPS3
machine configuration panel. [Chapter 12]

The Time Scale’s value indicates the number of clock ticks that will occur in
a microsecond. When the processor speed is set to 1MHz, the Time Scale is set to
1.

The current value of Time Scale is accessible via a read-only register in the
Bus Register Area. [Section 4.2].

4.1.2 Time of Day Clock (TOD)
The TOD clock is a read-only doubleword value set by µMPS3 circuitry to zero at
system boot/reset time. It is incremented by one after every processor cycle; i.e.
a clock tick. Each µMPS3 machine instruction is designed to take one processor
cycle to execute. Successive readings of the TOD clock can be used to measure
time spans. Access to the TOD clock requires the processor to be in kernel-mode,
otherwise an Address Error Program Trap exception is raised.

Access to the TOD clock value can be accomplished either of the following
ways:

• Direct access to the Bus Register memory location: 0x1000.001C

• Appendix C contains a listing of the µMPS3 System-wide constants file
contst.h. Included in this file is a pre-defined macro STCK(T) which takes
an unsigned integer as its input parameter and populates it with the value of
the low-order word of the TOD clock divided by the Time Scale. [Section
4.1.1]

Important Point: The TOD clock does not generate interrupts. It is set to zero at
system boot/reset time and begins counting up by one after each clock cycle.

4.1.3 Interval Timer
The single system-wide Interval Timer is a 32-bit unsigned value that is decre-
mented by one every processor cycle. The µMPS3 circuitry automatically sets the
Interval Timer to 0xFFFF.FFFF at system boot/reset time. The Interval Time gen-
erates an interrupt on line 2 whenever it makes the 0x0000.0000⇒ 0xFFFF.FFFF
transition.

22 CHAPTER 4. BUS DEVICE & REGISTERS

Access (read or write) to the Interval Timer requires the processor to be in
kernel-mode, otherwise an Address Error Program Trap exception is raised.

The Interval Timer is the only device attached to interrupt line 2, hence all
interrupts on this line are associated with the Interval Timer.

Interval Timer interrupts are acknowledged by writing a new value into the
Interval Timer register.

Access to the Interval Timer can be accomplished either of the following ways:

• Direct access to the Bus Register memory location: 0x1000.0020

• Appendix C contains a listing of the µMPS3 System-wide constants file
contst.h. Included in this file is a pre-defined macro LDIT(T) which loads
the Interval Timer with the value T (unsigned int) multiplied by the Time
Scale value. [Section 4.1.1]

4.1.4 Processor Local Timer (PLT)
Similar in behavior to the Interval Timer is the Processor Local Timer (PLT). Each
processor, implemented as part of its CP0 coprocessor, has its own independent
local timer. Unlike the TOD clock and the Interval Timer, each PLT is imple-
mented using a special CP0 Timer register. Hence there is no field for PLTs in
the Bus Register Area.

The CP0 Timer register is decremented by one every processor clock cy-
cle. A PLT will generate an interrupt on interrupt line 1 whenever it makes the
0x0000.0000⇒ 0xFFFF.FFFF transition.

A PLT is the only device attached to interrupt line 1, hence all interrupts on
this line are associated with the PLT. PLT interrupts are acknowledged by writing
a new value into the CP0 Timer register.

Unlike the Interval Timer, a PLT can be enabled/disabled. Whether this timer
is enabled or not is determined by the Status.TE (Timer Enable) bit. When Sta-
tus.TE=0 the PLT will neither decrement nor generate interrupts. Only an enabled
PLT can generate interrupts. When a pending PLT (line 1) interrupt actually trig-
gers an interrupt is still controlled by the Status.IEc and Status.IM. [Section 2.3]

Since the PLT is a CP0 register, access is the same as any other CP0 register.
For Timer one uses the libumps functions: setTIMER() and getTIMER()
[Section 7.1]

Important Point: The Interval Timer and the PLTs both count down, while the
TOD clock counts up. The TOD clock cannot generate an interrupt while both the

4.2. BUS REGISTER AREA 23

Interval Timer (interrupt line 2) and the PLTs (interrupt line 1) can each generate
interrupts.

Important Point: Since there is never any ambiguity regarding a line 1 or line 2
interrupt, there is no corresponding Interrupting Devices Bit Map for these inter-
rupt lines.

4.2 Bus Register Area

The bus register area is an eleven word area allocated in kseg0 (BIOS Region)
containing

Physical Address Field Name
0x1000.0028 TLB Floor Address
0x1000.0024 Time Scale
0x1000.0020 Interval Timer
0x1000.001C Time of Day Clock - Low
0x1000.0018 Time of Day Clock - High
0x1000.0014 Installed Bootstrap BIOS Size
0x1000.0010 Bootstrap BIOS Base Physical Address
0x1000.000C Installed Exec. BIOS Size
0x1000.0008 Exec. BIOS Base Physical Address
0x1000.0004 Installed RAM Size
0x1000.0000 RAM Base Physical Address

Table 4.1: Bus Register Area

The first six words/fields are read-only and are set at system boot/reset time.
RAMTOP is calculated by adding the RAM base physical address (fixed at 0x2000.0000)
to the installed RAM size. EXECTOP (Exec. BIOS Base addr + Exec. BIOS size)
and BOOTTOP (Bootstrap BIOS Base addr + Bootstrap BIOS size) are calculated
in similar fashion.

The other five words are:

1. Time Scale: [Section 4.1.1]

24 CHAPTER 4. BUS DEVICE & REGISTERS

2. Time of Day Clock (TOD): The read-only double-word register, split into
its high and low components, that is the TOD clock. [Section 4.1.2]

3. Interval Timer: The read/writable unsigned register that is the Interval Timer.
[Section 4.1.3]

4. TLB Floor Address: This is the threshold below which address translation
is disabled and the logical address is the physical address. [Section 6.3.1]
The TLB Floor Address is a user configurable value set via the µMPS3
Machine Configuration Panel. [Section 12.2.1]

Appendix A contains a C-language struct definition for the Bus Register area.

0x0000.0000

Bus Register Area

BIOS Data Page

0x0FFF.F000

0x1000.0000

Execution BIOS
Routines

EXECTOP
Bus Error

Installed Devices Bit Map

Int. Devices Bit Map

0x1000.002C
0x1000.0040

Device Registers

0x1000.0054

0x1000.02D4

[Address/Bus Error]

Figure 4.1: Bus Register Area Location

Television is a device that permits people who haven’t anything to do to
watch people who can’t do anything.

Fred Allen

5
Peripheral Devices

µMPS3 supports five different classes of peripheral devices: disk, flash, network
card, printer and terminal. Furthermore, µMPS3 can support up to eight instances
of each device type. Each single device is operated by a controller. Controllers ex-
change information with the processor via device registers: special (kseg0) mem-
ory locations.

A device register is a consecutive 4-word block of memory. By writing and
reading specific fields in a given device register, the processor may both issue
commands, test device status, and obtain data results.

µMPS3 implements the full-handshake interrupt-driven protocol. Specifi-
cally:

1. Communication with device i is initiated by the writing of a command code
into device i’s device register.

2. Device i’s controller responds by both starting the indicated operation and
setting a status field in i’s device register.

3. When the indicated operation completes, device i’s controller will again set
some fields in i’s device register; including the status field. Furthermore,
device i’s controller will generate an interrupt exception by asserting the
appropriate interrupt line. The generated interrupt exception informs the

25

26 CHAPTER 5. PERIPHERAL DEVICES

processor that the requested operation has concluded and that the device
requires its attention.

4. The interrupt is acknowledged by writing the acknowledge command code
in device i’s device register.

5. Device i’s controller will de-assert the interrupt line and the protocol can
restart. For performance purposes, writing a new command after the in-
terrupt is generated will both acknowledge the interrupt and start a new
operation immediately.

The device registers are located in low-memory starting at 0x1000.0054. Since
this area falls in kseg0, all references are considered physical addresses and access
is limited to kernel mode (Status.KUc=0). [Chapter 6]

The following table details the correspondence between device class/type and
interrupt line.

Interrupt Line # Device Class
0 Inter-processor interrupts
1 Processor Local Timer
2 Interval Timer (Bus)
3 Disk Devices
4 Flash Devices
5 Network (Ethernet) Devices
6 Printer Devices
7 Terminal Devices

Table 5.1: Interrupt Line and Device Class Mapping

Some important issues relating to device management:

• Since there are multiple interrupt lines, and multiple devices attached to the
same interrupt line, at any point in time there may be multiple interrupts
pending simultaneously; both across interrupt lines and on the same inter-
rupt line.

• The lower the interrupt line number, the higher the priority of the interrupt.
Note how fast/critical devices (e.g. disk devices) are attached to a high

5.1. DEVICE REGISTERS 27

priority interrupt line while slow devices are attached to the low priority
interrupt lines.

• Interrupt lines 3–7 are used for peripheral devices.

• Interrupt line 0 is for inter-processor interrupts coordination. [Section 9.4]

• Interrupt line 1 is reserved for PLT interrupts. [Section 4.1.4]

• Interrupt line 2 is reserved for the system-wide Interval Timer. [Section
4.1.3]

• Disk and flash devices support Direct Memory Access (DMA); that is through
cooperation with the bus, these devices are able to transfer whole blocks of
data to/from memory from/to the device. Data blocks must be both word-
aligned and of multiple-word in size. µMPS3 supports any number of con-
current DMA operations; each on a different device. Care must be taken to
prevent simultaneous DMA operations on the same chunk of memory.

• After an operation has begun on a device, its device register “freezes” –
becomes read-only – and will not accept any other commands until the op-
eration completes.

• Any device register for an uninstalled device is “frozen” – set to zero – and
subsequent writes to the device register have no effect.

• Device registers use only physical addresses; this includes addresses used
in DMA operations.

• Each external device in µMPS3 is identified by the interrupt line it is at-
tached to and its device number; an integer in [0..7]. µMPS3 limits the
number of devices per interrupt line to eight.

• For performance reasons, devices in the same class are, by default, attached
to the same interrupt line.

5.1 Device Registers
All external devices share the same device register structure.

28 CHAPTER 5. PERIPHERAL DEVICES

While each device class has a specific use and format for these fields, all device
classes, except terminal devices, use:

• COMMAND to allow commands to be issued to the device controller.

• STATUS for the device controller to communicate the device status to the
processor.

• DATA0 & DATA1 to pass additional parameters to the device controller or
the passing of data from the device controller.

Field # Address Field Name
3 (base) + 0xc DATA1
2 (base) + 0x8 DATA0
1 (base) + 0x4 COMMAND
0 (base) + 0x0 STATUS

Table 5.2: Device Register Layout

All 40 device registers in µMPS3 are located in low memory starting at 0x1000.0054.
Immediately before the device registers are two other data structures:

• Installed Devices Bit Map: A five word structure located at 0x1000.002C
indicating which devices are actually installed.

• Interrupting Devices Bit Map: A five word structure located at 0x1000.0040
indicating which devices have an interrupt pending.

Given an interrupt line (IntLineNo) and a device number (DevNo) one can
compute the starting address of the device’s device register:
devAddrBase = 0x1000.0054 + ((IntlineNo - 3) * 0x80) + (DevNo * 0x10)

Appendix A contains C-language struct definitions for an individual device
register and the collection of devices registers.

5.2 Device Bit Maps

5.2.1 Installed Devices Bit Map
This is a read-only five word area that indicates which devices are attached to
which interrupt line. One word each is reserved to describe the devices attached

5.2. DEVICE BIT MAPS 29

to interrupt lines 3–7.

Word # Physical Address Field Name
4 0x1000.002C + 0x10 Interrupt Line 7 Installed Devices Bit Map
3 0x1000.002C + 0x0C Interrupt Line 6 Installed Devices Bit Map
2 0x1000.002C + 0x08 Interrupt Line 5 Installed Devices Bit Map
1 0x1000.002C + 0x04 Interrupt Line 4 Installed Devices Bit Map
0 0x1000.002C Interrupt Line 3 Installed Devices Bit Map

Table 5.3: Installed Devices Bit Map Addresses

Each Installed Devices Bit Map word has the same format:
01234567831

Figure 5.1: Installed Devices Bit Map Word

When bit i in word j is set to one then there is a device, with device number i
that is attached to interrupt line j + 3. These words are set by µMPS3 at system
boot/reset time and never change.

5.2.2 Interrupting Devices Bit Map
This is a read-only five word area that indicates which devices have an interrupt
pending. One word each is reserved to indicate which devices have interrupts
pending on interrupt lines 3–7.

Interrupting Devices Bit Map words have the same format as Installed Device
Bit Map words. When bit i in word j is set to one then device i attached to
interrupt line j + 3 has a pending interrupt. [Figure 5.1]

An interrupt pending bit is turned on automatically by the hardware whenever
a device’s controller asserts the interrupt line to which it is attached. The interrupt
will remain pending –the pending interrupt bit will remain on– until the interrupt
is acknowledged. Interrupts for peripheral devices are acknowledged by writing
the acknowledge command code in the appropriate device’s device register.

30 CHAPTER 5. PERIPHERAL DEVICES

Word # Physical Address Field Name
4 0x1000.0040 + 0x10 Interrupt Line 7 Interrupting Devices Bit Map
3 0x1000.0040 + 0x0C Interrupt Line 6 Interrupting Devices Bit Map
2 0x1000.0040 + 0x08 Interrupt Line 5 Interrupting Devices Bit Map
1 0x1000.0040 + 0x04 Interrupt Line 4 Interrupting Devices Bit Map
0 0x1000.0040 Interrupt Line 3 Interrupting Devices Bit Map

Table 5.4: Interrupting Devices Bit Map Addresses

Whenever any of the devices on interrupt line i has an interrupt pending, in
addition to the interrupt pending bit(s) in the i − 3rd word of the Interrupting
Devices Bit Map being on, Cause.IP[i] will also be on. Cause.IP[i] will only be
off when none of the devices attached to line i have a pending interrupt.

Interrupt pending bits, both in Cause.IP and in the Interrupting Devices Bit
Map get automatically turned on in response to device controllers asserting inter-
rupt lines. The interrupt masking flags, Status.IEc and Status.IM, are used to
determine if a pending interrupt actually generates an interrupt exception or not.
A pending interrupt on interrupt line i will generate an interrupt exception if both
Status.IEc and Status.IM[i] are set to 1.

Important Point: Many interrupt lines may be active at the same time. Fur-
thermore, many devices on the same interrupt line may be requesting service.
Cause.IP and the Interrupting Devices Bit Map are always up to date, immedi-
ately responding to external device events.

Appendix A contains a C-language struct definition for the Installed Device
Bit Map and Interrupting Devices Bit Map.

5.3. DISK DEVICES 31

Bus Register Area

0x1000.0000

Line 3, Device 0

Installed Devices Bit Map

Int. Devices Bit Map

0x1000.002C
0x1000.0040

Device Register

0x1000.0054

0x1000.0064

0x1000.02C4

0x1000.02D4

0x1000.00C4

0x1000.00D4

Device Register

Device Register

Device Register

Device Register

Line 7, Device 7

Line 3, Device 7

Line 3, Device 1

Line 4, Device 0

b b b

b b b

Figure 5.2: Device Registers Area

5.3 Disk Devices
µMPS3 supports up to eight DMA supporting read/writable hard disk drive de-
vices. All µMPS3 disk drives have a sector/block size equal to the µMPS3 frame-
size of 4KB. Each installed disk drive’s device register DATA1 field is read-only
and describes the physical characteristics of the device’s geometry.

078151631

MAXCYL MAXHEAD MAXSECT

Figure 5.3: Disk Device DATA1 Field

µMPS3 disk drives can have up to 65536 cylinders/track, addressed [0..MAXCYL-
1]; 256 heads (or track surfaces), addressed [0..MAXHEAD-1]; and 256 sec-
tors/track, addressed [0..MAXSECT-1]. Each 4 KB physical disk block (or sec-
tor) can be addressed by specifying its coordinates: (cyl, head, sect).

32 CHAPTER 5. PERIPHERAL DEVICES

A disk drive STATUS field is read-only and will contain one of the following
status codes:

Code Status Possible Reason for Code
0 Device Not Installed Device not installed
1 Device Ready Device waiting for a command
2 Illegal Operation Code Error Device presented unknown command
3 Device Busy Device executing a command
4 Seek Error Illegal parameter/hardware failure
5 Read Error Illegal parameter/hardware failure
6 Write Error Illegal parameter/hardware failure
7 DMA Transfer Error Illegal physical address/hardware failure

Table 5.5: Disk Drive Status Codes

Status codes 1, 2, and 4–7 are completion codes. An illegal parameter may be
an out of bounds value (e.g. a cylinder number outside of [0..(MAXCYL-1)]), or
a non-existent physical address for DMA transfers.

A disk drive DATA0 device register field is read/writable and is used to specify
the starting physical address for a read or write DMA operation. Since memory
is addressed from low addresses to high, this address is the lowest word-aligned
physical address of the 4 KB block about to be transferred.

A disk drive COMMAND field is read/writable and is used to issue commands
to the disk drive.

Code Command Operation
0 RESET Reset the device and move the boom to cylinder 0
1 ACK Acknowledge a pending interrupt
2 SEEKCYL Seek to the specified CYLNUM
3 READBLK Copy the block located at (HEADNUM, SECTNUM) in the

current cylinder into RAM at the address in DATA0
4 WRITEBLK Copy the 4 KB of RAM at the address in DATA0 onto the

block located at (HEADNUM, SECTNUM) in the current
cylinder

Table 5.6: Disk Drive Command Codes

5.3. DISK DEVICES 33

The format of the COMMAND register, as illustrated in Figure 5.4, differs
depending on which command is to be issued:

0781516232431

HEADNUM SECTNUM READBLK
WRITEBLK

CYLNUM SEEKCYL

RESET
ACK

Figure 5.4: Disk Device COMMAND Field

A disk operation is started by loading the appropriate value into the COM-
MAND field. For the duration of the operation the device’s status is “Device
Busy.” Upon completion of the operation an interrupt is raised and an appropri-
ate status code is set; “Device Ready” for successful completion or one of the
error codes. The interrupt is then acknowledged by issuing an ACK or RESET
command.

Disk device performance, because both read and write operations are DMA-
based, strongly depends on the system clock speed. While read/write throughput
may reach MB’s/sec in magnitude, the disk hardware operations remain in the
millisecond range.

µMPS3 disk devices must first be created using the umps3-mkdev utility
prior to use. [Chapter 11]

34 CHAPTER 5. PERIPHERAL DEVICES

5.4 Flash Devices
µMPS3 supports up to eight flash-based, DMA supporting, storage devices uti-
lizing a 4 KB blocksize. Each device’s register DATA1 field is read-only and
describes the physical characteristics of the device’s geometry.

0232431

MAXBLOCK

Figure 5.5: Flash Device DATA1 Field

µMPS3 flash devices can have up to 224 blocks, addressed [0..MAXBLOCK-
1]. Each 4 KB block is addressed by specifying its block number.

A flash device STATUS field is read-only and will contain one of the following
status codes:

Code Status Possible Reason for Code
0 Device Not Installed Device not installed
1 Device Ready Device waiting for a command
2 Illegal Operation Code Error Device presented unknown command
3 Device Busy Device executing a command
4 Read Error Illegal parameter/hardware failure
5 Write Error Illegal parameter/hardware failure
6 DMA Transfer Error Illegal physical address/hardware failure

Table 5.7: Flash Device Status Codes

Status codes 1, 2, and 4–6 are completion codes. An illegal parameter may be
an out of bounds value (e.g. a block number outside of [0..(MAXBLOCK-1)]),
or a non-existent physical address for DMA transfers.

A flash device DATA0 field is read/writable and is used to specify the starting
physical address for a read or write DMA operation. Since memory is addressed
from low addresses to high, this address is the lowest word-aligned physical ad-
dress of the 4 KB block about to be transferred.

A flash device COMMAND field is read/writable and is used to issue com-
mands to the device.

5.4. FLASH DEVICES 35

Code Command Operation
0 RESET Reset the device interface
1 ACK Acknowledge a pending interrupt
2 READBLK Read the block located at (BLOCKNUMBER) and copy it

into RAM starting at the address in DATA0
3 WRITEBLK Copy the 4 KB of RAM starting at the address in DATA0

into the block located at (BLOCKNUMBER)

Table 5.8: Flash Device Command Codes

The format of the COMMAND field, as illustrated in Figure 5.6, differs de-
pending on which command is to be issued:

07831

BLOCKNUMBER READBLK
WRITEBLK

RESET
ACK

Figure 5.6: Flash Device COMMAND Field

An operation on a flash device is started by loading the appropriate value into
the COMMAND field. For the duration of the operation the device’s status is
“Device Busy.” Upon completion of the operation an interrupt is raised and an
appropriate status code is set; “Device Ready” for successful completion or one
of the error codes. The interrupt is then acknowledged by issuing an ACK or
RESET command.

Flash device performance, while somewhat dependent on the system clock
speed, remain significantly slower than disk devices. A flash device read (or write)
take approximately 15 times longer than a disk seek operation.

µMPS3 flash devices must first be created using the umps3-mkdev utility
prior to use. [Chapter 11]

36 CHAPTER 5. PERIPHERAL DEVICES

5.5 Network (Ethernet) Adapters
µMPS3 supports up to eight DMA supporting network (i.e. Ethernet) adapters.
Though these devices are DMA-based, they are not block devices. Network
adapters operate at the byte level and transfer into/out of memory only the amount
of data called for. Since packets on a network typically follow standard MTU
sizes, this data should never exceed (by much) 1500 bytes.

Network adapters share some characteristics with terminal devices; they are
simultaneously both an input device and an output device. As an output device,
network adapters behave like other peripherals: a write command is issued and
when the write (i.e. transmit) is completed, an interrupt is generated.

For packet receipt, there are two modes of operation:

• Interrupt Enabled: Whenever a packet arrives, an interrupt is generated -
this interrupt is not the result of an earlier command. After ACK’ing this
interrupt one issues a READNET command to read the packet. When the
read is completed, another interrupt is generated, which itself must also be
ACK’ed. In Interrupt Enabled mode, each incoming packet, when success-
fully read, is a two-interrupt sequence.

• Interrupt Disabled: When packets arrive, no interrupt is generated. The
network adapter must be polled to determine if a packet is available. The
READNET command is non-blocking, and returns 0 if there is no packet to
be read. The READNET command will still generate an interrupt, which
must be ACK’ed, upon its conclusion.

A network adapter STATUS device register field is read-only and will contain
one of the following status codes:

Status codes 1, 2, and 5–7 are completion codes. An illegal address may be an
out of bounds value or a non-existent physical address for DMA transfers.

Status code 128 is not a distinct status code, it is used in a logical OR fashion
with the other status codes. Hence there are actually thirteen status values: 0, (1 &
129), (2 & 130),. . . , (7 & 135). For example, a status code value of 130 indicates
that both an illegal operation was requested AND there is a packet pending for
reading. The Read Pending status codes are only used when the network adapter
is operating Interrupt Enable mode.

A network adapter COMMAND device register field is read/writable and is
used to issue commands to the network adapter.

5.5. NETWORK (ETHERNET) ADAPTERS 37

Code Status Possible Reason for Code
0 Device Not Installed Device not installed
1 Device Ready Device waiting for a command
2 Illegal Operation Code Error Device presented unknown command
3 Device Busy Device executing a command
5 Read Error Error reading packet from device
6 Write Error Error attempt to send packet
7 DMA Transfer Error Illegal physical address/hardware failure

128 Read Pending Interrupts Enabled and packet present

Table 5.9: Network Adapter Status Codes

Code Command Operation
0 RESET Reset the device and reset all configuration data to

defaults
1 ACK Acknowledge a pending interrupt
2 READCONF Read configuration data into DATA0 & DATA1
3 READNET Read the next packet from the adapter and copy it

into RAM starting at the address in DATA0
4 WRITENET Send a packet of data starting at the RAM address in

DATA0, whose length is in DATA1
5 CONFIG Update adapter configuration data from values in

DATA0 & DATA1

Table 5.10: Network Adapter Command Codes

The DATA0 fields, during configuration operations (READCONF & CON-
FIG), are defined as follows:

• ND (NAMED, bit 8): When DATA0.ND=1, the network adapter will au-
tomatically fill all outgoing packets’ source MAC address field with the
network adapter’s MAC address.

• IE (Interrupt Enable, bit 9): If DATA0.IE=1, whenever a packet is pend-
ing on the device (i.e. waiting to be read), it will immediately generate an
interrupt. After ACK’ing this interrupt, one issues a READNET command

38 CHAPTER 5. PERIPHERAL DEVICES

07891011141516232431

2nd MAC Octet 1st MAC Octet SM PQ IE ND

Figure 5.7: Network Adapter DATA0 Field
0781516232431

6th MAC Octet 5th MAC Octet 4th MAC Octet 3rd MAC Octet

Figure 5.8: Network Adapter DATA1 Field

to facilitate the reading of the packet. The READNET command must then
also be ACK’ed.

• PQ (PROMISQ, bit 10): If DATA0.PQ=1 the network adapter will capture
and save all packets its receives. When DATA0.PQ=0, the device will ig-
nore/drop any packets not intended for its MAC address. Broadcast packets
will still be received even when DATA0.PQ=0.

• SM (SetMAC, bit 15): When DATA0.SM=1 and a CONFIG command is
issued, the MAC address of the adapter is updated to the values in DATA0
& DATA1. When DATA0.sm=0 and a CONFIG command is issued, the
adapter’s MAC address remains unchanged.

As described above, the DATA0 & DATA1 fields are overloaded; either con-
taining device status values or DMA addresses and lengths. One uses the CON-
FIG to set network adapter configuration values. Similarly, after a READNET or
WRITENET operation, one can use a READCONF operation to reset the DATA0
& DATA1 registers to reflect the current adapter configuration values.

5.6. PRINTER DEVICES 39

5.6 Printer Devices
µMPS3 supports up to eight parallel printer interfaces, each one with a single 8-bit
character transmission capability with a maximum throughput of 125 KB/sec.

The DATA0 field for printer devices is read/writable and is used to set the
character to be transmitted to the printer. The character is placed in the low-order
byte of the DATA0 field. The DATA1 field, for printer devices is not used.

07831

CHAR

Figure 5.9: Printer Device DATA0 Field

A printer STATUS field is read-only and will contain one of the following
status codes:

Code Status Possible Reason for Code
0 Device Not Installed Device not installed
1 Device Ready Device waiting for a command
2 Illegal Operation Code Error Device presented unknown command
3 Device Busy Device executing a command
4 Print Error Error during character transmission

Table 5.11: Printer Device Status Codes

Status codes 1, 2, and 4 are completion codes.
A printer COMMAND field is read/writable and is used to issue commands

to the printer interface.

Code Command Operation
0 RESET Reset the device interface
1 ACK Acknowledge a pending interrupt
2 PRINTCHR Transmit the character in DATA0 over the line

Table 5.12: Printer Device Command Codes

40 CHAPTER 5. PERIPHERAL DEVICES

The format of the COMMAND field, is illustrated in Figure 5.10.

COMMAND

Figure 5.10: Printer COMMAND Field

A printer operation is started by loading the appropriate value into the COM-
MAND field. For the duration of the operation the device’s status is “Device
Busy.” Upon completion of the operation an interrupt is raised and an appropri-
ate status code is set; “Device Ready” for successful completion or one of the
error codes. The interrupt is then acknowledged by issuing an ACK or RESET
command.

5.7. TERMINAL DEVICES 41

5.7 Terminal Devices
µMPS3 supports up to eight serial terminal device interfaces, each one with a
single 8-bit character transmission and receipt capability.

Each terminal interface contains two sub-devices; a transmitter and a receiver.
These two sub-devices operate independently and concurrently. To support the
two-subdevices a terminal interface’s device register is redefined as follows:

Field # Address Field Name
3 (base) + 0xc TRANSM COMMAND
2 (base) + 0x8 TRANSM STATUS
1 (base) + 0x4 RECV COMMAND
0 (base) + 0x0 RECV STATUS

Table 5.13: Terminal Device Register Layout

The TRANSM STATUS and RECV STATUS fields (device register fields 0
& 2) are read-only and have the following format.

078151631

Transmitted
Char

Transmit
Status

Received
Char

Receive
Status

Figure 5.11: Terminal Device TRANSM STATUS and RECV STATUS Fields

The status byte has the following meaning:

The meaning of status codes 0–4 are the same as with other device types.
Furthermore:

• The Character Received code (5) is set when a character is correctly re-
ceived from the terminal and is placed in RECV STATUS.RECV’D-CHAR.

• The Character Transmitted code (5) is set when a character is correctly
transmitted to the terminal and is placed in TRANSM STATUS.TRANS’D-
CHAR.

42 CHAPTER 5. PERIPHERAL DEVICES

Code RECV STATUS TRANSM STATUS
0 Device Not Installed Device not installed
1 Device Ready Device Ready
2 Illegal Operation Code Error Illegal Operation Code Error
3 Device Busy Device Busy
4 Receive Error Transmission Error
5 Character Received Character Transmitted

Table 5.14: Terminal Device Status Codes

• The Device Ready code (1) is set as a response to an ACK or RESET com-
mand.

The terminal TRANSM COMMAND and RECV COMMAND fields are
read/writable and are used to issue commands to the terminal’s interface.

TRANSM RECV
Code COMMAND COMMAND Operation

0 RESET RESET Reset the transmit-
ter or receiver inter-
face

1 ACK ACK Ack a pending in-
terrupt

2 TRANSMITCHAR RECEIVECHAR Transmit or Re-
ceive the character
over the line

Table 5.15: Terminal Device Command Codes

The TRANSM COMMAND and RECV COMMAND fields have the fol-
lowing format:

RECV COMMAND.RECV-CMD is simply the command.
The TRANSM COMMAND field has two parts

• The command itself: TRANSM COMMAND.TRANSM-CMD

• The character to be transmitted: TRANSM COMMAND.TRANSM-CHAR

5.7. TERMINAL DEVICES 43

078151631

Transmit
Char

Transmit
Command

Receive
Command

Figure 5.12: Terminal TRANSM COMMAND and RECV COMMAND Fields

A character is received, and placed in RECV STATUS.RECV’D-CHAR only
after a RECEIVECHAR command has been issued to the receiver.

The operation of a terminal device is more complicated than other devices
because it is two sub-devices sharing the same device register interface. When
a terminal device generates an interrupt, the (operating system’s) terminal device
interrupt handler, after determining which terminal generated the interrupt, must
furthermore determine if the interrupt is for receiving a character, for transmitting
a character, or both; i.e. two interrupts pending simultaneously.

If there are two interrupts pending simultaneously, both must be acknowl-
edged in order to have the appropriate interrupt pending bit in the Interrupt Line 7
Interrupting Devices Bit Map turned off.

To make it possible to determine which sub-device has a pending interrupt
there are two sub-device “ready” conditions; Device Ready and Character Re-
ceived/Transmitted. While other device types can use a Device Ready code to
signal a successful completion, this is insufficient for terminal devices. For termi-
nal devices it is necessary to distinguish between a state of successful completion
though the interrupt is not yet acknowledged, Character Received/Transmitted,
and a command whose completion has been acknowledged, Device Ready.

A terminal operation is started by loading the appropriate value(s) into the
TRANSM COMMAND or RECV COMMAND field. For the duration of the
operation the sub-device’s status is “Device Busy.” Upon completion of the opera-
tion an interrupt is raised and an appropriate status code is set in TRANSM STATUS
or RECV STATUS respectively; “Character Transmitted/Received” for success-
ful completion or one of the error codes. The interrupt is acknowledged by issuing
an ACK or RESET command to which the sub-device responds by setting the De-
vice Ready code in the respective status field.

The terminal interface’s maximum throughput is 12.5 KB/sec for both charac-
ter transmission and receipt.

Memory is like an orgasm. It’s a lot better if you don’t have to fake it.
Seymore Cray – on virtual memory

6
Memory Management

µMPS3 uses 32-bit addresses, giving rise to a 232 byte (4 Gb) address space.
The address space, both physical and logical, is divided into equal sized units

of 4 KB each. Hence an address has two components; a 20-bit Frame Number
(physical) or Page Number (logical), and a 12-bit Offset into the page. Addresses
have the following format:

0111231

Frame/Page Number Offset

Figure 6.1: Address Format

The 20-bit frame number is either the physical frame number in RAM, or
a logical page number which must undergo address translation to determine the
actual physical frame number containing the indicated page.

There are two perspectives necessary to understanding memory management
in µMPS3: physical and conceptual.

44

6.1. THE PHYSICAL VIEW OF MEMORY 45

6.1 The Physical View of Memory
Physical memory in µMPS3 is divided into two components: The BIOS portion
and RAM.

6.1.1 The BIOS Region of Physical Memory

0x0000.0000

BIOS Data Page

0x0FFF.F000

0x1000.0000

Execution BIOS
Routines

EXECTOP
Bus Error

0x1000.0518

0x2000.0000
Bus Error

Bus Error

Bootstrap BIOS

Routines

BOOTTOP

0x1FC0.0000

Bus, Device, Machine

Control etc. Registers

[Bus/Address Error]

[Bus/Address Error]

Figure 6.2: Layout of the BIOS Region (kseg0)

This 0.5 Gb region is µMPS3’s Programmable ROM. It is not strictly ROM
memory since:

• It can be “reprogrammed” by supplying different execution time or boot-
strap BIOS object files via the µMPS3 Machine Configuration Panel. [Chap-
ter 8]

• The BIOS Data Page is fully read-writable. [Section 8.5]

• The device registers, some bus register fields and the Machine Control reg-
isters, Processor Interface registers, and Interrupt Routing table are also
writable.

46 CHAPTER 6. MEMORY MANAGEMENT

Appendix D contains a more detailed diagram of the BIOS region.
Another name for this region is kseg0. [Section 6.2]

Access to this region is limited to kernel-mode only, and then only to the
“accessible” regions: the BIOS Data Page, bus register, device registers, Machine
Control registers, Processor Interface registers, and the Interrupt Routing table.
Kernel-mode access to any undefined or inaccessible portions of the BIOS region
will raise a Bus Error Program Trap exception.

User-mode access to kseg0 will always raise an Address Error Program Trap
exception.

Technical Point: Access to an undefined portion of the BIOS region in user-mode
generates an Address Error exception, since the user-mode access to violation is
checked first.

6.1.2 RAM

0x0000.0000

0x2000.0000

Bus Error

0xFFFF.FFFF

RAMTOP

(2-512 4Kb frames)

BIOS Region

Installed RAM

Kernel mode

Bus ErrorBus Error

Address Error

Installed RAM

User mode

(2-512 4Kb frames)

[Bus Error]

Figure 6.3: Physical Memory

6.2. THE CONCEPTUAL VIEW: THE ADDRESS SPACE 47

“Installed” RAM starts at 0x2000.0000. The µMPS3 Machine Configuration
Panel allows between 8 and 512 frames of RAM. [Section 12.2.1]
This translates to a RAM size ranging from 32 KB up to 2 MB. While 2 MB
may feel inadequately small by today’s standards, it is more than sufficient for the
kinds of projects µMPS3 was created to support: a student-created, experimental,
operating system along with all its supporting data structures, plus a sufficiently
large frame pool to support virtual address translation.

Hence RAMTOP will range from 0x2000.8000 to 0x2020.0000.
When µMPS3 is started, the RAM Base Physical Address Bus Register (lo-

cated at 0x1000.0000) is set to 0x2000.0000. The Installed RAM Size Bus Reg-
ister (located at 0x1000.0004) is set to the number of frames set in the µMPS3
Machine Configuration Panel multiplied by 4 KB. Adding these two values to-
gether determines RAMTOP. [Section 4.2]

Any attempt to access a RAM address past RAMTOP will raise a Bus Error
Program Trap exception.

6.2 The Conceptual View: The Address Space
The 4 GB address space is logically divided into four chunks/spaces as follows:

• kseg0 (0x0000.0000 - 0x2000.0000): This 0.5 GB section is the “installed
EPROM” BIOS memory region. kseg0 holds the BIOS routines, device
registers, bus device registers, and multiprocessor communication/support
structures. [Section 6.1.1]

This memory section is always present regardless of the amount of installed
RAM. Access to kseg0 is limited to kernel-mode only. User-mode access
will raise an Address Error Program Trap exception.

All addresses in kseg0 are exempt from virtual address translation: all log-
ical kseg0 addresses are also their physical address.

• kseg1 (0x2000.0000 - 0x4000.0000): This 0.5 GB section is designed to
hold the kernel/OS. Access to kseg1 is limited to kernel-mode only. User-
mode access will raise an Address Error Program Trap exception.

Important Point: Since RAMTOP will fall between 0x2000.8000 to 0x2020.0000,
RAMTOP is an address in kseg1.

48 CHAPTER 6. MEMORY MANAGEMENT

0x0000.0000

0x2000.0000

0xFFFF.FFFF

kseg0

Kernel modeUser mode

0x4000.0000

0x8000.0000

kseg1

kseg2

kusegkuseg

Address Error

Bios Region

Figure 6.4: Logical Address Space

All addresses in kseg1 below RAMTOP are exempt from virtual address
translation: these logical kseg1 addresses are also their physical address.

Addresses in kseg1 above RAMTOP can only be accessible through virtual
address translation. Whenever an OS wishes to make use of kseg1 above
RAMTOP, the TLB Floor Address must be set to RAMTOP. Any other
setting of TLB Floor Address will not work/is illogical.

• kseg2 (0x4000.0000 - 0x8000.0000): This 1 GB section is for use when
implementing a sophisticated operating system. Access to kseg2 is limited
to kernel-mode only. User-mode access will raise an Address Error Program
Trap exception.

Addresses in kseg2 can only be accessible through virtual address trans-
lation - all kseg2 addresses are therefore logical. µMPS3 does not permit

6.3. VIRTUAL ADDRESS TRANSLATION IN µMPS3 49

one to “install” a sufficient quantity of physical RAM so that any logical
kseg2 address is also its physical address. This implies that whenever an
OS wishes to make use of kseg2, the TLB Floor Address must be set to an
address below 0x4000.0000(0x4000.0000 or RAMTOP). Any other setting
of TLB Floor Address will not work/is illogical.

• kuseg (0x8000.0000- 0xFFFF.FFFF): This 2 GB section is for user pro-
grams. Access to kuseg is possible from both the kernel-mode and user-
mode processor setting.

Addresses in kuseg can only be accessible through virtual address trans-
lation - all kuseg addresses are therefore logical. µMPS3 does not permit
one to “install” a sufficient quantity of physical RAM so that any logical
kuseg address is also its physical address. This implies that whenever an
OS wishes to make use of kuseg, the TLB Floor Address must be set to
an address below 0x8000.0000(0x8000.0000, 0x4000.0000, or RAMTOP).
Any other setting of TLB Floor Address will not work/is illogical.

The kuseg of one process is differentiated from another process’s kuseg by
a unique 6-bit process identifier called the Address Space Identifier - ASID.
The ASID is contained in the EntryHi register (EntryHi.ASID), which is
part of a processor state. [Section 2.2]

6.3 Virtual Address Translation in µMPS3
Mapping a logical address to a physical address (address translation) is performed
by the MMU (Memory Management Unit) of each processor’s CP0 co-processor.
CP0 contains five control registers (Index, Random, EntryHi, EntryLo, and
BadVAddr) in addition to a TLB associative cache to support address translation.

6.3.1 The TLB Floor Address
The TLB Floor Address is an address (RAMTOP, 0x4000.0000, 0x8000.0000, or
VM Off) below which address translation is disabled and the address is considered
a physical address. Any logical address below the TLB Floor Address is also its
physical address. Any address above the TLB Floor Address will undergo an
MMU address translation.

The value of the TLB Floor Address is a user configurable value set via the
µMPS3 Machine Configuration Panel. [Chapter 12]

50 CHAPTER 6. MEMORY MANAGEMENT

Figure 6.5: TLB Floor Address Configuration Panel

A configurable TLB Floor Address allows µMPS3 to behave differently ac-
cording to one’s needs. The options for TLB Floor Address are:

• VM Off – Address translation is turned off. All addresses are physical ad-
dresses.

• 0x8000.0000: Address translation is disabled for the three kernel spaces.
All kuseg logical addresses undergo MMU address translation to calculate
their physical address.

• 0x4000.0000: Address translation is disabled for kseg0 and kseg1 and en-
abled for kseg2 and kuseg. MMU address translation is performed for any
kseg2 and kuseg logical address. All kseg0 and kseg1 logical addresses are
physical addresses.

• RAMTOP: Address translation is disabled for kseg0 and all kseg1 addresses
below RAMTOP. MMU address translation is performed for any logical ad-
dress greater than RAMTOP. If the logical address also exists as a physical

6.3. VIRTUAL ADDRESS TRANSLATION IN µMPS3 51

address, then that address is used, otherwise, an MMU address translation
is performed.

The TLB Floor Address cannot be changed while µMPS3 is running. The
current value of TLB Floor Address is available in read-only form from the Bus
Register Area. [Chapter 4.2]

6.3.2 The TLB
The TLB (Translation Lookaside Buffer) is an associative cache, that can hold
between 4–64 TLB entries. The size of the TLB is a user configurable value set
via the µMPS3 Machine Configuration Panel. [Chapter 12]

The TLB size cannot be changed while the machine is running. The current
size of the TLB is denoted as TLBSIZE.

Each TLB entry describes the mapping between one ASID/logical page num-
ber pairing and a physical frame number/location in RAM.

A TLB entry is a 64-bit entry broken down into two parts: EntryHi and En-
tryLo.

056111231

Virtual Page Number (VPN) ASID

Figure 6.6: EntryHi

078910111231

Physical Frame Number (PFN) N D V G

Figure 6.7: EntryLo

The fields of a TLB entry are defined as follows:

• VPN - The virtual page number. This is simply the higher order 20-bits of
a logical address. The lower order 12-bits of the address are the offset into
a 4 KB (212) page.

• ASID - The Address Space Identifier, a.k.a. process ID for this VPN.

• PFN - The physical frame number where the VPN for the specified ASID
can be found in RAM.

52 CHAPTER 6. MEMORY MANAGEMENT

EntryHI EntryLo

0
1

TLBSIZE-1

VPN ASID PFN N D V G

Figure 6.8: The TLB

• N - Non-cacheable bit: Not used in µMPS3.

• D - Dirty bit: This bit is used to implement memory protection mechanisms.
When set to zero (off) a write access to a location in the physical frame will
cause a TLB-Modification exception to be raised. This “write protection”
bit allows for the realization of memory protection schemes and/or sophis-
ticated page replacement algorithms.

• V - Valid bit: If set to 1 (on), this TLB entry is considered valid. A valid
entry is one where the PFN actually holds the ASID/virtual page number
pairing. If 0 (off), the indicated ASID/virtual page number pairing is not
actually in the PFN and any access to this page will cause a TLB-Invalid
exception to be raised. In practical terms, a TLB-Invalid exception is what
is generically called a “page fault.”

• G - Global bit: If set to 1 (on), the TLB entry will match any ASID with the
corresponding VPN. This bit allows for memory sharing schemes.

Important Point: Each TLB entry is composed of two parts: EntryHi and En-
tryLo. Confusingly, there are two CP0 control registers used by CP0 during ad-
dress translation: EntryHi and EntryLo. These two registers share their names
and formats with each TLB entry though they serve different purposes. Unless
explicitly stated, all references to EntryHi or EntryLo refer to the CP0 registers.

6.3. VIRTUAL ADDRESS TRANSLATION IN µMPS3 53

6.3.3 Address Translation in µMPS3
The ASID to be used for the translation is the current contents of EntryHi.ASID.
The logical address to be translated (i.e. any address greater than or equal to TLB
Floor Address) is sent to CP0.

Logical address to physical address translation proceeds as follows:

1. If the address is below TLB Floor Address, translation ceases. The address
is a physical address.

2. If the address to be translated is in kseg0, kseg1, or kseg2 and Status.KUc=1
(i.e. User-mode) BadVAddr is loaded with the logical address and an Ad-
dress Error exception is raised. [Section 3.1.1]

3. All TLB entries are “simultaneously” searched for a matching TLB entry.1

A match is defined as a TLB entry whose VPN is the same as that of the
logical address being translated, and either the global bit is on (G=1) or the
ASID of the entry matches EntryHi.ASID. If more than one TLB entry
matches, the highest numbered matching TLB entry is used.

4. If no matching entry is found the logical address being translated is placed
in the CP0 BadVAddr register, EntryHi.VPN is similarly loaded, and a
TLB-Refill event is raised. [Section 3.1.1]

5. If a matching TLB entry is found then the entry’s V and D control bits are
checked respectively. If no TLB-Invalid or TLB-Modification exception
is raised, the physical address is constructed by concatenating the Offset
from the logical address to be translated to the PFN from the matching
TLB entry. If a TLB-Invalid or TLB-Modification exception is raised the
logical address being translated is placed in the CP0 BadVAddr register
and EntryHi.VPN is similarly loaded by the processor. [Section 3.1.1]

6. Finally, the constructed physical address is checked against two thresholds:

• If the address is above RAMTOP a Bus Error exception is raised.

• If the address is below 0x2000.0000 an Address Error exception is
raised if Status.KUc=1. (i.e. User-mode access to kseg0.)

1µMPS3’s associative TLB is emulated via a linear search.

54 CHAPTER 6. MEMORY MANAGEMENT

Logical Address

≥
TLB
Floor

Logical Addr =
Physical AddrNO

YES

Protected
Access - 1 YES

Addr
Error

Exception

Kernel
Mode

NO

NO

TLB
Search

Match
Found NO

TLB
Refill
Event

YES

Valid
Bit On NO

TLB
Invalid

Exception
(Page Flt)

YES

If Write:
Allowed NO

Modification
TLB

Exception

YES

Construct
Physcial

using TLB
Address

Entry

Protected
Access - 2

YES

≥
RAMTOP

YES

NO

Error
Exception

Bus

YES

NO

Access
RAM

Protected Access - 1: User mode
access outside of kuseg

Protected Access - 2: User mode
access to BIOS Region

Figure 6.9: Address Translation Flowchart

6.4 CP0 Registers and Instructions for TLB Man-
agement

Given the RISC design behind µMPS3, the CP0 MMU is rather simple/minimal.
For each logical address sent to CP0 for translation the TLB is “associatively”
searched. If no match is found, a TLB-Refill event is raised. If a match is found,
the V and D bits are checked, and either an exception is raised (TLB-Invalid or

6.4. CP0 REGISTERS AND INSTRUCTIONS FOR TLB MANAGEMENT 55

TLB-Modification) or the translated physical address is constructed.
When a TLB-Refill event occurs, the processor with some assistance from the

BIOS-TLB-Refill handler, essentially passes control to a kernel function: hope-
fully, the kernel TLB-Refill handler. [Chapter 3]
It is the job of this kernel function to locate (in a kernel page table?) or construct
an appropriate TLB entry, insert this new TLB entry into the TLB, and restart the
instruction.

The same is true on TLB-Invalid and TLB-Modification exceptions. The pro-
cessor will perform a few key steps and pass control to the BIOS-Excpt handler
which in turn will pass control to a different kernel function. [Chapter 3]
At that point, what happens next is up to the kernel. Most likely, the kernel will at
least treat TLB-Invalid exceptions as a Page Fault and take appropriate action.

For TLB-Refill events, and possibly TLB-Invalid and TLB-Modification ex-
ceptions, the kernel will need to access and modify the TLB. To facilitate this
there are special CP0 registers and instructions for this purpose.

CP0 implements five registers used to support virtual address translation.
The contents of the TLB can be modified by writing values into the CP0 En-

tryHi and EntryLo registers [Section 7.1] and issuing either the TLB-Write-Index
(TLBWI) or TLB-Write-Random (TLBWR) CP0 instruction. [Section 7.2.1]

Which slot in the TLB the entry is written into is determined by which instruc-
tion is used and the contents of either the Random or Index CP0 register.

0781331

TLB Index

Figure 6.10: Random CP0 Control Register

078133031

P Physical Frame Number (PFN) TLB Index

Figure 6.11: Index CP0 Control Register

Both the Random and the Index CP0 registers have a 6-bit TLB-Index field
which addresses one of the TLBSIZE slots in the TLB. The Index register is
a read/writable register. [Section 7.1] When a TLBWI instruction is executed,
the contents of the EntryHi and EntryLo CP0 registers are written into the slot
indicated by Index.TLB-Index.

56 CHAPTER 6. MEMORY MANAGEMENT

The Random register is a read-only register used to index the TLB randomly;
allowing for more effective TLB-refiling schemes. Random.TLB-Index is ini-
tialized to TLBSIZE-1 and is automatically decremented by one every proces-
sor cycle until it reaches 1 at which point it starts back again at TLBSIZE-1.
This leaves one TLB “safe” entry (entry 0) which cannot be indexed by Ran-
dom. When a TLBWR instruction is executed, the contents of the EntryHi and
EntryLo CP0 registers are written into the TLB slot indicated by Random.TLB-
Index.

Three other useful CP0-related instructions associated with the TLB are the
TLB-Read (TLBR), TLB-Probe (TLBP), and the TLB-Clear (TLBCLR) com-
mands.

• The TLBR (TLB-Read) command places the TLB entry indexed by In-
dex.TLB-Index into the EntryHi and EntryLo CP0 registers. [Section
7.2.1]

Important Point: TLBR has the potentially dangerous affect of altering
the value of EntryHi.ASID.

• The TLBP (TLB-Probe) command initiates a TLB search for a matching
entry in the TLB that matches the current values in the EntryHi CP0 regis-
ter. If a matching entry is found in the TLB the corresponding index value
is loaded into Index.TLB-Index and the Probe bit (Index.P) is set to 0. If
no match is found, Index.P is set to 1. [Section 7.2.1]

• The TLBCLR (TLB-Clear) command zero’s out the “unsafe” TLB entries;
entries 1 through TLBSIZE-1 This command effectively invalidates the
current contents of the TLB cache. [Section 7.3]

6.4. CP0 REGISTERS AND INSTRUCTIONS FOR TLB MANAGEMENT 57

TLB Action TLB Command C usage Outcome
Read a TLB Entry TLBR void TLBR() EntryHi/EntryLo← TLB
Search the TLB TLBP void TLBP() Index← search result
Write a random TLB Entry TLBWR void TLBWR() TLB← EntryHi/EntryLo
Write a specific TLB Entry TLBWI void TLBWI() TLB← EntryHi/EntryLo
Erase ALL TLB Entries TLBCLR void TLBCLR() TLB invalidated

Table 6.1: Summary of TLB-related Commands

CP0 Register Access Commands
EntryHi getENTRYHI() & setENTRYHI()
EntryLo getENTRYLO() & setENTRYLO()
BadVAddr getBADVADDR()
Index getINDEX() & setINDEX()
Random getRANDOM()

Table 6.2: Summary of TLB-related CP0 Registers

I find television very educational. The minute somebody turns it on, I
go to the library and read a good book.

Groucho Marx

7
Library Services - libumps

µMPS3 is distributed with a library: libumps1

• libumps.S MIPS assembly source file.

• libumps.o Assembled object file.

• libumps.h C-language header file. Any C-language source file wishing
to utilize libumps routines must
#include libumps.h

See Appendix B for a reprint of libumps.h
In the process of writing a µMPS3 operating system one needs to access var-

ious CP0 registers (e.g. Status) and issue specific assembler instructions (e.g.
SYSCALL). To avoid the need to program in MIPS assembler, libumps, via
“wrapper” functions, provides C-language access to CP0 registers, certain MIPS
assembly instructions, in addition to defining a few new instructions.

Specifically, the libumps functions fall into three broad categories:
1libumps.S can be found in the support file directory. The header file, libumps.h is installed

in the include file directory. Finally, the object file, libumps.o, which needs to be linked with the
other kernel object files to create an executable kernel can be found in the library file directory.
[Section H.3]

58

7.1. ACCESSING CP0 REGISTERS IN C 59

• Since directly accessing CP0 registers is impossible in C, libumps pro-
vides “wrapper” routines to overcome this.

• Since directly invoking MIPS assembly instructions is impossible in C,
libumps provides “wrapper” routines to overcome this.

• New instructions to “extend” the MIPS R2/3000 integer instruction set which
are particularly useful for kernel authors.

7.1 Accessing CP0 Registers in C
CP0 implements ten control registers. Six of these registers are read/writable,
while the other four are read-only.

libumps provides C-language read access to all ten CP0 registers as parameter-
less unsigned integer functions. In each case the contents of the specified CP0
register is returned to the caller. The

C usage CP0 Register
unsigned int getINDEX() Index
unsigned int getENTRYHI() EntryHi
unsigned int getENTRYLO() EntryLo
unsigned int getSTATUS() Status
unsigned int getTIMER() Timer
unsigned int getPRID() PRID
unsigned int getCAUSE() Cause
unsigned int getRANDOM() Random
unsigned int getEPC() EPC

unsigned int getBADVADDR() BadVAddr

Table 7.1: Control Register Read Commands

libumps provides C-language write access to the six writable registers as
single parameter unsigned integer functions. The single parameter is the value to
be loaded into the register and the return value is the value in the register after the
load operation.

60 CHAPTER 7. LIBRARY SERVICES - LIBUMPS

C usage CP0 Register
unsigned int setINDEX(unsigned int) Index
unsigned int setENTRYHI(unsigned int) EntryHi
unsigned int setENTRYLO(unsigned int) EntryLo
unsigned int setSTATUS(unsigned int) Status
unsigned int setTIMER(unsigned int) Timer
unsigned int setCAUSE(unsigned int) Cause

Table 7.2: Control Register Write Commands

Important Point: setENTRYHI has the potentially dangerous affect of altering
the value of EntryHi.ASID.

All sixteen of these instructions require the processor to be in kernel-mode
or if in user-mode, to have Status.CU[0]=1, otherwise a Coprocessor Unusable
Program Trap exception is raised.

7.2 Accessing MIPS Assembly in C
libumps provides C-language access to seven MIPS assembly instructions. Four
are CP0-related while the other three are general MIPS assembly instructions.

7.2.1 TLB-Related MIPS Assembly Instructions

C usage Instruction Description MIPS Assembly
void TLBWR() TLB-Write-Random TLBWR
void TLBWI() TLB-Write-Index TLBWI
void TLBR() TLB-Read TLBR
void TLBP() TLB-Probe TLBP

Table 7.3: TLB Commands

These four CP0-related instructions are parameter-less void C functions. The
write commands (TLBWI, TLBWR) modify the TLB, while the Read and Probe

7.2. ACCESSING MIPS ASSEMBLY IN C 61

commands modify the EntryHi, EntryLo, and Index CP0 registers. [Section
6.4]

Important Point: TLBR has the potentially dangerous affect of altering the value
of EntryHi.ASID.

All four of these instructions require the processor to be in kernel-mode or
if in user-mode, to have Status.CU[0]=1, otherwise a Reserved Instruction (RI)
Program Trap exception is raised.

libumps provides for a fifth TLB-related instruction/service: TLBCLR.
TLBCLR is not a wrapper function for a MIPS assembly instruction. Instead,
it is a new libumps implemented instruction/service. [Section 7.3.3]

7.2.2 Kernel-Mode MIPS Assembly Instructions

libumps provides C-language access to the WAIT privileged MIPS instructions.
Upon execution, the processor enters the Idle state and ceases instruction ex-

ecution. The processor resumes execution when an external event (reset or inter-
rupt) is signaled to the processor.

If the processor resumes execution as a result of an unmasked interrupt, the
interrupt exception is considered to have occurred at the instruction following
the WAIT instruction. If the processor resumes execution as a result of a masked
interrupt, no interrupt exception occurs (the interrupt is nevertheless still pending),
and execution proceeds with the instruction following the WAIT instruction.

C usage Instruction Description MIPS Assembly
void WAIT() Idle Processor WAIT

Table 7.4: Wait Command

This instruction requires the processor to be in kernel-mode or if in user-mode,
to have Status.CU[0]=1, otherwise a Reserved Instruction (RI) Program Trap ex-
ception is raised.

Technical Point: The WAIT instruction is not part of the MIPS R2/3000 ISA, in-
stead it is part of the MIPS32 ISA. WAIT is one of only two MIPS32 instructions
implemented in µMPS3.

62 CHAPTER 7. LIBRARY SERVICES - LIBUMPS

7.2.3 User-Mode MIPS Assembly Instructions
The SYSCALL Instruction

SYSCALL is the MIPS instruction for requesting operating system service. The
execution of the SYSCALL instruction causes a System Call (Sys) exception to
occur. [Chapter 3]
C usage:

unsigned int SYSCALL(unsigned int number,
unsigned int arg1, unsigned int arg2,
unsigned int arg3)

In keeping with the standard MIPS function call protocol,

• number is mapped to register a0

• arg1 is mapped to register a1

• arg2 is mapped to register a2

• arg3 is mapped to register a3

Upon return from SYSCALL, the return value is taken from the contents of reg-
ister v0.

The parameters for SYSCALL have no “universal” meaning. Traditionally,
number is used to indicate which system service is being requested. The other
arguments are used to pass along appropriate parameters, depending on number.

The Compare and Swap (CAS) Instruction

CAS performs an atomic read-modify-write operation on synchronizable memory
locations.
C usage:

int CAS(unsigned int *atomic,
unsigned int ov, unsigned int nv)

where nv and ov are integers, and atomic is a pointer to an integer.
This function atomically sets the word pointed to by atomic to nv if the

current value of the word is ov. It returns 1 to indicate a successful update and 0
otherwise.

Technical Point: The CAS instruction is not part of the MIPS R2/3000 ISA, in-
stead it is part of the MIPS32 ISA. CAS is one of only two MIPS32 instruc-

7.3. NEW LIBUMPS INSTRUCTIONS 63

tions implemented in µMPS3. Appendix F provides a detailed description of this
MIPS32 instruction.

7.3 New libumps Instructions
In addition to providing “wrapper” functions to access various µMPS3 registers
and assembly instruction, libumps extends the MIPS R2/3000 integer instruc-
tion set with the following services/instructions:

7.3.1 LDST - Load Processor State
Atomically load the processor state with the state located at the supplied physical
memory location. [Section 2.2]

This service/instruction requires the processor to be in kernel-mode, otherwise
a Breakpoint exception is raised.
C usage:

void LDST(state t *statep)
where statep is the physical address of the processor state to be loaded.

7.3.2 STST - Store Processor State
Store the current processor state at the supplied physical memory location. [Sec-
tion 2.2]

STST, which is NOT atomic, does not save off the current contents of the PC.
Instead, 0 is written into the s pc field of saved state.

This instruction requires the processor to be in kernel-mode or if in user-mode,
to have Status.CU[0]=1, otherwise a Reserved Instruction (RI) Program Trap ex-
ception is raised.
C usage:

void STST(state t *statep)
where statep is the physical address where the current processor state is to be
stored.

7.3.3 TLBCLR - TLB Clear
This instruction zeros out the “unsafe” TLB entries: entries 1 through TLBSIZE-
1. This command effectively invalidates the current contents of the TLB cache.

64 CHAPTER 7. LIBRARY SERVICES - LIBUMPS

[Section 6.4]
This instruction requires the processor to be in kernel-mode or if in user-mode,

to have Status.CU[0]=1, otherwise a Reserved Instruction (RI) Program Trap ex-
ception is raised.
C usage:

void TLBCLR())

7.3.4 LDCXT - Load Context (a.k.a. Store State and Jump)

Atomically, load the Status, PC (plus t9), and SP registers. While a LDST is
used to replace the state of the machine with a new state, LDCXT allows a current
process to change its operating mode/context: turn on/off interrupt masks, turn on
user mode, and at the same time change the location of execution.

This instruction requires the processor to be in kernel-mode, otherwise a Break-
point exception is raised.
C usage:

void LDCXT (unsigned int stackPtr,
unsigned int status, unsigned int pc)

where stackPtr, status, and pc contain the new values for their namesake
registers.

7.3.5 INITCPU - (Re)Start a Processor

Initializes a processor to begin execution. At µMPS3 startup/reset, only Processor
0 is automatically initialized. INITCPU is used to initialize execution of any of
the other processors. [Section 9.5]

This instruction requires the processor to be in kernel-mode, otherwise a Pro-
gram Trap exception is raised.
C usage:

void INITCPU(unsigned int cpuid, state t *start state)
where

• cpuid is an integer in [0..15] indicating which processor is to be initialized.

• start state is the physical address of the processor state to be loaded
into the newly started processor.

7.3. NEW LIBUMPS INSTRUCTIONS 65

7.3.6 PANIC - Halt Processor: Panic Termination
Displays the text “kernel panic” on terminal 0 and puts the processor into an infi-
nite loop.

This service/instruction requires the processor to be in kernel-mode, otherwise
a Breakpoint exception is raised.
C usage:

void PANIC()

7.3.7 HALT - Halt Processor: Normal Termination
Displays the text “System halted” on terminal 0 and puts the processor into an
infinite loop.

This service/instruction requires the processor to be in kernel-mode, otherwise
a Breakpoint exception is raised.
C usage:

void HALT()

7.3.8 New Instruction Implementation Details
Two of the six new instructions (STST and TLBCLR) are directly implemented
in libumps.S. The other four (LDST, LDCXT, PANIC, and HALT) require
BIOS-Excpt handler services. Since entry to the BIOS-Excpt handler only hap-
pens when an exception occurs, the BREAK instruction is used to trigger an
exception.2 The BIOS-Excpt handler, if Status.KUc=0, performs the indicated
operation; determined via a code set in a0 by libumps.S prior to the BREAK
instruction. If the BIOS-Excpt handler does not recognize the code in a0 or if
Status.KUc=1, the handling of the Breakpoint exception is passed along to the
kernel in the usual fashion.

Hence, an attempt to perform a LDST in user-mode does not cause the more
intuitive Reserved Instruction Program Trap exception (LDST is NOT a µMPS3
assembler instruction). Instead it is seen as a request for an unrecognized BIOS
service/instruction and is passed along to the kernel accordingly.

Technical Point: The BIOS-Excpt handler does not save the state of the proces-
sor at the time of a “recognized” BREAK exception (i.e. one of the four recog-

2The assembly code in libumps.S contains the BREAK assembly instruction forcing the
exception handling mechanism to be activated.

66 CHAPTER 7. LIBRARY SERVICES - LIBUMPS

nized services/instructions). With two of these services/instructions (PANIC and
HALT), the BIOS-Excpt handler enters an infinite loop. With LDST a new pro-
cess state is loaded replacing the current context/state. With LDCXT the current
state is simply modified.

7.4 LDST, LDCXT & the Status Register
Both the LDST and LDCXT instructions alter the processor’s context. This is
done either by replacing ALL of the 35 registers that constitute the processor state
(LDST) or just three of them (LDCXT). In either case, the contents of the PC
(and t9), SP, and the Status registers are always replaced - the context of the
execution stream.

As part of the register replacement process, the MIPS assembly instruction
RFE (Return from Exception) is executed by the BIOS routine. Whenever a RFE
instruction is executed, a pop operation, as illustrated in Figure 7.1 is performed
on the KU/IE stacks. This pop operation acts as the compliment to the push
operation that was performed when an exception is raised - effectively undoing
the shift performed when an exception was first raised, returning the processor
to whatever interrupt state and mode was in effect when the exception occurred.
Note how the “old” values in the two stacks remain unchanged. [Section 3.1]

KUp KUcKUo IEo IEp IEC

KUo IEo KUp IEp KUc IEC

Before executing RFE

After executing RFE

A

AB

C

D

X YB

C

D

D C

Figure 7.1: KU/IE Stack Pop

Technical Point: As when the BIOS-Excpt handler (and BIOS-TLB-Refill han-
dler) saves a processor state, the loading or modifying of a processor state is per-
formed atomically. Since there is no single MIPS assembly instruction to support

7.5. SUMMARY OF LIBUMPS SERVICES 67

the atomic loading of a processor state, the BIOS code implementing LDST and
LDCXT loads the new processor state (or modifies the current state) register by
register with interrupts disabled. The penultimate step, the loading of the PC
is performed using the jr (Jump Register) MIPS assembly instruction. The rfe
instruction is executed in the jump’s branch-delay slot.

Important Point: When setting up a new processor state to be “launched” via
LDST (or LDCXT), in addition to setting the registers to their desired values (e.g.
PC, Status), care must be taken with the KU and IE values in the Status register.
Instead of setting the Status.KUc and Status.IEc bits to their desired values, set
the Status.KUp and Status.IEp values in preparation for the impending KU/IE
stack pop operation - which will elevate the “previous” values into the “current”
bit slots.

7.5 Summary of libumps Services
The following two tables in addition to Table 7.1 and Table 7.2 summarize ALL
the commands/services provided by libumps:

• C-language read access to CP0 control registers. [Section 7.1]

• C-language write access to writable CP0 control registers. [Section 7.2]

• C-language access to key user-mode µMPS3 assembly commands.

• C-language access to key kernel-mode µMPS3 assembly commands.

• New commands/services.

7.5.1 User-Mode Instructions

C usage Instruction Description MIPS Assembly
int SYSCALL (...) Request System Service SYSCALL

int CAS (...) Compare and Swap CAS

Table 7.5: User-Mode Commands/Instructions

68 CHAPTER 7. LIBRARY SERVICES - LIBUMPS

7.5.2 Kernel-Mode Instructions

C usage Instruction Description MIPS Assembly
void TLBWR() TLB-Write-Random TLBWR
void TLBWI() TLB-Write-Index TLBWI
void TLBR() TLB-Read TLBR
void TLBP() TLB-Probe TLBP
void TLBCLR() TLB-Clear New BIOS service
void WAIT() Idle processor WAIT

void LDST(...) Load Processor State New BIOS service
void STST(...) Store Processor State New BIOS service
void LDCXT(...) Load Processor Context New BIOS service
void INITCPU(...) (Re)Start a Processor New BIOS service

void PANIC() Halt the CPU New BIOS service
void HALT() Halt the CPU New BIOS service

Table 7.6: Kernel-Mode Commands/Instructions

I think that novels that leave out technology misrepresent life as badly
as Victorians misrepresented life by leaving out sex.

Kurt Vonnegut Jr.

8
BIOS Services

8.1 BIOS Overview

The BIOS routines are a collection of functions automatically invoked by the hard-
ware at

• System startup/reset: When µMPS3 is first turned on/reset, a BIOS routine
is the first code to be executed: The Bootstrap BIOS routine. This routine
sets the stage for the invocation of the kernel’s main() function.

• TLB-Refill events: A BIOS routine, the BIOS-TLB-Refill handler, is auto-
matically invoked whenever a TLB-Refill event occurs. [Section 3.2.1]

• Exceptions: A BIOS routine, the BIOS-Excpt handler, is automatically in-
voked whenever an exception (i.e. program traps, device interrupts, Syscalls,
TLB-based exceptions) occurs. [Section 3.2.2]

These BIOS routines act as the intermediary between hardware actions and
kernel actions. To support this, one frame, the BIOS Data Page, allocated in the
middle of kseg0 (0x0FFF.F000) is set aside as an “unformatted” read/writable
frame to hold BIOS defined data structures.

69

70 CHAPTER 8. BIOS SERVICES

0x0000.0000

BIOS Data Page

0x0FFF.F000

0x1000.0000

Execution BIOS
Routines

EXECTOP
Bus Error

0x1000.0518

0x2000.0000
Bus Error

Bus Error

Bootstrap BIOS

Routines

BOOTTOP

0x1FC0.0000

Bus, Device, Machine

Control etc. Registers

[Bus/Address Error]

[Bus/Address Error]

Figure 8.1: Layout of the BIOS Region (kseg0)

The following sections are of primary importance to those wishing to fully
understand the functioning of the BIOS routines; either for its own sake, or as a
prelude to modifying or completing rewriting the BIOS routines.

For projects built on top of the supplied BIOS routines, only a high-level un-
derstanding of them is required. Section 8.8 contains a succinct summary of the
BIOS services for this purpose.

8.2 System Startup and The Bootstrap Exception Vec-
tor

When µMPS3 is started/reset only Processor 0 is enabled. The state of Processor
0 is as follows:

• The PC is set to 0x1FC0.0000.

• The Status registers is set to 0x1040.0000. This value indicates that copro-
cessor 0 (for Processor 0) is enabled, the Bootstrap Exception Vector bit is

8.3. FUNCTIONALITY OF THE SUPPLIED BIOS ROUTINES 71

on (Status.BEV=1), all interrupts are masked, and the processor is in kernel
mode.

• All other general purpose and control registers are set to 0.

Hence, the Bootstrap BIOS routine needs to be loaded at 0x1FC0.0000; a process
automatically performed by µMPS3.

8.2.1 The Bootstrap Exception Vector

µMPS3 will automatically perform certain actions on exceptions and TLB-Refill
events. [Section 3.1] In particular, µMPS3 will load the PC with:

• 0x0000.0000 for TLB-Refill events. (i.e. The BIOS-TLB-Refill handler)

• 0x0000.0080 for exceptions. (i.e. The BIOS-Excpt handler)

This is the µMPS3 behavior whenever Status.BEV=0.

When Status.BEV=1, µMPS3 will load the PC with:

• 0x1FC0.0100 for TLB-Refill events.

• 0x1FC0.0180 for exceptions.

Hence, the BIOS code, in addition to defining the Bootstrap BIOS code must also
define four routines for exception handling: two for normal execution (Status.BEV=0)
and two for use during the Bootstrap process (Status.BEV=1). It is assumed that
Status.BEV will be set to zero at the conclusion of the bootstrap process and
remain set to zero.

8.3 Functionality of the Supplied BIOS Routines

Upon startup, µMPS3 allows the user to set various execution parameters via the
µMPS3 Machine Configuration Panel. These include: RAM size, TLB size, TLB
Floor Address, etc. Two other parameters are the location of two files:

72 CHAPTER 8. BIOS SERVICES

• Bootstrap BIOS: The name of a file containing assembled MIPS assembly
code. The code in this file is loaded by µMPS3 at 0x1FC0.0000. While
µMPS3 users can supply their own Bootstrap BIOS code/file, a default
Bootstrap BIOS file is supplied with µMPS3:

coreboot.rom.umps

• Execution BIOS: The name of a file containing assembled MIPS assembly
code. The code in this file is loaded by µMPS3 at 0x0000.0000. While
µMPS3 users can supply their own Execution BIOS code/file, a default Ex-
ecution BIOS file is supplied with µMPS3:

exec.rom.umps

8.4 The Default exec.rom.umps

The source code for exec.rom.umps can be found in exec.S1

exec.rom.umps defines a number of routines, two of which are:

• The BIOS-TLB-Refill handler: Located at the start of exec.rom.umps so
this routine will be loaded at 0x0000.0000. This function stores off the state
at the time of the TLB-Refill event and passes control to the kernel. [Section
3.2.1]

• The BIOS-Excpt handler: Located at 0x80 from the start of exec.rom.umps
so this routine will be loaded at 0x0000.0080. This function stores off the
state at the time of the exception and passes control to the kernel. [Section
3.2.2]

Additionally there are routines in exec.rom.umps to support some of the
libumps library calls. The libumps library is a set of routines to support
kernel development. [Chapter 7]

8.5 The BIOS Data Page
To support communication between hardware actions and kernel actions, one 4
KB frame, the BIOS Data Page, is set aside to support BIOS defined data struc-

1The installation process will put both exec.S and exec.rom.umps in the support file direc-
tory. [Section H.3]

8.5. THE BIOS DATA PAGE 73

tures. This frame is allocated within kseg0 at address 0x0FFF.F000. BIOS au-
thors are free to use this frame however they wish. The supplied BIOS code
(exec.rom.umps and coreboot.rom.umps) uses the BIOS Data Page as follows.

When an exception occurs during normal execution, both the BIOS-TLB-
Refill handler and BIOS-Excpt handler routines store off the processor state at
the time of the exception on the BIOS Data Page at a location accessible to the
kernel. One processor state is 35 words long and there can be up to 16 proces-
sors/cores. Starting at 0x0FFF.F000 are 16, 35-word areas. The exception pro-
cessor state for exceptions associated with Processor 0 is found at 0x0FFF.F000.
The exception processor state for exceptions associated with processor 1 is found
at 0x0FFF.F000 + 0x8C (i.e. 0x8C is the size of a processor state: 16 ∗ 4 = 140 =
0x8C) The exception processor state for exceptions associated with processor 2
is found at 0x0FFF.F000+ 0x118, etc.

The second action performed by both the BIOS-TLB-Refill handler and BIOS-
Excpt handler routines is to pass control to the kernel. Since there are both excep-
tions and TLB-Refill events there needs to be two addresses for each processor.
While exec.rom.umps is careful not to use/need a stack, the same cannot be said
for the kernel/ Hence in addition to two (PC) addresses (for each processor), there
also needs to be two SP values: one for each handler, which might be the same
for both handlers.

The BIOS Data Page in addition to providing space for 16 processor states,
also provides space for 16 four-word areas. Each four word area, known as Pass
Up Vector) is defined as:

Field # Address Field Name
3 (base) + 0xc SP for the kernel event handler
2 (base) + 0x8 kernel exception handler address
1 (base) + 0x4 SP for the kernel TLB-Refill event handler
0 (base) + 0x0 kernel TLB-Refill event handler address

Table 8.1: Pass Up Vector Layout

The Pass Up Vector for Processor 0 is located at 0x0FFF.F900. The Pass Up
Vector Processor 1 is located at 0x0FFF.F900 + 0x10. The Pass Up Vector for
Processor 2 is located at 0x0FFF.F900 + 0x20, etc.

Important Point: One of the first tasks the operating system needs to perform at
startup is the loading of the Pass Up Vector. Specifically:

74 CHAPTER 8. BIOS SERVICES

• 0x0FFF.F900 with the address of the kernel handler for TLB-Refill events.

• 0x0FFF.F900 + 0x04 with the address of SP for the kernel.

• 0x0FFF.F900 + 0x08 with the address of the kernel handler for exceptions.

• 0x0FFF.F900 + 0x0C with the address of SP for the kernel.

The starting address for a processor’s 35 word exception processor state is
“cached” at 0x1000.040C, and the starting address for that processor’s Pass Up
Vector is “cached” at 0x1000.0410. These addresses are banked (each processor
has their own copy). These cached values are used solely by the BIOS routines to
avoid repeated address calculations. [Section 9.2.2]

0x0FFF.F8C0

Exception State

0x0FFF.F000

0x1000.0000

Processor 0

0x0FFF.F900

Processor 15

Processor 1
Exception State

Exception State

Processor 0
Pass Up Vector

Pass Up Vector

Pass Up Vector

b
b

b
b
b

Processor 1

Processor 15

0x0FFF.F910

0x0FFF.F08C

0x0FFF.F118

0x0FFF.F920

0x0FFF.FA00

0x0FFF.F9F0

Unused

Unused

Figure 8.2: Layout of the BIOS Data Page

8.6. THE DEFAULT COREBOOT.ROM.UMPS 75

8.6 The Default coreboot.rom.umps

The source code for coreboot.rom.umps can be found in coreboot.S.2 core-
boot.rom.umps defines three routines:

• The Bootstrap BIOS routine.

• The Bootstrap BIOS handler for TLB-Refill events. Located at 0x100 from
the start of coreboot.rom.umps so this routine will be loaded at 0x1FC0.0100.

• The Bootstrap BIOS handler for exceptions. Located at 0x180 from the start
of coreboot.rom.umps so this routine will be loaded at 0x1FC0.0180.

The latter two routines simply call the Kernel Panic routine (defined in exec.rom.umps).
Kernel Panic writes the words “Kernel Panic” to terminal 0 and enters an infinite
loop (i.e. halts execution).

The Bootstrap BIOS routine is the code that is first given control when µMPS3
is started/restarted. The Bootstrap BIOS code supplied in coreboot.rom.umps
does the following:

• Loads the Processor 0 Pass Up Vector PC fields (0x0FFF.F900 & 0x0FFF.F908)
with the address of Kernel Panic. This is in case the loaded OS does not
correctly assign to this location the address of the appropriate kernel han-
dler.

• Sets Status.BEV=0

• Jumps to start (0x2000.1004)

The supplied coreboot.rom.umps assumes that the kernel will be preloaded
into RAM starting at address 0x2000.1000. This option is signaled via the Load
Core file check box on the µMPS3 Machine Configuration Panel. [Section 12.2.1]

While unrealistic, preloading RAM with an operating system is a highly useful
functionality µMPS3 provides to ease the task of student OS authorship. One can
eliminate this by unchecking the Load Core file box and provide a Bootstrap
BIOS file that first loads the kernel from a disk or flash device (starting at address
0x2000.1000) before performing the other required Bootstrap BIOS actions.

2The installation process will put both coreboot.S and coreboot.rom.umps in the support
file directory. [Section H.3]

76 CHAPTER 8. BIOS SERVICES

8.6.1 crtso.S

C programs typically start with main() while assembly programs usually start
with start. In order to bridge this gap an additional MIPS assembly file
is provided, ctrso.S (along with its assembled version crtso.o3) which defines
start. This code, which is given control at the end of the Bootstrap BIOS code,

sets SP to the end of the first page of RAM (0x2000.1000) and calls main().
If main() ever returns, start() concludes/terminates by executing HALT.
As described above, coreboot.rom.umps and exec.rom.umps are BIOS code

files specified as user parameters on the µMPS3 Machine Configuration Panel.
Since crtso.o defines start it is technically part of the kernel. One links
crtso.o with the compiled object files from one’s kernel to create the kernel exe-
cutable. [Section 10.3]

8.7 Creating or Modifying BIOS Routines

Given the pedagogical nature of µMPS3, the system is distributed with the assem-
bled and source files for both BIOS files, crtso.o (and its user program counterpart
crti.o) and the libumps library. Advanced users are invited to modify or replace
any (all?) of these components.

One example would be to amend coreboot.rom.umps to read in the kernel
executable from a disk or flash device instead of relying on the Load Core file
µMPS3 option.

Since these files directly access both general purpose and control registers,
their development must be in µMPS3 (i.e. MIPS) assembler. Section 10.6.3 il-
lustrates how to correctly assemble one’s µMPS3 assembly code to be used as a
BIOS file.

8.8 Understanding This Chapter

µMPS3 is designed to support a wide variety of student projects, including the
modification or complete rewriting of the Bootstrap and/or Execution BIOS rou-
tines. Much of this Chapter’s detail is necessary for such projects. However, for

3The source file crtso.S can be found in the support file directory, while the assembled object
file, crtso.o is in library file directory. [Section H.3]

8.8. UNDERSTANDING THIS CHAPTER 77

OS/kernel projects built using the supplied coreboot.rom.umps and
exec.rom.umps much of this chapter is overkill.

For users of µMPS3 for which this detail is unnecessary, the following is a
summary of the important points:

• The system state when control finally reaches main() is that only Proces-
sor 0 is active. Its processor state is kernel-mode with all interrupts masked,
its coprocessor 0 is enabled, and Status.BEV=0 (which should remain off
unless inadvertently turned back on). The SP is set to the end of the first
page of RAM.

• The execution BIOS routines perform the functions as defined in Chapter 3:
store off the processor state at the time of the exception and pass control to
a kernel routine. The communication channel between these BIOS routines
and the kernel routines is the BIOS Data Page, where the kernel routines
can find the stored processor state, and the BIOS routines can find the PC
and SP values for these kernel routines in the Pass Up Vector. Hence, un-
derstanding the layout of the BIOS Data Page is important. [Section 8.5]

• One of the first tasks the operating system needs to perform at startup is the
initialization of the Processor 0 Pass Up Vector. [Section 8.5]

The question of whether a computer can think is no more interesting
than the question of whether a submarine can swim.

Edsger Dijkstra

9
µMPS3 Multiprocessor Support

Originally by Tomislav Jonjic

µMPS3 can operate as a uniprocessor or as a multiprocessor system, sup-
porting up to 16 identical MIPS R2/3000 RISC (integer-only) processors. Fur-
thermore, each processor possesses its own CP0 coprocessor. All 16 processors
behave identically, as described in this guide.

9.1 Machine Control Registers

Address Register Type
0x1000.0514 Power Write Only
0x1000.0510 HaltCPU Write Only
0x1000.050C BootSP Read/Write
0x1000.0508 BootPC Read/Write
0x1000.0504 ResetCPU Write Only
0x1000.0500 NCPUs Read Only

Table 9.1: Machine Control Register Address Map

78

9.1. MACHINE CONTROL REGISTERS 79

Analogous to the device registers used to control peripheral devices [Section
5.1], µMPS3 implements a Machine Control register set, shown in Table 9.1. This
register set provide the programmer with explicit control over the power states of
processors and the machine itself. Specifically:

1. NCPUs: stores the number of processors in the system. Each processor is
identified by a unique integer [0..15]. Each processor stores its id in its CP0
PRID register. The libumps library provides a getPRID() function for
accessing the PRID CP0 register. [Section 7.1]

2. ResetCPU: A power state control register used to start up non-running pro-
cessor.

3. HaltCPU: A power state control register used to halt a running/idle proces-
sor.

4. BootPC & BootSP: Define a processor’s startup state; PC and SP on reset.

5. Power: A power state control register to power off the whole machine.

9.1.1 Processor Power States

At each point in time a µMPS3 processor can be in one of several power states,
which define whether it is currently executing instructions and its responsiveness
to external events (interrupt, reset and halt signals).

µMPS3 defines three power states:

• Halted: This state represents the lowest power state. A processor in this
state will only respond to a reset signal, which transitions the processor into
the Running state, causing it to start executing instructions.

A processor transitions into this state when its halt signal is asserted, which
is triggered by writing its PRID into the HaltCPU register. The halted
processor does not maintain any architecturally visible state (e.g. processor
registers) in this power state.

• Running: This state represents the normal operating state of the processor.
A processor in this state responds to both interrupts and halt/reset signals.
A processor transitions into this state as a result of external events.

80 CHAPTER 9. µMPS3 MULTIPROCESSOR SUPPORT

• Idle: A processor in this state operates in reduced-power mode. The pro-
cessor stops executing instructions when it transitions into this state, but it
stays responsive to all external events. A processor transitions into this state
by executing the WAIT instruction.1 [Section 7.2.2]

The processor maintains all architecturally visible state in this power state.
This state is also often referred to as standby.

Figure 9.1 shows the possible transitions between power states.

Halted

Running

Idle

Reset

Halt Wait

Reset, Interrupt

Halt

Figure 9.1: Processor Power States

9.1.2 Processor Initialization

After a machine reset, only Processor 0 is automatically started (i.e. in the Running
power state). Explicit startup (reset) commands must be issued to start the other
processors. A secondary processor starts executing when it receives a reset signal.
This is accomplished by writing the processor ID ([0..15]) into the Reset register.
The processor starts executing at the location specified by the BootPC register,
with the processor’s SP register set to the value provided by the BootSP register.
Furthermore, the Status registers is set to 0x1040.0000, while all other general
purpose and control registers are set to 0 - a processor startup state. [Section 8.2]

Given the tight interplay between the hardware and the BIOS routines (e.g.
exception handling, TLB-Refill events), successful processor initialization must
also involve the BIOS services. A libumps function is provided to simplify
processor initialization. [Section 9.5]

1While processor i can halt processor j, no other processor can idle a given processor. The
processor to be idled must itself execute the WAIT instruction.

9.2. INTERRUPT DELIVERY CONTROL 81

Interrupt Router

Interrupt Routing Table

External
interrupt
sources

System Bus

Proc. Interface

Proc. 0

. Proc. Interface

Proc. N

Memory mapped interface

Figure 9.2: Interrupt Delivery Control Subsystem Functional Block Diagram

9.1.3 Powering Off the Machine
Machine power off is initiated by writing the magic value 0x0FF into the write-
only Power register. The power down completes after a non-negligible delay.

9.2 Interrupt Delivery Control
The µMPS3 interrupt delivery control subsystem is designed to support SMP-
capable operating systems. This subsystem allows for the creation of elaborate
interrupt affinity and/or balancing schemes and provides a simple inter-processor
interrupt (IPI) mechanism.

An invariant of the interrupt delivery control subsystem is that each interrupt
is delivered to only one processor. The default settings for the interrupt delivery
control subsystem are set to deliver all interrupts to Processor 0 (i.e. uniprocessor
behavior).

Conceptually, at the systems level, it is useful to conceive of the interrupt
delivery control subsystem as shown in Figure 9.2. This subsystem consist of:

• A centralized programmable unit called the Interrupt Router that distributes
interrupts from external/peripheral interrupt sources to selected processors.

• One or more Processor Interface units that receive interrupts from the In-
terrupt Router and control the transmission and reception of inter-processor
interrupt messages.

The following sections describe the register-level interfaces for the Interrupt
Router and the Processor Interfaces.

82 CHAPTER 9. µMPS3 MULTIPROCESSOR SUPPORT

9.2.1 Interrupt Router

For systems under heavy I/O load, it is often desirable to distribute interrupts
across multiple processors. µMPS3 allows one to specify interrupt routing in-
formation per interrupt source. Routing information is stored in a set of pro-
grammable registers, the Interrupt Routing Table (IRT). Each IRT entry controls
interrupt delivery for a single interrupt source.

Two distribution policies are supported:

• Static: The interrupt is delivered to a preselected processor.

• Dynamic: The interrupt is delivered to the processor executing the lowest
priority task.

0152831

RP Destination

Figure 9.3: IRT Entry Format

Each IRT entry register (Figure 9.3) consists of:

• RP: bit 28 - Specifies the routing policy. The field is interpreted as follows:

0 (Static) The interrupt is delivered to the single processor
specified in the Destination field.

1 (Dynamic) The interrupt is delivered to one of the possibly
many processors indicated in the Destination
field. The interrupt is delivered to the proces-
sor executing the lowest priority task among all
contestants indicated in the Destination field.
In case of a tie, resolution is achieved via an
implementation-defined arbitration mechanism.
Dynamic interrupt routing requires the operat-
ing system to update at appropriate times the ex-
ecution priority of the selected processors. This
is accomplished by programming the Task Pri-
ority (TPR) register, located in the Processor
Interface register bank. [Section 9.2.2]

9.2. INTERRUPT DELIVERY CONTROL 83

• Destination: bits 0-15 - Used to specify the interrupt target processor(s).
This field is interpreted differently depending on the setting of the RP bit.

When RP=0, the Destination field’s lowest four bits are interpreted as a
Processor ID ([0..15]).

When RP=1, the Destination field is interpreted as a processor mask, where
bit i of Destination[15:0] corresponds to processor ID i.

Figure 9.4 illustrates the complete Interrupt Routing Table with 48 entries.
Interrupt routing information for device device j, attached to interrupt line i, is
recorded in entry (i− 2)× 8 + j.

Interrupt lines 0 (IPI) & 1 (Processor Local Timer) are never routed via pro-
grammer control. Interrupt line 2 (Interval Timer), may be routed, but there is
only one instance of the Interval Timer. Each of lines 3–7 may have up to eight
instances for each device (interrupt line) class.

0x1000.03BC Interrupt line 7:7 Routing Entry

.

0x1000.0340 Interrupt line 4:0 Routing Entry

0x1000.033C Interrupt line 3:7 Routing Entry

.

0x1000.0324 Interrupt line 3:1 Routing Entry

0x1000.0320 Interrupt line 3:0 Routing Entry


Interrupt line 3
routing information

. . .

0x1000.0300 Interrupt line 2:0 Routing Entry

Figure 9.4: Interrupt Routing Table Register Address Map

9.2.2 Processor Interface
The processor interface registers [Table 9.2] represent the per-processor compo-
nent of the interrupt delivery controller register-level interface. Each processor
has its own private instance of the processor interface registers. Each proces-
sor accesses its private processor interface at the same addresses shown below.

84 CHAPTER 9. µMPS3 MULTIPROCESSOR SUPPORT

Though multiple banks (one per processor) of these registers are provided, they
all share the same address map.

Address Register Type
0x1000.0410 BIOSReserved2 Read/Write
0x1000.040C BIOSReserved1 Read/Write
0x1000.0408 TPR Read/Write
0x1000.0404 Outbox Write Only
0x1000.0400 Inbox Read/Write

Table 9.2: Interrupt Delivery Controller Processor Interface Register Map

The Inbox and Outbox registers are used for inter-processor interrupts; Sec-
tion 9.4.

The Task Priority (TPR) register [Figure 9.5] is used by the Interrupt Router
for its priority based arbitration scheme. The TPR.Priority field allows for 16
priority levels, with 0 and 15 representing the highest and lowest priorities respec-
tively.

0331

Priority

Figure 9.5: The TPR register

The two registers labelled as BIOS Reserved are provided for the convenience
of the BIOS exception handling routines. Specifically,

• BIOSReserved1 caches the address in the BIOS Data Page where this
processor’s exception processor state is stored. (0x0FFF.F000 + (0x8c *
PRID)) [Section 8.5]

• BIOSReserved2 caches the address in the BIOS Data Page where this pro-
cessor’s 4-word Pass Up Vector is located. (0x0FFF.F900 + (0x10 * PRID))
[Section 8.5]

9.3. DEVICE REGISTER MEMORY MAP - THE COMPLETE PICTURE 85

9.3 Device Register Memory Map - The Complete
Picture

Figures 4.1 (page 24), 5.2 (page 31) and 6.2 (page 45) are, from the multiproces-
sor perspective, incomplete. Figure 9.6 is a more complete image of the device
register area(s), illustrating the relative placement of

• Bus Register Area (Interval Timer, TOD clock, etc.)

• Installed Devices Bitmap and Interrupting Devices Bitmap

• Interrupt lines 3–7 Device Registers

• Interrupt Routing Table

• Processor Interface Registers

• Machine Control Registers

0x1000.0000

0x1000.002C

0x1000.0040

0x1000.0054

0x1000.0064

0x1000.00C4

0x1000.00D4

0x1000.02C4

0x1000.02D4

0x1000.02FC

0x1000.0300

0x1000.03C0

0x1000.0400

0x1000.0414

0x1000.0500

Bus Register Area

Installed Devices Bitmap

Interrupting Devices Bitmap

Interrupt Line 3, Device 0
Device Register

Interrupt Line 3, Device 1
Device Register

Interrupt Line 3, Device 7
Device Register

Interrupt Line 4, Device 0
Device Register

Interrupt Line 7, Device 7
Device Register

Reserved

Interrupt Routing Table

Reserved

Processor Interface Registers

Reserved

Machine Control Registers

Bus Error
0x1000.0518

Figure 9.6: Device Register Memory Map

Appendix D contains a complete and detailed diagram of the BIOS portion.

86 CHAPTER 9. µMPS3 MULTIPROCESSOR SUPPORT

9.4 Inter-Processor Interrupts (IPI’s)
An inter-processor interrupt (IPI) represents an inter-processor signaling mecha-
nism used by a processor to request the attention of another processor. IPI’s are
commonly used by operating systems for issuing rescheduling requests, maintain-
ing TLB consistency, and any other task which requires one processor to request
the attention of another.

The characteristics of IPI’s in µMPS3 are as following:

• Each IPI can carry an arbitrary 8-bit data field (message). This feature is
provided solely for software convenience and has no side effects on the IPI
delivery subsystem.

• Processor i can signal multiple processors simultaneously, sending each
processor the same message.

• Multiple IPI’s may be pending at the same time for a given processor.

• Only one pending IPI may be acknowledged at a time.

• There is no built-in delivery status notification mechanism.

• There is a limit of one pending IPI per originating processor. For example,
if processor i IPI signaled processor j, processor i cannot IPI signal pro-
cessor j again until after processor j has acknowledged the first IPI from
processor i. IPI signal requests that violate this limit are ignored.

• µMPS3 maintains IPI delivery order. IPI messages are always retrieved in
the order they were received by the processor interface.

9.4.1 Issuing IPI’s

0782331

Recipients Message

Figure 9.7: Outbox Register

An IPI is issued by writing a correctly formatted IPI command to the issuing
processor’s Outbox register. [Figure 9.7]

The fields in the Outbox register are defined as follows:

9.5. PROCESSOR INITIALIZATION 87

• Message (bits 0-7): The message to be delivered.

• Recipients (bits 8-23): is interpreted as a processor mask, where bit i of
Recipients[23:8] corresponds to processor ID i − 8. An IPI is signaled to
processor i if Recipients[i+ 8] is on.

9.4.2 IPI Receipt and Acknowledgement

0781131

Origin Message

Figure 9.8: Inbox Register

IPI interrupts are signaled as an interrupt on line 0. [Chapter 3]
When an IPI is signaled to a given processor, information on the currently

pending IPI is stored in the signaled processor’s Inbox register. [Figure 9.8]
The fields in the Inbox register are defined as follows:

• Message (bits 0-7): The message to be delivered.

• Origin (bits 8-11): The processor ID of the originating processor.

An IPI is acknowledged by writing to the Inbox register. The written value is
ignored.

9.5 Processor Initialization
The default BIOS routines supplied with µMPS3 are completely reentrant with
regard to multiple processors. The reentrancy of the BIOS routines require that
each processor have its own location(s) for exception processing. [Chapter 3]

Specifically, each processor needs a

• A distinct location to store the processor state at the time of an exception.

• A distinct location for the PC and SP pair for passing TLB-Refill event
handling along to a kernel routine.

• A distinct location for the PC and SP pair for passing exception handling
along to a kernel routine.

88 CHAPTER 9. µMPS3 MULTIPROCESSOR SUPPORT

These spaces are preallocated on the BIOS Data Page. Furthermore, the addresses
in the BIOS Data Page (processor state area and Pass Up Vector) are cached in
BIOSReserved1 and BIOSReserved2 respectively. [Section 8.5]

The BIOS function INITCPU is provided to hide the complexities of pro-
cessor startup [Section 9.1.2] and initialization of BIOSReserved1 and BIOSRe-
served2. As with all the other µMPS3 BIOS services, this service is “invoked”
via the libumps library.

C usage:
void INITCPU(unsigned int cpuid, state t *start state)

where

• cpuid is an integer in [0..15] indicating which processor is to be initialized.

• start state is the physical address of the processor state to be loaded
into the newly started processor.

This function initiates a reset of the processor specified by cpuid, causing
it to start execution at an execution time BIOS routine. This routine initializes
BIOSReserved1 and BIOSReserved2 and then loads the the processor state from
the supplied start state parameter.

Important Point: It is recommended that the Pass Up Vector in the BIOS Data
Page for a given processor (except Processor 0) be populated with their respective
values BEFORE invoking INITCPU for that processor.

Part II
Interacting with µMPS3

You only think I guessed wrong! That’s what’s so funny! I switched
glasses when your back was turned! Ha ha! You fool! You fell victim
to one of the classic blunders! The most famous is never get involved in
a land war in Asia, but only slightly less well-known is this: never go in
against a Sicilian when death is on the line! Ha ha ha ha ha ha ha! Ha
ha ha ha ha ha ha! Ha ha ha

Vizzini - from The Princess Bride

10
Compiling for µMPS3

Programming for µMPS3 is facilitated by a complete software development kit
(SDK). The SDK contains:

• mipsel-linux-gnu-gcc; a C compiler; the gcc MIPS R2/3000 cross-compiler.1

• mipsel-linux-gnu-as; an assembler; the gcc MIPS R2/3000 cross-assembler.

• mipsel-linux-gnu-ld; a linker; the gcc MIPS R2/3000 cross-linker.

• umps3-mkdev; a device creation utility. This utility is used to create
µMPS3 disk devices and to create and load files onto µMPS3 flash devices.
[Chapter 11]

• umps3-elf2umps; an object file conversion utility. The gcc cross-compiler
generates ELF object files. ELF object files must be converted into one of
the three object file formats recognized by µMPS3.

• umps3-objdump and mipsel-linux-gnu-objdump; object file analysis util-
ities. The latter utility analyzes ELF object files while the former one is used
to analyze object files that have been processed with the umps3-elf2umps
utility.

1As of this writing, we have successfully tested the series 7 and series 9 versions.

90

10.1. A WORD ABOUT ENDIAN-NESS 91

Using the SDK one may produce code for:

• The kernel/OS, e.g. Pandos.2

• The two BIOS exception handlers; the Execution BIOS routines (which
include the BIOS-Excpt handler and the BIOS-TLB-Refill handler), and
the Bootstrap BIOS routines (Bootstrap BIOS). [Section 8.3]

• User programs (U-proc’s3) that your OS (e.g. Pandos) will run.

Furthermore, one can program either in C or the µMPS3 assembler language, i.e.
the MIPS R2/3000 assembler language – integer instruction set only.

10.1 A Word About Endian-ness

Unlike most processor architectures, the MIPS R2/3000 supports both big-endian
and little-endian processing - though not simultaneously, the choice is “pin-settable.”
Similarly, µMPS3 supports both big-endian and little-endian processing; the endian-
ness of µMPS3 is whatever the endian-ness of the host machine µMPS3 happens
to be running on. (e.g. i386 architectures are little-endian, while Sun Sparcs are
big-endian.) As described in Chapter 12, regardless of the endian-ness of the host
machine, the trace window’s hexadecimal output is always displayed in big-endian
format while the window’s ASCII output is always displayed in little-endian for-
mat.

The µMPS3 SDK tools mipsel-linux-gnu-gcc, mipsel-linux-gnu-as, mipsel-
linux-gnu-ld, and mipsel-linux-gnu-objdump are the little-endian versions; for
running on little-endian host machines such as i386-based machines. There is
an equivalent set of SDK tools for running on big-endian machines. These are
named, mips-linux-gnu-gcc, mips-linux-gnu-as, mips-linux-gnu-ld, and mips-
linux-gnu-objdump respectively.

2Pandos is the an accompanying student OS development project. See the
Student Guide to the Pandos Project available from the Virtual Square Lab. See
virtualsquare.org/umps

3U-proc is the term used in the Pandos project to indicate a user program running in the kuseg
logical address space. This term is used throughout this chapter to represent such differently
configured (from the OS) end-user programs.

92 CHAPTER 10. COMPILING FOR µMPS3

10.2 C Language Software Development
Programming in C does not easily support module/ADT encapsulation and pro-
tection. Appendix G outlines a strategy for implementing encapsulation using C.

Runtime C-library support utilities are –obviously– not available. This in-
cludes I/O statements (e.g. printf from stdio.h), storage allocation calls
(e.g. malloc) and file manipulation methods. In general any C-library method
that interfaces with the operating system is not supported; µMPS3 does not have
an OS to support these calls - unless you write one to do so. The libumps library
is the only support library available. [Chapter 7]

µMPS3 programming requires a number of conventions for program structure
and register usage that must be followed. Most of these are automatically enforced
by the compiler, nevertheless there are a few that must be explicitly followed.

• The µMPS3 linker requires a small function, named start(). This
function is to be the entry point to the program being linked. Typically
start() will initialize some registers and then call main(). After

main() concludes, control is returned to start() which should per-
form some appropriate termination service. Two such functions, written in
µMPS3 assembler, are provided:

– crtso.o This file is to be used when linking together the files for the
kernel/OS.4 The version of start() in this file assumes that the
program (i.e. kernel) is loaded in RAM beginning at 0x2000.1000.
Various registers are initialized including the stack pointer (SP) which
is initialized to the end of the first page of RAM (0x2000.1000) - stacks
in µMPS3 grow “downward” from high memory to low memory. If
main() returns, start() concludes by invoking the HALT in-
struction. [Section 8.6.1]

– crti.o This file is to be used when linking together the files for in-
dividual U-proc’s.5 The version of start() in this file assumes
that the program’s (i.e. U-proc’s) header has 0x8000.0000 as its start-
ing logical address. Various registers are initialized but not the stack
pointer (SP). start() assumes that the kernel will initialize SP

4The source code file crtso.S can be found in the support file directory, while the assembled
object file, crtso.o is located in the library file directory. [Section H.3]

5The source code file crti.S can be found in support file directory, while the assembled object
file, crti.o is located in the library file directory. [Section H.3]

10.2. C LANGUAGE SOFTWARE DEVELOPMENT 93

(e.g. 0xC000.0000). When main() returns, start() loads a0
with a meaningful value (e.g. 2) and executes the SYSCALL instruc-
tion.

• The Global Pointer register, denoted $GP, needs to point into the middle
of a data structure called the Global Offset Table (GOT). The compiler, by
generating (the GOT and) code that uses both the $GP and the GOT (lo-
cated somewhere in a program’s data section), can improve the efficiency
of the linking stage and the execution speed of the resulting code. The $GP
therefore needs to be recomputed across procedure calls. The general pur-
pose register t9, which by convention holds a procedure’s starting address,
is used for this purpose. While the code to do all this is automatically gen-
erated by the compiler, the OS programmer needs to initialize t9 whenever
a processor state’s PC is set/initialized to a function. Therefore whenever
one assigns a value to a processor state’s PC one must also assign the same
value to that state’s t9 (a.k.a. s t9). [Appendix A]

• Given the load/store nature of µMPS3 and the MIPS R2/3000 architecture
which it is based on, the code generated by the cross-compiler may bear
little resemblance to the original source code. This is especially true if one
turns on compiler optimization; which one should NEVER do when pro-
gramming for µMPS3. Nevertheless, even without optimization enabled,
the compiler will endeavor to keep what it perceives to be often used vari-
ables in registers.

This behavior can present problems, especially when the memory location
of a variable is part of a device register (or any other hardware dependent
location). The compiler may, in this case, move the variable into a register
to speed up the code. Any alteration to the original variable (i.e. hardware
update of the device register) will be unseen since any subsequent reference
to the original variable is replaced by a register reference – which has not
been updated.

To avoid this anomalous behavior all accesses to hardware defined locations
should be through pointers since “caching” the pointer’s value in a register
will not affect behavior. While what the pointer might point at may be
updated by the hardware, the pointer’s value itself will remain constant.

In the spirit of it being better to be safe rather than sorry it is probably a good
idea to also make liberal use of C’s volatile modifier/keyword. Any

94 CHAPTER 10. COMPILING FOR µMPS3

variable declared as volatile is never “cached” in a register to improve
code performance. It is recommended that all important variables/structures
be declared as volatile. This would include all kernel data structures,
i.e. semaphores, Page Table’s, swap/frame pool, etc.

10.3 µMPS3 File Formats
The cross-compiler and cross-linker generate code in the Executable and Linking
Format (ELF). While the ELF format allows for efficient compilation and execu-
tion by an OS it is also quite complex. Using the ELF format would therefore
un-necessarily complicate the student OS development process since there are
no program loaders or support libraries available until one writes them. Hence
µMPS3 uses three different simpler object file formats:

• .aout: Based on the predecessor to the ELF format, a.out, this object format
is used for the U-proc programs.

• .core: A simple variant to the .aout format which is used as the object format
for the kernel/OS.

• .rom: Also a variant of the .aout format which is used as the object format
for the Bootstrap BIOS and Execution BIOS files. The .rom format is for
object files and not executable programs. [Section 8.3]

The supplied object file conversion utility, ump3-elf2umps performs the nec-
essary conversion of an ELF object file/executable program into its equivalent
.aout, .core, or .rom object file/executable program. [Section 10.4]

10.3.1 The .aout Format
A program, once compiled and linked is logically split into two areas or sections.
The primary areas are:

• .text: This area contains all the compiled code for the executable program.
All of the program’s functions are placed contiguously one after another in
the order the functions are presented to the linker.

• .data: This area contains all the global and static variables and data struc-
tures. It in turn is logically divided into two sub-sections:

10.3. µMPS3 FILE FORMATS 95

– .data: Those global and static variables and data structures that have a
defined (i.e. initialized) value at program start time.

– .bss: Those global and static variables and data structures that do NOT
have a defined (i.e. initialized) value at program start time.

Local, i.e. automatic, variables are allocated/deallocated on/from the pro-
gram’s stack, while dynamic variables are allocated from the program’s heap.
A heap, like a stack, is an OS allocated segment of a program’s (virtual) address
space. Unlike stack management, which is dealt with automatically by the code
produced by the compiler, heap management is performed by the OS. The com-
piler can produce stack management code since the number and size of each func-
tion’s local variables are known at compile time. Since the number and size of
dynamic variables cannot be known until run-time, heap management falls to the
OS. Heap management can safely be ignored by OS authors who are not support-
ing dynamic variables. (i.e. There are no malloc-type SYSCALLs in Pandos.)

Figure 10.1: .aout File Format

96 CHAPTER 10. COMPILING FOR µMPS3

.aout File Format
Field Name File Offset Explanation
.aout Magic File No. 0x0000 Special identifier used for file type

recognition.
Program Start Addr. 0x0004 Logical address from which program

execution should begin. Typically this
is 0x8000.00B0

.text Start Addr. 0x0008 Logical address for the start of the
.text area. It is fixed to 0x8000.0000

.text Memory Size 0x000C Size of the memory space occupied
by the .text section.

.text File Start Offset 0x0010 Offset into .aout file where .text be-
gins. Since the header is part of .text,
this is always 0x0000.0000

.text File Size 0x0014 Size of .text area in the .aout file.
Larger than .text Mem. Size since
its padded to the nearest 4KB block
boundary.

.data Start Addr. 0x0018 Address (virtual) for the start of the
.data area. The .data area is placed
immediately after the .text area at the
start of a 4KB block, i.e. .text Start
Addr. + .text File Size.

.data Memory Size 0x001C Size of the memory space occupied
by the full .data area, including the
.bss area.

.data File Start Offset 0x0020 Offset into the .aout file where .data
begins. This should be the same as the
.text File Size.

.data File Size 0x0024 Size of .data area in the .aout file.
Different from the .data Mem. Size
since it doesn’t include the .bss area
but is padded to the nearest 4KB
block boundary.

$GP Start Value 0x00A8 Starting value for $GP, computed
during linking. It is usually loaded
by start() into $GP at program
start time

.text 0x00B0 The program’s .text area

.data .text File Size The program’s .data area

Table 10.1: .aout File Format Detail

10.3. µMPS3 FILE FORMATS 97

Important Point: The .data area is given an address space immediately after the .text
address space, aligned to the next 4KB block –insuring that .text and .data areas are com-
pletely separated. The .bss area immediately follows the .data area and is NOT aligned
to a separate 4KB block.

.text and .data Memory Sizes are provided for sophisticated memory allocation pur-
poses:

• The size of each U-proc’s Page Table can be determined dynamically, instead of
Pandos’s “one size fits all” approach.

• Page Table entries that represent the .text area can be marked as read-only, while
entries that represent the .data area can be marked as writable.

A kernel implemented program loader which reads in the contents of a U-proc’s .aout
file, needs to be aware that the .text and .data areas are contiguous and have a starting
virtual address of 0x8000.0000. The .bss area, while not explicitly described in the .aout
file will occupy the logical address space immediately after the .data area. The specifi-
cation for Pandos does not require zero’ing out the .bss area, though doing so will insure
that all uninitialized global and static variables and data structures begin with an initial
value of zero. Finally, the loader loads the PC (and t9) with the Program Start Addr.; i.e.
the contents of the second word of the U-proc’s .aout program header (the address found
at 0x8000.0004).

.aout (and .core) files have padded .text and .data sections to facilitate file read-
ing/loading. Each section is padded to a multiple of the frame size/disk/flash block size.
This allows the kernel/OS to easily load the program and insure that the program’s .text
and .data occupy disjoint frame sets.

10.3.2 The .core Format
The .core file format is used for assembled and linked kernel/OS files.

The .aout file format provides enough information for an already-running OS to load
and run such a file (i.e. U-proc). The .core file format must provide enough information
for a Bootstrap BIOS routine to load and run the OS itself.

The .core file format is identical to the .aout file format with the following exceptions:

• The logical address space begins with the address of the second frame of RAM,
0x2000.1000, instead of the logical address 0x8000.0000. The first frame of RAM
is reserved for the SP. The .text Start Addr. is now 0x2000.1000 and the Program
Start Addr. is 0x2000.10B0.

• The .data area explicitly contains the zero-filled .bss area.

98 CHAPTER 10. COMPILING FOR µMPS3

The supplied Bootstrap BIOS file (coreboot.rom.umps) does not load the kernel file
into RAM. Instead it relies on the µMPS3 Load Core file feature to preload the kernel
.core file into RAM starting at address 0x2000.1000. [Section 8.6]

10.3.3 The .rom Format
The .rom file format is used for assembled BIOS code files. µMPS3 needs two different
.rom files to be loaded: a Bootstrap BIOS file and an Execution BIOS file. [Chapter 8]

The µMPS3 distribution comes with

• A Bootstrap BIOS file (coreboot.rom.umps)6 which contains the Bootstrap BIOS
routine, the Bootstrap BIOS handler for TLB-Refill events, and the Bootstrap BIOS
handler for exceptions.

• An Execution BIOS file (exec.rom.umps)7 which contains the BIOS-Excpt han-
dler and BIOS-TLB-Refill handler routines.

Given the pedagogical nature of µMPS3, the adventurous student is invited to create
their own BIOS files. The µMPS3 Machine Configuration Panel allows users to specify
the name and location of the assembled .rom files to be used for both the Bootstrap and
execution routines. [Chapter 12]

Important Point: Given the need for BIOS routines to directly manipulate µMPS3 reg-
isters, BIOS code development must be done using µMPS3 (i.e. MIPS) assembler.

A .rom file contains only the .text area of its source object file. Furthermore, this .text
area is stripped of any header information; it is just bare machine code.

The .rom format is used when translating an object file into an Execution or Bootstrap
BIOS file. The µMPS3 simulator will load these files, place them at their correct addresses
and execute their code at the appropriate times. See Chapter 12 for how to load/specify
.rom file(s).

10.4 The umps3-elf2umps Object File Conversion
Utility

The command-line umps3-elf2umps utility is used to convert the ELF formatted exe-
cutable and object files produced by the gcc cross-platform development tools into the

6The source code for coreboot.rom.umps can be found in coreboot.S. The installation pro-
cess will put both coreboot.S and coreboot.rom.umps in the support file directory. [Section
H.3]

7The source code for exec.rom.umps can be found in exec.S. The installation process will
put both exec.S and exec.rom.umps in the support file directory. [Section H.3]

10.5. THE UMPS3-OBJDUMP OBJECT FILE ANALYSIS UTILITY 99

.core, .rom, and .aout formatted files required by µMPS3.
umps3-elf2umps [-v] [-m] {-k | -b | -a} <file>

where

• file is the executable or object file to be converted.

• -v: optional Flag to produce verbose output during the conversion process.

• -m: optional flag to generate the .stab symbol table map file associated with file.

• -k: Flag to produce a .core formatted file. This flag can only be used with an
executable file. A .stab file is automatically produced with this option.

• -b: Flag to produce a .rom formatted file. This flag can only be used with an object
file that does not contain relocations.

• -a: Flag to produce a .aout formatted file. This flag can only be used with an
executable file.

A successful conversion will produce a file by the name of file.core.umps, file.rom.umps,
or file.aout.umps accordingly.

A .stab file is a text file containing a one-line µMPS3-specific header and the contents
of the symbol table from the ELF-formatted input file. It is used by the µMPS3 simulator
to map .text and .data locations to their symbolic, i.e. kernel/OS source code, names.
Hence the automatic generation of the .stab file whenever a .core file is produced. Since
.stab files are text files one can also examine/modify them using traditional text-processing
tools.

In addition to its utility in tracking down errors in the umps3-elf2umps program
(which hopefully no longer exist), the -v flag is of general interest since it illustrates
which ELF sections were found and produced and the resulting header data for .core and
.aout files. For .rom files, the -v flag also displays the BIOS code size obtained during file
conversion.

10.5 The umps3-objdump Object File Analysis Util-
ity

The command-line umps3-objdump utility is used to analyze object files created by
umps3-elf2umps. This utility performs the same functions as mipsel-linux-gnu-objdump
(or mips-linux-gnu-objdump) which is included in the cross-platform development tool
set. umps3-objdump is used to analyze .core, .rom, and .aout object files while mipsel-
linux-gnu-objdump is used to analyze ELF-formatted object files.

100 CHAPTER 10. COMPILING FOR µMPS3

umps3-objdump [-h] [-d] [-x] [-b] [-a] <file.umps>
where

• file.umps is the .core, .rom, and .aout object file to be analyzed.

• -h: Optional flag to show the .aout program header, if present.

• -d: Optional flag to “disassemble” and display the .text area in file.umps. This is
an “assembly” dump of the code, thus it will contain load and branch delay slots;
differing from the machine language version of the same code.

• -x: Optional flag to produce a complete little-endian format hexadecimal word
dump of file.umps. Zero-filled blocks will be skipped and marked with *asterisks*.
The output will appear identical regardless of whether file.umps is little-endian or
big-endian.

• -b: Optional flag to produce a complete byte dump of file.umps. Zero-filled blocks
will be skipped and marked with *asterisks*. Unlike with the -x flag, the endian-
format of the output will depend on the endian-ness of file.umps; i.e. if file.umps
is big-endian than the output will be big-endian.

• -a: flag to perform all of the above optional operations.

The output from umps3-objdump is directed to stdout.

10.6 Putting It All Together: The Development Toolchain
The proceeding sections expand in great detail on the minutiae of code development for
µMPS3. This section provides concrete summary examples to help put it all together. The
examples assume execution on a little-endian host machine.8

10.6.1 Creating an Operating System (.core) File
Consider the (unrealistic) case where one’s operating system is implemented across three
files; partA.c, partB.c, and partC.c.9

One should compile the three source files separately using the following
compiler flags

8As documented above (Section 10.1), if one is working on a big-endian machine one should
modify the commands appropriately; substitute mips- for mipsel-.

9Each of these files most likely also includes libumps.h for access to BIOS ser-
vices/instructions and CP0 registers.

10.6. PUTTING IT ALL TOGETHER: THE DEVELOPMENT TOOLCHAIN101

$(CFLAGS): -ffreestanding -ansi -Wall -c -mips1
-mabi=32 -mfp32 -mno-gpopt -G 0 -fno-pic -mno-abicalls

mipsel-linux-gnu-gcc $(CFLAGS) partA.c
mipsel-linux-gnu-gcc $(CFLAGS) partB.c
mipsel-linux-gnu-gcc $(CFLAGS) partC.c

The three object files should then be linked together using the command:
mipsel-linux-gnu-ld -G 0 -nostdlib -T $(SUPDIR)/umpscore.ldscript

$(LIBDIR)/crtso.o partA.o partB.o partC.o $(LIBDIR)/libumps.o -o kernel

where $(SUPDIR) is the location of the support file directory, and $(LIBDIR) is the
location of the library file directory. [Section H.3]

Note the use of the umpscore.ldscript linker script. Linker scripts inform the linker
on the layout of the logical address space of the resulting executable. µMPS3 is distributed
with two linker scripts:

• umpscore.ldscript which defines the logical address space for a .core file – a ker-
nel executable whose starting address is 0x2000.1000

• umpsaout.ldscript which defines the logical address space for an .aout file – a
U-proc executable whose starting address is 0x8000.0000

Also included is the crtso.o support file containing start(), and the assembled ver-
sion of the libumps library.

The order of the object files in the link command is important: specifically, the two
support files must be in their respective positions.

The linker produces a file in the ELF object file format which needs to be converted
to a .core (-k option) file prior to its use with µMPS3. This is done with the command:

umps3-elf2umps -k kernel

which produces the file kernel.core.umps and an accompanying symbol table file, ker-
nel.stab.umps. As described in Chapter 12 these are the default operating system and
symbol table filenames.

Appendix E contains a sample Makefile for creating kernel.core.umps along with
disk device, a flash device and a single U-proc program.

10.6.2 Creating a U-proc (.aout) File
Consider the case where one has a user program that one wishes to run on an already
existing µMPS3 operating system (e.g. Pandos); testpgm.c

102 CHAPTER 10. COMPILING FOR µMPS3

One should compile the source file using the command:
mipsel-linux-gnu-gcc $(CFLAGS) -c testpgm.c

This test program must be linked.
mipsel-linux-gnu-ld -G 0 -nostdlib -T $(SUPDIR)/umpsaout.ldscript

$(LIBDIR)/crti.o testpgm.o $(LIBDIR)/libumps.o -o testpgm

where $(SUPDIR) is the location of the support file directory, and $(LIBDIR) is the
location of the library file directory. [Section H.3]

Note the use of the umpsaout.ldscript linker script; the eventual target is an .aout
U-proc file. Also included is the crti.o support file containing the U-proc version for
start(), and the compiled version of the libumps library.

The linker produces a file in the ELF object file format which needs to be converted
to a .aout (-a option) file prior to its use with µMPS3. This is done with the command:

umps3-elf2umps -a testpgm

which produces the file: testpgm.aout.umps
Finally, this .aout file can be (optionally) loaded onto a flash drive with the comm-

mand:
umps3-mkdev -f testpgm.umps testpgm.aout.umps

which produces the preloaded “flash device” file: testpgm.umps
Appendix E contains a sample Makefile for creating kernel.core.umps along with

disk device, a flash device and a single U-proc program preloaded on to the flash device.

10.6.3 Creating a BIOS File
BIOS code development must be done in µMPS3 (i.e. MIPS) assembler. Consider the
case where one has a new version of the execution BIOS routines:
testROM.S

One should assemble the source file using the command:
mipsel-linux-gnu-as -KPIC testROM.S

Note the required use of the -KPIC option to generate position independent code. (i.e. No
relocations)

This produces a file in the ELF object file format which needs to be converted to a
.rom (-b option) file prior to its use with µMPS3. This is done with the command:

umps3-elf2umps -b testROM

which produces the file: testROM.rom.umps

10.6. PUTTING IT ALL TOGETHER: THE DEVELOPMENT TOOLCHAIN103

One would use the same procedure, minus the umps3-elf2umps step to create new
versions of crtso.o, crti.o, or the libumps library.

It’s supposed to be automatic, but actually you have to push this button.
John Brunner

11
Using The umps3-mkdev Device

Creation Utility

The log files for holding terminal and printer output are standard text files, and which if
not present for any active printer or terminal, will automatically be created by umps3 at
startup time. Disk and flash “devices” (i.e. files) must be explicitly created beforehand.
One uses the umps3-mkdev device creation utility to create the files that represent these
persistent memory devices.

104

11.1. CREATING DISK DEVICES 105

11.1 Creating Disk Devices
Disks in µMPS3 are “direct access” nonvolatile read/write devices. The umps3-mkdev
utility allows one to create an empty disk only; this way an OS developer may elect any
desired disk data organization.

The created “disk” file represents the entire disk contents, even when empty. Hence
this file may be very large. It is recommended to create small disks which can be used to
represent a little portion of an otherwise very large disk unit.

Disks are created via:

umps3-mkdev -d <diskfile.mps> [cyl [head [sect [rpm [seekt [datas]]]]]]

where:

• -d instructs the utility to build a disk file image.

• diskfile.mps is the name of the disk file image to be created.

• The following six additional optional parameters allow one to set the drive’s geom-
etry:

– number of cylinders (cyl): from [1..65535], default = 32

– number of heads/surfaces (head): from [1..255], default = 2

– number of 4 KB sectors/track (sect): [1..255], default = 8

– rotations per minute(rpm): [360..10800], default = 3600

– avg. cyl. to cyl. seek time in microseconds (seekt): [1..10000], default = 100

– sector data occupancy % (datas): [10%..90%], default = 80%

As with real disks, differing performance statistics result in differing simulated drive
performance. e.g. A faster rotation speed results in less latency delay and a smaller sector
data occupancy percentage results in shorter read/write times.

The default values for all these parameters are shown when entering the umps3-
mkdev alone without any parameters.

Appendix E contains a sample Makefile which illustrates the creation of a disk device.

106CHAPTER 11. USING THE UMPS3-MKDEV DEVICE CREATION UTILITY

11.2 Creating Flash Devices
Flash devices in µMPS3 are “random access” nonvolatile read/write devices. A µMPS3
flash device is essentially equivalent to a seek-free one-dimensional disk drive. The
umps3-mkdev utility allows one to create both slow flash devices (e.g. USB stick) or
fast flash devices (e.g. SSDs). Furthermore, the utility allows one to create both empty
flash devices as well as ones preloaded with a specific file.

The created flash device file represents the entire device contents, even when empty.
Hence this file may be very large. It is recommended to create small flash devices which
can be used to represent a little portion of an otherwise very large device.

Flash devices are created via:

umps3-mkdev -f <flashfile.mps> <file> [blocks [wt]

where:

• -f instructs the utility to build a flash file image.

• flashfile.mps is the name of the flash device file image to be created.

• Filename to be preloaded onto the device beginning with block 0. If one wishes
to create an empty flash device but still specify some of the additional parameters,
use /dev/null as the <file> argument.

To load a flash device with a collection of files, it is recommended to initially
create a single .tar file from the collection and then use this single .tar file for this
parameter.1

• The following two additional optional parameters allow one to set the flash device’s
properties:

– Number of blocks (blocks): from [1..0xFFFFFF], default = 512

– Average write time in microseconds (wt): [1..10000], default = 1000

µMPS3 caps the maximum block size for flash devices at 224. This translates to a maxi-
mum device size of 64 GB.

As with real flash devices, read operations are faster than write operations. The read
speed for µMPS3 flash devices is fixed at 75% of the device’s write time in microseconds.

The default values for all these parameters are shown when entering the umps3-
mkdev alone without any parameters.

1We recommend the .tar file format due to its simple structure.

11.2. CREATING FLASH DEVICES 107

Appendix E contains a sample Makefile which illustrates the creation of a flash device
preloaded with a user program.

There is a theory which states that if ever anybody discovers exactly
what the Universe is for and why it is here, it will instantly disappear and
be replaced by something even more bizarre and inexplicable. There is
another theory which states that this has already happened.

Douglas Adams

.

12
The umps3 Emulator

The µMPS3 simulator, umps3, emulates all of the µMPS3 system as described in Part
I of this guide. umps3 is designed to run on any UNIX-compatible platform, though
extensive testing has only occurred using Linux variants.

12.1 The umps3 Simulator
The umps3 simulator loads and executes programs developed for a µMPS3 machine.
As detailed in Section 10.3, all µMPS3 specific files have a typical identifying “middle”
extension (e.g. .core) and the .umps common final extension. While umps3 acts as a
faithful emulator of a µMPS3 machine, it is also a sophisticated testing and debugging
environment for µMPS3 programs. As such, the feature-set of umps3 in general and
its graphical user interface (GUI) in particular were designed to assist students in the
creation of operating systems. The umps3 graphical interface provides one with the
tools to exercise complete control over the emulated machine, not only through extensive
breakpoint, suspect, and tracing facilities, but also by allowing the user to modify both
RAM and control registers during execution.

In the hopeful spirit that the umps3 GUI, like actual well designed GUI’s, require
no instruction and the observation that students rarely read GUI manuals anyway, the
following sections are rather cursory. It is hoped that anyone with familiarity using a
modern debugging facility will quickly be comfortable with the umps3 GUI.

108

12.2. UMPS3 INVOCATION AND MACHINE CONFIGURATIONS 109

12.2 umps3 Invocation and Machine Configurations
The µMPS3 simulator is executed by entering umps3 at a shell prompt or into a program
launcher. Depending on the execution environment and installation umps3 may also be
available via a desktop shortcut (look in the “educational” section).

A umps3 execution session requires a machine configuration before one can “turn
on” the machine. The Welcome screen invites users to either open an existing machine
configuration file (a JSON file) or to create a new machine configuration. Opening an
existing configuration requires navigating to the machine configuration file’s location. If
one opts to create a new configuration, one needs to specify the filename and location for
the newly created default machine configuration. Conveniently, five of the most recently
used machine configurations are also offered as click-able options. One can also clear the
display of the five most recently used machine configurations: available option under the
Simulator menu bar option.

Figure 12.1: umps3 Welcome Screen

110 CHAPTER 12. THE UMPS3 EMULATOR

At this point one has either opened an existing machine configuration or created a
new default machine configuration. Selecting the Simulator/Edit Configuration menu
bar option allows one to inspect and edit the machine configuration parameters. Tool-
bar icons are also present for the New Configuration, Open Configuration, and Edit
Configuration options.

Figure 12.2: New, Open, Edit Configuration Toolbar Icons, respectively

12.2.1 µMPS3 Machine Configuration Panel
The Machine Configuration Window is a 2-tab window. The options should be familiar
after gaining a thorough understanding of Part I of this guide.

Panel 1: General Settings

Figure 12.3: General Configuration Parameters

12.2. UMPS3 INVOCATION AND MACHINE CONFIGURATIONS 111

The settable parameters are:

• Processors: Default=1, options are from [1..16]. [Chapter 9]

• Clock Rate: Sets the Time Scale Bus Register value. Default=1, options are from
[1..99]. [Section 4.1]

• TLB Size: Number of entries in the TLB. Default=16, options are from [4,8,16,32,
64].[Section 6.3.2]

• TLB Floor Address: Address below which address translation is disabled. De-
fault=VM Off, options are from [VM OFF, 0x4000.0000, 0x8000.0000]. [Section
6.3.1]

• RAM Size: Number of 4 KB frames of RAM. Default=64, options are from
[8..512]. [Section 6.1]

• Bootstrap BIOS: Full name of the .rom file type containing the assembled Boot-
strap BIOS routines. This value is preset to the default/supplied Bootstrap BIOS
file; coreboot.rom.umps. Unless one is modifying or substituting the supplied/default
Bootstrap BIOS routines, this parameter should not be altered. [Section 8.6]

• Execution BIOS: Full name of the .rom file type containing the assembled Exe-
cution BIOS routines. This value is preset to the default/supplied Execution BIOS
file; exec.rom.umps. Unless one is modifying or substituting the supplied/default
Execution BIOS routines, this parameter should not be altered. [Section 8.4]

• Load Core File checkbox: Controls whether umps3 preloads the .core file (i.e. the
kernel) into RAM at location 0x2000.1000. Unless one is modifying the Bootstrap
BIOS routines to perform the loading step, this parameter should not be altered.
Default=checked.

• Core File: Full name of the .core file type containing the compiled and linked
kernel file (i.e. the Operating System). This field is defaulted to kernel.core.umps
located in the current directory. [Section 10.3.2] The sample Makefile in Appendix
E is set up to create a .core file by this name.

• Symbol Table: Full name of the symbol table produced by umps3-elf2umps
when converting a .aout file to a .core file. Typically, this file has the same name
as the above Core File with a .stab.umps extension. This field is defaulted to ker-
nel.stab.umps located in the current directory. [Section 10.4] The sample Make-
file in Appendix E is set up to create a .stab file by this name.

112 CHAPTER 12. THE UMPS3 EMULATOR

• Symbol Table ASID: While debugging, the symbol table needs an ASID value.
Since the ASID field is only 6 bits, ASID values can range from [0..63]. The
default setting of 0x40 is recommended for this purpose.

In the majority of cases, the only parameters one might alter are TLB Floor Address and
RAM Size.

Panel 2: Device Settings

The second tab, Devices allows one to map various files with various µMPS3 peripheral
devices.

Figure 12.4: Device Configuration Parameters

The files associated with printer and terminal devices are text files which will hold the
characters output/transmitted to each device; i.e. a log file. If a printer or terminal’s log
file does not exist when umps3 starts, its file is automatically created.

The files associated with disk and flash devices are special files created using the
umps3-mkdev device creation utility. These files must already exist when umps3 is
started. [Chapter 11]

Important Point: Don’t forget to check the Enable box next to any device you intend to
use.

12.3. USING UMPS3 113

One can always return and edit a machine configuration. One can, however, only edit
a machine configuration if the machine is powered down.

12.3 Using umps3
The umps3 “Power Button” is the Green (umps3 currently off)/red (umps3 currently
on) bullseye Toolbar icon. The other icons in the Toolbar are:

• Reset: (Yellow Circular Arrows icon): Return an already running machine to a
just powered-on state. umps3 does not need to be stopped to be reset.

• Run/Continue: (Green Right Arrow icon): Continue executing instructions; i.e.
the “Run” button. When one clicks on this button it transitions to a Red Stop Sign
- which can then be used to halt execution.

• Step (Green Arrow Moving Down One Step icon): Single step machine execution.

• Processor slider bar: This slider bar controls the speed of emulation. It does not
alter the processor speed - a machine configuration parameter.

Figure 12.5: The Processor Control Bar

While using umps3 one can open many different windows. Including the Main Win-
dow. There can also be one window per processor (each of which supports up to two
subwindows: Register display and TLB display) and one window per terminal device -
which can accept user input.

12.3.1 The Main umps3 Window
In addition to the menu bar and Toolbar, the Main Window contains four tabs:

• Overview - This non-interactive pane displays the current values for the Machine
Configuration.

• Processors - A two pane window. The top pane describes the status for each ac-
tive processor: power state and PC value. The bottom pane enumerates all the
Breakpoints that are currently set. There are three ways to set a Breakpoint.

– Option on the Debug menu bar item.

114 CHAPTER 12. THE UMPS3 EMULATOR

Figure 12.6: The Processors Tab

– Right-click on the bottom pane

– Left-click on an instruction’s address in a Processor Window. [Section 12.3.2]

For each Breakpoint set, there are individual checkboxes activating/deactivating
this Breakpoint.

When one sets a Breakpoint a pop-up window displaying the contents of the symbol
table is presented. Double-clicking (or Single-click + “OK”) sets the Breakpoint.

Breakpoints are removed by selecting the Breakpoint and either selecting Remove
Breakpoint from the Debug menu bar item, or from the pop-up menu activated by
right-clicking in the lower pane.

• Memory - A two pane window. The upper portion is for Suspects, while the lower
portion is for Traced regions.

– A Suspect is a memory location (data structure/variable). Execution is stopped
whenever the selected memory location is to be read or written. i.e. A Break-
point for data structures/variables.

– A Trace region is a memory location (data structure/variable). Setting a trace
allows one to inspect (and alter) values in RAM. The displayed values may

12.3. USING UMPS3 115

Figure 12.7: The Memory Tab

be shown in a variety of formats. (e.g. ASCII, Big-endian). The default is
Big-endian display - even when running on a little-endian host.

Suspects and Trace regions are set and removed in similar fashion: Either via the
Debug menu bar option or by Right-Clicks in the Suspect (or Trace region) panes.
Removal is isomorphic.

• Device Status - Window providing the current operational status of all attached/active
peripheral devices.

Breakpoints, Suspect ranges and RAM tracing are the three primary debugging tools.
At the bottom of the Main Window is the Stop Mask: a set of five check boxes. If a given
box is checked then when the appropriate event is triggered (e.g. reach a Breakpoint, write
a variable on the suspect list), execution is paused. Hence, setting an active Breakpoint (or
other “stop event”) is a two part process: the setting of the breakpoint and the enabling of
Breakpoints to stop execution via the Breakpoint Stop Mask checkbox. The five umps3
Stop events are:

• Breakpoints - when the PC equals any of the values for which a Breakpoint as
been set.

116 CHAPTER 12. THE UMPS3 EMULATOR

Figure 12.8: The Devices Tab

• Suspects - when the target of a load or store operation equals any of the values for
which a Suspect has been set.

• Exceptions - any of the exceptions as defined in Chapter 3

• Kernel UTLB - TLB-Refill events when the processor is in kernel mode (Sta-
tus.KUc = 0)

• User UTLB - TLB-Refill events when the processor is in user mode (Status.KUc
= 1)

The TOD clock is displayed in the lower right corner of the main window.
The Windows menu bar item allows one to display dedicated windows representing

any of the (up to) eight terminals and (up to) sixteen processors.
A terminal window displays the text that has been written to it. One also types into a

terminal window for terminal input.

12.3.2 A Processor Window
In addition to some repeated menu bar and toolbar items (for convenience), a processor
window displays up to three different panes of information:

12.3. USING UMPS3 117

Figure 12.9: The Processor Window

• The Code pane: displays a section of code that the processor is currently executing.
While some of the information is updated continuously (PrevPC, PC and function
name+offset), the code itself is only updated when the emulator is stopped. Left-
clicking on an individual instruction’s address sets/removes a breakpoint at that
location.

• The Registers pane: displays the 32 General Purpose Registers, the CP0 control
registers and a set of “other registers” which includes the Processor Local Timer
(labeled Timer). Given the debugging strategy outlined in Chapter 13 displaying
the register pane with the General Purpose Registers a0, a1, a2, and a3 visible will
be a common practice. To facilitate the common practice the Registers pane, in
addition to most other panes, can be “torn off” into its own separate window.

Note: All the registers displayed in the Registers pane are also user editable (double
click on the register value).

• The TLB pane: displays the contents of the processor’s TLB. As with the Registers
pane, all the values are also user-editable.

118 CHAPTER 12. THE UMPS3 EMULATOR

Figure 12.10: The TLB “tear off” Window

Figure 12.11: A Multi-Window View of a Debugging Session

If debugging is the art of removing bugs, then programming must be the
art of inserting them.

Unknown

13
Debugging in µMPS3

As described in Section 10.2 writing code for an OS requires some special considerations.
Debugging an OS, unfortunately, is even more challenging. In the authors’ experience,
most undergraduates, even when supplied with sophisticated debugging tools, primarily
rely on output statements (e.g. cout or printf) for debugging. By examining the
generated output stream, students infer both the flow of execution and the program state
at each output statement. This can be called “debugging by side-effect.” When debugging
an OS there is no support for output statements; at least not until the OS author has written
and debugged support for them.1

Debugging an OS is further complicated by its inherent interconnectedness; frustrat-
ing the desire to perform unit testing. One cannot test a scheduler without support for
timing services. One cannot test timing services without support for interrupt handling.
One cannot test interrupt handling without support for semaphores and a scheduler.

The lack of students’ traditional debugging tool, output statements, and the inability
to do module testing due to an OS’s interconnectedness presents a unique debugging chal-
lenge. It is important to start thinking about debugging, not in terms of side effects, but
in terms of current program state. Unlike with traditional undergraduate programming
projects, where it is possible to test all possible control paths and all meaningful program
states, there are too many possible meaningful program states during the execution of an

1While Phase 1 of the Pandos project comes with its own very rudimentary support for terminal
output, in Phase 2, successfully generating any terminal output represents the achievement of a
major debugging milestone along the path towards the completion of that phase.

119

120 CHAPTER 13. DEBUGGING IN µMPS3

OS for exhaustive testing; at least within the constraints of a term-long undergraduate
project. Nevertheless, by debugging with an emphasis on program state, instead of side
effect, one can start to gain a degree of confidence regarding the correctness of the OS.

13.1 µMPS3 Debugging Strategies
The µMPS3 simulator, from one perspective, can be thought of as a sophisticated debug-
ging tool/environment. As described in Chapter 12 it provides three primary mechanisms
to assist in the debugging process; breakpoints, suspect ranges, and memory tracing. The
following is a description of two debugging strategies.

13.1.1 Using a Character Buffer to Mimic printf
In the spirit of attempting to force a square peg into a round whole, it is possible to use a
RAM buffer to behave like an output stream; allowing the use of the “familiar” debugging
technique. To do this one declares a global character array and instead of issuing an output
statement, one moves a character string or meaningful value into the buffer. The trace
facility is then used to display the buffer’s contents. Running one’s OS while monitoring
the contents of the buffer is isomorphic to running a traditional program and monitoring
the output stream.

Writing to the buffer can be done in an accumulative fashion, similar to an output
stream, or each line of “output” can overwrite the previous one.2

Under µMPS3 one has the option to improve this approach by placing the buffer in
the suspect list and enabling the simulator to halt on suspect matches. Now whenever an
“output statement” is reached the simulator will stop, allowing for the examination, via
the trace window, of the state of OS variables.

13.1.2 Implementing Debugging Functions
The above approach, while useful, has its limitations. There is no itoa (integer–to–
ascii) function –unless you write your own– so one is limited, via the global buffer, to
the display of character strings only. Also while program execution can be halted prior to
each output message, only global variables can be examined via the trace window.

An improvement on this approach is to implement either a debug function, or a suite
of such functions; e.g. debugA, debugB, debugC, etc. Each of these functions can be
defined to accept four integer parameters. Now, at a point of desired program inspection,

2The test program that accompanies Phase 1 of the Pandos project, in addition to generating
output on TERMINAL0 illustrating the test program’s progress, also illustrates the buffer tech-
nique of writing in an accumulative fashion to a character buffer

13.2. COMMON PITFALLS TO WATCH OUT FOR 121

instead of generating an output string (e.g. “you are here”) one calls a debug function.
In this scenario, the first parameter is usually a unique “key” value (e.g. 10, 20, 42, etc)
that unambiguously identifies where in the program the function call statement is. The
other three parameters can be used to pass along local function variables, global variables,
expressions or any other value that will help the debugger understand the program state at
that point in the program.

By setting a breakpoint for each debug function (and enabling the simulator to halt
on breakpoints), the simulator will stop on entry to each debug function. Furthermore,
registers a0, a1, a2, and a3 will contain the four parameters passed to the debug function.
The contents of these registers are always displayed on the µMPS3 simulator’s Main
Window eliminating the need to use the trace window to display OS state information.
Furthermore, unlike the small trace window which always displays all the traced memory
ranges, with a debug function one can elect which variables to inspect on a call statement
by call statement basis. True, one is limited to only four values, but the trace window is
still available to display additional information.

Using a suite of debug functions allows for a greater degree of debugging sophisti-
cation. For example debugA can be used for scheduling issues, while debugB can be
used interrupt handling. One doesn’t wish to step over n breakpoints related to schedul-
ing while endeavoring to get to a breakpoint related to interrupt handling; just enable the
debugB breakpoint. A suite of debug functions can also help in the following scenario:
one suspects that the Ready Queue is somehow getting corrupted, but only after the first
“warm” page fault. Enabling a debug function, say in the scheduler, is inefficient. There
will be hundreds of scheduler breakpoints that will occur prior to the one in question.
Instead, enable a different debug function in the pager. When that breakpoint occurs, then
enable the debug function in the scheduler. Thus one has the ability to enable a break-
point in a frequently occurring location only after some epoch has occurred, instead of the
breakpoint being enabled from OS boot-time.

13.2 Common Pitfalls to Watch Out For
While every OS author seems to generate their own unique errors, and concomitant de-
bugging challenges, a number of errors do seem to reoccur with regularity. The following
is a list of some of the more difficult ones to track down. By enumerating them here, it is
hoped to save some lucky OS authors from some long and frustrating debugging sessions.

13.2.1 Errors in Syntax
There is not much one can do for a logic error except track it down and fix it. Yet some-
times the logic appears flawless and the code still does not work as expected. This may

122 CHAPTER 13. DEBUGGING IN µMPS3

be due to a syntax error. Some of the structures in an OS can be quite complex; an array
of structures, where each structure contains arrays of processor states, each of which in
turn contains an array, arrays of PTE’s and other data, all of which is accessed through a
pointer. While the syntax used to access some value deep in the structure may compile and
even run, it can nevertheless be incorrect. It is recommended that by using a debug func-
tion to display some appropriate value deep within the structure, one can verify that one’s
syntax is indeed correct. Even the most experienced of programmers can make a syntax
error when mixing together structures, arrays, structures of arrays, arrays of structures,
dot notation, and pointer notation.

13.2.2 Errors in Structure Initialization

Errors in initialization are also quite common. Most programmers have grown used to
an environment where uninitialized variables are “zeroed” out. This is even true of the
µMPS3 cross platform development tools; the .bss area for .core files is explicitly in-
cluded in the .core file and zeroed out. While the initial values for .bss kernel/OS vari-
ables and structures is zero, many of these structures get used and re-used over and over.
Kernel maintained Process-Blocks are the canonical example. It is important to remem-
ber to initialize all of such a structure’s fields prior to re-use. Not doing so can make an
uninitialized value incorrectly appear to have been initialized.3

13.2.3 Overlapping Stack Spaces and Other Program Compo-
nents

The OS data for one U-proc (i.e. User process) must be kept separate from the OS data
for other U-proc’s. This is rather easy with respect to each U-proc’s virtual address space
through the magic of virtual memory. The OS structures that reside in kseg1 for each
U-proc are a different matter. Therefore care must be taken to insure that the OS’s data
structures for each U-proc (which may include one or more stack areas in addition to
a Page Table) are both large enough and completely disjoint. Given the very difficult
nature of debugging overlapping stack spaces, it is recommended that this be considered
whenever one’s OS behaves in an unpredictable and erratic manner.

3One example of this in the Pandos project is with the support structure pointer field in a pcb.
A pcb that contained a support structure that gets reused by a process without a support structure
may appear to incorrectly have a support structure.

13.2. COMMON PITFALLS TO WATCH OUT FOR 123

13.2.4 Compiler Anomalies
As outlined in Section 10.2 the supplied cross-compiler, even when instructed to behave as
conservative as possible, will both reorder one’s code and cache frequently used variables.
This is especially dangerous when dealing with hardware defined locations –which for
compiler-related safety reasons should always be accessed through pointers.

One reasonably consistent, though not surefire way to determine if correct code is
being altered into incorrect code by the compiler is through the use of debug functions.
Specifically when code runs correctly when “littered” with debug function calls, and runs
incorrectly when they are removed, one is probably dealing with the compiler code re-
ordering/variable caching problem. As one can imagine it is quite frustrating for a student
to belive they have successfully completed phase i of their OS project only to remove all
their debug function calls and learn their OS no longer behaves the same.

A (debug) function call is a compiler epoch or bottleneck. A compiler cannot reorder
assembler statements that occur after a function call to before it, or visa versa. Also any
register-cached variables must be restored to memory prior to the function call. Function
calls force a compiler, regardless of the optimization it is performing, to synchronize the
generated code with the original source code.

There are a number of fixes one might try when this occurs:

• Do nothing. The additional debug function calls merely slows down the OS, but
does not affect its correctness.

• Try all of the options described in Section 10.2. That is use pointers to access hard-
ware defined locations and use the volatile keyword on appropriate variables
and structures.

A
C Struct Definitions

µMPS3 is distributed with the file types.h containing the C-language typedef/struct def-
initions for a processor state, the Bus Register and for device registers. This file can be
found in the include file directory.[Section H.3]

124

A.1. PROCESSOR STATE 125

A.1 Processor State
#define STATEREGNUM 31
typedef struct state_t {

unsigned int s_entryHI;
unsigned int s_cause;
unsigned int s_status;
unsigned int s_pc;
int s_reg[STATEREGNUM];

} state_t, *state_PTR;

#define s_at s_reg[0]
#define s_v0 s_reg[1]
#define s_v1 s_reg[2]
#define s_a0 s_reg[3]
#define s_a1 s_reg[4]
#define s_a2 s_reg[5]
#define s_a3 s_reg[6]
#define s_t0 s_reg[7]
#define s_t1 s_reg[8]
#define s_t2 s_reg[9]
#define s_t3 s_reg[10]
#define s_t4 s_reg[11]
#define s_t5 s_reg[12]
#define s_t6 s_reg[13]
#define s_t7 s_reg[14]
#define s_s0 s_reg[15]

#define s_s1 s_reg[16]
#define s_s2 s_reg[17]
#define s_s3 s_reg[18]
#define s_s4 s_reg[19]
#define s_s5 s_reg[20]
#define s_s6 s_reg[21]
#define s_s7 s_reg[22]
#define s_t8 s_reg[23]
#define s_t9 s_reg[24]
#define s_gp s_reg[25]
#define s_sp s_reg[26]
#define s_fp s_reg[27]
#define s_ra s_reg[28]
#define s_HI s_reg[29]
#define s_LO s_reg[30]

126 APPENDIX A. C STRUCT DEFINITIONS

A.2 Bus & Device Registers
/* Device register type for disks, flash and printers */
typedef struct dtpreg {

unsigned int status;
unsigned int command;
unsigned int data0;
unsigned int data1;

} dtpreg_t;

/* Device register type for terminals */
typedef struct termreg {

unsigned int recv_status;
unsigned int recv_command;
unsigned int transm_status;
unsigned int transm_command;

} termreg_t;

typedef union devreg {
dtpreg_t dtp;
termreg_t term;

} devreg_t;

/* Bus register area */
typedef struct devregarea {

unsigned int rambase;
unsigned int ramsize;
unsigned int execbase;
unsigned int execsize;
unsigned int bootbase;
unsigned int bootsize;
unsigned int todhi;
unsigned int todlo;
unsigned int intervaltimer;
unsigned int timescale;
unsigned int TLBFloorAddr;
unsigned int inst_dev[5];
unsigned int interrupt_dev[5];
devreg_t devreg[5][8];

} devregarea_t;

A.3. THE PASS UP VECTOR 127

A.3 The Pass Up Vector
/* Pass Up Vector */
typedef struct passupvector {

unsigned int tlb_refill_handler;
unsigned int tlb_refill_stackPtr;
unsigned int exception_handler;
unsigned int exception_stackPtr;

} passupvector_t;

B
libumps Header File

As described in Chapter 7 µMPS3 is distributed with a library, libumps{.S, .o, .h} -
source, assembled and header files respectively.

/* External declarations for uMPS library module. */

/* Functions valid in user mode */
/*---*/
extern unsigned int SYSCALL (unsigned int number,

unsigned int arg1, unsigned int arg2,
unsigned int arg3);

extern int CAS (volatile unsigned int *atomic,
unsigned int oldval, unsigned int newval);

/* Functions valid in user mode iff CPU 0 bit set in

* STATUS register */
/*---*/

/* CP0 register access functions */
extern unsigned int getINDEX (void);
extern unsigned int getRANDOM (void);

128

129

extern unsigned int getENTRYLO (void);
extern unsigned int getBADVADDR (void);
extern unsigned int getENTRYHI (void);
extern unsigned int getSTATUS (void);
extern unsigned int getCAUSE (void);
extern unsigned int getEPC (void);
extern unsigned int getPRID (void);
extern unsigned int getTIMER (void);

/* CP0 register modify functions

* All functions return the value in register after write */
extern unsigned int setINDEX (unsigned int index);
extern unsigned int setENTRYLO (unsigned int entry);
extern unsigned int setENTRYHI (unsigned int entry);
extern unsigned int setSTATUS (unsigned int entry);
extern unsigned int setCAUSE (unsigned int cause);
extern unsigned int setTIMER (unsigned int timer);

/* TLB read/write functions */
extern void TLBWR (void);
extern void TLBWI (void);
extern void TLBP (void);
extern void TLBR (void);
extern void TLBCLR (void);

/* Idle processor function */
extern void WAIT(void);

/* Store processor state function */
extern unsigned int STST (STATE_PTR statep);

/* Functions valid only in kernel mode */
/*---*/

/* function used to modify the current execution state */
extern void LDCXT (unsigned int stackPtr, unsigned int status,

unsigned int pc);

/* function to restart an interrupted/blocked process */

130 APPENDIX B. LIBUMPS HEADER FILE

extern unsigned int LDST (STATE_PTR statep);

/* This function stops the system printing a warning message on

* terminal 0 */
extern void PANIC (void);

/* This function halts the system printing a regular shutdown

* message on terminal 0 */
extern void HALT (void);

/* Start/reset another processor */
extern void INITCPU (unsigned int cpuid, STATE_PTR start_state,

STATE_PTR state_areas);

C
System-wide Constants

µMPS3 is distributed with the file const.h containing the definitions of useful system
constants. This file can be found in the include file directory.[Section H.3]

/* Hardware & software constants */
#define PAGESIZE 4096
#define WORDLEN 4

/* timer, timescale, TOD-LO and other bus regs */
#define RAMBASEADDR 0x10000000
#define TODLOADDR 0x1000001C
#define INTERVALTMR 0x10000020
#define TIMESCALEADDR. 0x10000024

/* utility constants */
#define TRUE 1
#define FALSE 0
#define HIDDEN static
#define EOS ’\0’
#define NULL ((void *)0xFFFFFFFF)

/* device interrupts */

131

132 APPENDIX C. SYSTEM-WIDE CONSTANTS

#define DISKINT 3
#define FLASHINT 4
#define NETWINT 5
#define PRNTINT 6
#define TERMINT 7

#define DEVINTNUM 5 /* interrupt lines used by devices */
#define DEVPERINT 8 /* devices per interrupt line. */
#define DEVREGLEN 4 /* device registers per dev */

#define DEVREGSIZE 16 /* device register size in bytes */

/* device register field number for non-terminal devices */
#define STATUS 0
#define COMMAND 1
#define DATA0 2
#define DATA1 3

/* device register field number for terminal devices */
#define RECVSTATUS 0
#define RECVCOMMAND 1
#define TRANSTATUS 2
#define TRANCOMMAND 3

/* device common STATUS codes */
#define UNINSTALLED 0
#define READY 1
#define BUSY 3

/* device common COMMAND codes */
#define RESET 0
#define ACK 1

/* Memory related constants */
#define KSEG0 0x00000000
#define KSEG1 0x20000000
#define KSEG2 0x40000000
#define KUSEG 0x80000000
#define RAMSTART 0x20000000
#define BIOSDATAPAGE 0x0FFFF000

133

/* Useful operations */
#define MIN(A,B) ((A) < (B) ? A : B)
#define MAX(A,B) ((A) < (B) ? B : A)
#define ALIGNED(A) (((unsigned)A & 0x3) == 0)

/* Macro to load the Interval Timer */
#define LDIT(T)

((* ((cpu_t *) INTERVALTMR)) = (T) * (* ((cpu_t *) TIMESCALEADDR)))

/* Macro to read the TOD clock */
#define STCK(T)

((T) = ((* ((cpu_t *) TODLOADDR)) / (* ((cpu_t *) TIMESCALEADDR))))

D
The BIOS Memory Region

134

135

0x0000.0000

BIOS Data Page

0x0FFF.F000

0x1000.0000

Execution BIOS
Routines

EXECTOPBus Error

0x1000.0518

0x2000.0000

Bus Error

Bus Error

Bootstrap BIOS

Routines

BOOTTOP

0x1FC0.0000

Bus, Device, Machine

Control etc. Registers

[Bus/Address Error]

[Bus/Address Error]

Figure D.1: The BIOS Region: The Complete Picture

E
Sample Makefile

The first Makefile illustrates how to “make” an executable kernel (.core) file kernel.core.umps
The three source files are compiled using the recommended compiler flags. These

files are linked together with crtso.o and libumps.o
Note the use of the “core” linker script. Finally, the output from the linker is run through
umps3-elf2umps to create a .core file (-k option). This Makefile also invokes umps3-
mkdev to create the disk0 disk device.

The second Makefile creates a .aout file; a user executable program. The single source
file is compiled. This compiled file is then linked with crti.o and libumps.o
Note, the use of the “aout” linker script. The linker output is run through umps3-
elf2umps to create a .aout file (-a option). Finally, a flash device is created using umps3-
mkdev which is preloaded with the newly created .aout file.

136

E.1. MAKEFILE FOR A KERNEL.CORE.UMPS FILE 137

E.1 Makefile for a kernel.core.umps File
This makefile creates a kernel file from three source files:
ifneq ($(wildcard /usr/bin/umps3),)

UMPS3_DIR_PREFIX = /usr
LIBDIR = $(UMPS3_DIR_PREFIX)/lib/x86_64-linux-gnu/umps3

else
UMPS3_DIR_PREFIX = /usr/local
LIBDIR = $(UMPS3_DIR_PREFIX)/lib/umps3

endif

INCDIR = $(UMPS3_DIR_PREFIX)/include/umps3/umps
SUPDIR = $(UMPS3_DIR_PREFIX)/share/umps3

DEFS = ../h/const.h ../h/types.h $(INCDIR)/libumps.h Makefile

OBJS = partA.o partB.o partC.o
CFLAGS = -ffreestanding -ansi -Wall -c -mips1 -mabi=32 -mfp32 \

-mno-gpopt -G 0 -fno-pic -mno-abicalls
LDAOUTFLAGS = -G 0 -nostdlib -T $(SUPDIR)/umpsaout.ldscript
LDCOREFLAGS = -G 0 -nostdlib -T $(SUPDIR)/umpscore.ldscript

CC = mipsel-linux-gnu-gcc
LD = mipsel-linux-gnu-ld
AS = mipsel-linux-gnu-as -KPIC
EF = umps3-elf2umps
UDEV = umps3-mkdev

#main target
all: kernel.core.umps disk0.umps

use umps3-mkdev to create the disk0 device
disk0.umps:

$(UDEV) -d disk0.umps

create the kernel.core.umps kernel executable file
kernel.core.umps: kernel

$(EF) -k kernel

kernel: $(OBJS)
$(LD) $(LDCOREFLAGS) $(LIBDIR)/crtso.o $(OBJS) \

$(LIBDIR)/libumps.o -o kernel

%.o: %.c $(DEFS)
$(CC) $(CFLAGS) $<

138 APPENDIX E. SAMPLE MAKEFILE

E.2 Makefile for Pre-loaded Flash Device
This makefile creates a flash
device, preloaded with the compiled test file: testpgm.c
ifneq ($(wildcard /usr/bin/umps3),)

UMPS3_DIR_PREFIX = /usr
LIBDIR = $(UMPS3_DIR_PREFIX)/lib/x86_64-linux-gnu/umps3

else
UMPS3_DIR_PREFIX = /usr/local
LIBDIR = $(UMPS3_DIR_PREFIX)/lib/umps3

endif

INCDIR = $(UMPS3_DIR_PREFIX)/include/umps3/umps
SUPDIR = $(UMPS3_DIR_PREFIX)/share/umps3

DEFS = $(INCDIR)/libumps.h Makefile
OBJS = testpgm.o

CFLAGS = -ffreestanding -ansi -Wall -c -mips1 -mabi=32 -mfp32 \
-mno-gpopt -G 0 -fno-pic -mno-abicalls

LDAOUTFLAGS = -G 0 -nostdlib -T $(SUPDIR)/umpsaout.ldscript
LDCOREFLAGS = -G 0 -nostdlib -T $(SUPDIR)/umpscore.ldscript

CC = mipsel-linux-gnu-gcc
LD = mipsel-linux-gnu-ld
AS = mipsel-linux-gnu-as -KPIC
EF = umps3-elf2umps
UDEV = umps3-mkdev

#main target
all: testpgm.umps

%.o: %.c $(DEFS)
$(CC) $(CFLAGS) $<

%.t: %.o $(OBJS)
$(LD) $(LDAOUTFLAGS) $(LIBDIR)/crti.o $< \

$(LIBDIR)/libumps.o -o $@

%.t.aout.umps: %.t
$(EF) -a $<

%.umps: %.t.aout.umps
$(UDEV) -f $@ $<

F
Compare and Swap: CAS

056101115162021252631

0 rs rt rd 0 cas (001011b)

Assembly Format:
casopc rd, rs, rt

Description:
The CAS instruction performs an atomic read-modify-write operation on synchronizable
memory locations. The contents of the word at the memory location specified by the
GPR rs is compared with General Purpose Register (GPR) rt. If the values are equal, the
content of GPR rd is stored at the memory location specified by rs and 1 is written into
rd. Otherwise, 0 is written into rd and no store occurs.

The above read-modify-write sequence is guaranteed to be atomic by ensuring that
no intervening operation on a conflicting memory location is performed by the memory
system. The following pseudocode illustrates the operation of the cas instruction:

atomic {
if (MEM[rs] == GPR[rt]) {

MEM[rs] = GPR[rd];

139

140 APPENDIX F. COMPARE AND SWAP: CAS

GPR[rd] = 1;
} else {

GPR[rd] = 0;
}

}

The set of synchronizable memory locations in µMPS3 coincides with physical RAM
locations. For all other locations (e.g. the I/O address space) cas will unconditionally fail.
C usage:

int CAS(unsigned int *atomic, unsigned int ov, unsigned int
nv)
where nv and ov are integers, and atomic is a pointer to an integer.

This function atomically sets the word pointed to by atomic to nv if the current
value of the word is ov. It returns 1 to indicate a successful update and 0 otherwise.

Technical Point: The CAS instruction is not part of the MIPS R2/3000 ISA, instead it is
part of the MIPS32 ISA. CAS is one of only two MIPS32 instructions implemented in
µMPS3.

G
Encapsulation Strategy for C

Programming

It is expected that your operating system will be implemented in C (and not C++ or Java).
While C is not an object-oriented language, you are encouraged to divide your code into
modules and to try to take advantage, as much as possible, of encapsulation.

You are strongly encouraged to create i + 1 subdirectories in your home directory.
i of these directories will contain the code (“.c” files) for each of the i phases you will
implement, and the i+ 1st directory, called h, will contain your “.h” (header) files.

The µMPS3 distribution contains two files defining certain hardware-related con-
stants, const.h [Appendix C], and types, types.h [Appendix A]. These will be very
useful for you. Copy them into the h subdirectory of your account and make additions
(deletions) as needed.

G.0.1 Module Encapsulation in C

You are encouraged to adopt the following set of conventions for programming in C.
These conventions were worked out so as to provide programmers working in C some of
the benefits of classes and encapsulation.

For an example consider a file (or module) that contains all the functions related to a
specific well-defined purpose. This file will contain

141

142APPENDIX G. ENCAPSULATION STRATEGY FOR C PROGRAMMING

• “public” functions: functions that the programmer wishes to be externally visible
to users of the module.

• “private” functions: functions that are helper functions; ones which the program-
mer does not wish to be externally visible to users of the module.

• “public” global variables: Variables which are defined outside the scope of any in-
dividual function within the file and which the programmer wishes to be externally
visible to users of the module.

• “private” global variables: Variables which are defined outside the scope of any
individual function within the file and which the programmer does not wish to be
externally visible to users of the module.

• “persistent” local variables: Variables which are defined inside a particular function
(and hence “private”) but, like global variables, have a lifetime equal to that of the
program itself (and not just the lifetime, like automatic variables, of the function
within which it is defined).

Private components; functions and variables should be declared using the C keyword
static. A static object, while visible throughout the file it is declared in cannot be accessed
from outside the file; effectively creating “private” functions and variables.

A persistent variable is also declared using the keyword static. Any variable declared
inside a function whose declaration is preceded with the keyword static, becomes persis-
tent retaining its value between function calls. Static, or persistent, variables are allocated
not on the stack (like automatic variables) but from the same section used for the alloca-
tion of global variables.

It is unfortunate that the keyword static is overloaded in C. To help differentiate their
two uses it is helpful to alias the keyword static to HIDDEN.

#define HIDDEN static
Now, private components can be declared as HIDDEN while persistent components

can be declared as static.
For each file/module there should also be an external declarations header (“.h”) file.

This file should contain the prototypes for each public function and global variable. Each
prototype should be preceded by the keyword extern. Like a C++ “.h” file, any other
module that makes use of one module’s public functions or variables will #include
that module’s corresponding “.h” file. For example:

#include ‘‘../h/asl.h’’
Finally, global structures (i.e. typedef’s) and constants should be defined in appro-

priate “.h” files; e.g. const.h and types.h

H
Installing umps3 and the

Development Tools

The following are directions for installing the gnu MIPS cross compiler and the umps3
system on a little-endian (e.g. x86-based processors) Debian-based Linux distro (e.g.
Ubuntu). While it is infeasible to test every Linux distro on all available architectures, it
is believed that the following should work for most (all?) Debian-based Linux distros -
both big-endian and little-endian. Furthermore, there is nothing inherent with the cross
compiler tools nor umps3 preventing a successful installation on a different Linux distro
base (e.g. OpenSUSE).

H.1 Installation of the Gnu Cross Compiler and De-
pendent Libraries

It is always a good practice to run the following before undertaking any package installa-
tion procedure.

• sudo apt-get update

• sudo apt-get install build-essential

umps3 is dependent on the following libraries:

143

144APPENDIX H. INSTALLING UMPS3 AND THE DEVELOPMENT TOOLS

• QT 5.5 +

• libelf

• boost 1.34+

• libsigc++ 2.0

• cmake

To install the gnu MIPS cross compiler, associated tools, and dependent libraries:

sudo apt install git build-essential cmake qtbase5-dev libelf-dev libboost-dev
libsigc++-2.0-dev gcc-mipsel-linux-gnu

H.2 Installation of umps3
There are two ways to install umps3:

• Building from source

• Installation via a package manager

H.2.1 Building from Source
Perform the following steps to install umps3:

• Download the umps3 archive file from the Virtual Square git repository and un-
pack it in a local directory.

• “cd” to the root of the source tree/downloaded archive.

• mkdir build

• cd build

• cmake ..

• make

• sudo make install

H.3. INSTALLATION DIRECTORIES 145

H.2.2 Installation via a Package Manager
Given the wide variation in Linux distro package managers and their associated software
repositories, we provide instruction for installing on Ubuntu and refer users of other dis-
tros to the Virtual Square home pagevirtualsquare.org/umps

For Ubuntu, perform the following steps to enable Universe, add the Virtual Square
ppa and perform the installation:

• sudo add-apt-repository universe

• sudo apt update

• sudo add-apt-repository ppa:virtualsquare/umps

• sudo apt update

• sudo apt install umps3

H.3 Installation Directories
In the Unix world there is a fundamental difference between packages installed from
source and those installed via a package manager with regard to the installation location
of supporting files (include files, libraries, etc).

Packages installed from source install their supporting files in /usr/local while pack-
age managers install their supporting files in /usr

umps3 installs accompanying files into three different directories:

• A support directory: libumps.S, exec.S, coreboot.S, crtso.S, crti.S, coreboot.rom.umps,
exec.rom.umps, umpscore.ldscript, and umpsaout.ldscript

• An include directory: libumps.h, const.h, types.h, plus some other .h files of
potential interest to advanced users.

• A library directory: libumps.o, crtso.o, and crti.o

The support directory is either /usr/local/share/umps3, or /usr/share/umps3

The include directory is either /usr/local/include/umps3/umps, or /usr/include/umps3/umps

The library directory is either /usr/local/lib/umps3 or some more architecture dependent
location (e.g. /usr/lib/x86 64-linux-gnu/umps3)

The provided sample Makefiles are built to work with either type of installation. [Ap-
pendix E]

I
Format of Key CP0 Registers

056111231

Virtual Page Number (VPN) ASID

Figure I.1: EntryHi

078910111231

Physical Frame Number (PFN) N D V G

Figure I.2: EntryLo

0123456781516212223242526272831

CU TE BE
V

Interrupt Mask (IM) KU
o

IE
o

KU
p

IE
p

KU
c

IE
c

Figure I.3: Status Register

146

147

01267815162728293031

BD CE Interrupts Pending (IP) ExcCode

Figure I.4: Cause CP0 Register

Number Code Description
0 Int External Device Interrupt
1 Mod TLB-Modification Exception
2 TLBL TLB Invalid Exception: on a Load instr. or instruction fetch
3 TLBS TLB Invalid Exception: on a Store instr.
4 AdEL Address Error Exception: on a Load or instruction fetch
5 AdES Address Error Exception: on a Store instr.
6 IBE Bus Error Exception: on an instruction fetch
7 DBE Bus Error Exception: on a Load/Store data access
8 Sys Syscall Exception
9 Bp Breakpoint Exception

10 RI Reserved Instruction Exception
11 CpU Coprocessor Unusable Exception
12 OV Arithmetic Overflow Exception

Table I.1: Cause Register Status Codes

