
Student Guide to the
PANDOS

Project

The Virtual Square Lab

Michael Goldweber
Xavier University

Renzo Davoli
Università di Bologna

µMPS3, µMPS2, µMPS, MPS, µARM, Kaya, JaeOS, and Pandos are products of
the Virtual Square Lab.
See virtualsquare.org/
The µMPS3 home page is virtualsquare.org/umps

Copyright ©2020, 2011, 2009, and 2004 Michael Goldweber, Renzo Davoli, and
the Virtual Square Lab.

ISBN: 978-1-716-31559-6

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with the exception of the Front-Cover
text, the Title Page with the Logo (recto of this page), and the Back-Cover text.
As per the Virtual Square Logo: all rights reserved.
Cover art designed by catalyststuff / Freepik
http://www.freepik.com

Contents

Preface vii

1 Introduction 1
1.1 Project Configuration . 3
1.2 Directory Structure . 4
1.3 Notational conventions . 4
1.4 File Locations . 5

I The Pandos Core 6

2 Phase 1 - Level 2: The Queues Manager 7
2.1 The Allocation and Deallocation of pcbs 9
2.2 Process Queue Maintenance . 10
2.3 Process Tree Maintenance . 11
2.4 The Active Semaphore List (ASL) 12
2.5 Nuts and Bolts . 15
2.6 Testing . 16

3 Phase 2 - Level 3: The Nucleus 17
3.1 Nucleus Initialization . 19
3.2 The Scheduler . 22
3.3 TLB-Refill events . 23
3.4 Exception Handling . 24
3.5 SYSCALL Exception Handling 24
3.6 Interrupt Exception Handling . 31
3.7 Pass Up or Die . 34
3.8 Accumulated CPU Time . 37

iii

iv CONTENTS

3.9 Process Termination . 38
3.10 Nuts and Bolts . 39
3.11 Testing . 40

4 Phase 3 - Level 4: The Support Level 41
4.1 Address Translation: The OS Perspective 42
4.2 A U-proc’s Logical Address Space and Backing Store 44
4.3 The TLB-Refill event handler . 46
4.4 Paging in Pandos . 48
4.5 Miscellaneous Details Related to Paging 52
4.6 The Support Level General Exception Handler 53
4.7 The SYSCALL Exception Handler 54
4.8 The Program Trap Exception Handler 57
4.9 Process Initialization and test 58
4.10 Small Support Level Optimizations 61
4.11 Nuts and Bolts . 63
4.12 Testing . 65

II Advanced Layers of Pandos 67

5 Phase 4 - Level 5: DMA Device Support 68
5.1 DMA Buffers . 69
5.2 Disk Operations . 70
5.3 Flash Device Operations . 71
5.4 A Word About Backing Store . 73
5.5 Nuts and Bolts . 75
5.6 Testing . 76

6 Phase 5 - Level 6: The Delay Facility 77
6.1 Delay (SYS18) . 77
6.2 Delay Facility . 78
6.3 Nuts and Bolts . 80
6.4 Testing . 83

7 Phase 6 - Level 7: Cooperating User Processes 84
7.1 A Shared Logical Address Space 84
7.2 A Semaphore Service for Logical Addresses 87

CONTENTS v

7.3 Implementation Details . 88
7.4 Nuts and Bolts . 90
7.5 Testing . 93

Appendices 93

A Provided Test Files 94
A.1 Level 2/Phase 1 Test . 94
A.2 Level 3/Phase 2 Test . 94
A.3 Level 4/Phase 3 Test Files . 95
A.4 Additional Test Files . 96

References 98

List of Figures

2.1 Process Tree . 11
2.2 Active Semaphore List . 14

4.1 Layout of a U-proc inside kuseg 44
4.2 Layout of U-proc i’s Page Table 45
4.3 Memory Layout for the Swap Pool 48

5.1 Memory Layout for the DMA Buffers 69

6.1 Memory Layout for the Delay Daemon Stack 82

7.1 kuseg Logical Address Layout 85

vi

Preface

In my junior year as an undergraduate I took a course titled, “Systems Program-
ming.” The goal of this course was for each student to write a small, simple multi-
tasking operating system, in S/360 assembler, for an IBM S/360. The students
were given use of a machine emulator, Assist-V, for the development process.
Assist, was a S/360 assembler programming environment. (Think SPIM for the
70’s.) Assist-V was an extension of Assist that supported privileged instructions in
addition to various emulated “attached” devices. The highlight of the course was
if your operating system ran correctly (or at least without discernible errors), you
would be granted the opportunity, in the dead of night, to boot the University’s
mainframe, an IBM S/370, with your operating system. (Caveat: The Univer-
sity used VM, IBM’s virtual machine technology. Hence students didn’t actually
boot the whole machine with their OS’s, but just one VM partition. Neverthe-
less, booting/running a VM partition and booting/running the whole machine are
isomorphic tasks.) No question, booting and running a handful of tasks concur-
rently on the University’s mainframe with my own OS was one of highlights of
my undergraduate education!

My experience of writing a complete operating system repeated itself in grad-
uate school. In this case the machine emulator was the Cornell Hypothetical In-
struction Processor (CHIP); a made up architecture that was a cross between a
PDP-11 and an IBM S/370. The operating system design was a three phase/layer
affair called HOCA by its creator. While there was no real machine to test with,
the thrill and sense of accomplishment of successfully completing the task, to say
nothing of the many lessons learned throughout the experience were no less than
the earlier experience.

In the late 1990’s Professor Renzo Davoli and one of his graduate students
Mauro Morsiani, in the spirit of both Assist-V/370 and CHIP, created MPS, a
MIPS 3000 machine emulator that not only authentically emulated the processor
(still no floating point), but also faithfully emulated five different device cate-
gories. Furthermore, they updated the HOCA project, which they called TINA,

vii

viii PREFACE

for this new architecture. Once again, students could take their operating system,
developed and debugged on MPS (which also contained an excellent debugging
facility) and run it unchanged on a real machine.

MPS, with its faithful emulation of the MIPS 3000, though, proved to be too
complex for a one semester undergraduate project. Hence Renzo and I set out to
create µMPS – a pedagogically appropriate machine emulator appropriate for use
by undergraduates. In addition, we updated TINA for this new architecture. That
new project was called Kaya.

µMPS and Kaya were originally released in 2004. Kaya was later updated and
rereleased in its current form in 2009. In 2011 µMPS was updated by Tomislav
Jonjic to µMPS2 with a new GUI and multiprocessor support.

Many lessons have been learned over the years since the introduction of µMPS
and Kaya. This led to the development of µMPS3. Perhaps more important than
the release of a new machine emulator is the redesign of the accompanying student
project, now called Pandos.

While Pandos bears a lot of similarity with Kaya, the reassignment of tasks
to phases and reconceptualization of the memory management subsystem will
hopefully lead to greater student success. Furthermore, by expanding the number
of phases and eliminating the dependencies between phases, there are many more
possible project configurations.

A raw machine emulator, such as µMPS3, which is fully described in µMPS3
Principles of Operation [9], can support a wide variety of undergraduate, and
graduate-level projects. The Pandos project is just one such project. The Virtual
Square Lab, which produced both Pandos and µMPS3 is also currently producing
additional projects for µMPS3 as well as for VDE, the Virtual Distributed Ethernet
tool also produced by the Virtual Square Lab.

These other projects, like Kaya, are all designed to be accomplished by ad-
vanced undergraduates working either solo or in teams in the context of a semester-
long multi-phase project.

Renzo and I wish to offer our heartfelt thanks and gratitude to:

• Mauro Morsiani. Mauro generously donated his time to modify MPS into
µMPS. µMPS and the accompanying Kaya Project Guide were originally
released in 2004.

• Tomislav Jonjic, who updated the GUI and added multiprocessor support,
creating µMPS2. µMPS2 is 100% backward compatible with µMPS.

• Marco Melletti, who in 2017, created µARM.

PREFACE ix

• Mattia Biondi, who graciously and competently undertook the development
work in updating µMPS2 to µMPS3.

As the date below indicates, the µMPS3/Pandos project took place during the
2020 Covid-19 pandemic. While my wife and I planned on residing in Bologna,
Italy for six months, we returned home to Cincinnati, OH after two and a half
months, in March of 2020. Though our time in Bologna was cut short, I wish
to thank the University of Bologna in general and Renzo Davoli, my long-time
friend and partner in “CS” crime in particular for their hospitality and support.

Finally we wish to thank our wives, Alessandra and Mindy without whose
inexhaustible patience projects such as this would never see the light of day.

Michael Goldweber
December, 2020

The least of learning is done in the classrooms.
Thomas Merton

1
Introduction

The Pandos operating system described below was originally inspired by the
T.H.E. system outlined by Dijkstra back in 1968 [4]. Dijkstra’s paper described
an OS divided into six layers. Each layer i was an ADT or abstract machine to
layer i + 1; successively building up the capabilities of the system for each new
layer to build upon. The operating system described here also contains multiple
layers, though Pandos is not as complete as Dijkstra’s.

A key design goal of Pandos is to be representatively complete. By this we
mean that many of the standard parts of an operating system are present, though
in a rather unsophisticated form. For example:

• The scheduler is the simple round-robin algorithm.

• There is a deadlock detector; though very rudimentary.

• There is support for both character-based I/O devices and DMA-based I/O
devices, but only two of each type, and only up to eight for each device
class.

• The page replacement algorithm is first-in, first-out.

• There is only one exemplar daemon process; the delay daemon.

1

2 CHAPTER 1. INTRODUCTION

• Inter-process communication is limited to a 32 page shared data space.

• Page Table structures are simple arrays.

• The described implementation of virtual memory provides for multiple op-
timizations to migrate from a very basic approach (e.g. using TLBCLR
to resolve TLB cache inconsistencies), to a more sophisticated dedicated
disk-based approach for providing a backing store service.

The goal is to learn by doing, particularly with respect to managing complexity.
The complexity comes from the subtle interactions between all the moving parts,
rather than from the complexity of any single component.

Pandos is actually the latest instantiation of an older “learning” operating sys-
tem design. Ozalp Babaoglu and Fred Schneider originally described a pedagogi-
cal operating system, calling it the HOCA OS [3], for implementation on the Cor-
nell Hypothetical Instruction Processor (CHIP) [1, 2]. Later, Renzo Davoli and
Mauro Morsiani reworked HOCA, calling it TINA [11] and ICAROS [10], for
implementation on the Microprocessor (without) Pipeline Stages (MPS) [11, 12].
A couple of years after TINA saw the development of Kaya [6] for implementation
on µMPS [5] and later, µMPS2 [8, 7].

Pandos is the latest revamping-modernization of this design for implementa-
tion on µMPS3 [9].

Level 0: The base hardware of µMPS3.
Though µMPS3 carries the designation of “3,” it is NOT backward compat-
ible for operating system code developed for µMPS or µMPS2.

Level 1: The additional services provided in BIOS. This includes the services pro-
vided by the BIOS-Excpt handler, the BIOS-TLB-Refill handler, and the
additional BIOS services/instructions (i.e. LDST, LDCXT, PANIC, and
HALT).

The µMPS3 Principles of Operation [9] contains a complete description of
both Level 0 and 1.

Level 2: The Queues Manager (Phase 1 – described in Chapter 2). Based on the
key operating systems concept that active entities at one layer are just data
structures at lower layers, this layer supports the management of queues of
structures: pcb’s.

1.1. PROJECT CONFIGURATION 3

Level 3: The Kernel (Phase 2 – described in Chapter 3). This level implements eight
new kernel-mode process management and synchronization primitives in
addition to multiprogramming, a process scheduler, device interrupt han-
dlers, and deadlock detection.

Level 4: The Support Level - The Basics (Phase 3 – described in Chapter 4). Level
3 is extended to support a system that can support multiple user-level pro-
cesses that each run in their own virtual address space. Furthermore, support
is provided to read/write to character-oriented devices.

Level 5: DMA Device Support (Phase 4 – described in Chapter 5). An extension of
Level 4 providing I/O support for DMA devices: disk drives and flash de-
vices. Furthermore, this level optionally implements a more realistic back-
ing store implementation.

Level 6: The Delay Facility (Phase 5 – described in Chapter 6). This level provides
the Support Level with a sleep/delay facility.

Level 7: Cooperating User Processes (Phase 6 – described in Chapter 7). This level
introduces a shared memory space and user-level synchronization primitives
to facilitate cooperating processes.

Optionally, one can continue developing Pandos with

Level 8: The File System (Phase 7) This level implements the abstraction of a flat
file system by implementing primitives necessary to create, rename, delete,
open, close, and modify files.

Level 9: Networking support (Phase 8)

Level 10: The Interactive Shell (Phase 9) – why not?

1.1 Project Configuration
The basic one semester senior-level undergraduate project consists of Phases 1-3.
This project can be undertaken by individual students or small student teams (e.g.
pairs). For those concerned with time constraints, Phase 1, which is essentially
a data structures assignment, can be skipped. Instead, students would work with
instructor provided Phase 1 code. These three phases are cumulative, however,
and cannot be skipped.

4 CHAPTER 1. INTRODUCTION

Phases 4-9, the Advanced Layers, are not cumulative. One can pick and
choose which phases to implement and in which order. While there are no hard
dependencies between these phases, there are some soft logical ones. (e.g. An
interactive shell before a file system, while possible, is of limited use.) Finally,
only phases 4-6 are given a detailed treatment in this guide.

1.2 Directory Structure
Since one develops Pandos in phases, the following directory structure is recom-
mended:

/pandos
/h
/phase1
/phase2
/phase3
...

/testers

1.3 Notational conventions
• Words being defined are italicized.

• Register, fields and instructions are bold-marked.

• Field F of register R is denoted R.F.

• Bits of storage are numbered right-to-left, starting with 0.

• The i-th bit of a storage unit named N is denoted N[i].

• Memory addresses and operation codes are given in hexadecimal and dis-
played in big-endian format.

• All diagrams illustrate memory and going from low addresses to high ad-
dresses using a left to right, bottom to top orientation.

• Cross references to other Sections or Chapters where one can find more
detailed information are enclosed in square brackets: [Section 1.3]

1.4. FILE LOCATIONS 5

• References to the µMPS3 Principles of Operation [9] will have a pops suf-
fix. e.g. A reference to the chapter on Exception Handling will be denoted:
[Chapter 3-pops]

1.4 File Locations
In the Unix world there is a fundamental difference between packages installed
from source and those installed via a package manager with regard to the installa-
tion location of supporting files (include files, libraries, etc). [Appendix H-pops]

All file locations described in this guide assume installation via a package
manager. See Appendix H in the µMPS3 Principles of Operation [9] for how to
adjust these locations when working on an installation created from source files.

Part I
The Pandos Core

UNIX is basically a simple operating system, but you have to be a ge-
nius to understand the simplicity.

Dennis Ritchie

2
Phase 1 - Level 2: The Queues

Manager

Level 2 of Pandos instantiates the key operating system concept that active entities
at one layer are just data structures at lower layers. In this case, the active entities
at a higher level are processes (i.e. programs in execution) and the data structure(s)
that represent them at this level are process control blocks (pcbs).

7

8 CHAPTER 2. PHASE 1 - LEVEL 2: THE QUEUES MANAGER

/* process control block type */
typedef struct pcb t {

/* process queue fields */
struct pcb t *p next, /* pointer to next entry */

p prev, / pointer to prev entry */

/* process tree fields */

p prnt, / pointer to parent */

p child, / pointer to 1st child */

p sib; / pointer to sibling */

/* process status information */
state t p s; /* processor state */
cpu t p time; /* cpu time used by proc */
int *p semAdd; /* pointer to sema4 on */

/* which process blocked */

/* support layer information */
support t *p supportStruct;

/* ptr to support struct */
} pcb t;

The queue manager will implement four pcb related sets of functions:

• The allocation and deallocation of pcbs.

• The maintenance of queues of pcbs.

• The maintenance of trees of pcbs.

• The maintenance of a single sorted list of active semaphore descriptors,
each of which supports a queue of pcbs: The ASL.

2.1. THE ALLOCATION AND DEALLOCATION OF PCBS 9

2.1 The Allocation and Deallocation of pcbs
One may assume that Pandos supports no more that MAXPROC concurrent pro-
cesses; where MAXPROC should be set to 20 (in the const.h) file.1 Thus this
level needs a “pool” of MAXPROC pcbs to allocate from and deallocate to. As-
suming that there is a set of MAXPROC pcbs, the free or unused ones can be kept
on a NULL-terminated single, linearly linked list (using the p next field), called
the pcbFree List, whose head is pointed to by the variable pcbFree h.

To support the allocation and deallocation of pcbs there should be the follow-
ing three externally visible functions:

• pcbs which are no longer in use can be returned to the pcbFree list by using
the method:
void freePcb(pcb t *p)

/* Insert the element pointed to by p onto the pcbFree list. */

• pcbs should be allocated by using:
pcb t *allocPcb()

/* Return NULL if the pcbFree list is empty. Otherwise, remove
an element from the pcbFree list, provide initial values for ALL
of the pcbs fields (i.e. NULL and/or 0) and then return a pointer
to the removed element. pcbs get reused, so it is important that
no previous value persist in a pcb when it gets reallocated. */

There is still the question of how one acquires storage for MAXPROC pcbs
and gets these MAXPROC pcbs initially onto the pcbFree list. Unfortunately,
there is no malloc() feature to acquire dynamic (i.e. non-automatic) storage
that will persist for the lifetime of the OS and not just the lifetime of the func-
tion they are declared in. Instead, the storage for the MAXPROC pcbs will be
allocated as static storage. A static array of MAXPROC pcbs will be declared
in initPcbs(). Furthermore, this method will insert each of the MAXPROC
pcbs onto the pcbFree list.

• To initialize the pcbFree List:
initPcbs()

1A supplied “starter” version of const.h can be found in/usr/include/umps3/umps

10 CHAPTER 2. PHASE 1 - LEVEL 2: THE QUEUES MANAGER

/* Initialize the pcbFree list to contain all the elements of the
static array of MAXPROC pcbs. This method will be called only
once during data structure initialization. */

2.2 Process Queue Maintenance
The methods below do not manipulate a particular queue or set of queues. Instead
they are generic queue manipulation methods; one of the parameters is a pointer
to the queue upon which the indicated operation is to be performed.

The queues of pcbs to be manipulated, which are called process queues, are all
double, circularly linked lists, via the p next and p prev pointer fields. Instead
of a head pointer, each queue will be pointed at by a tail pointer.

To support process queues there should be the following externally visible
functions:
pcb t *mkEmptyProcQ()

/* This method is used to initialize a variable to be tail pointer to a
process queue.
Return a pointer to the tail of an empty process queue; i.e. NULL. */

int emptyProcQ(pcb t *tp)

/* Return TRUE if the queue whose tail is pointed to by tp is empty.
Return FALSE otherwise. */

insertProcQ(pcb t **tp, pcb t *p)

/* Insert the pcb pointed to by p into the process queue whose tail-
pointer is pointed to by tp. Note the double indirection through tp
to allow for the possible updating of the tail pointer as well. */

pcb t *removeProcQ(pcb t **tp)

/* Remove the first (i.e. head) element from the process queue whose
tail-pointer is pointed to by tp. Return NULL if the process queue
was initially empty; otherwise return the pointer to the removed ele-
ment. Update the process queue’s tail pointer if necessary. */

pcb t *outProcQ(pcb t **tp, pcb t *p)

2.3. PROCESS TREE MAINTENANCE 11

/* Remove the pcb pointed to by p from the process queue whose tail-
pointer is pointed to by tp. Update the process queue’s tail pointer if
necessary. If the desired entry is not in the indicated queue (an error
condition), return NULL; otherwise, return p. Note that p can point
to any element of the process queue. */

pcb t *headProcQ(pcb t *tp)

/* Return a pointer to the first pcb from the process queue whose tail
is pointed to by tp. Do not remove this pcbfrom the process queue.
Return NULL if the process queue is empty. */

2.3 Process Tree Maintenance
In addition to possibly participating in a process queue, pcbs are also organized
into trees of pcbs, called process trees. The p prnt, p child, and p sib point-
ers are used for this purpose.

The process trees should be implemented as follows. A parent pcb contains a
pointer (p child) to a NULL-terminated single, linearly linked list of its child
pcbs. Each child process has a pointer to its parent pcb (p prnt) and possibly
the next child pcb of its parent (p sib). For greater efficiency you may want to
make the linked list of child pcbs a NULL-terminated double, linearly linked list.

pcb

pcb pcb pcb

p child

p prnt

p child p prnt p prntp prnt

p sib p sib

p sib p sib
p sib

Figure 2.1: Process Tree

To support process trees there should be the following externally visible func-
tions:
int emptyChild(pcb t *p)

12 CHAPTER 2. PHASE 1 - LEVEL 2: THE QUEUES MANAGER

/* Return TRUE if the pcb pointed to by p has no children. Return
FALSE otherwise. */

insertChild(pcb t *prnt, pcb t *p)

/* Make the pcb pointed to by p a child of the pcb pointed to by prnt.
*/

pcb t *removeChild(pcb t *p)

/* Make the first child of the pcb pointed to by p no longer a child of
p. Return NULL if initially there were no children of p. Otherwise,
return a pointer to this removed first child pcb. */

pcb t *outChild(pcb t *p)

/* Make the pcb pointed to by p no longer the child of its parent. If
the pcb pointed to by p has no parent, return NULL; otherwise, return
p. Note that the element pointed to by p need not be the first child of
its parent. */

2.4 The Active Semaphore List (ASL)
A semaphore is an important operating system concept. While understanding
semaphores is not yet needed, this level nevertheless implements an important data
structure/abstraction which supports Pandos’s implementation of semaphores.

For the purpose of this level it is sufficient to think of a semaphore as an
integer. Associated with this integer is:

• An address; semaphores, like all integers, have a physical address in mem-
ory.

• A process queue.

A semaphore is active if there is at least one pcb on the process queue associated
with it. (i.e. The process queue is not empty: emptyProcQ(s procq) is
FALSE.)

The following implementation is suggested: Maintain a sorted NULL-terminated
single, linearly linked list (using the s next field) of semaphore descriptors
whose head is pointed to by the variable semd h. The list semd h points to will

2.4. THE ACTIVE SEMAPHORE LIST (ASL) 13

represent the Active Semaphore List (ASL). Keep the ASL sorted in ascending
order using the s semAdd field as the sort key.

/* semaphore descriptor type */
typedef struct semd t {

struct semd t *s next; /* next element on the ASL */
int *s semAdd; /* pointer to the semaphore*/
pcb t *s procQ; /* tail pointer to a */

/* process queue */
} semd t;

Maintain a second list of semaphore descriptors, the semdFree list, to hold the
unused semaphore descriptors. This list, whose head is pointed to by the variable
semdFree h, is kept, like the pcbFree list, as a NULL-terminated single, linearly
linked list (using the s next field).

The semaphore descriptors themselves should be declared, like the pcbs, as a
static array of size MAXPROC of type semd t.

There is no reason to make the ASL doubly linked.
For greater ASL traversal efficiency it is STRONGLY recommended to place

a dummy node at both the head (s semAdd ← 0) and tail (s semAdd ←
MAXINT) of the ASL; in which case the size of the static array will increase
by two. This is an important programming technique that illustrates the time vs
space trade off in programming; sacrifice a small amount of space for a significant
speed up in code speed. In this case, the ASL traversal code will no longer need
conditionals checking boundary conditions at either end.

To support the ASL there should be the following externally visible functions:
int insertBlocked(int *semAdd, pcb t *p)

/* Insert the pcb pointed to by p at the tail of the process queue as-
sociated with the semaphore whose physical address is semAdd and
set the semaphore address of p to semAdd. If the semaphore is cur-
rently not active (i.e. there is no descriptor for it in the ASL), allocate
a new descriptor from the semdFree list, insert it in the ASL (at the
appropriate position), initialize all of the fields (i.e. set s semAdd
to semAdd, and s procq to mkEmptyProcQ()), and proceed as
above. If a new semaphore descriptor needs to be allocated and the
semdFree list is empty, return TRUE. In all other cases return FALSE.
*/

14 CHAPTER 2. PHASE 1 - LEVEL 2: THE QUEUES MANAGER

semd h

semd

semd

semd

pcb

pcb

pcb

NULL
∞

s procq

s procq

s procq

NULL

NULL
s next

s next

s next

pcbpcb pcbsemd
s procq

s procq
semd

s next

s next

p next

p prev

p next

p next

(tail) (head)

p prev

p prev

(tail) (head)

0

Figure 2.2: Active Semaphore List

pcb t *removeBlocked(int *semAdd)

/* Search the ASL for a descriptor of this semaphore. If none is
found, return NULL; otherwise, remove the first (i.e. head) pcb from
the process queue of the found semaphore descriptor and return a
pointer to it. If the process queue for this semaphore becomes empty
(emptyProcQ(s procq) is TRUE), remove the semaphore de-
scriptor from the ASL and return it to the semdFree list. */

pcb t *outBlocked(pcb t *p)

/* Remove the pcb pointed to by p from the process queue associated
with p’s semaphore (p→ p semAdd) on the ASL. If pcb pointed

2.5. NUTS AND BOLTS 15

to by p does not appear in the process queue associated with p’s
semaphore, which is an error condition, return NULL; otherwise, re-
turn p. */

pcb t *headBlocked(int *semAdd)

/* Return a pointer to the pcb that is at the head of the process queue
associated with the semaphore semAdd. Return NULL if semAdd is
not found on the ASL or if the process queue associated with semAdd
is empty. */

initASL(

/* Initialize the semdFree list to contain all the elements of the array
static semd t semdTable[MAXPROC]
This method will be only called once during data structure initializa-
tion. */

Technical Point: Strive to structure the ASL code so that there is one internal/helper
function that traverses the ASL and is used by insertBlocked, removeBlocked,
outBlocked, and headBlocked.

2.5 Nuts and Bolts
There is no one right way to implement the functionality of this level. The rec-
ommended approach is to create two modules (i.e. files): one for the ASL and
one for pcb initialization/allocation/deallocation, process queue maintenance, and
process tree maintenance.

The second module, pcb.c, in addition to the public and HIDDEN/private
helper functions, will also contain the declaration for the private global variable
that points to the head of the pcbFree list.

HIDDEN pcb t *pcbFree h;

The ASL module, asl.c, in addition to the public and HIDDEN/private helper
functions, will also contain the declarations for semd h and semdFree h

HIDDEN semd t *semd h, *semdFree h;

16 CHAPTER 2. PHASE 1 - LEVEL 2: THE QUEUES MANAGER

Since the ASL module will make calls to the process queue module to manip-
ulate the process queue associated with each active semaphore, this module should

#include "pcb.h"

This will insure that the ASL can only use the externally visible functions from
pcb.c for maintaining its process queues.

Furthermore, the declaration for pcb t would then be placed in the types.h
file.2 This is because many other modules will need to access this definition. The
declaration for semd t can be placed in either asl.c (because no other module
will ever need to access this definition), or types.h.

2.6 Testing
There is a provided test file, p1test.c that will “exercise” your code. [Appendix
A]

As with any non-trivial system, you are strongly encouraged to use the make
program to maintain your code. A sample Makefile has been supplied for you to
use. See Chapter 10 in the POPS reference for more compilation details.

Once your (three?) source files have been correctly compiled, linked together
(with appropriate linker script, crtso.o, and libumps.o), and post-processed
with umps3-elf2umps (all performed by the sample Makefile), your code can be
tested by launching the µMPS3 emulator. At a terminal prompt, enter:

umps3

The test program reports on its progress by writing messages to TERMINAL0.
These messages are also added to one of two memory buffers; errbuf for error
messages and okbuf for all other messages. At the conclusion of the test pro-
gram, either successful or unsuccessful, µMPS3 will display a final message and
then enter an infinite loop. The final message will either be System Halted for
successful termination, or Kernel Panic for unsuccessful termination.

2A supplied “starter” version of types.h can be found in /usr/include/umps3/umps

The best way to prepare [to be a programmer] is to write programs, and
to study great programs that other people have written. In my case, I
went to the garbage cans at the Computer Science Center and fished out
listings of their operating system.

Bill Gates

3
Phase 2 - Level 3: The Nucleus

Level 3, the Nucleus, builds on the previous levels in two key ways:

1. Receives control from the exception handling facility of Level 1. There are
two categories of exceptions [Chapter 3-pops]:

• TLB-Refill events, a relatively frequent occurrence which is triggered
during address translation when no matching entries are found in the
TLB. Since address translation will not be introduced until the Support
Level, the handling of TLB-Refill events is delayed until then.

• All other exception types, including device/timer interrupts, which,
by definition, occur infrequently. This category can be further broken
down into

– Interrupts: peripheral devices and internal timers
– System Service calls (SYSCALL)
– TLB exceptions - exceptions related to the memory management

unit (MMU)
– Program Trap exceptions (e.g. Bus Error)

2. Using the data structures from Level 2 [Chapter 2], and the facility to handle
both system service calls and device interrupts, timer interrupts in particular,
provide a process scheduler – support multiprogramming.

17

18 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

Hence, the purpose of the Nucleus is to provide an environment in which asyn-
chronous sequential processes (i.e. heavyweight threads) exist, each making for-
ward progress as they take turns sharing the processor. Furthermore, the Nucleus
provides these processes with exception handling routines, low-level synchroniza-
tion primitives, and a facility for “passing up” the handling of Program Trap, TLB
exceptions and certain SYSCALL requests to the Support Level. [Chapter 4]

Important Point: Since virtual memory is not supported until the Support Level,
all addresses at this level are assumed to be physical addresses.

In summary, after some one-time Nucleus initialization code, the Nucleus will
repeatedly dispatch a process, i.e. remove a pcb from the Ready Queue and per-
form a LDST on the processor state stored in the pcb (p s). This Current Process
will run until:

• It makes a system call (SYSCALL). The Nucleus will handle the system
call or pass along the handling to the Support Level. Some system calls
block the Current Process - the pcb is placed on the ASL and the Scheduler
is called to dispatch the next job. If the system call is non-blocking, control
is returned to the Current Process.

• It terminates; which is signaled via a system call. The Nucleus will call the
Scheduler to dispatch the next process on the Ready Queue.

• The timer assigned to the Scheduler generates an interrupt; the Current Pro-
cess’s quantum/time slice has expired. Its pcb is enqueued back on the
Ready Queue and the Scheduler is called to dispatch the next job.

• A device interrupt occurs (exclusive of the timer assigned to the Scheduler).
The interrupt is acknowledged, and the device’s status code is passed along
to the pcb (i.e. process) that got unblocked as a result of the interrupt; the
pcb that was waiting for the I/O to complete. The newly unblocked pcb is
enqueued back on the Ready Queue and control is returned to the Current
Process.

• If the Scheduler ever discovers that the Ready Queue is empty it will either
HALT execution (no more processes to run), WAIT for an I/O to complete
(which will unblock a pcb and populate the Ready Queue), or PANIC (halt
execution in the presence of deadlock).

3.1. NUCLEUS INITIALIZATION 19

Hence the Nucleus’s functionality can be broken down into five main categories:

• Nucleus initialization. [Section 3.1]

• The Scheduler. [Section 3.2]

• SYSCALL processing. [Section 3.5]

• Device interrupt handler. [Section 3.6]

• The passing up of the handling of all other events. This includes TLB-Refill
events [Section 3.3], SYSCALLs not handled at this level, page faults, Pro-
gram Trap exceptions, etc. [Section 3.7]

3.1 Nucleus Initialization
Every program needs an entry point (i.e. main()). The entry point for Pandos
performs the Nucleus initialization, which includes:

1. Declare the Level 3 global variables. This should include:

• Process Count: integer indicating the number of started, but not yet
terminated processes.

• Soft-block Count: A process can be either in the “ready,” “running,” or
“blocked” (also known as “waiting”) state. This integer is the number
of started, but not terminated processes that in are the “blocked” state
due to an I/O or timer request.

• Ready Queue: Tail pointer to a queue of pcbs that are in the “ready”
state.

• Current Process: Pointer to the pcb that is in the “running” state, i.e.
the current executing process.

• Device Semaphores: The Nucleus maintains one integer semaphore
for each external (sub)device in µMPS3, plus one additional semaphore
to support the Pseudo-clock. [Section 3.6.3]
Since terminal devices are actually two independent sub-devices, the
Nucleus maintains two semaphores for each terminal device. [Section
5.7-pops]

20 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

2. Populate the Processor 0 Pass Up Vector. The Pass Up Vector is part of the
BIOS Data Page, and for Processor 0, is located at 0x0FFF.F900. [Section
8.5-pops]

The Pass Up Vector is where the BIOS finds the address of the Nucleus
functions to pass control to for both TLB-Refill events and all other excep-
tions. Specifically,

• Set the Nucleus TLB-Refill event handler address to

xxx->tlb refll handler =
(memaddr) uTLB RefillHandler;

where memaddr, in types.h, has been aliased to unsigned int.
Since address translation is not implemented until the Support Level,
uTLB RefillHandler is a place holder function whose code is
provided. [Section 3.3] This code will then be replaced when the Sup-
port Level is implemented.

• Set the Stack Pointer for the Nucleus TLB-Refill event handler to the
top of the Nucleus stack page: 0x2000.1000. Stacks in µMPS3 grow
down.

• Set the Nucleus exception handler address to the address of your Level
3 Nucleus function (e.g. foobar) that is to be the entry point for ex-
ception (and interrupt) handling [Section 3.4]:

xxx->exception handler = (memaddr) fooBar;

• Set the Stack pointer for the Nucleus exception handler to the top of
the Nucleus stack page: 0x2000.1000.

3. Initialize the Level 2 (phase 1 - see Chapter 2) data structures:

initPcbs()
initSemd()

4. Initialize all Nucleus maintained variables: Process Count (0), Soft-block
Count (0), Ready Queue (mkEmptyProcQ()), and Current Process (NULL).
Since the device semaphores will be used for synchronization, as opposed
to mutual exclusion, they should all be initialized to zero.

3.1. NUCLEUS INITIALIZATION 21

5. Load the system-wide Interval Timer with 100 milliseconds. [Section 3.6.3]

6. Instantiate a single process, place its pcb in the Ready Queue, and incre-
ment Process Count. A process is instantiated by allocating a pcb (i.e.
allocPcb()), and initializing the processor state that is part of the pcb.
In particular this process needs to have interrupts enabled, the processor
Local Timer enabled, kernel-mode on, the SP set to RAMTOP (i.e. use
the last RAM frame for its stack), and its PC set to the address of test.
Furthermore, set the remaining pcb fields as follows:

• Set all the Process Tree fields to NULL.

• Set the accumulated time field (p time) to zero.

• Set the blocking semaphore address (p semAdd) to NULL.

• Set the Support Structure pointer (p supportStruct) to NULL.

Important Point: When setting up a new processor state one must set the
previous bits (i.e. IEp & KUp) and not the current bits (i.e. IEc & KUc) in
the Status register for the desired assignment to take effect after the initial
LDST loads the processor state. [Section 7.4-pops]

Test is a supplied function/process that will help you debug your Nucleus.
One can assign a variable (i.e. the PC) the address of a function by using

yyy->p s.s pc = (memaddr) test;

Remember to declare test as “external” in your program by including the
line:

extern void test();

For rather technical reasons, whenever one assigns a value to the PC one
must also assign the same value to the general purpose register t9. (a.k.a.
s t9 as defined in types.h.) [Section 10.2-pops]

7. Call the Scheduler.

22 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

Once main() calls the Scheduler its task is complete since control should
never return to main(). At this point the only mechanism for re-entering the
Nucleus is through an exception; which includes device interrupts. As long as
there are processes to run, the processor is executing instructions on their behalf
and only temporarily enters the Nucleus long enough to handle a device interrupt
or exception when they occur.

At boot/reset time the Nucleus is loaded into RAM beginning with the second
frame of RAM: 0x2000.1000. The first frame of RAM is reserved for the Nucleus
stack. Furthermore, Processor 0 will be in kernel-mode with all interrupts masked,
and the processor Local Timer disabled. The PC is assigned 0x2000.1000 and the
SP, which was initially set to 0x2000.1000 at boot-time, will now be some value
less, due to the activation record for main() that now sits on the stack. [Section
8.2-pops]

3.2 The Scheduler
Your Nucleus should guarantee finite progress; consequently, every ready process
will have an opportunity to execute. The Nucleus should implement a simple
preemptive round-robin scheduling algorithm with a time slice value of 5 mil-
liseconds.

Preemptive cpu scheduling requires the use of an interrupt generating system
clock. µMPS3 offers two choices: the single system-wide Interval Timer or a
processor’s Local Timer (PLT). [Section 4.1-pops]

One should use the PLT to support per processor scheduling since the Interval
Timer is reserved for implementing Pseudo-clock ticks. [Section 3.6.3]

In its simplest form whenever the Scheduler is called it should dispatch the
“next” process in the Ready Queue.

1. Remove the pcb from the head of the Ready Queue and store the pointer to
the pcb in the Current Process field.

2. Load 5 milliseconds on the PLT. [Section 4.1.4-pops]

3. Perform a Load Processor State (LDST) on the processor state stored in pcb
of the Current Process (p s).

Dispatching a process transitions it from a “ready” process to a “running” process.
The Scheduler should behave in the following manner if the Ready Queue is

empty:

3.3. TLB-REFILL EVENTS 23

1. If the Process Count is zero invoke the HALT BIOS service/instruction.
[Section 7.3.7-pops] Consider this a job well done!

2. If the Process Count > 0 and the Soft-block Count > 0 enter a Wait State.
A Wait State is where the processor is not executing instructions, but “twid-
dling its thumbs” waiting for a device interrupt to occur. µMPS3 supports a
WAIT instruction expressly for this purpose. [Section 7.2.2-pops]

Important Point: Before executing the WAIT instruction, the Scheduler
must first set the Status register to enable interrupts and either disable the
PLT (also through the Status register), or load it with a very large value.
The first interrupt that occurs after entering a Wait State should not be for
the PLT.

3. Deadlock for Pandos is defined as when the Process Count> 0 and the Soft-
block Count is zero. Take an appropriate deadlock detected action; invoke
the PANIC BIOS service/instruction. [Section 7.3.6-pops]

3.3 TLB-Refill events

As outlined above [Section 3.1], the Processor 0 Pass Up Vector’s Nucleus TLB-
Refill event handler address should be set to the address of your TLB-Refill event
handler (e.g. uTLB RefillHandler)

The code for this function, for Level 3/Phase 2 testing purposes should be as
follows:

void uTLB_RefillHandler () {
setENTRYHI(0x80000000);
setENTRYLO(0x00000000);
TLBWR();
LDST ((state_PTR) 0x0FFFF000);

}

Writers of the Support Level (Level 4/Phase 3) will replace/overwrite the con-
tents of this function with their own code/implementation.

24 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

3.4 Exception Handling
As described above [Section 3.1], at startup, the Nucleus will have populated the
Processor 0 Pass Up Vector with the address of the Nucleus exception handler
(fooBar) and the address of the Nucleus stack page (0x2000.1000). Therefore,
if the Pass Up Vector was correctly initialized, fooBar will be called (with a
fresh stack) after each and every exception, exclusive of TLB-Refill events. Fur-
thermore, the processor state at the time of the exception (the saved exception
state) will have been stored (for Processor 0) at the start of the BIOS Data Page
(0x0FFF.F000). [Section 3.2.2-pops]
The cause of this exception is encoded in the .ExcCode field of the Cause register
(Cause.ExcCode) in the saved exception state. [Section 3.3-pops]

• For exception code 0 (Interrupts), processing should be passed along to your
Nucleus’s device interrupt handler. [Section 3.6]

• For exception codes 1-3 (TLB exceptions), processing should be passed
along to your Nucleus’s TLB exception handler. [Section 3.7.3]

• For exception codes 4-7, 9-12 (Program Traps), processing should be passed
along to your Nucleus’s Program Trap exception handler. [Section 3.7.2]

• For exception code 8 (SYSCALL), processing should be passed along to
your Nucleus’s SYSCALL exception handler. [Section 3.5]

Hence, the entry point for the Nucleus’s exception handling is in essence a
case statement that performs a multi-way branch depending on the cause of the
exception.

Important Point: To determine if the Current Process was executing in kernel-
mode or user-mode, one examines the Status register in the saved exception state.
In particular, examine the previous version of the KU bit (KUp) since the proces-
sor’s exception handling circuitry will have performed a stack push on the KU/IE
stacks in the Status register before the exception state was saved. [Section 3.1-
pops]

3.5 SYSCALL Exception Handling
A System Call (SYSCALL) exception occurs when the SYSCALL assembly in-
struction is executed.

3.5. SYSCALL EXCEPTION HANDLING 25

By convention, the executing process places appropriate values in the gen-
eral purpose registers a0 – a3 immediately prior to executing the SYSCALL in-
struction. The Nucleus will then perform some service on behalf of the process
executing the SYSCALL instruction depending on the value found in a0.

In particular, if the process making a SYSCALL request was in kernel-mode
and a0 contained a value in the range [1..8] then the Nucleus should perform one
of the services described below.

3.5.1 Create Process (SYS1)
When requested, this service causes a new process, said to be a progeny of the
caller, to be created. a1 should contain a pointer to a processor state (state t

*). This processor state is to be used as the initial state for the newly created pro-
cess. The process requesting the SYS1 service continues to exist and to execute.
If the new process cannot be created due to lack of resources (e.g. no more free
pcb’s), an error code of -1 is placed/returned in the caller’s v0, otherwise, return
the value 0 in the caller’s v0.

Good design calls for tight/strong cohesion and loose coupling between mod-
ules/classes/OS Levels, etc. Level 2 implements pcbs, and Level 3 utilizes queues
of pcbs to create a basic multiprogramming environment. However, it is the Sup-
port Level that handles address translation as well as all exceptions beyond I/O
interrupts and the first eight system calls (and then, only if in kernel-mode). The
design question then is how to provide Support Level access to pcb fields that will
only be used in the Support Level.

The standard approach, at least in systems-level programming such as an OS,
is to define a structure containing the additional Support Level fields (support t)
and then add a pointer (support t *) to the pcb. The Support Level code
needing access to these fields will execute a SYS8 [Section 3.5.8] which returns
a pointer to the Current Process’s support t structure. This provides Support
Level access to relevant pcb fields while hiding the Level 3 (and Level 2) pcb
fields.

The SYS1 service is requested by the calling process by placing the value 1 in
a0, a pointer to a processor state in a1, (optionally) a pointer to a Support Structure
in a2, and then executing the SYSCALL instruction.

The following C code can be used to request a SYS1:

int retValue = SYSCALL (CREATEPROCESS,
state t *statep, support t * supportp, 0);

26 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

Where the mnemonic constant CREATEPROCESS has the value of 1.
The newly populated pcb is placed on the Ready Queue and is made a child of

the Current Process. Process Count is incremented by one, and control is returned
to the Current Process. [Section 3.5.10]

In summary, for SYS1, one allocates a new pcb and initializes its fields:

• p s from a1.

• p supportStruct from a2. If no parameter is provided, this field is set
to NULL.

• The process queue fields (e.g. p next) by the call to insertProcQ

• The process tree fields (e.g. p child) by the call to insertChild.

• p time is set to zero; the new process has yet to accumulate any cpu time.

• p semAdd is set to NULL; this pcb/process is in the “ready” state, not the
“blocked” state.

3.5.2 Terminate Process (SYS2)

This services causes the executing process to cease to exist. [Section 3.9] In ad-
dition, recursively, all progeny of this process are terminated as well. Execution
of this instruction does not complete until all progeny are terminated, after which
the Scheduler should be called.

The SYS2 service is requested by the calling process by placing the value 2 in
a0 and then executing the SYSCALL instruction.

The following C code can be used to request a SYS2:

SYSCALL (TERMINATEPROCESS, 0, 0, 0);

Where the mnemonic constant TERMINATEPROCESS has the value of 2.

3.5.3 Passeren (P) (SYS3)

This service requests the Nucleus to perform a P operation on a semaphore.

3.5. SYSCALL EXCEPTION HANDLING 27

The P or SYS3 service is requested by the calling process by placing the value
3 in a0, the physical address of the semaphore to be P’ed in a1, and then executing
the SYSCALL instruction.

Depending on the value of the semaphore, control is either returned to the
Current Process, or this process is blocked on the ASL (transitions from “running”
to “blocked”) and the Scheduler is called.

The following C code can be used to request a SYS3:

SYSCALL (PASSEREN, int *semaddr, 0, 0);

Where the mnemonic constant PASSEREN has the value of 3.

3.5.4 Verhogen (V) (SYS4)

This service requests the Nucleus to perform a V operation on a semaphore.
The V or SYS4 service is requested by the calling process by placing the value

4 in a0, the physical address of the semaphore to be V’ed in a1, and then executing
the SYSCALL instruction.

The following C code can be used to request a SYS4:

SYSCALL (VERHOGEN, int *semaddr, 0, 0);

Where the mnemonic constant VERHOGEN has the value of 4.

3.5.5 Wait for IO Device (SYS5)

Pandos supports only synchronous I/O; an I/O operation is initiated, and the initi-
ating process is blocked until the I/O completes. Whenever a process initiates an
I/O operation, it will immediately issue a SYS5 for that device. Hence, a SYS5
is used to transition the Current Process from the “running” state to a “blocked”
state.

More formally, this service performs a P operation on the semaphore that the
Nucleus maintains for the I/O device indicated by the values in a1, a2, and op-
tionally a3.

Since the semaphore that will have a P operation performed on it is a syn-
chronization semaphore, this call should always block the Current Process on the
ASL, after which the Scheduler is called.

28 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

Terminal devices are two independent sub-devices, and are handled by the
SYS5 service as two independent devices. Hence each terminal device has two
Nucleus maintained semaphores for it; one for character receipt and one for char-
acter transmission. [Section 5.7-pops]

As discussed below [Section 3.6], the Nucleus will perform a V operation
on the Nucleus maintained semaphore whenever that (sub)device generates an
interrupt.

Once the process resumes after the occurrence of the anticipated interrupt,
the (sub)device’s status word is returned in v0. For character transmission and
receipt, the status word, in addition to containing a device completion code, will
also contain the character transmitted or received.

The SYS5 service is requested by the calling process by placing the value 5
in a0, the interrupt line number in a1 ([3. . .7]), the device number in a2 ([0. . .7]),
TRUE or FALSE in a3 to indicate if waiting for a terminal read operation, and
then executing the SYSCALL instruction.

The following C code can be used to request a SYS5:

int ioStatus = SYSCALL (WAITIO, int intlNo,
int dnum, int waitForTermRead);

Where the mnemonic constant WAITIO has the value of 5.

3.5.6 Get CPU Time (SYS6)

This service requests that the accumulated processor time (in microseconds) used
by the requesting process be placed/returned in the caller’s v0. Hence, the Nucleus
records (in the pcb: p time) the amount of processor time used by each process.
[Section 3.8]

The SYS6 service is requested by the calling process by placing the value 6 in
a0 and then executing the SYSCALL instruction.

The following C code can be used to request a SYS6:

cpu t cpuTime = SYSCALL (GETCPUTIME, 0, 0, 0);

Where the mnemonic constant GETCPUTIME has the value of 6.

3.5. SYSCALL EXCEPTION HANDLING 29

3.5.7 Wait For Clock (SYS7)

This service performs a P operation on the Nucleus maintained Pseudo-clock
semaphore. This semaphore is V’ed every 100 milliseconds by the Nucleus. [Sec-
tion 3.6.3]

Since the Pseudo-clock semaphore is a synchronization semaphore, this call
should always block the Current Process on the ASL, after which the Scheduler is
called. Hence, a SYS7 is used to transition the Current Process from the “running”
state to a “blocked” state.

The SYS7 service is requested by the calling process by placing the value 7 in
a0 and then executing the SYSCALL instruction.

The following C code can be used to request a SYS7:

SYSCALL (WAITCLOCK, 0, 0, 0);

Where the mnemonic constant WAITCLOCK has the value of 7.

3.5.8 Get SUPPORT Data (SYS8)

This service requests a pointer to the Current Process’s Support Structure. Hence,
this service returns the value of p supportStruct from the Current Process’s
pcb. If no value for p supportStruct was provided for the Current Process
when it was created, return NULL.

The SYS8 service is requested by the calling process by placing the value 8 in
a0 and then executing the SYSCALL instruction.

The following C code can be used to request a SYS6:

support t *sPtr = SYSCALL (GETSUPPORTPTR, 0, 0, 0);

Where the mnemonic constant GETSUPPORTPTR has the value of 8.

3.5.9 SYS1-SYS8 in User-Mode

The above eight Nucleus services are considered privileged services and are only
available to processes executing in kernel-mode. Any attempt to request one of
these services while in user-mode should trigger a Program Trap exception re-
sponse.

30 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

In particular the Nucleus should simulate a Program Trap exception when a
privileged service is requested in user-mode. This is done by setting Cause.ExcCode
in the stored exception state to RI (Reserved Instruction), and calling one’s Pro-
gram Trap exception handler.

Technical Point: As described above [Section 3.4], the saved exception state (for
Processor 0) is stored at the start of the BIOS Data Page (0x0FFF.F000). [Section
3.2.2-pops]

3.5.10 Returning from a SYSCALL Exception

For SYSCALLs calls that do not block or terminate, control is returned to the
Current Process at the conclusion of the Nucleus’s SYSCALL exception handler.
Observe that the correct processor state to load (LDST) is the saved exception
state (located at the start of the BIOS Data Page [Section 3.4]) and not the obsolete
processor state stored in the Current Process’s pcb. The saved exception state was
the state of the process at the time the SYSCALL was executed. The processor
state in the Current Process’s pcb was the state of the process at the start of it
current time slice/quantum.

Hence, any return value described above (e.g. SYS6) needs to be put in the
specified register in the stored exception state.

Furthermore, SYSCALLs that do not result in process termination (eventu-
ally) return control to the process’s execution stream. This is done either imme-
diately (e.g. SYS6) or after the process is blocked and eventually unblocked (e.g.
SYS5). In any event the PC that was saved is, as it is for all exceptions, the ad-
dress of the instruction that caused that exception – the address of the SYSCALL
assembly instruction. Without intervention, returning control to the SYSCALL
requesting process will result in an infinite loop of SYSCALL’s. To avoid this the
PC must be incremented by 4 (i.e. the µMPS3 wordsize) prior to returning control
to the interrupted execution stream. While the PC needs to be altered, there is no
need, in this case, to make a parallel assignment to t9.

3.5.11 Blocking SYSCALLs

For SYSCALLs that block (SYS3, SYS5, and SYS7), a number of steps need to
be performed:

3.6. INTERRUPT EXCEPTION HANDLING 31

• As described above [Section 3.5.10] the value of the PC must be incre-
mented by 4 to avoid an infinite loop of SYSCALLs.

• The saved processor state (located at the start of the BIOS Data Page[Section
3.4]) must be copied into the Current Process’s pcb (p s).

• Update the accumulated CPU time for the Current Process. [Section 3.8]

• The Current Process is blocked on the ASL (insertBlocked), transi-
tioning the process from the “running” state, to the “blocked” state.

• Call the Scheduler.

3.6 Interrupt Exception Handling
A device or timer interrupt occurs when either a previously initiated I/O request
completes or when either a Processor Local Timer (PLT) or the Interval Timer
makes a 0x0000.0000⇒ 0xFFFF.FFFF transition.

Assuming that the (Processor 0) Pass Up Vector was properly initialized by
the Nucleus as part of Nucleus initialization [Section 3.1], and that the Nucleus
exception handler (fooBar) correctly decodes Cause.ExcCode [Section 3.4],
control should be passed to one’s Nucleus interrupt exception handler.

Which interrupt lines have pending interrupts is set in Cause.IP. [Section 3.3-
pops] Furthermore, for interrupt lines 3–7 the Interrupting Devices Bit Map will
indicate which devices on each of these interrupt lines have a pending interrupt.
[Section 5.2.2-pops]

Since Pandos is intended for uniprocessor environments only, interrupt line 0
may safely be ignored. [Chapter 5-pops]

Note, many devices per interrupt line may have an interrupt request pending,
and that many interrupt lines may simultaneously be on. Also, since each terminal
device is two sub-devices, each terminal device may have two interrupts pending
simultaneously as well. One should process only one interrupt at a time: the in-
terrupt with the highest priority. The lower the interrupt line and device number,
the higher the priority of the interrupt. When there are multiple interrupts pend-
ing, and the interrupt exception handler processes only the single highest priority
pending interrupt, the interrupt exception handler will be immediately re-entered
as soon as interrupts are unmasked again; effectively forming a loop until all the
pending interrupts are processed.

32 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

Since terminal devices are actually two sub-devices, both sub-devices may
have an interrupt pending simultaneously. For purposes of prioritizing pending
interrupts, terminal transmission (i.e. writing to the terminal) is of higher priority
than terminal receipt (i.e. reading from the terminal). Hence, the PLT (interrupt
line 1) is the highest priority interrupt, while reading from terminal 7 (interrupt
line 7, device 7; read) is the lowest priority interrupt.

The interrupt exception handler’s first step is to determine which device or
timer with an outstanding interrupt is the highest priority.

Depending on the device, the interrupt exception handler will perform a num-
ber of tasks.

3.6.1 Non-Timer Interrupts

1. Calculate the address for this device’s device register. [Section 5.1-pops]

2. Save off the status code from the device’s device register.

3. Acknowledge the outstanding interrupt. This is accomplished by writing
the acknowledge command code in the interrupting device’s device register.
Alternatively, writing a new command in the interrupting device’s device
register will also acknowledge the interrupt.

4. Perform a V operation on the Nucleus maintained semaphore associated
with this (sub)device. This operation should unblock the process (pcb)
which initiated this I/O operation and then requested to wait for its com-
pletion via a SYS5 operation.

5. Place the stored off status code in the newly unblocked pcb’s v0 register.

6. Insert the newly unblocked pcb on the Ready Queue, transitioning this pro-
cess from the “blocked” state to the “ready” state.

7. Return control to the Current Process: Perform a LDST on the saved ex-
ception state (located at the start of the BIOS Data Page [Section 3.4]).

Important Point: It is possible that the V operation (increment the indicated
semaphore and unblock a pcb) returns NULL instead of a pcb. This can hap-

3.6. INTERRUPT EXCEPTION HANDLING 33

pen if while waiting for the initiated I/O operation to complete, an ancestor of this
pcb was terminated. In this case, simply return control to the Current Process.

Important Point: It is also possible that there is no Current Process to return con-
trol to. This will be the case when the Scheduler executes the WAIT instruction
instead of dispatching a process for execution. [Section 3.2]

Technical Point: In µMPS3 it is technically feasible for a process to initiate an
I/O operation and for the interrupt associated with this operation to occur before
it has an opportunity to execute its SYS5. However, the Pandos specification for
the Support Level prevents this from happening.

3.6.2 Processor Local Timer (PLT) Interrupts
The PLT is used to support CPU scheduling. The Scheduler will load the PLT
with the value of 5 milliseconds whenever it dispatches a process. [Section 3.2]

This “running” process will either:

• Terminate. Execute a SYS2 or cause an exception without having set a
Support Structure address. [Section 3.7]

• Transition from the “running” state to the “blocked” state; execute a SYS3,
SYS5, or SYS7.

• Be interrupted by a PLT interrupt.

The last option means that the Current Process has used up its time quantum/slice
but has not completed its CPU Burst. Hence, it must be transitioned from the
“running” state to the “ready” state.

The PLT portion of the interrupt exception handler should therefore:

• Acknowledge the PLT interrupt by loading the timer with a new value. [Sec-
tion 4.1.4-pops]

• Copy the processor state at the time of the exception (located at the start
of the BIOS Data Page [Section 3.2.2-pops]) into the Current Process’s pcb
(p s).

• Place the Current Process on the Ready Queue; transitioning the Current
Process from the “running” state to the “ready” state.

• Call the Scheduler.

34 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

3.6.3 The System-wide Interval Timer and the Pseudo-clock
The Pseudo-clock is a facility provided by the Nucleus for the Support Level. The
Nucleus promises to perform a V operation, every 100 milliseconds, on a special
Nucleus maintained semaphore; the Pseudo-clock semaphore. [Section 3.1]
This periodic V operation is called a Pseudo-clock Tick.

To perform a P operation on the Pseudo-clock semaphore (i.e. transition from
the “running” state to the “blocked” state on this semaphore), the Current Process
will perform a SYS7.

Since the Interval Timer is only used for this purpose, all line 2 interrupts
indicate that it is time to P the Pseudo-clock semaphore; a Pseudo-clock tick.

The Interval Timer portion of the interrupt exception handler should therefore:

1. Acknowledge the interrupt by loading the Interval Timer with a new value:
100 milliseconds. [Section 4.1.3-pops]

2. Unblock ALL pcbs blocked on the Pseudo-clock semaphore. Hence, the
semantics of this semaphore are a bit different than traditional synchroniza-
tion semaphores

3. Reset the Pseudo-clock semaphore to zero. This insures that all SYS7 calls
block and that the Pseudo-clock semaphore does not grow positive.

4. Return control to the Current Process: Perform a LDST on the saved ex-
ception state (located at the start of the BIOS Data Page [Section 3.4]).

Important Point: It is also possible that there is no Current Process to return con-
trol to. This will be the case when the Scheduler executes the WAIT instruction
instead of dispatching a process for execution. [Section 3.2]

3.7 Pass Up or Die
The Nucleus will directly handle all SYS1-SYS8 requests and device (internal
timers and peripheral devices) interrupts. For all other exceptions (e.g. SYSCALL
exceptions numbered 9 and above, Program Trap and TLB exceptions) the Nu-
cleus will take one of two actions depending on whether the offending process
(i.e. the Current Process) was provided a non-NULL value for its Support Struc-
ture pointer when it was created. [Section 3.5.1]

3.7. PASS UP OR DIE 35

• If the Current Process’s p supportStruct is NULL, then the exception
should be handled as a SYS2: the Current Process and all its progeny are
terminated. This is the “die” portion of Pass Up or Die.

• If the Current Process’s p supportStruct is non-NULL. The handling
of the exception is “passed up.”

When an exception occurs, the processor, in concert with the BIOS-Excpt handler,
“passes up” the handling of the exception to the Nucleus: store the saved exception
state at an accessible location known to the Nucleus, and pass control to a routine
specified by the Nucleus, i.e. the Nucleus Exception handler (fooBar).

• The location, in this case, is fixed; a given location in the BIOS Data Page.
(For Processor 0, this is 0x0FFF.F000) [Section 3.2.2-pops]

• The address (and stack pointer) for the handler to pass control to was seeded
by the Nucleus, during Nucleus initialization, in the appropriate location of
the Pass Up Vector. [Section 3.1]

When the Nucleus “passes up” exception handling to the Support Level, it
essentially performs the same two tasks: copy the saved exception state into a
location accessible to the Support Level, and pass control to a routine specified by
the Support Level.

There is only one location for the saved exception state and one Pass Up Vector
for the Nucleus. This is because the Nucleus runs in single threaded mode with
interrupts masked; hence with no concurrency. The Nucleus services run in a “one
at a time” mode, and each invocation running to completion without interruption.
Hence the reusability of the BIOS Data Page location for the saved exception
state and Pass Up Vector. This is also why Nucleus services are so limited: do
only what must be done in single threaded mode, and pass up the handling of all
other service requests.

Since the Support Level runs in a fully concurrent mode (interrupts unmasked),
each process needs its own location(s) for their saved exception states, and ad-
dresses to pass control to: The Support Structure.

Furthermore, the concurrency at the Support Level is not only inter-process,
but intra-process as well. The Support Level, while handling a passed up SYSCALL,
can trigger a page fault. For this reason, the Support Structure contains two loca-
tions for saved exception states, and two addresses for handlers. One state t/PC
address pair for:

36 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

• TLB exceptions (i.e. page faults): The Support Level TLB exception han-
dler.

• All other exceptions: The Support Level general exception handler.

One last important detail. The Support Structure’s version of a Pass Up Vector
needs to contain three register values and not two. In addition to the PC/SP, one
also needs a new value for the Status register.

A PC/SP/Status combination is also referred to as a context. Hence the Sup-
port Structure’s version of a Pass Up Vector needs to store two processor context
sets: one for non-TLB exceptions and one for TLB exceptions.

The following two structures are provided:

/* process context */
typedef struct context t {

/* process context fields */
unsigned int c stackPtr, /* stack pointer value */

c status, /* status reg value */
c pc; /* PC address */

} context t;

typedef struct support t {
int sup asid; /* Process Id (asid) */
state t sup exceptState[2]; /* stored excpt states */
context t sup exceptContext[2]; /* pass up contexts */
... other fields to be added later

} support t;

/* Exceptions related constants */
#define PGFAULTEXCEPT 0
#define GENERALEXCEPT 1

To pass up the handling of an exception:

• Copy the saved exception state from the BIOS Data Page to the correct
sup exceptState field of the Current Process. The Current Process’s
pcb should point to a non-null support t.

• Perform a LDCXT using the fields from the correct sup exceptContext
field of the Current Process. [Section 7.3.4-pops]

3.8. ACCUMULATED CPU TIME 37

3.7.1 SYSCALL Exceptions Numbered 9 and Above
A SYSCALL exception numbered 9 and above occurs when the Current Process
executes the SYSCALL instruction (Cause.ExcCode is set to 8 [Section 3.4])
and the contents of a0 is greater than or equal to 9.

The Nucleus SYSCALL exception handler should perform a standard Pass
Up or Die operation using the GENERALEXCEPT index value.

3.7.2 Program Trap Exception Handling
A Program Trap exception occurs when the Current Process attempts to perform
some illegal or undefined action. A Program Trap exception is defined as an
exception with Cause.ExcCodes of 4-7, 9-12. [Section 3.4]

The Nucleus Program Trap exception handler should perform a standard Pass
Up or Die operation using the GENERALEXCEPT index value.

3.7.3 TLB Exception Handling
A TLB exception occurs when µMPS3 fails in an attempt to translate a logical
address into its corresponding physical address. A TLB exception is defined as an
exception with Cause.ExcCodes of 1-3. [Section 3.4]

The Nucleus TLB exception handler should perform a standard Pass Up or
Die operation using the PGFAULTEXCEPT index value.

3.8 Accumulated CPU Time
µMPS3 has three clocks: the TOD clock, Interval Timer, and the PLT, though only
the Interval Timer and the PLT can generate interrupts. This fits nicely with two
of three primary timing needs:

• Generate an interrupt to signal the end of Current Process’s time quan-
tum/slice. The PLT is reserved for this purpose.

• Generate Pseudo-clock ticks: Cause an interrupt to occur every 100 mil-
liseconds and V the Pseudo-clock semaphore. The Interval Timer is re-
served for this purpose.

The third timing need is that the Nucleus is tasked with keeping track of the
accumulated CPU time used by each process. [Section 3.5.6]

38 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

A field has been defined in the pcb for this purpose (p time). Hence SYS6
should return the value in the Current Process’s p time plus the amount of CPU
time used during the current quantum/time slice. While the TOD clock does not
generate interrupts, it is, however, well suited for keeping track of an interval’s
length.

By storing off the TOD clock’s value at both the start and end of an interval,
one can compute the duration of that interval. [Section 4.1.2-pops]

The three timer devices are mechanisms for implementing Pandos’s policies.
Timing policy questions that need to be worked out include:

• While the time spent by the Nucleus handling an I/O or Interval Timer inter-
rupt needs to be measured for Pseudo-clock tick purposes, which process,
if any, should be “charged” with this time? Note: it is possible for an I/O or
Interval Timer interrupt to occur even when there is no Current Process.

• While the time spent by the Nucleus handling a SYSCALL request needs to
be measured for Pseudo-clock tick and quantum/time slice purposes, which
process, if any, should be “charged” with this time?

It is important to understand the functional differences between the three µMPS3
timer devices. This includes, but is not limited to understanding that the TOD
clock counts up while the other two timers count down, and that the behavior of
the PLT differs from that of the Interval Timer. The PLT can be enabled/disabled
via the processor Local Timer enable bit (Status.TE). [Section 4.1.4-pops]

3.9 Process Termination
When a process is terminated (SYS2 or the “Die” portion of Pass Up or Die) there
is actually a whole (sub)tree of processes that get terminated. There are a number
of tasks that must be accomplished:

• The root of the sub-tree of terminated processes must be “orphaned” from
its parents; its parent can no longer have this pcb as one of its progeny
(outChild).

• If the value of a semaphore is negative, it is an invariant that the abso-
lute value of the semaphore equal the number of pcb’s blocked on that
semaphore. Hence if a terminated process is blocked on a semaphore, the
value of the semaphore must be adjusted; i.e. incremented.

3.10. NUTS AND BOLTS 39

• If a terminated process is blocked on a device semaphore, the semaphore
should NOT be adjusted. When the interrupt eventually occurs the semaphore
will get V’ed (and hence incremented) by the interrupt handler.

• The process count and soft-blocked variables need to be adjusted accord-
ingly.

• Processes (i.e. pcb’s) can’t hide. A pcb is either the Current Process (“run-
ning”), sitting on the Ready Queue (“ready”), blocked on a device semaphore
(“blocked”), or blocked on a non-device semaphore (“blocked”).

3.10 Nuts and Bolts

3.10.1 Module Decomposition

One possible module decomposition is as follows:

1. initial.c This module implements main() and exports the Nucleus’s global
variables. (e.g. process count, device semaphores, etc.)

2. interrupts.c This module implements the device/timer interrupt exception
handler. This module will process all the device/timer interrupts, converting
device/timer interrupts into V operations on the appropriate semaphores.

3. exceptions.c This module implements the TLB, Program Trap, and SYSCALL
exception handlers. Furthermore, this module will contain the provided
skeleton TLB-Refill event handler (e.g. uTLB RefillHandler).

4. scheduler.c This module implements the Scheduler and the deadlock de-
tector.

3.10.2 Accessing the libumps Library

Accessing the CP0 registers and the BIOS-implemented services/instructions in
C (e.g. WAIT, LDST) is via the libumps library. [Chapter 7-pops]
Simply include the line

40 CHAPTER 3. PHASE 2 - LEVEL 3: THE NUCLEUS

#include ‘‘/usr/include/umps3/umps/libumps.h’’

in one’s source files.1

3.11 Testing
There is a provided test file, p2test.c that will “exercise” your code. [Appendix
A]

As with any non-trivial system, you are strongly encouraged to use the make
program to maintain your code. A sample Makefile has been supplied. See Chap-
ter 10 in the POPS reference for more compilation details.

Once your (seven?) source files (two from Phase 1 and four from Phase
2) have been correctly compiled, linked together (with appropriate linker script,
crtso.o, and libumps.o), and post-processed with umps3-elf2umps (all
performed by the sample Makefile), your code can be tested by launching the
µMPS3 emulator. At a terminal prompt, enter:

umps3

The p2test.c code assumes that the TLB Floor Address has been set to any
value except VM OFF. The value of the TLB Floor Address is a user configurable
value set via the µMPS3 Machine Configuration Panel. [Chapter 12]

The test program reports on its progress by writing messages to TERMINAL0.
At the conclusion of the test program, either successful or unsuccessful, µMPS3
will display a final message and then enter an infinite loop. The final message
will either be System Halted for successful termination, or Kernel Panic for
unsuccessful termination.

1The file libumps.h is part of the µMPS3 distribution.
/usr/include/umps3/umps/ is the recommended installation location for this file.

If you want to travel around the world and be invited to speak at a lot of
different places, just write a Unix operating system.

Linus Torvalds

4
Phase 3 - Level 4: The Support Level

Level 4, the Support Level, builds on the Nucleus in two key ways to create an
environment for the execution of user-processes (U-proc’s):

• Support for address translation/virtual memory. Each U-proc will execute in
its own identically structured logical address space (kuseg), with a unique
Address space identifiers (i.e. process ID), ASID. [Section 6.2-pops]

• Support for character-oriented I/O devices: terminals and printers. Each
U-proc is assigned its own printer and terminal.

Specifically, the Support Level provides the exception handlers that the Nu-
cleus “passes” handling “up” to; assuming the process was provided a non-NULL
value for its Support Structure. [Section 3.7]

There will be one Level 4/Phase 3 exception handler for:

• TLB Management (TLB) exceptions: The Support Level page fault handler,
i.e. the Pager. [Section 4.4]

• non-TLB exceptions. This hander is for all SYSCALL (SYSCALL) ex-
ceptions numbered 9 and above, and all Program Trap exceptions. [Section
4.6]

41

42 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

These two exception handlers will run in kernel-mode with interrupts enabled,
while the U-proc’s will run in user-mode, with interrupts enabled. Hence each
U-proc leads a schizophrenic life; mostly executing in user-mode, but sometimes,
after the handling of an exception is “passed” back up to it; executing in kernel-
mode. While the Nucleus exception and interrupt handlers are system-wide re-
sources that all processes share (in serial fashion with interrupts disabled), the
Support Level exception handlers are more like Support Level provided libraries
that becomes part of each U-proc.1

Finally, instead of using the Nucleus’s test program (test) place holder TLB-
Refill event handler (uTLB RefillHandler), the Support Level will imple-
ment its own TLB-Refill event handler. [Section 4.3]

Hence, the bulk of this phase is the implementation of these three exception
event handlers.

4.1 Address Translation: The OS Perspective
Before getting into how Pandos supports address translation, one must fully un-
derstand how the µMPS3 hardware supports address translation. [Chapter 6-pops]
& [Figure 6.9-pops]

Essentially, every logical address for which translation is called for (any ad-
dress above the TLB Floor Address) triggers a hardware search of the TLB seek-
ing a matching TLB entry. If no matching entry is found a TLB-Refill event
is triggered. Assuming the Nucleus correctly initialized the Processor 0 Pass
Up Vector with the address of the TLB-Refill event handler [Section 3.1], con-
trol should continue with the Support Level’s TLB-Refill event handler. (e.g.
uTLB RefillHandler) This function will locate the correct Page Table en-
try in some Support Level data structure (i.e. a U-proc’s Page Table), write it into
the TLB (TLBWR or TLBWI [Section 6.4-pops] & [Section 4.5.2]), and return
control (LDST) to the Current Process to restart the address translation process.

Once a matching TLB entry is found and it is marked valid, the µMPS3 hard-
ware constructs the corresponding physical address. If the matching TLB entry
is marked invalid, or the access represents an attempt to modify memory and the
matching TLB entry’s D bit is off, a TLB exception is raised: TLB-Invalid or

1Technically, this is not true for the TLB-Refill event handler (e.g. uTLB RefillHandler)
which will behave like a Nucleus exception handler - a system-wide resource that all processes
will share in serial fashion. However, since it is a part of the address translation process, it is
included as part of Level 4/Phase 3.

4.1. ADDRESS TRANSLATION: THE OS PERSPECTIVE 43

TLB-Modification. The Support Level TLB exception handler will handle TLB-
Invalid exceptions, i.e. page faults. [Section 4.4]
Since all Page Table entries (and therefore all TLB entries) should be marked as
dirty (the D bit on), TLB-Modification exceptions should not occur.

This implies the following Support Level data structures:

• One Page Table per U-proc. A Pandos Page Table will be an array of 32
Page Table entries. Each Page Table entry is a doubleword consisting of an
EntryHi and an EntryLo portion. [Section 6.3.2-pops] This array should
be added to the Support Structure (support t) that is pointed to by a U-
proc’s pcb. [Section 3.7]

Technical Point: TLB entries and Page Table entries are identical in struc-
ture: a doubleword consisting of an EntryHi and an EntryLo portion.
Which term is used will be dependent on context.

• The Swap Pool; a set of RAM frames reserved for virtual memory. Logical
pages will occupy these frames when present. The size of the Swap Pool
should be set to two times UPROCMAX, where UPROCMAX is defined as the
specific degree of multiprogramming to be supported: [1. . .8]. The Swap
Pool is not so much a Support Level data structure, but a set of RAM frames
reserved to support paging.

• The Swap Pool data structure/table. The Support Level will maintain a ta-
ble, one entry per Swap Pool frame, recording information about the logical
page occupying it. At a minimum, each entry should record the ASID and
logical page number of the occupying page.

• The Swap Pool semaphore. A mutual exclusion semaphore (hence initial-
ized to 1) that controls access to the Swap Pool data structure.

• Backing store; secondary storage that contains each U-proc’s complete log-
ical image – which for Pandos is limited to 32 pages in size. Associated
with each U-proc is a flash device which will be configured (preloaded) to
contain that U-proc’s logical image. While slightly unrealistic, this basic
version of the Support Level will use each U-proc’s flash device as its back-
ing store device.

44 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

4.2 A U-proc’s Logical Address Space and Backing
Store

Each U-proc executes in the kuseg address space [Section 6.2-pops], in user-
mode, with interrupts enabled, and a unique ASID value.

ASID 0 is reserved for kernel daemons, so the (up to) eight U-proc’s should
be assigned ASID values from [1..8].

The first page, for each U-proc is 0x8000.0000. The second page is 0x8000.1000,
and so on. A Pandos U-proc’s .text and .data regions, together can be no larger
than 31 pages. (0x8001.E000).

The stack page is limited to one page and is set to the halfway point in kuseg.
The SP will start at 0xC000.0000 and grow downward. Pandos, does not support
dynamic variables, hence there is no heap space.

0x0000.0000

0xC000.0000

0xFFFF.FFFF

0x8000.0000

kuseg

Address Error

stack area

text & data area

0xBFFF.F000

0x8001.E000

Figure 4.1: Layout of a U-proc inside kuseg

When a process is initiated, an operating system would typically read the con-
tents of the executable file (e.g. .aout file) and use its contents to:

• Set up the new process’s Page Table; which would reflect that none of the
process’s pages are present.

• Set up the new process’s backing store on a secondary storage device.

4.2. A U-PROC’S LOGICAL ADDRESS SPACE AND BACKING STORE 45

4.2.1 A U-proc’s Page Table
While the µMPS3 hardware defines the structure of a TLB entry, it does not define
the structure of a Page Table. A µMPS3-compatible operating system is free to
define a Page Table however it wishes; the hardware never interacts directly with
Page Tables, just with the TLB.

When a TLB-Refill event occurs, the operating system builds an appropriate
TLB entry from the data in a Page Table and writes the entry into the TLB. To
simply this process, Pandos defines a Page Table entry to be identical to a TLB
entry. Hence, in Pandos, a Page Table is an array of TLB entries.

Each U-proc’s Page Table will be an array of 32 TLB entries. (Or equivalently,
an array of 32 Page Table entries.) The first 31 entries are for the .text and .data
pages of the logical address space. (Logical page number 0 through page number
30, starting from 0x8000.0000.) The final entry is for the U-proc’s stack page.
(Logical page number 0x3FFF.F000, starting from 0x8000.0000.)

EntryHI EntryLo

0
1

31

VPN ASID PFN N D V G
0x80000
0x80001

01
1

1

0

0

i
i

i
i 1 00x8001E

0xBFFFF
30

b

b

b

Figure 4.2: Layout of U-proc i’s Page Table

To initialize a Page Table one needs to set the VPN, ASID, V, and D bit fields
for each Page Table entry. [Section 6.3.2-pops]

• The VPN field will be set to [0x80000..0x8001E] for the first 31 entries. The
VPN for the stack page (Page Table entry 31) should be set to 0xBFFFF -
the starting address whose top end is 0xC000.0000. (The value that SP is
initialized to.)

• The ASID field, for any given Page Table, will all be set to the U-proc’s
unique ID: an integer from [1..8]

46 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

• The D bit field will be set to 1 (on) - each page is write-enabled.

• The G bit field will be set to 1 (off) - these pages are private to the specific
ASID.

• The V bit field will be set to 0 (off) - the entry is NOT valid. i.e. A copy of
this page is not also currently residing in RAM.

4.2.2 A U-proc’s Backing Store

Since there is no file system (yet) containing files (executable or otherwise, e.g.
.aout), which the operating system would read to set up both the Page Table and
the backing store, the supplied utility umps3-mkdev [Section 11.2-pops] can be
configured to preload a flash device with the contents of a .aout file in a manner
that makes it suitable to be used as that process’s backing store.

Hence, user processes are not represented by a file to be processed (i.e. initial-
ize a Page Table and set up the backing store), but via individual secondary storage
devices (flash device) each preconfigured/already initialized with that process’s
logical image/backing store data.

Specifically, each U-proc will be associated with a unique flash device, preloaded
with that process’s logical image, which the Support Level will then use as the
process’s backing store device.

4.3 The TLB-Refill event handler

When a logical address translation’s search of the of the TLB for a matching entry
fails, a TLB-Refill event is triggered. Assuming the Nucleus correctly initialized
the Processor 0 Pass Up Vector with the address of the TLB-Refill event handler
[Section 3.1], control should continue with the Pandos TLB-Refill event handler.
(e.g. uTLB RefillHandler)

A TLB-Refill event is essentially a cache-miss event since the TLB is a cache
of the most recently executed processes’ Page Table entries. It is the job of the
TLB-Refill event handler to insert into the TLB the missing Page Table entry and
restart the instruction.

The Level 3/Phase 2 Nucleus code implemented a skeleton TLB-Refill event
handler (e.g. uTLB RefillHandler). [Section 3.3] The supplied skeleton

4.3. THE TLB-REFILL EVENT HANDLER 47

code should, as part of this phase, be replaced (inplace) with the code for an
actual TLB-Refill event handler.

Technical Point: The TLB-Refill event handler is actually a Level 3/Phase 2 han-
dler in that it executes in kernel-mode, with interrupts disabled, and uses the first
frame of RAM as its stack page; the Nucleus stack page [Section 3.1]. As such,
like the other Level 3/Phase2 handlers (and unlike all the other Level 4/Phase 3
exception handlers) it is allowed access to the Level 3/Phase 2 global structures.
(e.g. Current Process) However, since it is a key component in Pandos’s imple-
mentation of virtual memory, its implementation is part of Level 4/Phase 3, and
therefore also has access to a process’s Support Structure (e.g. the Page Table).

This function will:

• Locate the correct Page Table entry in the Current Process’s Page Table; a
component of p supportStruct [Section 3.7]

• Write the entry into the TLB using the TLBWR instruction. [Section 6.4-
pops]).

• Return control (LDST) to the Current Process to restart the address transla-
tion process.

To accomplish this, a TLB-Refill event handler must:

1. Determine the page number (denoted as p) of the missing TLB entry by
inspecting EntryHi in the saved exception state located at the start of the
BIOS Data Page. [Section 3.4]

2. Get the Page Table entry for page number p for the Current Process. This
will be located in the Current Process’s Page Table, which is part of its
Support Structure.

3. Write this Page Table entry into the TLB. This is a three-set process:

(a) setENTRYHI
(b) setENTRYLO
(c) TLBWR

4. Return control to the Current Process to retry the instruction that caused the
TLB-Refill event: LDST on the saved exception state located at the start of
the BIOS Data Page.

48 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

4.4 Paging in Pandos

4.4.1 The Swap Pool

A Swap Pool is a set of RAM frames set aside to support virtual memory. To
ensure the proper exercise of Pandos’s paging functionality, the size of the Swap
Pool should be set to two times UPROCMAX, where UPROCMAX is defined as the
specific degree of multiprogramming to be supported/implemented: [1. . .8]. (i.e.
The number of U-procs to be concurrently executed.)

The Swap Pool can be placed anywhere in unused RAM: from the end of the
operating system code, to the start of the last frame of RAM (which Level 3/Phase
2 allocated as the stack page for the initial process - test).

The recommended location in Pandos is to place the Swap Pool after the end
of the operating system code. Though the size of one’s operating system code is
unknown,2 simply overestimate its size. For example, assume one’s Pandos code
base (plus Nucleus stack) occupies no more than 32 frames. Hence, the Swap
Pool’s starting address is: 0x2002.0000 (0x2000.0000 + (32 * PAGESIZE))

0x0000.0000

0x2000.0000

0xFFFF.FFFF

RAMTOP

(8-512 4Kb frames)

BIOS Region

Bus Error

Installed RAM

stack for test

OS code

swap pool

kernel stack
0x2000.1000

0x2002.0000

Unused

Figure 4.3: Memory Layout for the Swap Pool

2The operating system object format, .core is a variant of the .aout format. The header infor-
mation in both a .core and .aout file contains information describing the size of the code (.text and
.data). [Section 10.3.1-pops]

4.4. PAGING IN PANDOS 49

Important Point: Using the µMPS3 Machine Configuration Panel make sure that
there is sufficient “installed” RAM for the OS code, the Swap Pool and stack page
for test. [Section 12.2.1-pops]

The Support Level must maintain a table, one entry per frame in the Swap Pool,
recording information about the logical page occupying it. This table should be
composed of three columns/fields:

1. The ASID of the U-proc whose page is occupying the frame.

2. The logical page number (VPN) of the occupying page.

3. A pointer to the matching Page Table entry in the Page Table belonging to
the owner process. (i.e. ASID)

Technical Point: Since all valid ASID values are positive numbers, one can indi-
cate that a frame is unoccupied with an entry of -1 in that frame’s ASID entry in
the Swap Pool table.

The size of the table must match the size of the Swap Pool: one entry per
frame in the Swap Pool.

Finally, the Swap Pool table is a shared data structure that must be accessed or
updated in a mutually exclusive manner. Hence, the Support Level will also define
a mutual exclusion semaphore (the Swap Pool semaphore) to control access to the
Swap Pool table. To access the Swap Pool table, a process must first perform a
SYS3 (P) operation on this semaphore. When access to the Swap Pool table is
concluded, a process will then perform a SYS4 (V) operation on this semaphore.
Since this semaphore is used for mutual exclusion, it should be initialized to one.

4.4.2 The Pager
While TLB-Refill events will be handled by the Support Level’s TLB-Refill event
handler (e.g. uTLB RefillHandler), page faults are passed up by the Nucleus
to the Support Level’s TLB exception handler – the Pager.

µMPS3 defines three different TLB exceptions [Chapter 3-pops]:

• Page fault on a load operation: TLB-Invalid exception – TLBL

50 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

• Page fault on a store operation: TLB-Invalid exception – TLBS

• An attempted write to a read-only page: TLB-Modification exception –
Mod

In Pandos, Page Table entries are to be marked as read-writable, therefore TLB-
Modification exceptions should not occur. If they do, they should be treated as a
program trap. [Section 4.8]

To handle a page fault, a Pandos TLB exception handler should perform the
following steps:

1. Obtain the pointer to the Current Process’s Support Structure: SYS8.

Important Point: Level 4/Phase 3 exception handlers are limited in their
interaction with the Nucleus and its data structures to the functionality of
SYSCALLs [1..8]

2. Determine the cause of the TLB exception. The saved exception state re-
sponsible for this TLB exception should be found in the Current Process’s
Support Structure for TLB exceptions. (sup exceptState[0]’s Cause
register)

3. If the Cause is a TLB-Modification exception, treat this exception as a pro-
gram trap [Section 4.8], otherwise continue.

4. Gain mutual exclusion over the Swap Pool table. (SYS3 – P operation on
the Swap Pool semaphore)

5. Determine the missing page number (denoted as p): found in the saved
exception state’s EntryHi.

6. Pick a frame, i, from the Swap Pool. Which frame is selected is determined
by the Pandos page replacement algorithm. [Section 4.5.4]

7. Determine if frame i is occupied; examine entry i in the Swap Pool table.

8. If frame i is currently occupied, assume it is occupied by logical page num-
ber k belonging to process x (ASID) and that it is “dirty” (i.e. been modi-
fied):

4.4. PAGING IN PANDOS 51

(a) Update process x’s Page Table: mark Page Table entry k as not valid.
This entry is easily accessible, since the Swap Pool table’s entry i
contains a pointer to this Page Table entry.

(b) Update the TLB, if needed. The TLB is a cache of the most recently
executed process’s Page Table entries. If process x’s page k’s Page
Table entry is currently cached in the TLB it is clearly out of date; it
was just updated in the previous step.

Important Point: This step and the previous step must be accom-
plished atomically. [Section 4.5.3]

(c) Update process x’s backing store. Write the contents of frame i to the
correct location on process x’s backing store/flash device. [Section
4.5.1]
Treat any error status from the write operation as a program trap. [Sec-
tion 4.8]

9. Read the contents of the Current Process’s backing store/flash device logical
page p into frame i. [Section 4.5.1]
Treat any error status from the read operation as a program trap. [Section
4.8]

10. Update the Swap Pool table’s entry i to reflect frame i’s new contents: page
p belonging to the Current Process’s ASID, and a pointer to the Current
Process’s Page Table entry for page p.

11. Update the Current Process’s Page Table entry for page p to indicate it is
now present (V bit) and occupying frame i (PFN field).

12. Update the TLB. The cached entry in the TLB for the Current Process’s
page p is clearly out of date; it was just updated in the previous step.

Important Point: This step and the previous step must be accomplished
atomically. [Section 4.5.3]

13. Release mutual exclusion over the Swap Pool table. (SYS4 – V operation
on the Swap Pool semaphore)

14. Return control to the Current Process to retry the instruction that caused the
page fault: LDST on the saved exception state.

52 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

4.5 Miscellaneous Details Related to Paging

4.5.1 Reading and Writing from/to a Flash Device
µMPS3 flash devices are highly abstracted versions of real flash devices. It is
convenient to think of them as isomorphic to seek-less, 1-dimensional disk de-
vices. Flash device blocks are numbered sequentially [0..MAXBLOCK-1]. To
read/write a flash device one performs the following two steps in order [Section
5.4-pops]:

1. Write the flash device’s DATA0 field with the appropriate starting physical
address of the 4k block to be read (or written); the particular frame’s starting
address.

2. Write the flash device’s COMMAND field with the device block number
(high order three bytes) and the command to read (or write) in the lower
order byte.

As with all I/O operations, this should be immediately followed by a SYS5. [Sec-
tion 3.5.5]

Important Point: To insure that the interrupt always happens after the SYS5,
one should write the COMMAND field and issue the SYS5 atomically. [Section
4.11.1]

Each U-proc is associated with its own flash device, already initialized with
its backing store data. [Section 4.2.2] The flash device’s blocks [0..30] will used
store the U-proc’s .text, and .data, while block 31 will hold the U-proc’s stack
page.

4.5.2 Updating the TLB
The TLB is a cache of Page Table entries across multiple U-proc’s. Hence, when-
ever a Page Table entry is updated by the Pager, if that entry is also present/cached
in the TLB, there is a cache consistency problem. There are two approaches one
can employ to guarantee cache consistency. [Section 6.4-pops]

The two approaches are:

• Probe the TLB (TLBP) to see if the newly updated TLB entry is indeed
cached in the TLB. If so (Index.P is 0), rewrite (update) that entry (TLBWI)
to match the entry in the Page Table.

4.6. THE SUPPORT LEVEL GENERAL EXCEPTION HANDLER 53

• Erase ALL the entries in the TLB (TLBCLR).

While the first approach is the recommended approach for Pandos. One should
initially implement the second approach and then refactor to employ the first ap-
proach after all other aspects of the Support Level are completed/debugged.

4.5.3 Updating a Page Table and the TLB Atomically
The order of operations for the Pager are important. Specifically:

• When refreshing the backing store, one must first update the Page Table,
and possibly the TLB, before performing the write operation.

• When reading in from the backing store, one must first perform the read
operation before updating the Page Table and TLB.

Thought Challenge: Why must these operations be done in the prescribed order?

Similarly, the updating of a Page Table entry and its cached counterpart in
the TLB, must be done atomically. This is accomplished in µMPS3 by dis-
abling interrupts before the update statements, and then reenabling them imme-
diately afterwards. Interrupts are disabled and enabled via the STATUS register
(setSTATUS). [Section 7.1-pops]

Thought Challenge: Why must the Page Table and TLB be updated atomically?

4.5.4 The Pandos Page Replacement Algorithm
When a page fault occurs, the page replacement algorithm picks one of the frames
from the Swap Pool. The recommended Pandos page replacement algorithm is
First in First out.

Though inefficient, this “round robin” algorithm is easily implemented via a
static variable. Whenever a frame is needed to support a page fault, simply
increment this variable mod the size of the Swap Pool.

4.6 The Support Level General Exception Handler
The Support Level general exception handler will process all passed up non-TLB
exceptions:

54 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

• All SYSCALL (SYSCALL) exceptions numbered 9 and above.

• All Program Trap exceptions; all exception causes exclusive of those for
SYSCALL exceptions and those related to TLB exceptions. [Section 3.7.2]

Assuming that the handling of the exception is to be passed up (non-NULL
Support Structure pointer) and the appropriate sup exceptContext fields of
the Support Structure were correctly initialized, execution continues with the Sup-
port Level’s general exception handler. The processor state at the time of the
exception will be in the Support Structure’s corresponding sup exceptState
field. [Section 3.7]

After examining the sup exceptState’s Cause register, the Support Level
general exception hander will pass control to either the Support Level’s SYSCALL
exception handler [Section 4.7], or the Support Level’s Program Trap exception
handler. [Section 4.8]

4.7 The SYSCALL Exception Handler
The nucleus directly handles all SYS1-SYS8 SYSCALL exceptions. For all other
SYSCALL exceptions the nucleus either treats the exception as a SYS2 (termi-
nate) or “passes up” the handling of the exception if the offending process was
provided a non-NULL value for its Support Structure pointer when it was created.
[Section 3.7]

Assuming that the handling of the exception is to be passed up (non-NULL
Support Structure pointer) and the appropriate sup exceptContext fields of
the Support Structure were correctly initialized, execution continues with the Sup-
port Level’s general exception handler, which should then pass control to the Sup-
port Level’s SYSCALL exception handler. The processor state at the time of the
exception will be in the Support Structure’s corresponding sup exceptState
field. [Section 3.7]

By convention the executing process places appropriate values in the general
purpose registers a0–a3 immediately prior to executing the SYSCALL instruc-
tion. The Support Level’s SYSCALL exception handler will then perform some
service on behalf of the U-proc executing the SYSCALL instruction depending
on the value found in a0.

Upon successful completion of a SYSCALL request any return status is placed
in v0, and control is returned to the calling process at the instruction immedi-
ately following the SYSCALL instruction. Similar to what the Nucleus does

4.7. THE SYSCALL EXCEPTION HANDLER 55

when returning from a successful SYSCALL request [Section 3.5.10], the Sup-
port Level’s SYSCALL exception handler must also increment the PC by 4 in
order to return control to the instruction after the SYSCALL instruction.

In particular, if a U-proc executes a SYSCALL instruction and a0 contained
a value in the range [9..13] then the Support Level should perform one of the
services described below.

4.7.1 Terminate (SYS9)
This services causes the executing U-proc to cease to exist. The SYS9 service is
essentially a user-mode “wrapper” for the kernel-mode restricted SYS2 service.

The SYS9 service is requested by the calling process by placing the value 9 in
a0 and then executing a SYSCALL instruction.

The following C code can be used to request a SYS9:

SYSCALL (TERMINATE, 0, 0, 0);

Where the mnemonic constant TERMINATE has the value of 9.

4.7.2 Get TOD (SYS10)
When this service is requested, it causes the number of microseconds since the
system was last booted/reset to be placed/returned in the U-proc’s v0 register.

The SYS10 service is requested by the calling U-proc by placing the value 10
in a0 and then executing a SYSCALL instruction.

The following C code can be used to request a SYS10:

unsigned int retValue = SYSCALL (GETTOD, 0, 0, 0);

Where the mnemonic constant GETTOD has the value of 10.

4.7.3 Write To Printer (SYS11)
When requested, this service causes the requesting U-proc to be suspended until
a line of output (string of characters) has been transmitted to the printer device
associated with the U-proc.

Once the process resumes, the number of characters actually transmitted is
returned in v0.

56 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

The SYS11 service is requested by the calling U-proc by placing the value 11
in a0, the virtual address of the first character of the string to be transmitted in a1,
the length of this string in a2, and then executing a SYSCALL instruction. Once
the process resumes, the number of characters actually transmitted is returned
in v0 if the write was successful. If the operation ends with a status other than
“Device Ready” (1), the negative of the device’s status value is returned in v0.

It is an error to write to a printer device from an address outside of the request-
ing U-proc’s logical address space, request a SYS11 with a length less than 0, or
a length greater than 128. Any of these errors should result in the U-proc being
terminated (SYS9).

The following C code can be used to request a SYS11:

int retValue = SYSCALL (WRITEPRINTER, char *virtAddr,
int len, 0);

Where the mnemonic constant WRITEPRINTER has the value of 11.

4.7.4 Write To Terminal (SYS12)
When requested, this service causes the requesting U-proc to be suspended until
a line of output (string of characters) has been transmitted to the terminal device
associated with the U-proc.

The SYS12 service is requested by the calling U-proc by placing the value 12
in a0, the virtual address of the first character of the string to be transmitted in a1,
the length of this string in a2, and then executing a SYSCALL instruction. Once
the process resumes, the number of characters actually transmitted is returned
in v0 if the write was successful. If the operation ends with a status other than
“Character Transmitted” (5), the negative of the device’s status value is returned
in v0.

It is an error to write to a terminal device from an address outside of the re-
questing U-proc’s logical address space, request a SYS12 with a length less than
0, or a length greater than 128. Any of these errors should result in the U-proc
being terminated (SYS9).

The following C code can be used to request a SYS12:

int retValue = SYSCALL (WRITETERMINAL, char *virtAddr,
int len, 0);

4.8. THE PROGRAM TRAP EXCEPTION HANDLER 57

Where the mnemonic constant WRITETERMINAL has the value of 12.

4.7.5 Read From Terminal (SYS13)
int SYS12 (READ FROM TERMINAL, char *addr)When requested, this
service causes the requesting U-proc to be suspended until a line of input (string
of characters) has been transmitted from the terminal device associated with the
U-proc.

The SYS13 service is requested by the calling U-proc by placing the value 13
in a0, the virtual address of a string buffer where the data read should be placed
in a1, and then executing a SYSCALL instruction. Once the process resumes,
the number of characters actually transmitted is returned in v0 if the read was
successful. If the operation ends with a status other than “Character Received”
(5), the negative of the device’s status value is returned in v0.

Attempting to read from a terminal device to an address outside of the request-
ing U-proc’s logical address space is an error and should result in the U-proc being
terminated (SYS9).

The following C code can be used to request a SYS13:

int retValue = SYSCALL (READTERMINAL, char *virtAddr,
0, 0);

Where the mnemonic constant READTERMINAL has the value of 13.

4.8 The Program Trap Exception Handler
For all Program Trap exceptions [Section 3.7.2], the nucleus either treats the ex-
ception as a SYS2 or “passes up” the handling of the exception if the offending
process was provided a non-NULL value for its Support Structure pointer when it
was created. [Section 3.7.2]

Assuming that the handling of the exception is to be passed up (non-NULL
Support Structure pointer) and the appropriate sup exceptContext fields of
the Support Structure were correctly initialized, execution continues with the Sup-
port Level’s general exception handler, which should then pass control to the Sup-
port Level’s Program Trap exception handler. The processor state at the time of the
exception will be in the Support Structure’s corresponding sup exceptState
field. [Section 3.7]

58 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

The Support Level’s Program Trap exception handler is to terminate the pro-
cess in an orderly fashion; perform the same operations as a SYS9 request.[Section
4.7.1]

Important Point: If the process to be terminated is currently holding mutual ex-
clusion on a Support Level semaphore (e.g. Swap Pool semaphore), mutual ex-
clusion must first be released (SYS4) before invoking the Nucleus terminate com-
mand (SYS2).

4.9 Process Initialization and test
The final step in Nucleus initialization is the instantiation of a single process
(kernel-mode on, interrupts enabled) whose PC is set to test. [Section 3.1]
While test was the name/external reference to a function that exercised the
Level 3/Phase 2 code, in Level 4/Phase 3 it will be used as the instantiator process
(InstantiatorProcess).3

The InstantiatorProcess will perform the following tasks:

• Initialize the Level 4/Phase 3 data structures. These are:

– The Swap Pool table and Swap Pool semaphore. [Section 4.4.1]

– Each (potentially) sharable peripheral I/O device should have a semaphore
defined for it. These semaphores will be used for mutual exclusion
(protect access to each device’s device registers) and therefore should
all be initialized to one. Since terminal devices are actually two in-
dependent sub-devices, each terminal device should have two mutual
exclusion semaphores defined for it: one for reading from the terminal
and one for writing to the terminal. [Section 5.7-pops]

• Initialize and launch (SYS1) between 1 and 8 U-procs.

• Either:

– Terminate (SYS2) after all of its U-proc “children” processes con-
clude. This will drive Process Count to zero, triggering the Nucleus to
invoke HALT. [Section 3.2]

3One is, of course, free to rename this function, however, that will entail going back and editing
one’s already completed Level 3/Phase 2 code.

4.9. PROCESS INITIALIZATION AND TEST 59

– Perform a P (SYS3) operation on a private semaphore initialized to
0. In this case, after all the U-proc “children” conclude, the Nucleus
scheduler will detect deadlock and invoke PANIC. [Section 3.2]

Technical Point: A careful reading of the Level 4/Phase 3 specification reveals
that there are actually no purposefully shared peripheral devices. Each of the [1..8]
U-procs has its own flash device (backing store), printer, and terminal device(s).
Hence, one does not actually need an array of mutual exclusion semaphores to
protect access to device registers. However, for purposes of correctness (or more
appropriate: to protect against erroneous behavior) and future phase compatibility,
it is strongly recommended one define and use this array of mutual exclusion
device register semaphores.

4.9.1 Initializing a U-proc

To launch a U-proc, one simply sets up the parameters for a SYS1, followed by
the actual execution of the SYS1 Nucleus service. [Section 3.5.1]
The SYS1 Nucleus service takes two parameters:

• The initial processor state for the U-proc.

• A pointer to an initialized Support Structure for the U-proc.

Initial Processor State for a U-proc

Each U-proc’s initial processor state should have its:

• PC (and s t9) set to 0x8000.00B0; the address of the start of the .text
section. [Section 10.3.1-pops]

• SP set to 0xC000.0000 [Section 4.2]

• Status set for user-mode with all interrupts and the processor Local Timer
enabled.

• EntryHi.ASID set to the process’s unique ID; an integer from [1..8]

Important Point: Each U-proc MUST be assigned a unique, non-zero ASID.

60 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

Initialization of a Support Structure for a U-proc

Since the Support Level will launch and execute between 1 and 8 U-procs, there
needs to be a pool of (up to) 8 Support Structures.

The recommended approach is to declare a static array of 8 Support Struc-
tures in test. Using an index variable (ASID?) one can easily obtain the address
of the next unused Support Structure to be initialized and used for the next U-proc
launch (SYS1).

A Support Structure must contain all the fields necessary for the Support Level
to support both paging and passed up SYSCALL services. [Section 3.7] This
includes:

• sup asid: The process’s ASID.

• sup exceptState[2]: The two processor state (state t) areas where
the processor state at the time of the exception is placed by the Nucleus for
passing up exception handling to the Support Level.

• sup exceptContext[2]: The two processor context (context t)
sets. Each context is a PC/SP/Status combination. These are the two pro-
cessor contexts which the Nucleus uses for passing up exception handling
to the Support Level.

• sup privatePgTbl[32]: The process’s Page Table.

• sup stackTLB[500]: The stack area for the process’s TLB exception
handler. An integer array of 500 is a 2Kb area.

• sup stackGen[500]: The stack area for the process’s Support Level
general exception handler.

Only the sup asid, sup exceptContext[2], and sup privatePgTbl[32]
[Section 4.2.1] require initialization prior to issuing the SYS1.

To initialize a processor context area one performs the following:

• Set the two PC fields. One of them (0 - PGFAULTEXCEPT) should be set
to the address of the Support Level’s TLB handler, while the other one (1
- GENERALEXCEPT) should be set to the address of the Support Level’s
general exception handler.

• Set the two Status registers to: kernel-mode with all interrupts and the Pro-
cessor Local Timer enabled.

4.10. SMALL SUPPORT LEVEL OPTIMIZATIONS 61

• Set the two SP fields to utilize the two stack spaces allocated in the Support
Structure. Stacks grow “down” so set the SP fields to the address of the end
of these areas. e.g. . . . = &(. . .sup stackGen[499])

4.10 Small Support Level Optimizations
There are a number of small optimizations that one can undertake to improve the
performance/organization of the Support Level.

In no particular order:

• Update the TLB by using TLBP and TLBWI instead of TLBCLR. [Sec-
tion 4.5.2]

• When a U-proc terminates, mark all of the frames it occupied as unoccu-
pied. [Section 4.4.1].
This has the potential to eliminate extraneous writes to the backing store.

• Improve the Pandos page replacement algorithm to first check for an unoc-
cupied frame before selecting an occupied frame to use.
This will turn an O(1) operation into an O(n) operation in exchange for
fewer I/O (write) operations.

• Read each U-proc’s header information and initialize the Page Table entries
associated with each U-proc’s .text pages as read only (D bit field set to
0/off). [Section 10.3.1-pops]

• Read Pandos’s .core header information and situate the Swap Pool immedi-
ately after the .text and .data areas in RAM.
This eliminates the need to overestimate the size of the operating system.

• Introduce a masterSemaphore for a more graceful conclusion/termination
of test.
test cannot conclude before all of its spawned U-procs, otherwise, the
Nucleus will prematurely terminate them. Instead of blocking test on a
semaphore and forcing a PANIC when all the spawned U-procs have con-
cluded, one can implement a more graceful termination of test. [Section
4.9]

Introduce a new Support Level-level semaphore; the zero-initialized mas-
terSemaphore. After launching all the U-procs, test should repeatedly

62 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

issue a SYS3 (V operation) on this semaphore. This loop should iterate
UPROCMAX times: the number of U-proc’s launched: [1..8]

Whenever a U-proc terminates, either normally, or abnormally, it should
first perform a SYS4 (V operation) on the masterSemaphore. Hence, test
will go to sleep n times, and be woken up n times, where n is the number of
launched U-procs (n ∈ [1..8]). After this loop concludes, test concludes
by issuing a SYS2, which should trigger a HALT by the Nucleus.

• Allocate per-U-proc TLB, and general exception handler stacks directly
from RAM. [Section 4.9.1]
Directly allocate the two stack spaces per U-proc (one for the Support Level’s
TLB exception handler, and one for the Support Level’s general exception
handler) from RAM, instead of as fields in the Support Structure. The rec-
ommended RAM space to be used are the frames directly below RAMTOP,
avoid the actual last frame of RAM (stack page for test).

Important Point: SP values are always the end of the area, not the start.
Hence, to use the penultimate RAM frame as a U-proc’s stack space for one
of its Support Level handlers, one would assign the SP value to RAMTOP-
PAGESIZE.

• Implement allocate and deallocate functionality for the Support Structures
instead of directly accessing a static array. [Section 4.9.1]
Instead of directly accessing elements of a static array of Support Structures,
one can reuse the technique from Level 2/Phase 1 [Section 2.1]: Declare a
null-initialized pointer to a Support Structure-free list (stack?) of unused
Support Structures. Upon entry, test iterates over the static array of Sup-
port Structures, invoking a new deallocate method to add each Support
Structure to the free list. Whenever a new Support Structure is needed to
support a new U-proc, a call to allocate returns a pointer to a Support
Structure, allocated from the free list. Furthermore, whenever a U-proc
terminates (SYS9), a call is made to deallocate to return the Support
Structure to the free list.

4.11. NUTS AND BOLTS 63

4.11 Nuts and Bolts

4.11.1 Initiating I/O Operations

A peripheral’s device driver is typically made up of two parts: an upper part and
a lower part.

The lower part is the code that handles the interrupt from the device upon
completion of an operation. In Pandos this is handled by the Nucleus.

The upper part is the code that initiates an operation: the writing of some
of the device’s registers followed by a SYS5. In Pandos this code is distributed
throughout the Support Level.

• For flash devices, the code to initiate reading and writing is part of (or at
least called by) the Pager. [Section 4.4.2]

• For printer devices the code is localized in the SYS11 implementation code.
[Section 4.7.3]

• For terminal devices the code is localized in the SYS12 & SYS13 imple-
mentation code. [Section 4.7.4]

Regardless of the device in question, to initiate an I/O operation, one must:

• Gain mutual exclusion over the device’s device register. This is accom-
plished by executing a SYS3 operation on the appropriate Support Level
semaphore.

• Write the device’s DATA0 field.

• Write the device’s COMMAND field. Since a write into a COMMAND
field immediately initiates an I/O operation, one must always supply the
appropriate parameters in DATA0 before writing the COMMAND field.
[Chapter 5-pops]

• Issue a SYS5 with the appropriate parameters to block the I/O requesting
process until the operation completes.

• Release mutual exclusion over the device’s device register: Perform a SYS4
operation on the appropriate semaphore.

64 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

The Pandos Nucleus assumes that no device interrupt will occur before the
initiating process has the opportunity to execute its SYS5. [Section 3.6.1]
To guarantee this, one must write the COMMAND field and execute the corre-
sponding SYS5 instruction atomically. As with updating a Page Table and the
TLB atomically [Section 4.5.3], this is done by disabling interrupts immediately
prior to writing the COMMAND field, and reenabling interrupts immediately af-
ter the SYS5 instruction. Interrupts are disabled and enabled via the STATUS
register (setSTATUS) [Section 7.1-pops]

4.11.2 Module Decomposition

One possible module decomposition is as follows:

1. initProc.c This module implements test and exports the Support Level’s
global variables. (e.g. device semaphores [Section 4.9], and optionally a
masterSemaphore [Section 4.10]

2. vmSupport.c This module implements the TLB exception handler (The
Pager). Since reading and writing to each U-proc’s flash device is limited
to supporting paging, this module should also contain the function(s) for
reading and writing flash devices.

Additionally, the Swap Pool table and Swap Pool semaphore are local to
this module. Instead of declaring them globally in initProc.c they can be
declared module-wide in vmSupport.c. The test function will now in-
voke a new “public” function initSwapStructswhich will do the work
of initializing both the Swap Pool table and accompanying semaphore.

Technical Point: Since the code for the TLB-Refill event handler was re-
placed (without relocating the function), uTLB RefillHandler should
still be found in the Level 3/Phase 2 exceptions.c file.

3. sysSupport.c This module implements the Support Level’s:

• general exception handler. [Section 4.6]

• SYSCALL exception handler. [Section 4.7]

• Program Trap exception handler. [Section 4.8]

4.12. TESTING 65

4.11.3 Accessing the libumps Library
Accessing the CP0 registers and the BIOS-implemented services/instructions in
C (e.g. WAIT, LDST) is via the libumps library. [Chapter 7-pops]
Simply include the line

#include ‘‘/usr/include/umps3/umps/libumps.h’’

in one’s source files.4

4.12 Testing
There is a provided set of possible U-proc programs that will “exercise” your code.
These programs will generate page faults in addition to issuing SYSCALLs 9-13
and purposefully causing Program Traps. [Appendix A]

The supplied U-proc programs also come with their own Makefile configured
to compile, link (using the U-proc linker script, crtsi.o), create a correspond-
ing flash device (a .umps file) [Section 11.2-pops], and preload the U-proc’s load
image on to a flash device.

The recommended directory structure is to create a testers directory parallel
to the other Pandos directories: h, phase1, phase2, and phase3 [Section 1.2]

As with any non-trivial system, you are strongly encouraged to use the make
program to maintain your code. A sample Makefile has been supplied. See Chap-
ter 10 in the POPS reference for more compilation details.

Once your (nine?) source files (two from Phase 1, four from Phase 2, and
three from Phase 3) have been correctly compiled, linked together (with appropri-
ate linker script, crtso.o, and libumps.o), and post-processed with umps3-
elf2umps (all performed by the sample Makefile), your code can be tested by
launching the µMPS3 emulator. At a terminal prompt, enter:

umps3

One uses the µMPS3 Machine Configuration Panel [Section 12.2.1-pops] to
set various parameters appropriate for testing Pandos:

• The TLB Floor Address must be set to either 0x4000.0000 or 0x8000.0000.
4The file libumps.h is part of the µMPS3 distribution.

/usr/include/umps3/umps/ is the recommended installation location for this file.

66 CHAPTER 4. PHASE 3 - LEVEL 4: THE SUPPORT LEVEL

• The amount of “installed” RAM must be sufficiently large enough for the
OS code, the Swap Pool and stack page for test. (e.g. 128 frames)

• Using the Devices tab one maps a flash device (.umps) “file” with the
corresponding µMPS3 flash device. [Section 12.2.1-pops] Simply use the
Browse button to locate the appropriate .umps file (in the testers direc-
tory) and enable the device via the checkbox.

Part II
Advanced Layers of Pandos

The problem with troubleshooting is that trouble shoots back.
Unknown

5
Phase 4 - Level 5: DMA Device

Support

Level 4/Phase 3 provided support for character-based devices. [Section 4.7]
This phase provides support for block-based devices: disks and flash devices.

Pandos disk and flash devices are DMA devices in that they can directly read
from/write to (physical) RAM. This differs from the character-based devices (ter-
minals and printers) where the character to be written/read is placed into a device
register. Therefore, each disk and flash device will have a Pandos DMA buffer
(i.e. RAM frame) dedicated to it.

Disk devices are read/written on a sector by sector basis. Each µMPS3 disk
sector is 4Kb in size.

Flash devices are read/written on a block by block basis. Each µMPS3 flash
device block is 4Kb in size.

To perform a disk/flash read operation:

1. The requested disk sector/flash block is read into the device’s DMA buffer.

2. The data is copied from the DMA buffer into the requesting U-proc’s ad-
dress space starting from the provided start address.

A write operation is isomorphic, only the two steps are reversed:

68

5.1. DMA BUFFERS 69

1. The data is copied from the requesting U-proc’s address space into the de-
vice’s DMA buffer.

2. The targeted disk sector/flash block is overwritten with the contents of the
DMA buffer.

It is important to observe that the source (or sink) logical addresses are not
required to be page aligned. Hence, the copying phase could trigger up to two
distinct page faults.

5.1 DMA Buffers

µMPS3 can support up to eight disk devices and eight flash devices. Hence, six-
teen 4Kb RAM frames need to be allocated to support these DMA devices.

The recommended location for these buffers are immediately above/after the
swap pool. [Section 4.4.1]

0x0000.0000

0x2000.0000

0xFFFF.FFFF

RAMTOP

(8-512 4Kb frames)

BIOS Region

Bus Error

Installed RAM

stack for test

OS code

swap pool

kernel stack
0x2000.1000

0x2002.0000

Disk and Flash
DMA Buffers

Unused

Figure 5.1: Memory Layout for the DMA Buffers

70 CHAPTER 5. PHASE 4 - LEVEL 5: DMA DEVICE SUPPORT

5.2 Disk Operations
From one perspective disk devices are three dimensional devices: cylinders (or
tracks), surfaces (or heads) and sectors. From another perspective they are only
one-dimensional: sectors. A disk device with x cylinders, y surfaces, and z sec-
tors/track can be thought of being a (one dimensional) device with sectorCnt
= x ∗ y ∗ z sectors numbered [0 . . . (sectorCnt − 1)]. The supported disk op-
erations, since they only take a disk sector parameter (instead of a disk sector,
surface#, and track#) assumes this one dimensional perspective for disk devices.

Attempting to write to (read from) a disk device from (into) an address outside
of the requesting U-proc’s logical address space is an error and should result in
the U-proc being terminated (SYS9). Similarly, attempting to write to (read from)
a disk sector outside of [0 . . . (sectorCnt− 1)] is an error and should result in the
U-proc being terminated (SYS9).

Since disks can be created with differing dimensions [Section 11.1-pops], sec-
torCnt will differ from disk to disk. For a given disk, sectorCnt is equal to that
disk’s maxcyl ∗ maxhead ∗ maxsect which are found in the device’s DATA1
device register field. [Section 5.3-pops]

While a disk read or write appears to U-procs as a singular operation, each
read (or write) operation is actually two disk operations. A disk seek operation,
and corresponding SYS5, followed by a disk read (or write) and its corresponding
SYS5.

5.2.1 Disk Put (SYS14)
This service provides synchronous I/O on a µMPS3 disk device. When requested,
this service causes the requesting U-proc to be suspended until the disk write
operation (both the seek and the write) has concluded. The SYS14 service is
requested by the calling U-proc by placing the value 14 in a0, the logical address
of the 4KB area to be written to the disk in a1, the disk number ([0. . .7]) in a2,
the disk sector number to be written onto in a3, and then executing a SYSCALL
instruction. Once the process resumes, v0 is to contain the completion status of
the disk operation. If the operation ends with a status other than “Device Ready”
(1), the negative of the completion status is returned in v0.

The following C code can be used to request a SYS14:

int SYSCALL (DISK PUT, int *logicalAddr, int diskNo,
int sectNo);

5.3. FLASH DEVICE OPERATIONS 71

Where the mnemonic constant DISK PUT has the value of 14.

5.2.2 Disk Get (SYS15)
This service provides synchronous I/O on a µMPS3 disk device. When requested,
this service causes the requesting U-proc to be suspended until the disk read op-
eration (both the seek and the read) has concluded.

The SYS15 service is requested by the calling U-proc by placing the value
15 in a0, the logical address of the 4KB area to contain the data from the disk
in a1, the disk number ([0. . .7]) in a2, the disk sector number to be read from in
a3, and then executing a SYSCALL instruction. Once the process resumes, v0 is
to contain the completion status of the disk operation. If the operation ends with
a status other than “Device Ready” (1), the negative of the completion status is
returned in v0.

The following C code can be used to request a SYS15:

int SYSCALL (DISK GET, int *logicalAddr, int diskNo,
int sectNo);

Where the mnemonic constant DISK GET has the value of 15.

5.3 Flash Device Operations
µMPS3 flash devices are “random access” nonvolatile read/write devices which
behave, essentially, as seek-free one-dimensional disk drives. Flash devices are
read/written on a block by block basis. Each µMPS3 flash device block is 4Kb in
size. [Section 5.4-pops]

Attempting to write to (read from) a flash device from (into) an address outside
of the requesting U-proc’s logical address space is an error and should result in the
U-proc being terminated (SYS9). Similarly, attempting to write to (read from) a
block outside of [0..(MAXBLOCK-1)] is an error and should result in the U-proc
being terminated (SYS9).

Since flash devices can be created with differing dimensions [Section 11.2-
pops], MAXBLOCK will differ from one flash device to another. For a given
flash device, MAXBLOCK can be found in the device’s DATA1 device register
field. [Section 5.4-pops]

72 CHAPTER 5. PHASE 4 - LEVEL 5: DMA DEVICE SUPPORT

5.3.1 Flash Put (SYS16)

This services provides synchronous I/O on a µMPS3 flash device. When re-
quested, this service causes the requesting U-proc to be suspended until the flash
write operation has concluded.

The SYS16 service is requested by the calling U-proc by placing the value 16
in a0, the logical address of the 4KB area to be written to the flash device in a1,
the flash device number ([0. . .7]) in a2, the block number to be written onto in
a3, and then executing a SYSCALL instruction. Once the process resumes, v0 is
to contain the completion status of the flash operation. If the operation ends with
a status other than “Device Ready” (1), the negative of the completion status is
returned in v0.

The following C code can be used to request a SYS16:

int SYSCALL (FLASH PUT, int *logicalAddr, int flashNo,
int blockNo);

Where the mnemonic constant FLASH PUT has the value of 16.

5.3.2 Flash Get (SYS17)

This service provides synchronous I/O on a µMPS3 flash device. When requested,
this service causes the requesting U-proc to be suspended until the flash read op-
eration has concluded.

The SYS17 service is requested by the calling U-proc by placing the value 17
in a0, the logical address of the 4KB area to contain the data from the flash device
in a1, the flash device number ([0. . .7]) in a2, the block number to be read from in
a3, and then executing a SYSCALL instruction. Once the process resumes, v0 is
to contain the completion status of the flash operation. If the operation ends with
a status other than “Device Ready” (1), the negative of the completion status is
returned in v0.

The following C code can be used to request a SYS17:

int SYSCALL (FLASH GET, int *logicalAddr, int flashNo,
int blockNo);

Where the mnemonic constant FLASH GET has the value of 17.

5.4. A WORD ABOUT BACKING STORE 73

5.4 A Word About Backing Store

In Level 4/Phase 3, each U-proc was provided its own flash device preloaded with
the U-proc’s backing store data. [Section 4.2.2] One can continue to use this
simplification even as one implements SYS16 and SYS17. The only caveat is that
it should also be an error for a U-proc to access (read or write) any portion of a
flash device being used as a backing store. Hence the potential reasons a SYS16
(or SYS17) request should fail (SYS9 - termination) is updated to:

1. An attempt to write to (read from) a flash device from (into) an address
outside of the requesting U-proc’s logical address space.

2. An attempt to write to (read from) a block outside of [32..(MAXBLOCK-
1)]

Furthermore, there are two improvements one can elect to implement which re-
move the (unrealistic) simplification of providing each U-proc its own backing
store device.

5.4.1 Dedicate a Disk as the Backing Store Device

Create an empty disk (e.g. DISK0) [Section 11.1-pops] to serve as the single
backing store device for all U-procs.1 Each U-proc will be assigned its own dis-
tinct 32 sectors for use as that U-proc’s backing store. The mapping of ASID and
VPN to DISK0 sector number is left to the Pandos author.

The InstantiatorProcess will now perform one additional step as part of U-
proc initialization [Section 4.9]: Read the contents of the U-proc’s assigned flash
device/backing store information onto its assigned area on DISK0.

This operation can itself be done two different ways:

1. Simply copy the first 31 blocks from each flash device to DISK0; there is
no need to copy of the initially empty stack page. This option copies a
U-proc’s complete (sans stack page) logical address space from the flash
device to DISK0: Both the initialized portions and the empty/uninitialized
portions.

1One must use the Devices tab on the µMPS3 Machine Configuration Panel to map the disk
(.umps) “file” with the corresponding µMPS3 disk device. [Section 12.2.1-pops]

74 CHAPTER 5. PHASE 4 - LEVEL 5: DMA DEVICE SUPPORT

2. Copy the first block from each flash device to DISK0. Examine the U-
proc’s header information (situated at the beginning of this first block [Sec-
tion 10.3.1-pops]) to learn how many more blocks to copy to DISK0. One
need only copy the blocks containing the U-proc’s .text and .data. The re-
mainder of the U-proc’s logical address space is uninitialized and need not
be (unnecessarily) copied from the flash device to DISK0.

Since DISK0 is dedicated as the backing store device, U-procs must be pre-
vented from performing reads/writes against this device. Hence, a SYS14 or
SYS15 attempt to write to (read from) the backing store device (DISK0) is an
error and should result in the U-proc being terminated (SYS9).

Technical Point: While having only a single backing store device is more realistic
it does lead to performance degradation. The single device is now a bottleneck
point for the Pager.

5.4.2 Supply ALL the U-procs from a Single Flash Device

In Level 4/Phase 3, each U-proc was provided its own flash device preloaded with
the U-proc’s backing store data. [Section 4.2.2] Instead of loading only one U-
proc’s logical image (backing store) on a flash device, provide one flash device
containing all of the U-procs’ logical images.

One limitation to this is the umps3-mkdev Device Creation Utility only al-
lows the preloading of a single file on a flash device. [Section 11.2-pops]
To get around this limitation one needs to merge all of the U-procs’ logical images
one wishes to execute into one file.

The *.c source code files for a U-proc get compiled, linked, and post-processed
to produce a .aout.umps file. It is this .aout.umps file that gets loaded onto a
µMPS3 flash device when the device is created. [Section 10.6.2-pops]

One can, however, create a single Unix tar (Tape ARchive) file from many
.aout.umps files. One then preloads this single tar file onto a flash device during
its creation. [Section 11.2-pops]

The InstantiatorProcess now needs to read from a single flash device the in-
formation for U-proc initialization - the contents of each U-proc’s logical image
to be written to DISK0, the backing store device.

To accomplish this one needs to become familiar with the tar file format.
While a complete description is beyond the scope of this text, it suffices to recog-
nize that a tar file is an ordered collection of file objects (e.g. .aout.umps), each

5.5. NUTS AND BOLTS 75

preceded by a 512 byte header. The header information contains, most important
for this application, the file size rounded up to a multiple of 4Kb.2

While processing a single flash device preloaded with a tar file may appear
intimidating; it is not. Each file appears, one after another with a header that
indicates how many blocks long the .aout.umps file is.

One significant benefit from this is that InstantiatorProcess can now be con-
figured to execute more than eight U-procs. While eight remains the concurrent
multiprogramming limit (due only to the fixed number of terminal devices), one
can reuse a given terminal device (ASID) after termination to read in a “next”
U-proc from the input flash device for execution.

5.5 Nuts and Bolts

5.5.1 Initiating I/O Operations

A peripheral’s device driver is typically made up of two parts: an upper part and
a lower part.

The lower part is the code that handles the interrupt from the device upon
completion of an operation. In Pandos this is handled by the Nucleus.

The upper part is the code that initiates an operation: the writing of some of the
device’s registers followed by a SYS5. Unlike the terminal (and printer) devices,
these DMA devices (i.e. the device registers and corresponding DMA buffer) are
shared devices. Hence, they must be accessed in a mutually exclusive manner.

Regardless of the device in question, to initiate a DMA I/O operation, one
must:

• Gain mutual exclusion over the device’s device register (and hence DMA
buffer). This is accomplished by executing a SYS3 operation on the appro-
priate Support Level semaphore. [Section 4.9]

• Write the starting address of the appropriate DMA buffer in the device’s
DATA0 field.

• Write the device’s COMMAND field. Since a write into a COMMAND
field immediately initiates an I/O operation, one must always supply the

2Unix tar files use a 512 byte blocking factor by default. However, this can be changed to 4Kb
via a command line argument.

76 CHAPTER 5. PHASE 4 - LEVEL 5: DMA DEVICE SUPPORT

appropriate parameters in DATA0 before writing the COMMAND field.
[Chapter 5-pops]

• Issue a SYS5 with the appropriate parameters to block the I/O requesting
U-proc until the operation completes.

• Release mutual exclusion over the device’s device register: perform a SYS4
operation on the appropriate semaphore.

The Pandos Nucleus assumes that no device interrupt will occur before the
initiating process has the opportunity to execute its SYS5. [Section 3.6.1]
To guarantee this, one must write the COMMAND field and execute the corre-
sponding SYS5 instruction atomically. This is done by disabling interrupts im-
mediately prior to writing the COMMAND field, and reenabling interrupts im-
mediately after the SYS5 instruction. Interrupts are disabled and enabled via the
STATUS register (setSTATUS) [Section 7.1-pops]

5.5.2 Module Decomposition
One possible module decomposition is to develop a separate module which im-
plements these four new SYSCALLs. (e.g. deviceSupportDMA.c)

The functionality of both SYS16 & SYS17 already exists in the Level 4/Phase
3 Pager. [Section 4.11.2] One should migrate this code out of vmSupport.c
and into deviceSupportDMA.c to facilitate code sharing. (e.g. Have the Pager,
SYS16, and SYS17 all make use of the single function flashOperation lo-
cated in deviceSupportDMA.c)

Similarly, one could migrate the code supporting character-based devices (SYS11
– SYS13) into a new file; devSupportChar.c or merge ALL device support func-
tionality into a single file; deviceSupport.c

5.6 Testing
One of the provided U-proc test programs (diskIOtest.c) will “exercise” your
SYS14/SYS15 code. [Appendix A]

Never under any circumstances take a sleeping pill and a laxative on the
same night.

Dave Barry

6
Phase 5 - Level 6: The Delay Facility

Level 6/Phase 5 implements one new SYSCALL which causes the requesting
U-proc to be temporarily “put to sleep” (i.e. delayed) for a specified number of
seconds, n. This phase is representative of a daemon process.

The requesting U-proc is to be delayed at least n seconds and not substantially
longer. Since the Nucleus controls low-level scheduling decisions, all this phase
can ensure is that the requesting U-proc not be “schedulable” until n seconds have
elapsed and that it becomes schedulable shortly thereafter.

6.1 Delay (SYS18)

This service causes the executing U-proc to be delayed for n seconds.
The Delay or SYS18 service is requested by the calling U-proc by placing the

value 18 in a0, the number of seconds to be delayed in a1, and then executing a
SYSCALL instruction.

Attempting to request a Delay for less than 0 seconds is an error and should
result in the U-proc begin terminated (SYS9).

The following C code can be used to request a SYS18:

77

78 CHAPTER 6. PHASE 5 - LEVEL 6: THE DELAY FACILITY

void SYSCALL (DELAY, int secCnt, 0, 0);

Where the mnemonic constant DELAY has the value of 18.

6.2 Delay Facility
The SYS18 Delay facility allows a requesting U-proc to be temporarily “put to
sleep” for a specified number of seconds. A process that is neither the current
process nor sitting on the Ready Queue can be considered to be “sleeping” (i.e.
blocked). There are two issues that need addressing: where to place the U-proc
while it is sleeping, and how to keep track of which U-proc’s are sleeping so they
can be awoken (i.e. placed on the Ready Queue) at the appropriate time.

6.2.1 Where to Store Sleeping U-proc’s
Access to the nucleus is limited solely to requesting SYS1-SYS8 services. There-
fore the only way to put a U-proc to sleep (i.e. keep it off of the Ready Queue)
is to block the U-proc on a semaphore. The Support Structure should therefore
contain a semaphore; the U-proc’s private semaphore. Since this is a synchroniza-
tion semaphore, it should be initialized to zero. Hence a SYS3/P operation on this
semaphore will cause the U-proc to block.

A SYS18 is therefore a request to perform a P (SYS3) operation on the U-
proc’s private semaphore.

6.2.2 Keeping Track of Sleeping U-proc’s
The Delay Facility needs to maintain a list of sleeping U-proc’s. The following im-
plementation is suggested: Maintain a sorted, NULL-terminated, single, linearly
linked list (using the d next field) of delay event descriptor nodes (delayd t)
whose head is pointed to by the variable delayd h. The list delayd h points
to will represent the list of pending “wake up calls:” the Active Delay List (ADL).
Keep the ADL sorted in ascending order using the d wakeTime field as the sort
key.

Maintain a second list of delay event descriptor nodes, the delaydFree list, to
hold the unused delay event descriptor nodes. This list, whose head is pointed
to by the variable delaydFree h, is kept, like the semdFree lists, as a NULL-
terminated, single, linearly linked list (using the d next field). [Section 2.4]

6.2. DELAY FACILITY 79

The delay event descriptor nodes themselves should be declared, like the ASL’s
semaphore descriptors, as a static array of size UPROCMAX of type delayd t.

The fields of a delay event descriptor node (delayd t) are:

• A delayd t *d next pointer field.

• A int d wakeTime field. This field should record the time of day (mi-
croseconds since the system was last booted/reset) the U-proc should be
woken, and NOT n, the requested number of sleep seconds.

• A support t *d supStruct pointer to a Support Structure, denoting
the sleeping U-proc’s identity.

When a U-proc requests some “quiet time,” in addition to performing a P
(SYS3) operation on the U-proc’s private semaphore, a delay event descriptor
node needs to be allocated from the delaydFree list, populated with appropriate
values, and inserted into the ADL.

Periodically, the ADL needs to be examined to determine if a U-proc’s wake
time has passed. To accomplish this the Support Level will launch a special Sup-
port Level process (i.e. a daemon): the Delay Daemon. The Delay Daemon will
repeat forever:

1. Request a Wait For Clock (SYS7) nucleus service.

2. Upon resumption of execution, examine the ADL, removing all delay event
descriptor nodes whose wake time has passed. For each delay event de-
scriptor node whose wake time has passed, perform a V (SYS4) operation
on the U-proc’s private semaphore and return the delay event descriptor
node to the delaydFree list.

Hence, the Delay Daemon will wake every 100 milliseconds (i.e. a pseudo-
clock tick event), examine the ADL, waking up U-proc’s if their delay has expired,
and then return to sleep (SYS7). The Delay Daemon will run in kernel-mode using
the kernel ASID value (zero) with all interrupts enabled.

There is no reason to make the ADL doubly linked, though for greater ADL
traversal efficiency one may opt to place a dummy node at either the tail or both
the head and tail of the ADL. In this case the size of the static array will increase
by either one or two.

80 CHAPTER 6. PHASE 5 - LEVEL 6: THE DELAY FACILITY

6.3 Nuts and Bolts
On the surface, there is a lot in common between the Delay Facility and the ASL.
Both modules initialize a free list of unallocated nodes and have a singly linked,
sorted, NULL-terminated “active” list. Furthermore, both modules have two list
pointers (active and free) in addition to an initialization function which statically
declares an array of descriptor nodes and places all these nodes on the free list.
As with the ASL, the ADL’s active list, for list traversal efficiency, should also
contain at least one dummy node (tail).

6.3.1 Implementing SYS18
The SYS18 service performs two functions:

1. Allocate a delay event descriptor node from the free list, populate it, and
insert it into its proper location on the active list.

2. Perform a P (SYS3) operation on the U-proc’s private semaphore; a field in
the Support Structure.

Two considerations must be taken into account:

• The ADL is a shared data structure, accessed by both U-procs via SYS18
and the Delay Daemon. Hence, access to the ADL must be done in a mu-
tually exclusive manner to avoid race conditions. Therefore, the ADL must
also implement a mutual exclusion semaphore (i.e. initialized to one). This
semaphore must be SYS3/P’ed prior to any access of the ADL, and then
SYS4/V’ed upon conclusion of any access.

• At the conclusion of SYS18 is a call to SYS3/P on the U-proc’s private
semaphore. However, this call must be made after the SYS4/V call on the
ADL semaphore; otherwise the U-proc will be put to sleep while holding
mutual exclusion over the ADL. Hence, one must first release the mutual
exclusion over the ADL semaphore (SYS4/V) and then block the calling
U-proc on its private semaphore (SYS3/P). Furthermore, these two actions
must be done atomically.

The complete sequence of steps to be performed for a SYS18 is:

1. Check the seconds parameter and terminate (SYS9) the U-proc if the wait
time is negative.

6.3. NUTS AND BOLTS 81

2. Obtain mutual exclusion over the ADL: SYS3/P on the ADL semaphore.

3. Allocate a delay event descriptor node from the free list, populate it and
insert it into its proper location on the active list. If this operation is un-
successful, terminate (SYS9) the U-proc – after releasing mutual exclusion
over the ADL.

4. Release mutual exclusion over the ADL: SYS4/V on the ADL semaphore
AND execute a SYS3/P on the U-proc’s private semaphore atomically. This
will block the executing U-proc.

5. Return control (LDST) to the U-proc at the instruction immediately fol-
lowing the SYS18. This step will not be executed until after the U-proc is
awoken.

6.3.2 Implementing the Delay Daemon
The code for the Delay Daemon is a simple infinite loop:

1. Execute a SYS7: wait for the next 100 millisecond time span (i.e. pseudo
clock tick) to pass.

2. Obtain mutual exclusion over the ADL: SYS3/P on the ADL semaphore.

3. “Process” the ADL active list and for each delay event descriptor node
whose wake up time has passed:

(a) Perform a SYS4/V on that U-proc’s private semaphore.

(b) Deallocate the delay event descriptor node and return it to the free list.

4. Release mutual exclusion over the ADL: SYS4/V on the ADL semaphore.

6.3.3 Initializing the ADL
Initializing the ADL is facilitated by the InstantiatorProcess [Section 4.9] which
invokes the ADL function initADL().
Initializing the ADL is a two-step process:

1. Add each element from the static array of delay event descriptor nodes to
the free list and initialize the active list (zero, one or two dummy nodes).

82 CHAPTER 6. PHASE 5 - LEVEL 6: THE DELAY FACILITY

2. Initialize and launch (SYS1) the Delay Daemon.

The Delay Daemon is a process where

• The PC (and s t9) is set to the function implementing the Delay Daemon.
[Section 6.3.2]

• The SP is set to an unused frame at the end of RAM. The last frame of RAM
is already allocated as the stack page for test. Whether the penultimate
frame of RAM is available is dependent on the Level 4/Phase 3 approach
for allocating the two stack spaces per U-proc: one for the Support Level’s
TLB exception handler, and one for the Support Level’s general exception
handler. If these stack spaces are allocated as part of the Support Structure,
then the penultimate RAM frame is to be used, otherwise allocate a frame
above/below the stack frames allocated for the U-proc exception handlers.
[Section 4.10]

• The Status register is set to kernel-mode with all interrupts enabled.

• The EntryHi.ASID is set to the kernel ASID: zero.

Finally, the Support Structure SYS1 parameter should be NULL.

0x0000.0000

0x2000.0000

0xFFFF.FFFF

RAMTOP

(8-512 4Kb frames)

BIOS Region

Bus Error

Installed RAM

stack for test

OS code

swap pool

kernel stack
0x2000.1000

0x2002.0000

Disk and Flash
DMA Buffers

Unused

stack for Delay Daemon

Figure 6.1: Memory Layout for the Delay Daemon Stack

6.4. TESTING 83

6.3.4 Breaking Down the Delay Facility Module
The Delay Facility should be encapsulated in a single file: e.g. delayDaemon.c.
This file should contain:

• initADL: The function to initialize the ADL. [Section 6.3.3]

• The function to implement SYS18. [Section 6.3.1]

• The function containing the code for the Delay Daemon. [Section 6.3.2]

• Functions for maintaining the ADL’s freelist and active list: allocate, deal-
locate, node insertion, and node removal.

6.4 Testing
One of the provided U-proc test programs (delayTest.c) will “exercise” your
SYS18 Delay Daemon code. [Appendix A]

Man is a slow, sloppy and brilliant thinker; the machine is fast, accurate
and stupid.

William M. Kelly

7
Phase 6 - Level 7: Cooperating User

Processes

There are two primary paradigms for processes to cooperate: message passing or
shared memory. Pandos takes the shared memory approach.1

In addition to providing a shared logical address space, there must also be a
means of safely adjudicating its use so as to avoid race conditions. Level 7/Phase 6
implements two new SYSCALLs which allow for requesting U-procs to perform
P and V semaphore operations on shared logical addresses.

7.1 A Shared Logical Address Space

While the first half of kuseg is reserved for each U-proc’s private logical address
space (0x8000.0000. . . 0xC000.0000), the second/upper half (0xC000.0000. . .
0xFFFF.FFFF) is reserved as a logical address space (kusegshare) shared among
all executing U-procs.

In keeping with Pandos’s “representative” approach, only the first n frames of

1Message passing can also be implemented, but one must first provide Networking Support.
[Chapter 1]

84

7.1. A SHARED LOGICAL ADDRESS SPACE 85

kusegshare will be available, where n can be any value from [1..32] - implemen-
tor’s choice.

0xC000.0000

0xFFFF.FFFF

0x8000.0000

stack area

text & data area

0xBFFF.F000

0x8001.F000

kusegshare

n shared pages

Figure 7.1: kuseg Logical Address Layout

There are a number of address translation-based bookkeeping tasks that must
be completed to implement kusegshare.

7.1.1 A Shared Page Table

In addition to each U-proc’s private Page Table there now needs to one additional
global Page Table for the n pages of kusegshare. Each entry should be initialized
as follows:

• The VPN field will be set to [0xC0000..0xC000n] for the n entries.

• The ASID field should be set to zero.

• The D bit field will be set to 1 (on) - each page is write-enabled.

• The V bit field will be set to 0 (off) - the entry is NOT valid. i.e. A copy of
this page is not also currently residing in RAM.

• The G bit field will be set to 1 (on) - each page is globally accessible re-
gardless of the accessor’s ASID. [Section 6.3.2-pops]

86 CHAPTER 7. PHASE 6 - LEVEL 7: COOPERATING USER PROCESSES

7.1.2 Updates to the TLB-Refill event Handler
The TLB-Refill event Handler (uTLB RefillHandler) now needs to update
the TLB from one of two different Page Tables, depending on the VPN of the
missing TLB entry.

• VPN values less than 0xC0000 are handled in the usual manner, using a
Page Table entry from the Current Process’s Page Table. [Section 4.2.2]

• VPN values greater than or equal to 0xC0000 are handled using a Page
Table entry from the kusegshare’s global Page Table.

7.1.3 Backing Store for the Shared Logical Address Space
As with all logical address spaces, the n kusegshare pages need a backing store
location. However, given the nature of the kusegshare, the backing store area does
not need to be initialized.

The backing store location of the n kusegshare pages is dependent on how the
backing store for the U-procs is handled. [Section 5.4]

• If DISK0 is used, one simply needs to assign n unused sectors as the back-
ing store for the n kusegshare pages.

• If each U-proc is using its preloaded flash device for its backing store [Sec-
tion 4.2.2], the recommendation is to use blocks [32..(32+n-1)] on FLASH0
as the backing store for the n kusegshare pages. This has the concomitant ef-
fect of increasing the number of blocks which are “off limits,” for FLASH0,
with respect to Flash Put (SYS16) & Flash Get (SYS17) operations.

7.1.4 Updates to the Pager
The Pager also needs to be updated in a manner similar to the TLB-Refill event
Handler. Any update to a Page Table must first check the VPN to determine
which Page Table is to be updated: a U-proc’s private Page Table or the shared
kusegshare Page Table. Similarly, the VPN will determine which backing store
area is to written to/read from.

There is one unique wrinkle that the Pager must now account for. Consider
the case where the Pager is handling a page fault on a shared page and another
U-proc generates a page fault for the same page. Because of mutual exclusion,

7.2. A SEMAPHORE SERVICE FOR LOGICAL ADDRESSES 87

this second U-proc will wait (on the Swap Pool semaphore) until the conclusion
of the first U-proc’s page fault. When the second U-proc eventually continues, it
will proceed in the Pager as if the shared page is still missing – when in fact it was
just read in as a result of the first U-proc’s page fault.

To handle this case the Pager must be amended in the following manner.
Perform the same initial five steps as before. [Section 4.4.2] After gaining mu-
tual exclusion over the Swap Pool table (SYS3 – P operation on the Swap Pool
semaphore):

1. If the VPN for the missing page belongs in kusegshare, check the kusegshare

Page Table to see if the page is still missing.

2. If yes, continue with normal page fault processing. If no, skip to the end of
the Pager: Return control to the Current Process to retry the instruction that
caused the page fault: LDST on the saved exception state.

7.2 A Semaphore Service for Logical Addresses
The Semaphore Service for logical addresses allows a requesting U-proc to re-
quest a P or V operation on a semaphore with a logical address in kusegshare.
Since U-proc’s run in user-mode and are restricted to only using logical addresses,
the Nucleus SYS3/SYS4 service is not available to U-proc’s wishing to coordinate
their cooperation (i.e. shared use of kusegshare) through the use of semaphores.

7.2.1 P Logical Semaphore (SYS19)
This service performs a P operation on a semaphore whose address is logical (in
kusegshare).

The P or SYS19 service is requested by the calling U-proc by placing the value
19 in a0, the logical address of the semaphore to be P’ed in a1, and then executing
a SYSCALL instruction.

Attempting to perform a P operation on an address outside of kusegshare is an
error and should result in the U-proc being terminated (SYS9).

The following C code can be used to request a SYS19:

void SYSCALL (PSEMLOGICAL, int *semAddr, 0, 0)

Where the mnemonic constant PSEMLOGICAL has the value of 19.

88 CHAPTER 7. PHASE 6 - LEVEL 7: COOPERATING USER PROCESSES

7.2.2 V Logical Semaphore (SYS20)

This service performs a V operation on a semaphore whose address is logical (in
kusegshare).

The V or SYS20 service is requested by the calling U-proc by placing the
value 20 in a0, the logical address of the semaphore to be V’ed in a1, and then
executing a SYSCALL instruction.

Attempting to perform a V operation on an address outside of kusegshare is an
error and should result in the U-proc being terminated (SYS9).

The following C code can be used to request a SYS20:

void SYSCALL (VSEMLOGICAL, int *semAddr, 0, 0)

Where the mnemonic constant VSEMLOGICAL has the value of 20.

7.3 Implementation Details

As with the Delay Facility [Chapter 6], there are two issues that need addressing
for the implementation of this Logical Semaphore Service: where to place a U-
proc blocked on a logical-address semaphore, and how to keep track of which U-
proc’s are blocked on a given semaphore so that they can be awoken (i.e. placed
on the Ready Queue) at the appropriate time; when a V (SYS20) operation is
requested for the specified semaphore.

The solution described below is very similar to the Delay Facility. [Section
6.2] The primary difference is that instead of a Delay Daemon, U-procs become
unblocked/woken by another U-proc executing a V operation (SYS20).

7.3.1 Where to Store Blocked U-proc’s

When a U-proc performs a P (SYS19) operation on a logical-address semaphore
and the value of the semaphore becomes < 0 (i.e. the U-proc is to be blocked),
the Logical Semaphore Service should perform a P (SYS3) operation on the re-
questing U-proc’s private semaphore. [Section 6.2.1]

7.3. IMPLEMENTATION DETAILS 89

7.3.2 Keeping Track of Blocked U-proc’s
The Logical Semaphore Service needs to maintain a list of U-proc’s blocked be-
cause of a P (SYS19) operation. The following implementation is suggested:
Maintain a queue of logical semaphore descriptor nodes (logicalSemd t).
This queue, as with pcb queues [Section 2.2], should be double, circularly linked,
and pointed to by a tail pointer (blockedUprocs). The queue blockedUprocs
points to will represent the (partially) ordered collection of U-proc’s blocked be-
cause of a P (SYS19) operation: the Active Logical Semaphore List (ALSL).

Maintain a second list of logical semaphore descriptor nodes, the logicalSemd-
Free list, to hold the unused logical semaphore descriptor nodes. This list, whose
head is pointed to by the variable logicalSemdFree h, is kept, like the de-
laydFree, pcbFree, and semdFree lists, as a NULL-terminated single linearly
linked list (using the ls next field).

The logical semaphore descriptor nodes themselves should be declared, like
the ASL’s semaphore descriptors, as a static array of size UPROCMAX of type
logicalSemd t.

The fields of a logical semaphore descriptor node (logicalSemd t) are:

• A logicalSemd t *ls next pointer field.

• A logicalSemd t *ls prev pointer field.

• A int ls semAddr field. The logical address of the semaphore.

• A support t *ls supStruct pointer to a Support Structure, denoting
the blocked U-proc’s identity.

When a U-proc is to be blocked as a result of a P (SYS19) request, in addition
to performing a P (SYS3) operation on the U-proc’s private semaphore, a logi-
cal semaphore descriptor node needs to be allocated from the logicalSemdFree
list, populated with appropriate values, and enqueued onto the ALSL.

When a U-proc is to be unblocked as a result of a V (SYS20) request, a linear
search, starting from the head of the queue, is made of the ALSL for a logi-
cal semaphore descriptor node with a matching ls semAddr field. This node
is removed from the ALSL and returned to the logicalSemdFree list. Finally a V
(SYS4) operation is performed on the indicated U-proc’s private semaphore.

By enqueueing new nodes at the end/tail of ALSL, and searching for matching
semaphore addresses linearly starting from the ALSL’s head, proper semantics are
maintained when there is more than one U-proc blocked on the same semaphore.

90 CHAPTER 7. PHASE 6 - LEVEL 7: COOPERATING USER PROCESSES

7.4 Nuts and Bolts
On the surface, there is a lot in common between the Logical Semaphore Service
and both the Delay facility and the ASL. Each module initializes a free list of
unallocated nodes in addition to an “active” list. Furthermore, each module has
two list pointers (active and free) in addition to an initialization function which
statically declares an array of descriptor nodes and places all these nodes on the
free list.

7.4.1 Implementing SYS19
The SYS19 service performs the following function:
Decrement the semaphore and if < 0 block the executing U-proc by doing the
following, otherwise, return control (LDST) to the U-proc at the instruction im-
mediately following the SYS19.

1. Allocate a logical semaphore descriptor node from the free list, populate it,
and insert it into its proper location on the active list (ALSL).

2. Perform a P (SYS3) operation on the U-proc’s private semaphore; a field in
the Support Structure.

Two considerations must be taken into account:

• The ALSL is a shared data structure, accessed by both the SYS19 code and
the SYS20 code. Hence, access to the ALSL must be done in a mutually ex-
clusive manner to avoid race conditions. Therefore, the Logical Semaphore
Service must also implement a mutual exclusion ALSL semaphore (i.e. ini-
tialized to one). This semaphore must be SYS3/P’ed prior to any access of
the ALSL, and then SYS4/V’ed upon conclusion of any access.

• At the conclusion of SYS19 is a call to SYS3/P on the U-proc’s private
semaphore. However, this call must be made after the SYS4/V call on the
ALSL semaphore; otherwise the U-proc will be put to sleep while holding
mutual exclusion over the ALSL. Hence, one must first release the mutual
exclusion over the ALSL semaphore (SYS4/V) and then block the calling
U-proc on its private semaphore (SYS3/P). Furthermore, these two actions
must be done atomically.

The complete sequence of steps to be performed for a SYS19 is:

7.4. NUTS AND BOLTS 91

1. Check the semAddr parameter and terminate (SYS9) the U-proc if the
address is not in the first n pages of kusegshare.

2. Decrement the semaphore and if its value is < 0, continue with the follow-
ing steps, otherwise return control (LDST) to the U-proc at the instruction
immediately following the SYS19.

3. Obtain mutual exclusion over the ALSL: SYS3/P on the ALSL semaphore.

4. Allocate a logical semaphore descriptor node from the free list, populate
it and enqueue it at the tail of the ALSL. If this operation is unsuccessful,
terminate (SYS9) the U-proc – after releasing mutual exclusion over the
ALSL.

5. Release mutual exclusion over the ALSL: SYS4/V on the ALSL semaphore
AND execute a SYS3/P on the U-proc’s private semaphore atomically. This
will block the executing U-proc.

6. Return control (LDST) to the U-proc at the instruction immediately fol-
lowing the SYS19. This step will not be executed until after the U-proc is
awoken.

7.4.2 Implementing SYS20
The SYS20 service performs the following function:
Increment the semaphore and if≤ 0 unblock the U-proc that has been blocked the
longest on this semaphore by doing the following, and then return control (LDST)
to the U-proc at the instruction immediately following the SYS20.

1. Find and deallocate the “oldest” logical semaphore descriptor node match-
ing the given semAddr from the ALSL.

2. Perform a V (SYS4) operation on the private semaphore of the U-proc rep-
resented by the newly deallocated logical semaphore descriptor node.

Since the ALSL is a shared data structure, access to it must be done in a
mutually exclusive manner. Hence, the ALSL semaphore must be SYS3/P’ed
prior to any access of the ALSL, and then SYS4/V’ed upon conclusion of any
access.

The complete sequence of steps to be performed for a SYS20 is:

92 CHAPTER 7. PHASE 6 - LEVEL 7: COOPERATING USER PROCESSES

1. Check the semAddr parameter and terminate (SYS9) the U-proc if the
address is not in the first n pages of kusegshare.

2. Increment the semaphore and if its value is ≤ 0, continue with the follow-
ing steps, otherwise return control (LDST) to the U-proc at the instruction
immediately following the SYS19.

3. Obtain mutual exclusion over the ALSL: SYS3/P on the ALSL semaphore.

4. Linearly search the ALSL, starting from the queue’s head, for a logical semaphore
descriptor node whose ls semAddr matches the semAddr SYS20 pa-
rameter.

5. If no matching node is found, release mutual exclusion over the ALSL
(SYS4 on the ALSL semaphore) and return control (LDST) to the U-proc
at the instruction immediately following the SYS19, otherwise continue.

6. Deallocate the matching node from the ALSL and perform a V (SYS4)
operation on the private semaphore of the U-proc represented by the newly
deallocated logical semaphore descriptor node.

7. Release mutual exclusion over the ALSL: SYS4/V on the ALSL semaphore.

8. Return control (LDST) to the U-proc at the instruction immediately follow-
ing the SYS19.

7.4.3 Initializing the ALSL

Initializing the ALSL is facilitated by the InstantiatorProcess [Section 4.9] which
invokes the ALSL function initALSL().
To initialize the ALSL:

1. Add each element from the static array of logical semaphore descriptor
nodes to the free list (logicalSemdFree).

2. set the active list pointer (blockedUprocs) to NULL.

7.5. TESTING 93

7.4.4 Breaking Down the Logical Semaphore Service
The Delay Facility should be encapsulated in a single file: e.g. alsl.c. This file
should contain:

• initALSL: The function to initialize the ALSL. [Section 7.4.3]

• The function to implement SYS19. [Section 7.4.1]

• The function to implement SYS20. [Section 7.4.2]

• Functions for maintaining the ALSL’s freelist and active list: allocate, deal-
locate, node search, node insertion, and node removal.

7.5 Testing
Two of the provided U-proc test programs (pvTestA.c & pvTestB.c) will “exer-
cise” your SYS19 & SYS20 P/V for logical addresses code. [Appendix A]

A
Provided Test Files

A.1 Level 2/Phase 1 Test
One test file is provided for Level 2/Phase 1: p1test.c
This test program reports on its progress by writing messages to TERMINAL0.
These messages are also added to one of two memory buffers; errbuf for error
messages and okbuf for all other messages. At the conclusion of the test pro-
gram, either successful or unsuccessful, µMPS3 will display a final message and
then enter an infinite loop. The final message will either be System Halted for
successful termination, or Kernel Panic for unsuccessful termination.

A.2 Level 3/Phase 2 Test
Another test file is provided for Level 3/Phase 2: p2test.c
This test code assumes that the TLB Floor Address has been set to any value
except VM OFF. The value of the TLB Floor Address is a user configurable value
set via the µMPS3 Machine Configuration Panel. [Chapter 12]

The test program reports on its progress by writing messages to TERMINAL0.
At the conclusion of the test program, either successful or unsuccessful, µMPS3
will display a final message and then enter an infinite loop. The final message

94

A.3. LEVEL 4/PHASE 3 TEST FILES 95

will either be System Halted for successful termination, or Kernel Panic for
unsuccessful termination.

A.3 Level 4/Phase 3 Test Files

Test files for Level 4/Phase 3 consist of U-procs. The supplied U-proc programs
also come with their own Makefile configured to compile, link (using the U-proc
linker script, crtsi.o), create a corresponding flash device (a .umps file) [Sec-
tion 11.2-pops], and preload the U-proc’s load image on to a flash device. See
Chapter 10 in the POPS reference for more compilation details.

The recommended directory structure is to create a testers directory parallel
to the other Pandos directories: h, phase1, phase2, phase3, etc. [Section 1.2]

To run multiple U-procs in their identically configured logical address space
(kuseg), the TLB Floor Address must be set to either 0x4000.0000 or 0x8000.0000.
The value of the TLB Floor Address is a user configurable value set via the µMPS3
Machine Configuration Panel. [Chapter 12-pops]

One also uses the µMPS3 Machine Configuration Panel to map a flash device’s
.umps “file” with the corresponding µMPS3 flash device. [Section 12.2.1-pops]
Simply use the Browse button to locate the appropriate .umps file (in the testers
directory) and enable the device via the checkbox.

The supplied test files for Level 4/Phase 3 are:

1. fibTen.c - This long compute job recursively computes the tenth fibonacci
number. This program calls Terminate (SYS9) and Write To Terminal (SYS12).
It is a simple matter to create isomorphic versions (e.g. fibNine) for con-
trolled concurrency testing, as well as to direct output to a printer (Write To Printer
- SYS11) instead of the terminal. Finally, instead of hardcoding 10, an in-
teractive version is easily created using Read From Terminal (SYS13) to
acquire, from a user, which fibonacci number should be computed.

2. printerTest.c - A trivial program which calls Terminate (SYS9), Write To Printer
(SYS11), and Write To Terminal (SYS12).

3. strConcat.c - Exercises Terminate (SYS9), Write To Terminal (SYS12)
and Read From Terminal (SYS13). Two different strings are read in from
the user and their concatenated version is then written back to the terminal.
terminalReader.c is a simpler “echo” program.

96 APPENDIX A. PROVIDED TEST FILES

4. terminalTest.c - A trivial program which calls Terminate (SYS9) and Write To Terminal
(SYS12). It is a simple matter to create isomorphic versions (e.g. terminal-
Test1.c for controlled concurrency testing.

5. timeOfDay.c - Exercises Get TOD (SYS10), and Write To Terminal (SYS12).
At its conclusion it attempts to (illegally) execute a SYS6 which should
cause the program to terminate.

6. swapStress.c - Exercises Terminate (SYS9) and Write To Terminal (SYS12).
However, it also writes values into ten additional pages of the U-proc’s log-
ical address space forcing the Pager to perform page replacements. Finally,
termination should be caused by providing an illegal address to a SYS12
operation. SYS9 is only invoked if Pandos failed to terminate the program
due to the resulting error.

Each of these programs uses (i.e. # includes) a common set of constants (tconst.h)
and a print to device (printer or terminal) function (print.c & print.h).

A.4 Additional Test Files

The following additional test files are provided for exercising the SYSCALLs
from the additional layers of Pandos.

1. diskIOtest.c - Exercises Disk Put (SYS14) and Disk Get (SYS15) by writ-
ing special values into various disk sectors and then reading them back to
check the correctness of the operation. Finally, termination is caused by
various illegal operations; which if none successfully cause termination, a
final call to SYS9 is made.

2. delayTest.c - Exercises Delay (SYS18) in a manner very similar to time-
OfDay.c

3. pvTestA.c & pvTestB.c - Exercises P Logical Semaphore (SYS19) and
V Logical Semaphore (SYS20). Using the first page of kusegshare, these
two processes operate in a producer/consumer mode using semaphores (also
from the first page of kusegshare) for coordination.

A.4. ADDITIONAL TEST FILES 97

A.4.1 New Test Files

One need not be limited by the small set of provided test files. Pandos au-
thors are strongly encouraged to write their own programs to run on Pandos.
There are very few experiences in computing more satisfying then running
one’s own program on one’s own operating system!

Bibliography

[1] ALVISI, L., AND SCHNEIDER, F. A graphical interface for CHIP. Tech.
rep., Cornell University, 1996. Technical Report TR 96-1587.

[2] BABAOGLU, O., BUSSAN, M., DRUMMOND, R., AND SCHNEIDER, F.
Documentation for the CHIP computer system, 1988.

[3] BABAOGLU, O., AND SCHNEIDER, F. The HOCA operating system speci-
fications, 1990.

[4] DIJKSTRA, E. The structure of the THE-multiprogramming system. Com-
mun. ACM 11, 3 (may 1968).

[5] GOLDWEBER, M., AND DAVOLI, R. µMPS Principles of Operation.
Lulu.com, 2005.

[6] GOLDWEBER, M., AND DAVOLI, R. Student Guide to the Kaya Operating
System Project. Lulu.com, 2005.

[7] GOLDWEBER, M., AND DAVOLI, R. µMPS2 Principles of Operation.
Lulu.com, 2011.

[8] GOLDWEBER, M., AND DAVOLI, R. Student Guide to the Kaya Operating
System Project, 2 ed. Lulu.com, 2011.

[9] GOLDWEBER, M., AND DAVOLI, R. µMPS3 Principles of Operation.
Lulu.com, 2020.

[10] MORSIANI, M. ICARO.S resource page.
http://www.cs.unibo.it/mps/icaros.html.

[11] MORSIANI, M. MPS resource page. http://www.cs.unibo.it/mps.

98

BIBLIOGRAPHY 99

[12] MORSIANI, M., AND DAVOLI, R. Learning operating systems structure
and implementation through the MPS computer system simulator. In Pro-
ceedings of the 30th SIGCSE Technical Symposium on Computer Science
Education (1999).

