
ext2 File System Walkthrough

• The main thing to remember about file systems is that
they are ultimately data structures — knowing a file
system is a matter of knowing how to interpret the
sequence of bytes/blocks that it writes onto a disk

• Implementing a file system is a matter of designing a
scheme for how the bytes/blocks in a volume can be
organized into files, directories, and other constructs,
then implementing this scheme in code

• To drive these points home, we’ll walk through a raw
image of a particular file system: Linux’s ext2

• The information in this walkthrough was produced
through a 2-megabyte disk image, on which an “empty”
ext2 file system was installed

• The disk image was then mounted and modified:
Two files, hello.txt and goodbye.txt were placed in the root directory

A subdirectory, mydir, was also placed at the root

Two links were placed in mydir: a symbolic link to hello.txt, and a hard link to goodbye.txt

• Two utilities help in the walkthrough: dumpe2fs displays
the superblock in a more readable form, and hexdump
displays the raw bytes on the disk image

Preliminaries and Tools

Filesystem volume name: <none>
Last mounted on: <not available>
Filesystem UUID: ab1e9464-f4a2-480d-81c0-e7f05df99988
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal filetype sparse_super
Default mount options: (none)
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 256
Block count: 2048
Reserved block count: 102
Free blocks: 965
Free inodes: 241
First block: 1
Block size: 1024
Fragment size: 1024
Blocks per group: 8192
Fragments per group: 8192
Inodes per group: 256
Inode blocks per group: 32
Filesystem created: Tue Apr 4 17:28:08 2006
Last mount time: Tue Apr 11 14:38:24 2006
Last write time: Tue Apr 11 14:39:05 2006
Mount count: 7
Maximum mount count: 23
Last checked: Tue Apr 4 17:28:08 2006
Check interval: 15552000 (6 months)
Next check after: Sun Oct 1 17:28:08 2006
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 128
Journal inode: 8
Default directory hash: tea
Directory Hash Seed: 8d91c7c3-5116-4b71-b7ac-255d6907d8a1
Journal backup: inode blocks

Group 0: (Blocks 1-2047)
 Primary superblock at 1, Group descriptors at 2-2
 Block bitmap at 3 (+2), Inode bitmap at 4 (+3)
 Inode table at 5-36 (+4)
 965 free blocks, 241 free inodes, 3 directories
 Free blocks: 1082-1088, 1090-2047
 Free inodes: 16-256

Superblock: dumpe2fs helps
us get our bearings, but in the
end it’s just a helper — in
ext2, the superblock C
structure maps directly onto
what’s written to the disk

• 2048 blocks * 1024 bytes per block = 2
megabytes (“mebibytes” by today’s latest
terminology) — take note, 1024 is 400 hex

• 128 bytes per inode: 80 hex

• Groups form an intermediate structure
within an ext2 volume; the superblock and
group descriptors are copied within each
group in case of corruption

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000400 00 01 00 00 00 08 00 00 66 00 00 00 c5 03 00 00 |........f.......|
00000410 f1 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 |................|
00000420 00 20 00 00 00 20 00 00 00 01 00 00 d0 21 3c 44 |.!<D|
00000430 f9 21 3c 44 07 00 17 00 53 ef 01 00 01 00 00 00 |.!<D....S.......|
00000440 18 0f 33 44 00 4e ed 00 00 00 00 00 01 00 00 00 |..3D.N..........|
00000450 00 00 00 00 0b 00 00 00 80 00 00 00 04 00 00 00 |................|
00000460 02 00 00 00 01 00 00 00 ab 1e 94 64 f4 a2 48 0d |...........d..H.|
00000470 81 c0 e7 f0 5d f9 99 88 00 00 00 00 00 00 00 00 |....]...........|
00000480 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
000004e0 08 00 00 00 00 00 00 00 00 00 00 00 8d 91 c7 c3 |................|
000004f0 51 16 4b 71 b7 ac 25 5d 69 07 d8 a1 02 01 00 00 |Q.Kq..%]i.......|
00000500 00 00 00 00 00 00 00 00 18 0f 33 44 32 00 00 00 |..........3D2...|
00000510 33 00 00 00 34 00 00 00 35 00 00 00 36 00 00 00 |3...4...5...6...|
00000520 37 00 00 00 38 00 00 00 39 00 00 00 3a 00 00 00 |7...8...9...:...|
00000530 3b 00 00 00 3c 00 00 00 3d 00 00 00 3e 00 00 00 |;...<...=...>...|
00000540 3f 01 00 00 00 00 00 00 00 00 00 00 00 00 10 00 |?...............|
00000550 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

struct ext2_super_block {
	 __le32	 s_inodes_count;		 /* Inodes count */
	 __le32	 s_blocks_count;		 /* Blocks count */
	 __le32	 s_r_blocks_count;	 /* Reserved blocks count */
	 __le32	 s_free_blocks_count;	 /* Free blocks count */
	 __le32	 s_free_inodes_count;	 /* Free inodes count */
	 __le32	 s_first_data_block;	/* First Data Block */
	 __le32	 s_log_block_size;	 /* Block size */
	 __le32	 s_log_frag_size;	 /* Fragment size */
	 __le32	 s_blocks_per_group;	/* # Blocks per group */
	 __le32	 s_frags_per_group;	 /* # Fragments per group */
	 __le32	 s_inodes_per_group;	/* # Inodes per group */
	 __le32	 s_mtime;	 	 /* Mount time */
	 __le32	 s_wtime;	 	 /* Write time */
	 __le16	 s_mnt_count;	 	 /* Mount count */
	 __le16	 s_max_mnt_count;	 /* Maximal mount count */
	 __le16	 s_magic;	 	 /* Magic signature */
	 __le16	 s_state;	 	 /* File system state */
	 __le16	 s_errors;	 	 /* Behaviour when detecting errors */
	 __le16	 s_minor_rev_level; 	/* minor revision level */
	 __le32	 s_lastcheck;	 	 /* time of last check */
	 __le32	 s_checkinterval;	 /* max. time between checks */
	 __le32	 s_creator_os;	 	 /* OS */
	 __le32	 s_rev_level;	 	 /* Revision level */
	 __le16	 s_def_resuid;	 	 /* Default uid for reserved blocks */
	 __le16	 s_def_resgid;	 	 /* Default gid for reserved blocks */
	 __le32	 s_first_ino; 	 	 /* First non-reserved inode */
	 __le16 s_inode_size; 		 /* size of inode structure */
	 __le16	 s_block_group_nr; 	 /* block group # of this superblock */
	 __le32	 s_feature_compat; 	 /* compatible feature set */
	 __le32	 s_feature_incompat; 	 /* incompatible feature set */
	 __le32	 s_feature_ro_compat; 	 /* readonly-compatible feature set */
	 __u8	 s_uuid[16];		 /* 128-bit uuid for volume */
	 char	 s_volume_name[16]; 	/* volume name */
	 char	 s_last_mounted[64]; 	 /* directory where last mounted */
	 __le32	 s_algorithm_usage_bitmap; /* For compression */
	 __u8	 s_prealloc_blocks;	 /* Nr of blocks to try to preallocate*/
	 __u8	 s_prealloc_dir_blocks;	 /* Nr to preallocate for dirs */
	 __u16	 s_padding1;
	 __u8	 s_journal_uuid[16];	/* uuid of journal superblock */
	 __u32	 s_journal_inum;		 /* inode number of journal file */
	 __u32	 s_journal_dev;	 	 /* device number of journal file */
	 __u32	 s_last_orphan;	 	 /* start of list of inodes to delete */
	 __u32	 s_hash_seed[4];		 /* HTREE hash seed */
	 __u8	 s_def_hash_version;	/* Default hash version to use */
	 __u8	 s_reserved_char_pad;
	 __u16	 s_reserved_word_pad;
	 __le32	 s_default_mount_opts;
 	 __le32	 s_first_meta_bg; 	 /* First metablock block group */
	 __u32	 s_reserved[190];	 /* Padding to the end of the block */
};

• Note how “reading” the superblock is a
matter of following its corresponding C
structure from the ext2 source code

• Other file systems might not be quite so
direct, requiring additional decoding

• For conciseness, hexdump skips sequences of
00 bytes, and marks them with a “*”

• hexdump can also place ASCII on the right;
these settings are activated with the -C
(“canonical”) switch

Group descriptor: Again,
as long as you have the C
structure, it’s fairly easy to
read in its raw form

struct ext2_group_desc
{
	 __le32	 bg_block_bitmap;	 	 /* Blocks bitmap block */
	 __le32	 bg_inode_bitmap;	 	 /* Inodes bitmap block */
	 __le32	 bg_inode_table;		 /* Inodes table block */
	 __le16	 bg_free_blocks_count;	 /* Free blocks count */
	 __le16	 bg_free_inodes_count;	 /* Free inodes count */
	 __le16	 bg_used_dirs_count;	/* Directories count */
	 __le16	 bg_pad;
	 __le32	 bg_reserved[3];
};

00000800 03 00 00 00 04 00 00 00 05 00 00 00 c5 03 f1 00 |................|
00000810 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000820 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

• At this point, you can start “doing the math”

• Since the inode table starts at block 5, and
blocks are 1024 bytes long, then you can
expect to see the inodes at the linear hex
location 5 * 400 = 1400

• Data blocks 3 and 4 (locations c000 and
1000, respectively) are straightforward bit
fields indicating what’s available (if the bit is
set, then the corresponding entity has been
allocated for use)

00000c00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
*
00000c80 ff ff ff ff ff ff ff 01 01 00 00 00 00 00 00 00 |................|
00000c90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000cf0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 80 |................|
00000d00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
*

00001000 ff 7f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
*

00001400 00 00 00 00 00 00 00 00 18 0f 33 44 18 0f 33 44 |..........3D..3D|
00001410 18 0f 33 44 00 00 00 00 00 00 00 00 00 00 00 00 |..3D............|
00001420 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001480 ed 41 f4 03 00 04 00 00 ef 21 3c 44 9d 21 3c 44 |.A.......!<D.!<D|
00001490 9d 21 3c 44 00 00 00 00 f4 03 04 00 02 00 00 00 |.!<D............|
000014a0 00 00 00 00 00 00 00 00 25 00 00 00 00 00 00 00 |........%.......|
000014b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001780 80 81 00 00 00 00 10 00 00 00 00 00 18 0f 33 44 |..............3D|
00001790 18 0f 33 44 00 00 00 00 00 00 01 00 0c 08 00 00 |..3D............|
000017a0 00 00 00 00 00 00 00 00 32 00 00 00 33 00 00 00 |........2...3...|
000017b0 34 00 00 00 35 00 00 00 36 00 00 00 37 00 00 00 |4...5...6...7...|
000017c0 38 00 00 00 39 00 00 00 3a 00 00 00 3b 00 00 00 |8...9...:...;...|
000017d0 3c 00 00 00 3d 00 00 00 3e 00 00 00 3f 01 00 00 |<...=...>...?...|
000017e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001900 c0 41 00 00 00 30 00 00 ec 21 3c 44 18 0f 33 44 |.A...0...!<D..3D|
00001910 18 0f 33 44 00 00 00 00 00 00 02 00 18 00 00 00 |..3D............|
00001920 00 00 00 00 00 00 00 00 26 00 00 00 27 00 00 00 |........&...'...|
00001930 28 00 00 00 29 00 00 00 2a 00 00 00 2b 00 00 00 |(...)...*...+...|
00001940 2c 00 00 00 2d 00 00 00 2e 00 00 00 2f 00 00 00 |,...-......./...|
00001950 30 00 00 00 31 00 00 00 00 00 00 00 00 00 00 00 |0...1...........|
00001960 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001980 b0 81 f4 03 0d 00 00 00 6e 0f 33 44 71 0f 33 44 |........n.3Dq.3D|
00001990 71 0f 33 44 00 00 00 00 f4 03 01 00 02 00 00 00 |q.3D............|
000019a0 00 00 00 00 00 00 00 00 38 04 00 00 00 00 00 00 |........8.......|
000019b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
000019e0 00 00 00 00 34 3e 1d 2c 00 00 00 00 00 00 00 00 |....4>.,........|
000019f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001a00 f8 41 f4 03 00 04 00 00 d7 21 3c 44 83 21 3c 44 |.A.......!<D.!<D|
00001a10 83 21 3c 44 00 00 00 00 f4 03 02 00 02 00 00 00 |.!<D............|
00001a20 00 00 00 00 00 00 00 00 39 04 00 00 00 00 00 00 |........9.......|
00001a30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001a60 00 00 00 00 0b a7 c8 39 00 00 00 00 00 00 00 00 |.......9........|
00001a70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001a80 ff a1 f4 03 0c 00 00 00 d7 21 3c 44 83 21 3c 44 |.........!<D.!<D|
00001a90 83 21 3c 44 00 00 00 00 f4 03 01 00 00 00 00 00 |.!<D............|
00001aa0 00 00 00 00 00 00 00 00 2e 2e 2f 68 65 6c 6c 6f |........../hello|
00001ab0 2e 74 78 74 00 00 00 00 00 00 00 00 00 00 00 00 |.txt............|
00001ac0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001ae0 00 00 00 00 0c a7 c8 39 00 00 00 00 00 00 00 00 |.......9........|
00001af0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001b00 b0 81 f4 03 0d 00 00 00 28 48 33 44 9d 21 3c 44 |........(H3D.!<D|
00001b10 28 48 33 44 00 00 00 00 f4 03 02 00 02 00 00 00 |(H3D............|
00001b20 00 00 00 00 00 00 00 00 41 04 00 00 00 00 00 00 |........A.......|
00001b30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001b60 00 00 00 00 e6 32 42 c9 00 00 00 00 00 00 00 00 |.....2B.........|
00001b70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

Inodes: Based on the
information in the superblock
and group descriptor, we
expect the inodes to show up
at hex location 1400
• And indeed, they’re there; at 128 bytes per

inode, it’s easy to jump from one inode to
another — 128 is 80 hex, so we’ll find inodes
at 1400, 1480, 1500, 1580, etc.

• The first few inodes are reserved for system
use, as indicated in the source code:
/*
 * Special inode numbers
 */
#define	EXT2_BAD_INO	 	 1	 /* Bad blocks inode */
#define EXT2_ROOT_INO	 	 2	 /* Root inode */
#define EXT2_BOOT_LOADER_INO	 5	 /* Boot loader inode */
#define EXT2_UNDEL_DIR_INO	 6	 /* Undelete directory inode */

/* First non-reserved inode for old ext2 filesystems */
#define EXT2_GOOD_OLD_FIRST_INO	11

• To go on with reading the volume, we focus
on inode 2, which is the root directory’s
inode; since inode 1 is in 1400, we expect
inode 2 in 1480

Inode 11 (b hex) = 1400 + (80 * (b – 1)) = 1900

Inode Structure: As
you’ve probably guessed by
now, an ext2 inode is mapped
directly from its C structure

struct ext2_inode {
	 __le16	 i_mode;		 /* File mode */
	 __le16	 i_uid;	 	 /* Low 16 bits of Owner Uid */
	 __le32	 i_size;		 /* Size in bytes */
	 __le32	 i_atime;	 /* Access time */
	 __le32	 i_ctime;	 /* Creation time */
	 __le32	 i_mtime;	 /* Modification time */
	 __le32	 i_dtime;	 /* Deletion Time */
	 __le16	 i_gid;	 	 /* Low 16 bits of Group Id */
	 __le16	 i_links_count;	 /* Links count */
	 __le32	 i_blocks;	 /* Blocks count */
	 __le32	 i_flags;	 /* File flags */
	 union {
	 	 struct {
	 	 	 __le32 l_i_reserved1;
	 	 } linux1;
	 	 struct {
	 	 	 __le32 h_i_translator;
	 	 } hurd1;
	 	 struct {
	 	 	 __le32 m_i_reserved1;
	 	 } masix1;
	 } osd1;		 	 	 /* OS dependent 1 */
	 __le32	 i_block[EXT2_N_BLOCKS];/* Pointers to blocks */
	 __le32	 i_generation;	 /* File version (for NFS) */
	 __le32	 i_file_acl;	/* File ACL */
	 __le32	 i_dir_acl;	 /* Directory ACL */
	 __le32	 i_faddr;	 /* Fragment address */
	 union {
	 	 struct {
	 	 	 __u8	 l_i_frag;	 /* Fragment number */
	 	 	 __u8	 l_i_fsize;	 /* Fragment size */
	 	 	 __u16	 i_pad1;
	 	 	 __le16	 l_i_uid_high;	 /* these 2 fields */
	 	 	 __le16	 l_i_gid_high;	 /* were reserved2[0] */
	 	 	 __u32	 l_i_reserved2;
	 	 } linux2;
	 	 struct {
	 	 	 __u8	 h_i_frag;	 /* Fragment number */
	 	 	 __u8	 h_i_fsize;	 /* Fragment size */
	 	 	 __le16	 h_i_mode_high;
	 	 	 __le16	 h_i_uid_high;
	 	 	 __le16	 h_i_gid_high;
	 	 	 __le32	 h_i_author;
	 	 } hurd2;
	 	 struct {
	 	 	 __u8	 m_i_frag;	 /* Fragment number */
	 	 	 __u8	 m_i_fsize;	 /* Fragment size */
	 	 	 __u16	 m_pad1;
	 	 	 __u32	 m_i_reserved2[2];
	 	 } masix2;
	 } osd2;		 	 	 /* OS dependent 2 */
};

• Let’s start with the inode for the root
directory — the key information here, for
getting to the rest of the volume, is to locate
its first data block; in this case, it is also the
only data block, which is 25 (hex, of course)

00001480 ed 41 f4 03 00 04 00 00 ef 21 3c 44 9d 21 3c 44 |.A.......!<D.!<D|
00001490 9d 21 3c 44 00 00 00 00 f4 03 04 00 02 00 00 00 |.!<D............|
000014a0 00 00 00 00 00 00 00 00 25 00 00 00 00 00 00 00 |........%.......|
000014b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

• The rest of the fields should be easy to parse
out now; for instance, the root directory’s mode
is 41 ed or binary 0100 0001 1110 1101

• The 9 low-order bits correspond to the
traditional Unix permissions, rwxrwxrwx; this
directories permissions are thus rwxr-xr-x

• The 0100 on the high end indicates that this
inode represents a directory (S_IFDIR in stat.h)

Directories: A directory’s data block is an array of
directory entries; here’s the one for the root directory,
located at data block 25 or offset 9400

00009400 02 00 00 00 0c 00 01 02 2e 00 00 00 02 00 00 00 |................|
00009410 0c 00 02 02 2e 2e 00 00 0b 00 00 00 14 00 0a 02 |................|
00009420 6c 6f 73 74 2b 66 6f 75 6e 64 00 00 0c 00 00 00 |lost+found......|
00009430 14 00 09 01 68 65 6c 6c 6f 2e 74 78 74 00 00 00 |....hello.txt...|
00009440 0f 00 00 00 14 00 0b 01 67 6f 6f 64 62 79 65 2e |........goodbye.|
00009450 74 78 74 00 0d 00 00 00 ac 03 05 02 6d 79 64 69 |txt.........mydi|
00009460 72 62 79 65 2e 74 78 74 2e 73 77 70 00 00 00 00 |rbye.txt.swp....|
00009470 94 03 0c 01 67 6f 6f 64 62 79 65 2e 74 78 74 7e |....goodbye.txt~|
00009480 2e 73 77 78 00 00 00 00 00 00 00 00 00 00 00 00 |.swx............|
00009490 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

• As should be obvious at this point, we use the
directory entry’s C structure in the source
code to read the directory:

struct ext2_dir_entry_2 {
	 __le32	 inode;	 	 	 /* Inode number */
	 __le16	 rec_len;	 	 /* Directory entry length */
	 __u8	 name_len;	 	 /* Name length */
	 __u8	 file_type;
	 char	 name[EXT2_NAME_LEN];	 /* File name */
};

• Note how the current directory (“.”)
and parent directory (“..”) are stored
as explicit directory entries too; since
this is the root directory, it make
sense that both . and .. refer to the
same inode

So the file called hello.txt is in the
twelfth inode, and its directory
entry is 20 bytes long

The mydir directory entry is immediately
followed by what appears to be garbage —
you’re seeing the remnants of prior
directory entries that have since been
deleted or overwritten (see how the
filename is 5 bytes long, and how the
directory entry itself is 3ac bytes long —
i.e., the remainder of the data block!)

Files etc.: At last, we get to some actual files — the text
files are easy to locate, and additional directories are read in
the same way as the root directory

• hello.txt is in inode c, which translates
to offset 1980; the inode then says that
the file’s first data block is in overall
data block 0438

00001980 b0 81 f4 03 0d 00 00 00 6e 0f 33 44 71 0f 33 44 |........n.3Dq.3D|
00001990 71 0f 33 44 00 00 00 00 f4 03 01 00 02 00 00 00 |q.3D............|
000019a0 00 00 00 00 00 00 00 00 38 04 00 00 00 00 00 00 |........8.......|
000019b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

• Thus, the file’s data can be found at
offset 400 * 0438 = 10e000, and indeed
the bytes are there!

0010e000 48 65 6c 6c 6f 20 77 6f 72 6c 64 21 0a 00 00 00 |Hello world!....|
0010e010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
0010e400 0d 00 00 00 0c 00 01 02 2e 00 00 00 02 00 00 00 |................|
0010e410 0c 00 02 02 2e 2e 00 00 0f 00 00 00 14 00 0b 01 |................|
0010e420 67 6f 6f 64 62 79 65 2e 74 78 74 00 0e 00 00 00 |goodbye.txt.....|
0010e430 d4 03 09 07 68 65 6c 6c 6f 2e 74 78 74 00 00 00 |....hello.txt...|
0010e440 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

• mydir is in inode d (right after hello.txt’s
inode), and the file type of 02 indicates that
it is a directory; its first data block is 0439

00001a00 f8 41 f4 03 00 04 00 00 d7 21 3c 44 83 21 3c 44 |.A.......!<D.!<D|
00001a10 83 21 3c 44 00 00 00 00 f4 03 02 00 02 00 00 00 |.!<D............|
00001a20 00 00 00 00 00 00 00 00 39 04 00 00 00 00 00 00 |........9.......|
00001a30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

• Data block 0439 is at offset 10e400, which
should now be somewhat recognizable as an
array of directory entries (note how . and ..
now refer to different inodes)

Special Files: If we follow the directory entries in mydir,
we’ll notice a few more variations in how files are handled

0010e400 0d 00 00 00 0c 00 01 02 2e 00 00 00 02 00 00 00 |................|
0010e410 0c 00 02 02 2e 2e 00 00 0f 00 00 00 14 00 0b 01 |................|
0010e420 67 6f 6f 64 62 79 65 2e 74 78 74 00 0e 00 00 00 |goodbye.txt.....|
0010e430 d4 03 09 07 68 65 6c 6c 6f 2e 74 78 74 00 00 00 |....hello.txt...|
0010e440 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

• goodbye.txt is indicated to be in inode f, just like goodbye.txt in
the root directory — this is how hard links are implemented:
they just directory entries that refer to the same inode!

0010e400 0d 00 00 00 0c 00 01 02 2e 00 00 00 02 00 00 00 |................|
0010e410 0c 00 02 02 2e 2e 00 00 0f 00 00 00 14 00 0b 01 |................|
0010e420 67 6f 6f 64 62 79 65 2e 74 78 74 00 0e 00 00 00 |goodbye.txt.....|
0010e430 d4 03 09 07 68 65 6c 6c 6f 2e 74 78 74 00 00 00 |....hello.txt...|
0010e440 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

• hello.txt’s directory entry lists its file type as 07, which,
according to the source code, means a symbolic link

• When we look at inode e, we see that the symbolic link’s
path is stored in the inode itself, where the data blocks
would normally be:

/*
 * Ext2 directory file types. Only the
 * low 3 bits are used. The other bits
 * are reserved for now.
 */
enum {
	 EXT2_FT_UNKNOWN, /* 00 */
	 EXT2_FT_REG_FILE, /* 01 */
	 EXT2_FT_DIR, /* 02 */
	 EXT2_FT_CHRDEV, /* 03 */
	 EXT2_FT_BLKDEV, /* 04 */
	 EXT2_FT_FIFO, /* 05 */
	 EXT2_FT_SOCK, /* 06 */
	 EXT2_FT_SYMLINK, /* 07 */
	 EXT2_FT_MAX /* 08 */
};

00001a80 ff a1 f4 03 0c 00 00 00 d7 21 3c 44 83 21 3c 44 |.........!<D.!<D|
00001a90 83 21 3c 44 00 00 00 00 f4 03 01 00 00 00 00 00 |.!<D............|
00001aa0 00 00 00 00 00 00 00 00 2e 2e 2f 68 65 6c 6c 6f |........../hello|
00001ab0 2e 74 78 74 00 00 00 00 00 00 00 00 00 00 00 00 |.txt............|
00001ac0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*

