
“main” (Administration Guide) — 2003/7/18 — 8:55 — page 501 — #519

i

i

i

i

i

i

i

i

B
A

c
c

e
ss

C
o

n
tro

lLists
in

Lin
ux

Access Control Lists in Linux

This chapter provides a brief summary of the background and functions of
POSIX ACLs for Linux file systems. Learn how the traditional permission con-
cept for file system objects can be expanded with the help of ACLs (Access Con-
trol Lists) and which advantages this concept provides.

Advantages of ACLs . 502
Definitions . 503
Handling ACLs . 503
Outlook . 512

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 502 — #520

i

i

i

i

i

i

i

i

Advantages of ACLs

Note
POSIX ACLs

The term “POSIX ACL” suggests that this is a true POSIX (Portable Op-
erating System Interface) standard. However, the respective draft stan-
dards POSIX 1003.1e and POSIX 1003.2c have been withdrawn. Many
UNIX-flavoured operating systems based their ACL concepts on these
documents. The implementation of file system ACLs as described in this
chapter is based on the contents of these two documents, which can be
viewed at the following URL:

http://wt.xpilot.org/publications/posix.1e/

Note

Traditionally, a file object in Linux is associated with three sets of permissions.
These sets assign read (r), write (w), and execute (x) permissions for the three
user groups file owner, group, and other. Nine bits are used to determine the
characteristics of all objects in a Linux file system. Additionally, the set user id,
set group id, and sticky bits can be set for special cases. More details are revealed
in section Users and Access Permissions in the User Guide manual.

This lean concept is fully adequate for most practical cases. However, for more
complex scenarios or advanced applications, system administrators formerly
had to use a number of tricks to circumvent the limitations of the traditional
permission concept.

ACLs can be used for situations where the traditional file permission concept
does not suffice. They allow the assignment of permissions to individual users
or groups even if these do not correspond to the owner or the owning group.

Access Control Lists are a feature of the Linux kernel and are currently sup-
ported by ReiserFS, Ext2, Ext3, JFS, and XFS. Using ACLs, complex scenarios
can be realized without implementing complex permission models on the appli-
cation level.

The advantages of ACLs are clearly evident in situations such as the replace-
ment of a Windows server by a Linux server. Some of the connected worksta-
tions may continue to run under Windows even after the migration. The Linux
system offers file and print services to the Windows clients with Samba. As
Samba supports ACLs, user permissions can be configured both on the Linux
server and in Windows with a graphical user interface (only Windows NT and
later). With winbindd, it is even possible to assign permissions to users that only
exist in the Windows domain without any account on the Linux server. On the
server side, edit the Access Control Lists using getfacl and setfacl.

502 Advantages of ACLs

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 503 — #521

i

i

i

i

i

i

i

i

B
A

c
c

e
ss

C
o

n
tro

lLists
in

Lin
ux

Definitions

User class The conventional POSIX permission concept uses three classes of
users for assigning permissions in the file system: the owner, the own-
ing group, and other users. Three permission bits can be set for each user
class, giving permission to read (r), write (w), and execute (x). An intro-
duction to the user concept in Linux is provided in the User Guide in the
section Users and Access Permissions.

Access ACL The user and group access permissions for all kinds of file system
objects (files and directories) are determined by means of access ACLs.

Default ACL Default ACLs can only be applied to directories. They deter-
mine the permissions a file system object inherits from its parent directory
when it is created.

ACL entry Each ACL consists of a set of ACL entries. An ACL entry contains a
type (see Table B.1 on the following page), a qualifier for the user or group
to which the entry refers, and a set of permissions. For some entry types,
the qualifier for the group or users is undefined.

Handling ACLs

The following section explains the basic structure of an ACL and its various
characteristics. The interrelation between ACLs and the traditional permission
concept in the Linux file system is briefly demonstrated by means of several fig-
ures. Two examples show how you can create your own ACLs using the correct
syntax. In conclusion, find information about the way ACLs are interpreted by
the operating system.

Structure of ACL Entries

Basically, ACLs can be divided into two classes: A minimum ACL merely com-
prises the entries for the types owner, owning group, and other, which corre-
sponds to the conventional permission bits for files and directories. An extended
ACL exceeds this concept. It must contain a mask entry and may contain sev-
eral entries for the named user and named group types. Table B.1 on the next page
provides a brief summary of the various available types of ACL entries.

503SuSE Linux – Administration Guide

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 504 — #522

i

i

i

i

i

i

i

i

Type Text Form
owner user::rwx
named user user:name:rwx
owning group group::rwx
named group group:name:rwx
mask mask::rwx
other other::rwx

Table B.1: ACL Entry Types

The permissions defined in the entries owner and other are always effective. Ex-
cept for the mask entry, all other entries (named user, owning group, and named
group) can be either effective or masked. If permissions exist in one of the above-
mentioned entries as well as in the mask, they are effective. Permissions con-
tained only in the mask or only in the actual entry are not effective. The example
in Table B.2 demonstrates this mechanism.

Entry Type Text Form Permissions
named user user:jane:r-x r-x
mask mask::rw- rw-

effective permissions: r--

Table B.2: Masking Access Permissions

ACL Entries and File Mode Permission Bits

Figure B.1 on the next page and Figure B.2 on the facing page illustrate the two
cases of a minimum ACL and an extended ACL. The figures are structured in
three blocks — the left block shows the type specifications of the ACL entries,
the center block displays an example ACL, and the right block shows the respec-
tive permission bits as displayed by ls -l.

In both cases, the owner class permissions are mapped to the ACL entry owner.
The mapping of other class permissions to the respective ACL entry is also con-
stant. However, the mapping of the group class permissions varies:

In the case of a minimum ACL — without mask entry — the group class
permissions are mapped to the ACL entry owning group. This is shown in
Figure B.1 on the next page.

504 Handling ACLs

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 505 — #523

i

i

i

i

i

i

i

i

B
A

c
c

e
ss

C
o

n
tro

lLists
in

Lin
ux

−−− other
class

r−−
group
class

owner
classrw−user::rw−

group::r−−

other::−−−other

owning group

owner

Figure B.1: Minimum ACL: ACL Entries Compared to Permission Bits

In the case of an extended ACL — with mask entry — the group class per-
missions are mapped to the mask entry. This is shown in Figure B.2.

class
owner

class
group

class
other

user::rw−

user:jane:rw−

group::r−−

mask::rw−

rw−

−−−

rw−

owner

owning group

named user

mask

other other::−−−

Figure B.2: Extended ACL: ACL Entries Compared to Permission Bits

This mapping ensures the smooth interaction of applications with ACL support
and those without ACL support. The access permissions that were assigned by
means of the permission bits represent the upper limit for all other “fine adjust-
ments” made by means of ACLs. All permissions not reflected here were either
not set in the ACL or are not effective. If permission bits are changed, this is also
reflected in the respective ACL and vice versa.

A Directory with Access ACL

The handling of access ACLs is demonstrated in three steps by means of the
following example:

Creating a file system object (a directory in this case)

Modifying the ACL

505SuSE Linux – Administration Guide

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 506 — #524

i

i

i

i

i

i

i

i

Using masks

1. Before you create the directory, use the umask command to determine
which access permissions should be masked from the outset:

umask 027

The owner has all access permissions (read, write, execute) (0) and write
access is disabled for the owning group (2). All other users are denied all
kinds of access (7). The umask value can be read as a bit mask. Refer to
the manual page of umask for further details.

mkdir mydir

After creating the mydir directory with the permissions set by umask,
use the following command to check if all permissions were assigned cor-
rectly:

ls -dl mydir drwxr-x--- ... tux project3 ... mydir

2. Check the initial state of the ACL and insert a new user entry and a new
group entry.

getfacl mydir

file: mydir
owner: tux
group: project3
user::rwx
group::r-x
other::---

The output of getfacl precisely reflects the mapping of permission bits
and ACL entries as described in ACL Entries and File Mode Permission Bits
on page 504. The first three output lines display the name, owner, and
owning group of the directory. The next three lines contain the three ACL
entries owner, owning group, and other. In fact, in the case of this mini-
mum ACL, the getfacl command does not produce any information
you could not have obtained with ls.

Your first modification of the ACL is the assignment of read, write, and
execute permissions to an additional user jane and an additional group
djungle.

setfacl -m user:jane:rwx,group:djungle:rwx mydir

506 Handling ACLs

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 507 — #525

i

i

i

i

i

i

i

i

B
A

c
c

e
ss

C
o

n
tro

lLists
in

Lin
ux

The option -m prompts setfacl to modify the existing ACL. The fol-
lowing argument indicates the ACL entries to modify (several entries are
separated by commas). The final part specifies the name of the directory to
which these modifications should be applied.

Use the getfacl command to take a look at the resulting ACL.

getfacl mydir

file: mydir
owner: tux
group: project3
user::rwx
user:jane:rwx
group::r-x
group:djungle:rwx
mask::rwx
other::---

In addition to the entries initiated for the user jane and the group
djungle, a mask entry has been generated. This mask entry is set auto-
matically to reduce all entries in the group class to a common denominator.
Furthermore, setfacl automatically adapts existing mask entries to the
settings modified, provided you do not deactivate this feature with -n.
mask defines the maximum effective access permissions for all entries in
the group class. This includes: named user, named group, and owning group.
Thus, the mask entry corresponds to the group class permission bits that
would be displayed by ls -dl mydir as described in ACL Entries and
File Mode Permission Bits on page 504.

ls -dl mydir drwxrwx---+ ... tux project3 ... mydir

As expected, the group class permission bits now reflect the mask entry.
Additionally, the first column of the output contains a +, which points to
an extended ACL.

3. According to the output of the ls command, the permissions for the
mask entry include write access. Traditionally, permission bits of this kind
would indicate that the owning group (here: project3) also has write ac-
cess to the directory mydir. However, the effective access permissions
for the owning group are defined as the intersection of the permissions de-
fined for the owning group and mask — r-x in our example (see Table B.2
on page 504). Nothing changed here even after the addition of the ACL
entries.

507SuSE Linux – Administration Guide

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 508 — #526

i

i

i

i

i

i

i

i

Edit the mask entry with setfacl or chmod:

chmod g-w mydir
ls -dl mydir

drwxr-x---+ ... tux project3 ... mydir

getfacl mydir

file: mydir
owner: tux
group: project3
user::rwx
user:jane:rwx # effective: r-x
group::r-x
group:djungle:rwx # effective: r-x
mask::r-x
other::---

After having used the chmod command to disable the write access from
the group class bits, the output of the ls command is sufficient to see that
the mask bits were adjusted with chmod. This is even more evident from
the output of getfacl. getfacl adds comments for all entries whose
effective permission bits do not correspond to those originally set, as they
are filtered by the mask entry. Of course, you can use chmod to restore the
original state at any time:

chmod g+w mydir
ls -dl mydir

drwxrwx---+ ... tux project3 ... mydir

getfacl mydir

file: mydir
owner: tux
group: project3
user::rwx
user:jane:rwx
group::r-x
group:djungle:rwx
mask::rwx
other::---

508 Handling ACLs

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 509 — #527

i

i

i

i

i

i

i

i

B
A

c
c

e
ss

C
o

n
tro

lLists
in

Lin
ux

A Directory with a Default ACL

Directories can be equipped with a special kind of ACL — a default ACL. The
default ACL defines the access permissions all objects under this directory in-
herit when they are created. A default ACL affects subdirectories as well as files.

Effects of a Default ACL

Basically, the permissions in a default ACL are handed down in two ways:

A subdirectory inherits the default ACL of the parent directory both as its
own default ACL and as an access ACL.

A file inherits the default ACL as its own access ACL

All system calls that create file system objects use a mode parameter that defines
the access permissions for the newly created file system object:

If the parent directory does not have a default ACL, an intersection of
the permissions defined in the mode parameter and those in the current
umask is formed and assigned to the object.

If a default ACL exists for the parent directory, the permission bits are de-
termined according to the intersection of the value of the mode parameter
and the permissions defined in the default ACL and assigned to the ob-
ject.

Application of Default ACLs

The following three examples show the main operations for directories and de-
fault ACLs:

Creating a default ACL for an existing directory

Creating a subdirectory in a directory with default ACL

Creating a file in a directory with default ACL

1. Add a default ACL to the existing directory mydir:

setfacl -d -m group:djungle:r-x mydir

The option -d of the setfacl command prompts setfacl to perform
the following modifications (option -m) in the default ACL.

509SuSE Linux – Administration Guide

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 510 — #528

i

i

i

i

i

i

i

i

Take a closer look at the result of this command:

getfacl mydir

file: mydir
owner: tux
group: project3
user::rwx
user:jane:rwx
group::r-x
group:djungle:rwx
mask::rwx
other::---
default:user::rwx
default:group::r-x
default:group:djungle:r-x
default:mask::r-x
default:other::---

getfacl returns both the access ACL and the default ACL. The lines that
begin with default form the default ACL. Although you merely exe-
cuted the setfacl command with an entry for the djungle group for
the default ACL, setfacl automatically copied all other entries from
the access ACL to form a valid default ACL. Default ACLs do not have
a direct effect on access permissions, they only come into play when file
system objects are created. When handing down the permissions, only the
default ACL of the parent directory is taken into consideration.

2. In the next example, use mkdir to create a subdirectory in mydir, which
will “inherit” the default ACL.

mkdir mydir/mysubdir
getfacl mydir/mysubdir

file: mydir/mysubdir
owner: tux
group: project3
user::rwx
group::r-x
group:djungle:r-x
mask::r-x
other::---
default:user::rwx
default:group::r-x
default:group:djungle:r-x

510 Handling ACLs

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 511 — #529

i

i

i

i

i

i

i

i

B
A

c
c

e
ss

C
o

n
tro

lLists
in

Lin
ux

default:mask::r-x
default:other::---

As expected, the newly-created subdirectory mysubdir has the permis-
sions from the default ACL of the parent directory. The access ACL of
mysubdir is an exact reflection of the default ACL of mydir, just as the
default ACL that this directory will hand down to its subordinate objects.

3. Use touch to create a file in the mydir directory:

touch mydir/myfile
ls -l mydir/myfile

-rw-r-----+ ... tux project3 ... mydir/myfile

getfacl mydir/myfile

file: mydir/myfile
owner: tux
group: project3
user::rw-
group::r-x # effective:r--
group:djungle:r-x # effective:r--
mask::r--
other::---

Important in this example: touch passes on mode with the value 0666,
which means that new files are created with read and write permissions
for all user classes, provided no other restrictions exist in umask or in the
default ACL (see Effects of a Default ACL on page 509).

If effect, this means that all access permissions not contained in the mode
value are removed from the respective ACL entries. Although no permis-
sions were removed from the ACL entry of the group class, the mask entry
was modified to mask permissions not set via mode.

This approach ensures the smooth interaction of applications, such as
compilers, with ACLs. The compiler can create files with restricted ac-
cess permissions and subsequently mark them as executable simply by
changing the file mode permission bits with chmod. The mask mechanism
makes sure that the respective users and groups are assigned the permis-
sions they are granted in the default ACL.

511SuSE Linux – Administration Guide

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 512 — #530

i

i

i

i

i

i

i

i

The ACL Check Algorithm

The following section provides brief information on the check algorithm ap-
plied to all processes or applications before they are granted access to an ACL-
protected file system object. As a basic rule, the ACL entries are examined in the
following sequence: owner, named user, owning group or named group, and other.
The access is handled in accordance with the entry that best suits the process;
permissions do not accumulate.

Things are more complicated if a process belongs to more than one group and
would potentially suit several group entries. An entry is randomly selected from
the suitable entries with the required permissions. It is irrelevant which of the
entries triggers the final result “access granted”. Likewise, if none of the suit-
able group entries contains the correct permissions, a randomly selected entry
triggers the final result “access denied”.

Outlook

As described in the preceding sections, ACLs can be used to implement very
complex permission scenarios that fully meet modern applications. The tradi-
tional permission concept and ACLs can be combined in a smart manner.

However, some important applications still lack ACL support. Except for the
star archiver, there are no backup applications that guarantee the full preserva-
tion of ACLs during a backup.

Basic file commands (cp, mv, ls, etc.) already support ACLs. Editors and file
managers (such as Konqueror) do not yet offer any ACL support. ACLs keep
getting lost when files are copied with the file manager Konqueror. If, for exam-
ple, a file with an access ACL is modified in an editor, the backup mode of the
editor used will determine whether or not the access ACL is preserved follow-
ing the modification:

If the editor writes the changes to the original file, the access ACL will be
preserved.

If the editor saves the updated contents to a new file that is subsequently
renamed to the old file name, the ACLs may be lost, unless the editor sup-
ports ACLs.

The more applications support ACLs, the more it will be possible to exploit the
great potential of this feature.

512 Outlook

“main” (Administration Guide) — 2003/7/18 — 8:55 — page 513 — #531

i

i

i

i

i

i

i

i

B
A

c
c

e
ss

C
o

n
tro

lLists
in

Lin
ux

Tip
Additional information

Detailed information about ACLs is available at the following URLs:

http://sdb.suse.de/en/sdb/html/81_acl.html

http://acl.bestbits.at/

and in the man page for getfacl (man 1 getfacl), the man page for
acl (man 5 acl), and the man page for setfacl (man 1 setfacl).

Tip

513SuSE Linux – Administration Guide

