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Abstract

We present a novel method, that we call EVEN-

ODD, for tolerating up to two disk failures in RAID

architectures. EVENODD is the first known scheme

for tolerating double disk failures that is optimal with

regani to both storage and performance. EVENODD

employs the addition of only two redundant disks and

consists of simple exclusive-OR computations. A ma-

jor advantage of EVENODD is that it only requires

parity hardware, which is typically present in stan-

dard RAID-5 controllers. Hence, EVENODD can be

implemented on standani RAID-5 controllers without

any hardware changes. The only previously known

scheme that employes optimal redundant storage (i.e.

two extra disks) is based on Reed-Solomon (RS) error-

corncting codes, requires computation over finite fields

and results in a more complex implementation. For

example, we show that the number of exclusive-OR

operations involved in implementing EVENODD in a

disk array with 15 disks is about 50% of the number

required when using the RS scheme.

1 Introduction

Disk arrays [16], in particular RAID-3 and RAID-

5 disk arrays, have become an accepted way for de-

signing highly available and reliable disk subsystems.

In such arrays, the exclusive-OR of data from some

number of disks is maintained on a redundant disk.

When a disk fails, the data on it can be reconstructed

by exclusive-ORing the data on the surviving diska,

and writing this into a spare disk. The mean time to

data loss (MTTDL) of such a system is proportional

to the square of the disk mean time between failures

(MTBF) and inversely proportional to the square of

the number of diska and the mean time to reconstruct

(MTTR) the failed disk [16]. Data are lost if a second

disk fails before the reconstruction is complete. Such

arrays have acceptable MTTDL when the number of

disks in the subsystem is small. However, the average

number of disks in an installation is growing because

of two reasons. First, disk form factors are Ibecoming

smaller. Second, installation requirements for data are

increasing, caused by normal growth and bIy the in-

crease in new forms of data like audio, videa~ and fax.

As these trends accelerate, it was shown that tradi-

tional arrays which can protect from the simultaneous

loss of no more than one disk will prove to be inade-

quate by the year 2000 [6]. Also, [6] explores whether

improving disk MTBF or decreasing MTTR can ade-

quately compensate for the increase in the number of

disks per installation, and concludes that it will not.

As a result, a lot of interest has arisen in Large

Disk Arrays and in attempting to design systems that

will not lose data even when multiple diska fail simul-

taneously [4, 5, 8, 13]. For this, the use of erasure-

correcting codes [8] with higher correcting capabil-

ity than simple parity is suggested (in coding theory

terminology, an erasure is an error whose lc~cation is

known).

Theoretically, in order to retrieve the information

lost in two failed (erased) disks, we need at least two

redundant disks (in coding theory, this is known as

the Singleton bound [11]). A natural scheme, then,

for recovering the information lost in two disks, is
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using the so called Reed-Solomon codes [11]. How-

ever, Reed-Solomon codes involve operations over fi-

nite fields. It would be desirable to have codes doing

exclusive-OR operations only, as in the case of simple

parity. This was achieved in [17], although this code

has the following drawback when the error correcting

capabllit y of the code is broken, there is an infinite

error propagation. Moreover, since the code is of con-

volutional type, there is an overhead redundancy at

the end of the data. For higher correcting capability,

the codes in [7, 14, 15] have the same dhmchantages.

Therefore, the problem still is finding codes based on

exclusive-OR operations and of block type. A solu-

tion was obtained in [1, 4, 9, 10] and later generfllzed

in [5] for multiple erssures. However, those solutions,

slthough very simple, still involve recursive compu-

tations (which are inefficient and hard to implement

using existing exclusive-OR hardware) at the encoding

process and during small write operations.

In this paper, we present a novel and efficient en-

coding procedure that is based on exclusivc+OR oper-

ations and does not involve recursive computations.

We also present a simple decoding procedure. We

have calculated the complexity of implementation of

EVENODD and compared it to that of the traditional

single parity scheme aa well as to the scheme based

on Reed-Solomon codes. EVENODD requires about

twice as many exclusive-OR operations compared to

the simple parity scheme; this is optimal since we

have two redundant disks. EVENODD is substan-

tially more efficient when compared to Reed-Solomon

codes; for example, the number of exclusive OR oper-

ations involved in implementing EVENODD in a disk

array with 15 disks is about 50% of the number re

quired when using the RS scheme.

In addition to having an optimal number of opera-

tions for the encoding procedure, EVENODD has the

advantages that the encoding procedure can be imple-

mented using existing parity hardware and that small

write operations are very efiicient. In particular, when

a disk sector is modified, only two other disk sectors

wiU need to be modified at the same time. We note

here that EVENODD corresponds to a new 2-erasure

correcting code which is optimal in terms of the redun-

dancy and has very efficient encoding and decoding

algorithms. Hence, EVENODD can be used in other

applications where there is a need of correcting two

erased symbols with low complexity; for example, in

multi-track magnetic recording [1, 7, 14, 15, 17]. More-

over, the decoding algorithm can be easily adapted to

correct one random error in such applications.

The paper is organized as follows: in the next sec-

tion we describe the encoding procedure used by our

new EVENODD scheme. In Section 3 we present the

corresponding decoding procedure which will be used

after the failure of one or two disks. In Section 4 we ad-

dress the implementation of small write operations. In

Section 5 we address the complexity of implementation

of EVENODD by comparing it to that of traditional

Reed-Solomon codes. In Section 6 we discuss perfor-

mance issues of our scheme. Finally, in Section 7, we

present some concluding remarks.

2 Encoding

We will assume that there axe m + 2 disks with

the information stored in the first m disks while the

redundancy is stored in the last two disks. It is pos-

sible, however, to distribute the redundancy among

all disks in order to avoid bottleneck effects when re-

peated write operations are performed. That is, our

description is of a scheme which is an extension of

RAID-4 (where parity is dedicated), but it is easy to

imagine how it can be made an extension of RAID-5

(where parity is distributed). We assume that m is

a prime number. This requirement has no effect on

the optimaMy of EVENODD. EVENODD can handle

an arbitrary number of disks simply by assuming that

there are disks with no information (all the informa-

tion bits are O).

In order to simplify the presentation, we assume

that each of the m disks has only m – 1 symbols of

information on it. Our procedure works for disks with

arbitrary capacity by treating each block of m – 1

symbols separately. For simplicity, in some of our

examples, we will assume that each symbol is a bit.

However, it is not necessary to assume that the sym-

bols are bhmry (in fact, it can be shown that our

scheme works even when the symbols are elements in

an Abelian group). A practical implementation is to

consider a symbol as an 8-bit byte, and to assume that

m -1 = 256 symbols (half a sector). Notice that 257

is a prime number.

Baaed on the assumptions above, the problem of

tolerating two disk failures can be described as fol-

lows:

Problem Definition: Consider the (m – 1) x (m+ 2)

array, m a prime number, such that symbol aij, O ~

i<m–2,0S jsm+-l, isthei-th symbol inthej-

th disk. Again, we can think of a column of the array

ss a disk and a symbol ss a byte. The last two disks
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(m and m + 1) are the disks with the redundant infor-

mation. The question is how to compute the content

of the redundant part based on the information part

such that the information contained in any two disks

can be reconstructed fkom the other m disks. Our

encoding scheme solves the foregoing problem and re-

quires only exclusive-OR operations for computing the

redundancy. We assume throughout this paper that

there is an imaginary O-row sfter the last row, i.e.,

~m-l,j = O, 0 S j S m + 1 (with this convention, the

array is now an m x (m + 2) array). We also assume

that m is a prime, however, t-his is not a restriction be-

cause we can always treat the extra columns as imag-

inary columns of 0’s.

We illustrate the problem definition in the following

figure. Here we assume that there are 6 information

dhh, so the closest prime we can choose is m = 7.

The 6 information disks are labeled with U and the

two redundancy disk are labeled with & The column

of O’s as well aa the last row of O’s do not exist in

practice and are included for better illustration of the

encoding and decoding procedures.

v v v v v v o & +

v v v v v v o 4 +
v v v v Q v o & 4
v v v v v v o 4 4
v v v v v v o + &
v v v v v v o 4 4
0 0 0 0 0 0 0 0 0

Before formally describing the encoding procedure,

we present the following notation: (n)m = j if and

only if j =n(modm)and O<j<m –1. For

instance, (7)5 = 2 and ( – 2)5 = 3.

The Encoding Procedure

For each 1, 0<1< m – 2, the redundant symbols are

obtained as follows:

m—1

al,m
= @ “It

(1)

t=o

where

m—1

s = @ am_l-t,t. (3)
t=l

Notice that we have two types of redundancy: hor-

izontal redundancy and diagonal redundancy. Disk m

(the horizontal redundancy) is simply the exclusive-

OR of disks 0,1 ,. ... m – 1. Its contents are exactly

the same as the parity contents of the parity disk in

an equivalent RAID-4 array with one less disk. It is

illustrated as follows (for m = 7) with 6 information

columns:

Disk (m + 1) carries the diagonal redundancy ac-

cording to Equation (2). It is illustrated as follows:

Looking closely at Equation (2) (assuming that the

symbols are bits), we see that there are two possibil-

ities for the diagonal redundancy: the parity may be

even or odd. This even or odd parity is determined

by bit S in Equation (3), which gives the parity of

diagonal (m – 2, 1), (m – 3, 2),..., (O, m – 1). If this

diagonal haa an EVEN number of l’s, then we have

even parity in the rest of the diagonals. Otherwise,

we have ODD parity. This is the reason we! call this

scheme the EVENODD scheme. Note that in the fore-

going figure, 00 is associated with the special diagonal

that determines whether the diagonal parity is EVEN

or ODD.

The (m – 1) x (m + 2) array defined above can

recover the information lost in any two columns. In

other words, the minimum distance of the code is 3, in

the sense that any non-zero array in the code has at

least 3 columns that are non-zero. The proof relies on

the fact that m is a prime number and it is based on

ideas similar to those in [1, 5, 9, 10]. A complete pre-

sentation of the proof can be found in the full version

of the paper [2].

As we can see, the encoding is very simple and cir-

cuits implementing Equations (1) and (2) are straight-
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forward. In particular, Equations (1) and (2) can be

implemented in software in the RAID controller using

the exclusive-OR hardware. The next example illus-

trates the encoding for m = 5.

Example 1 Let m = 5, and let the symbols be de-
noted by aij, () s i < 3, 0 ~ j ~ 6. The redundant

symbols are in columns 5 and 6. According to Equa-

tions (1) and (2) the redundant symbols are obtained

M follows:

where Equation (3) giveG

S = as,l @ a2,2 O al,3 @ a0,4.

For instance, assume that we want to encode the 5

columns

m
We have to fill up the last two columns with the

encoded symbols. Notice that S = as,l @ az,z @ al,s EB

ao,A = 1. Therefore, the diagonals will have odd par-

ity. The encoding gives the following array:

1 0 1 1 0 1 0

0 1 1 0 0 0 0

1 1 0 0 0 0 1

0 1 0 1 1 1 0

3 Decoding
An essential part of EVENODD is the decoding al-

gorithm. This algorithm, to be described next, can

be implemented either in software or in hardware, de-

pending on the application. It will be executed when

a disk fails, or when two disks fail simultaneously.

The Decodkg Procedure

Consider the (m - 1) x (m +2) array of symbols aij,
such that the lsst two columns are redundant accord-

ing to Equations (l), (2) and (3). If one column (disk)

has failed, say column (disk) i, i # m +1, then it can

be retrieved using the exclusive-OR of columns (disks)

1, 0 s 1 ~ m, 1 # i. If column (m+ 1) fails, then the

symbols can be retrieved using Equations (2) and (3).

Next, assume that columns (disks) i and j have

failed, where O S i < j S m + 1. We have four cases:

i=m and j=m+l, i.e., both the redundant disks

have failed. We can reconstruct disk m using

Equation (1) and disk (m+ 1) using Equations (2)

and (3). In other words, the reconstruction is

equivalent to the encoding.

i<m and j=m, namely, one redundant disk and one

data disk have failed. We can reconstruct disk i

as follows: let

/m–l \

s = a(a-l)m,m+l
( )

e e a(i–l–l)m,l (A)
1=0

where we assume that am_l,l = O for

0SZ5m+l. Then,

()m—1

ak,i = s @ @ a(k+i-i)mJ (5)
1=0
l#i

for

O<k<m–2,

and a~,rn, O < k < m – 2, is obtained using Equa-

tion (1) once disk i ia reconstructed.

i<m and j=m+l, namely, one redundant disk and

one data disk have failed. We can reconstruct

disk i using Equation (1) and disk m + 1 using

Equations (2) and (3) once disk i is reconstructed.

i<m and j<m. This is the main case. Both failed

dlska carry information and we cannot retrieve

them using the parities separately, ss in the Pre-

vious three csses. We analyze this csse in detail.

Assume that am_l,l = O for O s 1 s m – 1 and

compute the diagonal parity S as follows:

‘=(’Eia’lm)@r@‘6)
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(i.e., S is the exclusive-OR of the symbols in and

columns m and m + 1). Find the horizontal syn- S(l)= ololo.

dromes S(o)= S$), S!),..., Sfi~l and the diag- Now, we start the recursion to retrieve the missing

onal syndromes S(l)= S$), S~l),. ... S~~l as fol- bits al,o and al,2, O ~ 1 S 3. We set

lows: w-( – (j – i) – 1)~=( – 3)5=2, then,

(7)

where O < u < m – 1. Next, we retrieve the

symbols in columns i and j as follows:

1. Set s + ( – (j – i) – l)m and am-l,l_O for

0</ Sm–l.

2. Let

Cla,j i-
(#)

(j+e)m o‘(.+(j–i))m,i

a8,i t Sf) (B (Z8,j

3. Set W-(S – (j - i))m.

4. Ifs = m – 1 then stop, else go to step 2.

The algorithm is recursive and very simple to imple-

ment in software. We can also develop the recursion

and obtain a closed formula for each entry as a func-

tion of the syndromes. This approach is useful if we

want a hardware implementation.

Next we illustrate the decoding algorithm with an

example.

Example 2 We again sssume that m = 5, as in Ex-

ample 1. Assume that we have the following array, in

which columns (disks) O and 2 have been erased (lost):

? o ? 1 0 1 1

? 1 ? o 0 0 1

? 1 ? o 0 1 1

? 1 ? 1 1 0 0

The first step is finding the parameter S, which is

the exclusive-OR of the last two columns. We see that

S = 1. This means that the diagonals have odd parity.

Now, from the array above and Equations (7) and (8),

we find the syndromes. We obtain,

S(”)= ololo

ao,a +- S!jl) @ az,o = O

(zI),o + S$’) 63ao,z = O

s+ 3

as,z + S$) @ ao,o = O

as,o t S$) (3 as,z = 1

s+ 1

al,z + S$l) f3 as,o = O

al,o t S!) 63al,z = 1

8+ 4 STOP.

The reconstructed array is then

o 0 0 1 0 1 1

1 1 0 0 0 0 1

0 1 0 0 0 1 1

1 1 0 1 1 0 0

4 Small Write Operations
In systems involving many disks, we often en-

counter the situation in which many small ‘write oper-

ations are needed. A small write operatioml is a write

that updates a single symbol. EVENODD offers great

flexibility to implement small writes since the symbols

involved can have an arbitrary size. We note that large

writes are also easy to implement using EVENODD.

We illustrate the small write operations with an

example.

Example 3 Assume that the we have the. following

encoded array:

o 0 0 0 0 0 0

1 1 0 1 0 1 0

0 1 1 1 0 1 1

0 1 0 0 1 0 0

Say, we replace entry (0,1) by a 1. Since it is not

in diagonal (3,1),(2,2),(1,3),(0,4), according to the en-

coding procedure, we have to modify symbols (0,5)

and (1,6). The new array is
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Namely, we had to access only 3 symbols, one from

each of 3 disks. However, if we modify symbol (2,2),

since it is in diagonal (3,1),(2,2),(1,3),(0,4), according

to the encoding procedure, we have to modify symbols

(2,5), (0,6), (1,6), (2,6) and (3,6):

A possible practical implementation of small write

operations is to let each symbol be an 8-bit byte, and

m = 257 (a Fermat prime number). Therefore, we

have an array of up to 259 disks, more than enough

for present and future applications. Note that the ar-

ray does not have to have 259 disks (this is just the

maximum number); if it has fewer disks, simply treat

the remaining columns as having zeros. Each column

of the array consists of 256 bytes, i.e., half a sector. In

this case, a small write operation consists of writing

a whole column. Thus, the two redundant columns

will be modified accordingly. Say, each symbol Ui,j,

0si<rn-2in column j,0<j<rrz-1, isreplaced

by ~i. Then, we have to do the following modifications

in the redundant symbols:

a~,m e ai,m @ ai,j @ Ti (9)

ai,~+l ~ ai,m+l @a(+j}m,j e ‘(i-~)m e

CBam_l_j,j @ rm–l–j , (lo)

where O S i < m – 2. That is, when a sector is up-

dated, the two corresponding redundant sectors are

also updated according to Equations (9) and (10).

Namely, this implementation has the advantage that

every small write involves updates in only two other
disk sectors.

5 Complexity Comparison with Exist-

ing Schemes
In this section, we compare the complexity of

EVENODD with the one of a tractional error-

correcting code, a Reed-Solomon (RS) code [11]. Both

EVENODD and a RS code require an optimal number

of redundant disks, namely two. However, one major

advantage of EVENODD is that it only requires par-

ity hardware, which is typically present in standard

RAID-5 controllers. Hence, EVENODD can be imple

mented on standard RAID-5 controllers without hard-

ware changes. The scheme based on RS codes, on the

other hand, requires special hardware to support finite

field type of computations. Hence, it cannot be incor-

porated into standard RAID-5 controllers. We note

here that the 2D scheme of [8] has the same property

as EVENODD, that is, it only needs standard parity

hardware. However, if we assume that the m infor-

mation disks are set in a square array of side @, 2D

needs 2@ redundant disks while EVENODD net$ds

only two redundant disks. So, our scheme is much

more efficient.

Next we will make a detailed comparison between

EVENODD and RS schemes. We will consider RS

codes over 8-bit bytes, or GI’(2S ) in the language of fi-

nite fields. This is a standard in the industry, allowing

for codes of length up to 257 bytes. More specifically,

we will consider the finite field generated by the prim-

itive polynomial p(z) = 1 + X2 + Z3 + Z4 + X8. Let a

be a primitive element in GF(2S) such that p(a) = O,

and let m <255. Then, a parity-check matrix for the

RS code is the following:

H= (111...110

1 a d . . . w-l o 1 )
(11)

At the encoding, if bo, bl,..., bm_l is a string of

information bytes, according to (11), the redundant

bytes p and q are obtained ss follows:

m—1

p = ~bi (12)
a=o

m—1

9 = e b~~i
(13)

i=o

Now, if we compare with the encoding procedure

of EVENODD given by Equations (1) and (2), we can

ses that Equations (1) and (12) are equivalent. There-

fore, the difference in complexity at the encoding is a

result of the difference in computing the second redun-

dancy disk, namely, Equations (2) and (13). We ana-

lyze the complexity of the encoding both for EVEN-

ODD and for the RS scheme by counting the number

of exclusive-OR (XOR) operations for each of them.

We assume that each symbol is an 8-bit byte, and

the information symbols constitute an (m- 1) x m
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array, where m is prime. With this assumption, the

number of XOR operations due to Equation (1) or

Equation (12) at the bit level is 8(m – 1)2.

Let us count next the number of XOR’S in Equa-

tion (2) of EVENODD. The first step is computing the

symbol S, which is given by Equation (3). This takes

(m -2) XOR operations at the byte level. At the bit

level, this gives a total of 8(m – 2) XOR operations.

Now, for each 1 in Equation (2), we have a total of

m XOR operations at the byte level. At the blt level,

this gives a total of 8m XOR operations for each 1,

and since 1 runs from O to m – 2, Equation (2) takes

8(m – l)m XOR operations. Adding to the number of

XOR operations used in computing S, Equation (2)

takes a totsJ of

8((m – 2) + (m – l)m) = 8(m2 – 2)

XOR operations. We observe that this number is

quadratic in m and slightly bigger than the number

of operations from Equation (1). The discrepancy is

due to the calculation of S first, but we cannot do

better than quadratic complexity. By adding the t~

tal from Equation (l), we conclude that EVENODD

needs a total of

8(2m2 – 2m – 1)

XOR operations.

Let us look at the RS scheme now, specifically at

Equation (13). Each multiplication of a byte by a, is

represented by the following companion matrix A:

01000000

00100000

00010000

00001000

00000100

\

00000010

00000001

10111000

Notice that multiplying the byte

(14)

(@, cl, cz, cq, ~,cs, &,cT)-by a ‘takes 3 XOR oper-
ations. In fact, the outcome of multiplying the

byte above by the matrix A will produce the byte

(c7, ~,c1 @ C7,C2tB C7,C3 @ C7,Q, C5, CS). Therefore,

multiplying by a’ will take 3i XOR operations. So,

implementing (13) on the bytes ho, bl,. ... &l takes

m—1

8(m–l)+~3i=
3m2 + 13m – 16

2i= 1

#of

information

diska

5

7

11

13

17

23

29

31

41

43

EVENODD

312

664

1752

2488

4344

8088

12948

14872

26232

28888

Reed-

Solomon

376

954

3250

5112

10624

24442

46648

56250

124000

142002

im~provement

factor

—
1.21

1.44

1.86

2.05

2.45

3.02

3.59

3.78

4.73

4.92—

Table 1: Number of XOR operations needled to en-

code (m - 1) bytes per disk in a disk arraby with m

information disks.

XOR operations. Since we have (m – 1) bytes, this

gives a total of

0.5(m – l)(3m2 + 13m – 16) =

= 1.5m3 + 5m2 – 14.5m + 8

XOR operations. Adding the 4096(m – 1)2 XOR op-

erations from (12), we conclude that the encoding of

the RS scheme requires

1.5m3 + 13m2 – 30.5m + 16

XOR operations.

As we can see, the complexity of the encoding of

EVENODD is quadratic in the number of information

disks m, while the complexity of RS codes is cubic.

Table 1 compares EVENODD to RS codes for differ-

ent values of m, assuming that m is prime (i~ we have

stated, this is not a hard constraint, since EVENODD

codes can be shortened to cover cases in which m is

not a prime). The last column of Table 1 calntains the

quotient between the number in column 3 (i.e., the

number of operations needed in the RS code) and the

number in column 2 (i.e., the number of operations

needed in EVENODD). For instance, we ca,n see that

for m = 43 (last row), a RS code requires nearly 5

times aa many operations aa EVENODD at the en-

coding.

We can see in Table 1 that the number of XOR

operations needed for encoding EVENODDI decreases

dramatically with respect to a RS code when the num-

ber of disks increaaes. Similar calculations show the
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#of

information

disks

5

7

11

13

17

23

29

31

41

43

EVENODD

vs.

Parity

2.43

2.30

2.19

2.15

2.12

2.08

2.07

2.06

2.05

2.04

m
vs.

Parity

2.93

3.31

4.06

4.43

5.18

6.30

7.43

7.80

9.68

10.06

Table 2: Comparison of the number of XOR opera-

tions in a simple parity scheme with EVENODD and

RS schemes.

advantage of EVENODD in small write operations

and in the decoding.

An alternative implementation of the encoding of

RS codes is implementing each matrix Ai in hardware.

Thus, we will save XOR operations for larger values of

m. However, the hardware for this implementation is

more complicated, and the matrices Ai are not sparse

anymore, therefore EVENODD still has the edge.

We also compared the complexity of EVENODD

and the RS based schemes with that of a simple parity

scheme. The number of operations required in imple-

menting the parity scheme on an m d~k array with

(m – 1) bytes per disk is 8(nz – 1)2. Hence, EVEN-

ODD is asymptotically twice as complicated as simple

parity. Notice that this is optimzd since there are two

redundancy diska in EVENODD. The complexity of

the RS scheme is asymptotically about 0.1875m times

more complex than the simple parity scheme. Table 2

presents the comparison for various values of m. As

we can see, already in the case of m = 23 EVEN-

ODD is about twice more complex than the simple

parity scheme (this is optimal), while the RS scheme

requires more thau 6 times XOR operations compared

with the simple parity scheme.

6 Performance
For performance, we assume an implementation

where the symbol is an 8-bit byte, m=257, and the ar-

ray may have up to 259 disks (though it will typically

have far fewer disband the remaining columns will

be treated as having zeroes). As we have discussed

before, with such an implementation, a small write

requires 3 read-modify-write (RMW) operations on 3

different dMcs; 1 RMW to the data sector on 1 disk,

1 RMW to the sector containing horizontal parity on

a second disk, and 1 RMW to the sector containing

diagonal parity on a third disk. As in RAID-5, we

assume that the horizontal and diagonal parities are

rotated across all disks. Consider a 5 disk system (as-

sume zeroes for all the other 254 columns). Then, a

typicaJ layout would be as follows. The first sector on

disks O, 1 and 2 contain user data, the first sector of

disk 3 contains horizontal parity, and the first sector of

d~k 4 contains diagonal parity. The second sector on

disks 1, 2 and 3 contain user data, the second sector

on disk 4 contains horizontal parity, and the second

sector on disk O contains diagonal parity. This layout

is continued (with the positions of data and parity be-

ing rotated every sector) until all the disk sectors have

been accounted for. If there are t sectors in a disk, this

5 disk system can store 3t sectors of user data.

Consider a write to disk O, sector O. This requires us

to read and write to three disk sectors on three diska;

specifically, it requires us to read and write sector O

on dlska O, 3 and 4. In disk terms, we need to do 3

read-modify-write operations, one on each of 3 diska.

The total time for a read-modify-write operation is

seek time plus 1/2 a revolution (to get to disk sector

of interest) plus one revolution (to come back to sec-

tor of interest for writing) plus one sector write. For

a typical disk today, seek time is 10 msecs and revo-

lution time is 11 msecs. So, a read-modify-write takes

10+5.5+11 or 26.5 msecs, ignoring the 1 sector write

time which is very small (0.1 msecs or so). A simple

read (or write) operation takes 10+5.5 or 15.5 msecs,

again ignoring the 1 sector read or write time. So, for

our calculations, we assume a RMW takes 26.5/15.5

or 1.71 as long ss a simple read or write operation.

Let us compare the performance of our scheme to

that of a traditional RAID-5 system with single parity.

In particular, we compare our 5 disk system to a 4 disk

(3+P) RAID-5 system, since both systems can store 3

disks worth of user data. Of course, our system is more

expensive, but this is justified by the extra reliability

we provide for the user’s data. There is no difference

in performance if the workload only consists of large

reads and large writes. Differences occur only if the

workload has small reads and writes. Here we consider

a database type of workload consisting only of small

reads and small writes. In order to simplify our analy-

sis, and since this is reasonably accurate, we treat each
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read-modify-write operation as 1.71 disk operations.

Then, a small read incurs 1 disk operation. A small

write incurs 1.71 disk operations on each of 2 disks for

RAID-5 and 1.71 disk operations on each of 3 disks for

EVENODD. Let the fraction of reads in the workload

be r (fraction of writes is 1 – r). Then, each disk in the

4 disk RAID-5 system handles r/4+(2* 1.71)(1 –r)/4

disk operations and each disk in the 5 disk EVEN-

ODD system handles r/5 + (3* 1.71)(1 – r)/5 disk

operations per IO request. A typical disk today can

handle 50 disk operations per second, and r, the frac-

tion of reads is 0.75 for typical workloads. Then, it is

easy to see that both the RAID-5 and the EVENODD

systems can support a maximum throughput of about

124 IOs/sec. A more realistic comparison is between

a 16 disk RAID-5 and a 17 disk EVENODD scheme,

In this case, the RAID-5 can support 498 IOs/sec and

the EVENODD scheme can support 418 IOs/sec. It

is worth pointing out, however, that if the read frac-

tion is 1, EVENODD can support 850 IOs/sec which

is better than the 800 IOs/sec which RAID-5 can sup-

port.

Throughput is one aspect of performance. Another

is response time. In an EVENODD array, there is

a potential for the small write response time to be

quite high, because of the 3 different RMW opera-

tions that must be completed. In fact, as we know,

the small write response time of a RAID-5 array is

itself high because of the 2 different RMW operations

needed. In [12], we show that a write cache built of

Non-Volatile memory (or battery-backed DRAM) is a

very effective way to improve write response times of

a RAID-5 array. We believe that a write cache is also

a very effective way to improve write response times

of EVENODD arrays.

To summarize this section, in spite of the fact that

the EVENODD approach provides higher reliability

and requires more disk operations per write, a 5 disk

EVENODD system can provide the same through-

put as a 4 disk RAID-5 system on database type

workloads. In general, however, RAID-5 systems will

have better performance for larger arrays (for exam-

ple 15+P versus 17 disk EVENODD) and when the

small write content of the workload is greater than

0.25 while EVENODD will have better performance

when the small write content of the workload is very

small and there are fewer disks in the array. If response

times are important, the EVENODD array should be

constructed with a Non-Volatile write cache, just aa

we believe that a RAID-5 array should be constructed

with a Non-Volatile write cache if we want excellent

write response times.

7 Concluding Remarks

We have presented a novel method, called EVEN-

ODD, that is the first known scheme for tolerating

double disk failure in RAID architectures that is op-

timal with regard to both storage and performance.

EVENODD has the following advantages over other

methods proposed for recovery against two disk fail-

ures:

1.

2.

3.

4.

5.

6.
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EVENODD employs the addition of only two re-

dundant disks for tolerating two disk failures (this

is optimal).

It consists of simple exclusive-OR computations

and only requires parity hardware, which is typ-

ically present in standard RAID-5 controllers.

Hence, EVENODD can be implemented in stan-

dard RAID-5 controllers without any hardware

changes.

It can be incorporated to known RAID techniques

and is independent of data striping technique.

For example, parity can be distributed among all

disks, avoiding bottleneck effects when repeated

write operations are involved (RAID-5).

The symbols can have any size, from bits to mul-

tiple sectors. There are no constraints to bits or

to bytes.

Most small write operations affect ltwo redun-

dant symbols only, i.e., for every write we need

up to three read and three write operations.

Only when the affected symbol is in diagonal

(m-2,1 ),(m-3,2),..., (O,l)weha veto to

modify all the symbols in column m + 1 and one

symbol in column m. In any case, the parities are

independent.

The traditional known scheme that ennployes op-

timal redundant storage (i.e. two extra disks)

is based on Reed-Solomon (RS) error-correcting

codes, requires computation over finite fields and

results in a more complex implementation. For

example, we showed that the number of exclusive-

OR operations required for implementing EVEN-

ODD in a disk array with 15 disks is about 50%

of the one required when using the RS scheme.



7.

8.

Other codes involving only exclusiv&OR oper-

ations are convolutional codes. For the codes

in [7, 17’1, an error in the decoding propagatea in-

definitely. Since our codes are of block type, they

do not have this problem. Also, the redundancy

of our codes is slightly smaller, since convolutional

codes have an overhead redundancy.

There are also optimal block codes baA on

exclusive-OR operations. However, these codes

still involve recursive computation at the encod-

ing and during small write operations. EVEN-

ODD has independent parities, making the com-

plexity even smaller.

From the perspective of error-correcting codes, we

have constructed a new code that is capable of cor-

recting two erasures. Recently, we have generalized

the EVENODD scheme to deal with more than two

erssures. It turned out, that the natural generaliza-

tion works for the case of 3 erasures as well as for 4

erssures (in most cases of m) [3]. The application de-

scribed in this paper is in RAID type of architectures,

but the code can be also used in magnetic recording

and in other situations involving large symbols and

short codewords.
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