
On the Expressiveness of Forwarding in

Higher-Order Communication

Cinzia Di Giusto, Jorge A. Pérez, and Gianluigi Zavattaro

University of Bologna, Italy.

ICTAC’09
Kuala Lumpur, August 2009

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 1 / 43



Motivation

Roadmap

1 Motivation

2 This Talk

3 The Ho−f calculus

4 Convergence is Undecidable in Ho−f

5 Termination is Decidable in Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 2 / 43



Motivation

Motivation: Sharing a Resource

Two agents, A and B , and a resource that A wants to share with B:

PDF

A B

c c d

p

e

Two approaches:

First-order (or name-passing) concurrency

Higher-order (or process-passing) concurrency

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 3 / 43



Motivation

Motivation: Sharing a Resource

Two agents, A and B , and a resource that A wants to share with B:

PDF

A B

c c d

p

e

Two approaches:

First-order (or name-passing) concurrency

Higher-order (or process-passing) concurrency

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 3 / 43



Motivation

Motivation: Sharing a Resource

The first-order concurrency approach: send a link to the resource.

PDF

A B

c c d

p

e

(a) Before the interaction(s)

PDF

A B

c c d

p

e

(b) After the interaction(s)

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 4 / 43



Motivation

Motivation: Sharing a Resource

The first-order concurrency approach: send a link to the resource.

PDF

A B

c c d

p

e

(c) Before the interaction(s)

PDF

A B

c c d

p

e

(d) After the interaction(s)

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 4 / 43



Motivation

Motivation: Sharing a Resource

The higher-order concurrency approach: send the resource.

PDF

A B

c c d

p

e

(e) Before the interaction(s)

PDF

A B

c c d

p

e

PDF

(f) After the interaction(s)

Upon reception, B can do only two things with the resource:

1 Execute it

2 Forward it

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 5 / 43



Motivation

Motivation: Sharing a Resource

The higher-order concurrency approach: send the resource.

PDF

A B

c c d

p

e

(g) Before the interaction(s)

PDF

A B

c c d

p

e

PDF

(h) After the interaction(s)

Upon reception, B can do only two things with the resource:

1 Execute it

2 Forward it

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 5 / 43



Motivation

Motivation: Sharing a Resource

The higher-order concurrency approach: send the resource.

PDF

A B

c c d

p

e

(i) Before the interaction(s)

PDF

A B

c c d

p

e

PDF

(j) After the interaction(s)

Upon reception, B can do only two things with the resource:

1 Execute it

2 Forward it

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 5 / 43



Motivation

Motivation: Sharing a Resource

The higher-order concurrency approach: send the resource.

PDF

A B

c c d

p

e

(k) Before the interaction(s)

PDF

A B

c c d

p

e

PDF

(l) After the interaction(s)

Upon reception, B can do only two things with the resource:

1 Execute it

2 Forward it

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 5 / 43



Motivation

Motivation: Sharing a Resource

The higher-order concurrency approach: send the resource.

PDF

A B

c c d

p

e

(m) Before the interaction(s)

PDF

A B

c c d

p

e

PDF

(n) After the interaction(s)

Upon reception, B can do only two things with the resource:

1 Execute it

2 Forward it

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 5 / 43



This Talk

Roadmap

1 Motivation

2 This Talk

3 The Ho−f calculus

4 Convergence is Undecidable in Ho−f

5 Termination is Decidable in Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 6 / 43



This Talk

This talk, informally

A study of the forwarding capabilities in higher-order communication.

A core calculus for higher-order concurrency.

Only processes can be communicated.
No links can be passed around.

Our interest: expressive power and decidability properties.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 7 / 43



This Talk

This talk, informally

A study of the forwarding capabilities in higher-order communication.

A core calculus for higher-order concurrency.

Only processes can be communicated.
No links can be passed around.

Our interest: expressive power and decidability properties.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 7 / 43



This Talk

Higher-Order Process Calculi

Calculi in which processes can be communicated.

Usual operators: parallel composition, input and output prefixes,
restriction. Infinite behavior can be encoded.

As in the λ-calculus, computation involves term instantiation.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 8 / 43



This Talk

Hocore: a calculus for higher-order concurrency

P , Q ::= a〈P〉 output

| a(x). P input prefix

| x process variable

| P ‖ Q parallel composition

| 0 nil

No name passing is allowed.

No output prefix: asynchronous calculus.

No restriction operator

Every communication is public. Behavior is exposed.
Dynamic creation of channels is impossible.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 9 / 43



This Talk

Hocore: a calculus for higher-order concurrency

P , Q ::= a〈P〉 output

| a(x). P input prefix

| x process variable

| P ‖ Q parallel composition

| 0 nil

No name passing is allowed.

No output prefix: asynchronous calculus.

No restriction operator

Every communication is public. Behavior is exposed.
Dynamic creation of channels is impossible.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 9 / 43



This Talk

Hocore: a calculus for higher-order concurrency

P , Q ::= a〈P〉 output

| a(x). P input prefix

| x process variable

| P ‖ Q parallel composition

| 0 nil

No name passing is allowed.

No output prefix: asynchronous calculus.

No restriction operator

Every communication is public. Behavior is exposed.
Dynamic creation of channels is impossible.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 9 / 43



This Talk

Some Results for Hocore1

Hocore was shown to be Turing complete.
Moreover, properties such as

Termination, i.e. non-existence of divergent computations

Convergence, i.e. existence of a terminating computation

are undecidable in Hocore.

1I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the Expressiveness
and Decidability of Higher-Order Process Calculi. LICS’08.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 10 / 43



This Talk

Some Results for Hocore1

Hocore was shown to be Turing complete.
Moreover, properties such as

Termination, i.e. non-existence of divergent computations

Convergence, i.e. existence of a terminating computation

are undecidable in Hocore.

1I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the Expressiveness
and Decidability of Higher-Order Process Calculi. LICS’08.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 10 / 43



This Talk

What’s the origin of the expressivity of Hocore?

Arbitrary Forwarding
Emitting a received process in an arbitrary context

Take a forwarder process F = a(x). b〈Px〉
The structure of Px can be very complex.

Arbitrary nested outputs, e.g. Px = b1〈b2〈. . . bn〈x〉〉〉.

Nested outputs are essential to show Turing completeness for
Hocore (they allow to define counters and test for zero).

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 11 / 43



This Talk

What’s the origin of the expressivity of Hocore?

Arbitrary Forwarding
Emitting a received process in an arbitrary context

Take a forwarder process F = a(x). b〈Px〉

The structure of Px can be very complex.

Arbitrary nested outputs, e.g. Px = b1〈b2〈. . . bn〈x〉〉〉.

Nested outputs are essential to show Turing completeness for
Hocore (they allow to define counters and test for zero).

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 11 / 43



This Talk

What’s the origin of the expressivity of Hocore?

Arbitrary Forwarding
Emitting a received process in an arbitrary context

Take a forwarder process F = a(x). b〈Px〉
The structure of Px can be very complex.

Arbitrary nested outputs, e.g. Px = b1〈b2〈. . . bn〈x〉〉〉.

Nested outputs are essential to show Turing completeness for
Hocore (they allow to define counters and test for zero).

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 11 / 43



This Talk

What’s the origin of the expressivity of Hocore?

Arbitrary Forwarding
Emitting a received process in an arbitrary context

Take a forwarder process F = a(x). b〈Px〉
The structure of Px can be very complex.

Arbitrary nested outputs, e.g. Px = b1〈b2〈. . . bn〈x〉〉〉.

Nested outputs are essential to show Turing completeness for
Hocore (they allow to define counters and test for zero).

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 11 / 43



This Talk

What’s the origin of the expressivity of Hocore?

Arbitrary Forwarding
Emitting a received process in an arbitrary context

Take a forwarder process F = a(x). b〈Px〉
The structure of Px can be very complex.

Arbitrary nested outputs, e.g. Px = b1〈b2〈. . . bn〈x〉〉〉.

Nested outputs are essential to show Turing completeness for
Hocore (they allow to define counters and test for zero).

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 11 / 43



This Talk

Towards Limited Forwarding

Forwarding can be limited by restricting the shape of output objects.

Consider output objects which can only be the composition of:

1 Statically known closed processes

2 Processes received in previous input actions

For instance, given a closed process R :

P = a〈S〉 ‖ a(x). b〈x ‖ R〉 is a valid process

whereas Q = a〈S〉 ‖ a(x). b〈c〈x ‖ R〉〉 is not.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 12 / 43



This Talk

Towards Limited Forwarding

Forwarding can be limited by restricting the shape of output objects.

Consider output objects which can only be the composition of:

1 Statically known closed processes

2 Processes received in previous input actions

For instance, given a closed process R :

P = a〈S〉 ‖ a(x). b〈x ‖ R〉 is a valid process

whereas Q = a〈S〉 ‖ a(x). b〈c〈x ‖ R〉〉 is not.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 12 / 43



This Talk

Towards Limited Forwarding

Forwarding can be limited by restricting the shape of output objects.

Consider output objects which can only be the composition of:

1 Statically known closed processes

2 Processes received in previous input actions

For instance, given a closed process R :

P = a〈S〉 ‖ a(x). b〈x ‖ R〉 is a valid process

whereas Q = a〈S〉 ‖ a(x). b〈c〈x ‖ R〉〉 is not.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 12 / 43



This Talk

Limited Forwarding is Still Interesting

It reminds us of scenarios in which outputs can only “append” pieces
of code, available as “black-boxes” that admit no inspection.

Examples

Communication of compiled code

Distribution of obfuscated (protected) code

Proof-carrying code.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 13 / 43



This Talk

Limited Forwarding is Still Interesting

It reminds us of scenarios in which outputs can only “append” pieces
of code, available as “black-boxes” that admit no inspection.

Examples

Communication of compiled code

Distribution of obfuscated (protected) code

Proof-carrying code.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 13 / 43



This Talk

This talk, less informally

What is the impact of limiting forwarding in Hocore?

Do limited output actions affect absolute expressiveness?
If so, to what extent?

Do they have influence on the decidability of termination and
convergence?

Approach

We study Ho−f : the subcalculus of Hocore with limited forwarding.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 14 / 43



This Talk

This talk, less informally

What is the impact of limiting forwarding in Hocore?

Do limited output actions affect absolute expressiveness?
If so, to what extent?

Do they have influence on the decidability of termination and
convergence?

Approach

We study Ho−f : the subcalculus of Hocore with limited forwarding.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 14 / 43



This Talk

This talk, less informally

What is the impact of limiting forwarding in Hocore?

Do limited output actions affect absolute expressiveness?
If so, to what extent?

Do they have influence on the decidability of termination and
convergence?

Approach

We study Ho−f : the subcalculus of Hocore with limited forwarding.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 14 / 43



This Talk

Main Results

1 In contrast to Hocore, termination in Ho−f is decidable

2 Similarly as Hocore, convergence in Ho−f is undecidable

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 15 / 43



This Talk

Main Results

1 In contrast to Hocore, termination in Ho−f is decidable

2 Similarly as Hocore, convergence in Ho−f is undecidable

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 15 / 43



The Ho−f calculus

Roadmap

1 Motivation

2 This Talk

3 The Ho−f calculus

4 Convergence is Undecidable in Ho−f

5 Termination is Decidable in Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 16 / 43



The Ho−f calculus

The Ho−f calculus

Syntax

P , Q ::= a〈x1 ‖ · · · ‖ xk ‖ P〉 (with k ≥ 0, fv(P) = ∅)
| a(x). P

| P ‖ Q

| x

| 0

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 17 / 43



The Ho−f calculus

The Ho−f calculus

Semantics
A (finitely-branching) labeled transition system on closed processes:

Inp a(x). P
a(x)−−→ P Out a〈P〉 a〈P〉−−−→ 0

Act1
P1

α−→ P ′1

P1 ‖ P2
α−→ P ′1 ‖ P2

Tau1
P1

a〈P〉−−−→ P ′1 P2
a(x)−−→ P ′2

P1 ‖ P2
τ−→ P ′1 ‖ P ′2{P/x}

Notice: In rule Act1, P2 has no free variables and no side conditions
are necessary. Hence, alpha-conversion is not needed.

Reductions P −→ P ′ are defined as P
τ−→ P ′.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 18 / 43



The Ho−f calculus

Convergence and Termination

We denote with −→∗ the reflexive and transitive closure of −→.
We use P 9 to denote that there is no P ′ such that P −→ P ′

Definition

Let P be a Ho−f process.

P converges iff there exists a P ′ such that P −→∗ P ′ and P ′ 9.

P terminates iff there exist no {Pi}i∈N such that P0 =P and
Pj−→Pj+1 for any j .

Note: Termination implies convergence, but the opposite doesn’t
hold.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 19 / 43



Convergence is Undecidable in Ho−f

Roadmap

1 Motivation

2 This Talk

3 The Ho−f calculus

4 Convergence is Undecidable in Ho−f

5 Termination is Decidable in Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 20 / 43



Convergence is Undecidable in Ho−f

Convergence is Undecidable in Ho−f

We prove undecidability by encoding Minsky machines into Ho−f .

Two-counter Minsky machines

Turing complete model with n labeled instructions and two registers.

Registers rj (j ∈ {0, 1}) can hold arbitrarily large natural
numbers.

Instructions can be of two kinds:

Instruction rj == 0 rj > 0

INC(rj) rj = rj + 1 rj = rj + 1
DECJ(rj , k) jump to k rj = rj − 1

A program counter indicates the instruction being executed.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 21 / 43



Convergence is Undecidable in Ho−f

Convergence is Undecidable in Ho−f

We prove undecidability by encoding Minsky machines into Ho−f .

Two-counter Minsky machines

Turing complete model with n labeled instructions and two registers.

Registers rj (j ∈ {0, 1}) can hold arbitrarily large natural
numbers.

Instructions can be of two kinds:

Instruction rj == 0 rj > 0

INC(rj) rj = rj + 1 rj = rj + 1
DECJ(rj , k) jump to k rj = rj − 1

A program counter indicates the instruction being executed.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 21 / 43



Convergence is Undecidable in Ho−f

Encoding Minsky machines into Ho−f

Limited output actions make it difficult to test for zero precisely.
The encoding is not faithful:

It may introduce divergent computations which do not
correspond to the behavior of the modeled machine.

However, such computations are infinite and regarded as
non-halting computations which are ignored.

Only finite computations correspond to those of the encoded
Minsky machine.

Given a Minsky machine N , its encoding [[N]] converges iff N
terminates. This allows to prove that convergence is undecidable.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 22 / 43



Convergence is Undecidable in Ho−f

Encoding Minsky machines into Ho−f

Limited output actions make it difficult to test for zero precisely.
The encoding is not faithful:

It may introduce divergent computations which do not
correspond to the behavior of the modeled machine.

However, such computations are infinite and regarded as
non-halting computations which are ignored.

Only finite computations correspond to those of the encoded
Minsky machine.

Given a Minsky machine N , its encoding [[N]] converges iff N
terminates. This allows to prove that convergence is undecidable.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 22 / 43



Convergence is Undecidable in Ho−f

Encoding Minsky machines into Ho−f

Registers, Instructions, Increments.

A register rj storing number m: the parallel composition of m
copies of the “unit process” uj .
Each register keeps a log of the operations performed on it.

Each instruction is a replicated process guarded by pi ,
representing the program counter when it contains instruction i .

An increment of rj creates a new copy of uj , and updates the log
of rj .

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 23 / 43



Convergence is Undecidable in Ho−f

Encoding Minsky machines into Ho−f

A decrement and jump makes a “guess” on the value of the register.

Wrong guesses lead to divergent behavior.
The encoding either

Performs the decrement and proceeds with the next instruction
The decrement tries to consume a copy of uj .
If this succeeds, then the log is updated.
Otherwise, a divergent computation is spawned.

OR

Jumps
Exploiting the log of the register, a test for zero is performed.
If the test fails then a divergent computation is spawned.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 24 / 43



Convergence is Undecidable in Ho−f

Encoding Minsky machines into Ho−f

A decrement and jump makes a “guess” on the value of the register.
Wrong guesses lead to divergent behavior.

The encoding either

Performs the decrement and proceeds with the next instruction
The decrement tries to consume a copy of uj .
If this succeeds, then the log is updated.
Otherwise, a divergent computation is spawned.

OR

Jumps
Exploiting the log of the register, a test for zero is performed.
If the test fails then a divergent computation is spawned.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 24 / 43



Convergence is Undecidable in Ho−f

Encoding Minsky machines into Ho−f

A decrement and jump makes a “guess” on the value of the register.
Wrong guesses lead to divergent behavior.
The encoding either

Performs the decrement and proceeds with the next instruction
The decrement tries to consume a copy of uj .
If this succeeds, then the log is updated.
Otherwise, a divergent computation is spawned.

OR

Jumps
Exploiting the log of the register, a test for zero is performed.
If the test fails then a divergent computation is spawned.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 24 / 43



Convergence is Undecidable in Ho−f

Encoding Minsky machines into Ho−f

A decrement and jump makes a “guess” on the value of the register.
Wrong guesses lead to divergent behavior.
The encoding either

Performs the decrement and proceeds with the next instruction
The decrement tries to consume a copy of uj .
If this succeeds, then the log is updated.
Otherwise, a divergent computation is spawned.

OR

Jumps
Exploiting the log of the register, a test for zero is performed.
If the test fails then a divergent computation is spawned.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 24 / 43



Convergence is Undecidable in Ho−f

Encoding Minsky machines into Ho−f

A decrement and jump makes a “guess” on the value of the register.
Wrong guesses lead to divergent behavior.
The encoding either

Performs the decrement and proceeds with the next instruction
The decrement tries to consume a copy of uj .
If this succeeds, then the log is updated.
Otherwise, a divergent computation is spawned.

OR

Jumps
Exploiting the log of the register, a test for zero is performed.
If the test fails then a divergent computation is spawned.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 24 / 43



Convergence is Undecidable in Ho−f

Correctness of the Encoding

[[·]]M denotes the encoding of Minsky machines into Ho−f .

Theorem

Let N be a Minsky machine with registers r0 = m0, r1 = m1,
instructions (1 : I1), . . . , (n : In), and configuration (i ,m0,m1).
Then (i ,m0,m1) terminates iff process [[(i ,m0,m1)]]M converges.

Corollary

Convergence is undecidable in Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 25 / 43



Convergence is Undecidable in Ho−f

Correctness of the Encoding

[[·]]M denotes the encoding of Minsky machines into Ho−f .

Theorem

Let N be a Minsky machine with registers r0 = m0, r1 = m1,
instructions (1 : I1), . . . , (n : In), and configuration (i ,m0,m1).
Then (i ,m0,m1) terminates iff process [[(i ,m0,m1)]]M converges.

Corollary

Convergence is undecidable in Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 25 / 43



Termination is Decidable in Ho−f

Roadmap

1 Motivation

2 This Talk

3 The Ho−f calculus

4 Convergence is Undecidable in Ho−f

5 Termination is Decidable in Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 26 / 43



Termination is Decidable in Ho−f

Well-structured transition systems

We prove decidability of termination by exploiting the theory of
well-structured transition systems [Finkel and Schnoebelen, 2001].

Intuition: A transition system enriched with an ordering relation over
the set of states.

Definition (Well-structured transition system)

A well-structured transition system with strong compatibility is a
transition system TS = (S ,→,≤) such that:

1 ≤ is a well-quasi-order (wqo) on S ;

2 ≤ is strongly compatible with →:
for all s1 ≤ t1 and all transitions s1 → s2, there exists a t2 such
that t1 → t2 and s2 ≤ t2 holds.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 27 / 43



Termination is Decidable in Ho−f

Well-structured transition systems

We prove decidability of termination by exploiting the theory of
well-structured transition systems [Finkel and Schnoebelen, 2001].

Intuition: A transition system enriched with an ordering relation over
the set of states.

Definition (Well-structured transition system)

A well-structured transition system with strong compatibility is a
transition system TS = (S ,→,≤) such that:

1 ≤ is a well-quasi-order (wqo) on S ;

2 ≤ is strongly compatible with →:
for all s1 ≤ t1 and all transitions s1 → s2, there exists a t2 such
that t1 → t2 and s2 ≤ t2 holds.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 27 / 43



Termination is Decidable in Ho−f

Well-structured transition systems

We prove decidability of termination by exploiting the theory of
well-structured transition systems [Finkel and Schnoebelen, 2001].

Intuition: A transition system enriched with an ordering relation over
the set of states.

Definition (Well-structured transition system)

A well-structured transition system with strong compatibility is a
transition system TS = (S ,→,≤) such that:

1 ≤ is a well-quasi-order (wqo) on S ;

2 ≤ is strongly compatible with →:
for all s1 ≤ t1 and all transitions s1 → s2, there exists a t2 such
that t1 → t2 and s2 ≤ t2 holds.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 27 / 43



Termination is Decidable in Ho−f

Well-structured transition systems

Theorem (Finkel and Schnoebelen, 2001)

Let TS = (S ,→,≤) be a finitely branching, well-structured transition
system with strong compatibility, and decidable ≤.
Then the existence of an infinite computation starting from a state in
S is decidable.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 28 / 43



Termination is Decidable in Ho−f

Termination is Decidable in Ho−f

The proof scheme can be summarized in the following steps:

1 Define a normal form for Ho−f processes

2 Characterize an upper bound for the derivatives of an Ho−f

process in normal form, and define an ordering � over them

3 Show that � is a wqo strongly compatible wrt the LTS of Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 29 / 43



Termination is Decidable in Ho−f

Termination is Decidable in Ho−f

The proof scheme can be summarized in the following steps:

1 Define a normal form for Ho−f processes

2 Characterize an upper bound for the derivatives of an Ho−f

process in normal form, and define an ordering � over them

3 Show that � is a wqo strongly compatible wrt the LTS of Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 29 / 43



Termination is Decidable in Ho−f

Termination is Decidable in Ho−f

The proof scheme can be summarized in the following steps:

1 Define a normal form for Ho−f processes

2 Characterize an upper bound for the derivatives of an Ho−f

process in normal form, and define an ordering � over them

3 Show that � is a wqo strongly compatible wrt the LTS of Ho−f

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 29 / 43



Termination is Decidable in Ho−f

Step 1: A normal form for Ho−f processes

Definition (Normal Form)

Let P ∈ Ho−f . P is in normal form iff

P =
l∏

k=1

xk ‖
m∏

i=1

ai(yi). Pi ‖
n∏

j=1

bj〈P ′j 〉

where each Pi and P ′j are in normal form.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 30 / 43



Termination is Decidable in Ho−f

Step 1: A normal form for Ho−f processes

Normal forms have a tree-like representation.
Depth of a process: the maximum depth of its tree representation.

Example (A process and its tree representation)

P = x ‖ a(y). (b. y ‖ c) ‖ c〈z ‖ d . e〉

x
a(y)

iiiiiii c
UUUUUUU

•
b

iiiiiii c
UUUUUUU z

d

y • •
e

•

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 31 / 43



Termination is Decidable in Ho−f

Step 2: An upper bound for Ho−f processes

In ordinary higher-order process calculi (including Hocore):

After a reduction, an arbitrary process can take the place of
possibly several occurrences of a single variable.

The depth of a process cannot be determined before its
execution: It can vary arbitrarily along reductions.

In Ho−f it is possible to bound the depth of a process!

Idea: to consider the relative position of variables within a
process.

Variables only occur at the top level of the output objects.
Hence, their relative position remains invariant along reductions.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 32 / 43



Termination is Decidable in Ho−f

Step 2: An upper bound for Ho−f processes

In ordinary higher-order process calculi (including Hocore):

After a reduction, an arbitrary process can take the place of
possibly several occurrences of a single variable.

The depth of a process cannot be determined before its
execution: It can vary arbitrarily along reductions.

In Ho−f it is possible to bound the depth of a process!

Idea: to consider the relative position of variables within a
process.

Variables only occur at the top level of the output objects.
Hence, their relative position remains invariant along reductions.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 32 / 43



Termination is Decidable in Ho−f

Step 2: An upper bound for Ho−f processes

In ordinary higher-order process calculi (including Hocore):

After a reduction, an arbitrary process can take the place of
possibly several occurrences of a single variable.

The depth of a process cannot be determined before its
execution: It can vary arbitrarily along reductions.

In Ho−f it is possible to bound the depth of a process!

Idea: to consider the relative position of variables within a
process.

Variables only occur at the top level of the output objects.
Hence, their relative position remains invariant along reductions.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 32 / 43



Termination is Decidable in Ho−f

Step 2: An ordering over Ho−f processes

Intuition: A process is larger than another if it has more parallel
components.

Definition (Relation �)

Let P ,Q ∈ Ho−f . We write P � Q iff there exist x1 . . . xl , P1 . . .Pm,
P ′1 . . .P

′
n, Q1 . . .Qm, Q ′1 . . .Q

′
n, and R such that

P ≡
∏l

k=1 xk ‖
∏m

i=1 ai (yi ). Pi ‖
∏n

j=1 bj〈P ′j 〉
Q ≡

∏l
k=1 xk ‖

∏m
i=1 ai (yi ). Qi ‖

∏n
j=1 bj〈Q ′j 〉 ‖ R

with Pi � Qi and P ′j � Q ′j , for i ∈ [1. . m] and j ∈ [1. . n].

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 33 / 43



Termination is Decidable in Ho−f

Step 2: An ordering over Ho−f processes

Intuition: A process is larger than another if it has more parallel
components.

Definition (Relation �)

Let P ,Q ∈ Ho−f . We write P � Q iff there exist x1 . . . xl , P1 . . .Pm,
P ′1 . . .P

′
n, Q1 . . .Qm, Q ′1 . . .Q

′
n, and R such that

P ≡
∏l

k=1 xk ‖
∏m

i=1 ai (yi ). Pi ‖
∏n

j=1 bj〈P ′j 〉
Q ≡

∏l
k=1 xk ‖

∏m
i=1 ai (yi ). Qi ‖

∏n
j=1 bj〈Q ′j 〉 ‖ R

with Pi � Qi and P ′j � Q ′j , for i ∈ [1. . m] and j ∈ [1. . n].

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 33 / 43



Termination is Decidable in Ho−f

Step 3: The ordering � is a wqo

Let n and Q be a natural number and an Ho−f process, resp.
The “bounded set” PQ,n contains all those processes that

can be built using the alphabet of Q

have trees whose depth is at most n

Theorem (Relation � is a wqo)

Let P ∈ Ho−f and n ≥ 0. The relation � is a wqo over PP,n.

Theorem (Strong Compatibility)

Let P ,Q,P ′ ∈ Ho−f .
If P � Q and P

α−→ P ′ then ∃Q ′ such that Q
α−→ Q ′ and P ′ � Q ′.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 34 / 43



Termination is Decidable in Ho−f

Step 3: The ordering � is a wqo

Let n and Q be a natural number and an Ho−f process, resp.
The “bounded set” PQ,n contains all those processes that

can be built using the alphabet of Q

have trees whose depth is at most n

Theorem (Relation � is a wqo)

Let P ∈ Ho−f and n ≥ 0. The relation � is a wqo over PP,n.

Theorem (Strong Compatibility)

Let P ,Q,P ′ ∈ Ho−f .
If P � Q and P

α−→ P ′ then ∃Q ′ such that Q
α−→ Q ′ and P ′ � Q ′.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 34 / 43



Termination is Decidable in Ho−f

Step 3: The ordering � is a wqo

Let n and Q be a natural number and an Ho−f process, resp.
The “bounded set” PQ,n contains all those processes that

can be built using the alphabet of Q

have trees whose depth is at most n

Theorem (Relation � is a wqo)

Let P ∈ Ho−f and n ≥ 0. The relation � is a wqo over PP,n.

Theorem (Strong Compatibility)

Let P ,Q,P ′ ∈ Ho−f .
If P � Q and P

α−→ P ′ then ∃Q ′ such that Q
α−→ Q ′ and P ′ � Q ′.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 34 / 43



Termination is Decidable in Ho−f

Concluding the proof

Below we use Deriv(P) to denote the set of derivatives of process P .

Theorem

Let P ∈ Ho−f . The transition system (Deriv(P),−→,�) is a finitely
branching, well-structured transition system with strong compatibility.

Corollary

Termination is decidable in Ho−f .

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 35 / 43



Termination is Decidable in Ho−f

Concluding the proof

Below we use Deriv(P) to denote the set of derivatives of process P .

Theorem

Let P ∈ Ho−f . The transition system (Deriv(P),−→,�) is a finitely
branching, well-structured transition system with strong compatibility.

Corollary

Termination is decidable in Ho−f .

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 35 / 43



Concluding Remarks

Concluding Remarks

Weakening the forwarding capabilities of higher-order communication
has consequences on

the decidability of termination

the expressiveness of the language

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 36 / 43



Concluding Remarks

Concluding Remarks

In contrast with Hocore, in Ho−f termination is decidable.
The limited communication style of Ho−f thus causes a
separation result with respect to Hocore.

Similarly as Hocore, Ho−f is Turing complete and its
convergence problem is undecidable.
The calculus retains a significant expressive power despite of the
limited forwarding capabilities.
The encoding into Minsky machines is not faithful, though.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 37 / 43



Concluding Remarks

Concluding Remarks

In contrast with Hocore, in Ho−f termination is decidable.
The limited communication style of Ho−f thus causes a
separation result with respect to Hocore.

Similarly as Hocore, Ho−f is Turing complete and its
convergence problem is undecidable.
The calculus retains a significant expressive power despite of the
limited forwarding capabilities.
The encoding into Minsky machines is not faithful, though.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 37 / 43



Concluding Remarks

Thanks!

Any Questions?

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 38 / 43



Other Slides

Alphabet of an Ho−f process

Definition (Alphabet of a process)

Let P be an Ho−f process. The alphabet of P , denoted A(P), is
inductively defined as:

A(0) = ∅ A(P ‖ Q) = A(P) ∪ A(Q) A(x) = {x}

A(a(x). P) = {a, x} ∪ A(P) A(a〈P〉) = {a} ∪ A(P)

Proposition

Let P be an Ho−f process. The set A(P) is finite.

Proposition

Let P and P ′ be Ho−f processes. If P
α−→ P ′ then A(P ′) ⊆ A(P).

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 39 / 43



Other Slides

Expressivity of Ho−f

Input-guarded replication

Divergence-free adaptation of the usual encoding of replication:

[[!a(z). P]]i! = a(z). (Qc ‖ P) ‖ c〈a(z). (Qc ‖ P)〉

where

Qc = c(x). (x ‖ c〈x〉)
P contains no replications (nested replications are forbidden)

[[·]]i! is an homomorphism for the other operators.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 40 / 43



Other Slides

Encoding Minsky machines into Ho−f

Register rj [[rj = m]]M =
∏m

1 uj

Instructions (i : Ii )
[[(i : INC(rj))]]M = !pi . (uj ‖ setj(x). setj〈x ‖ Incj〉 ‖ pi+1)
[[(i : DECJ(rj , s))]]M = !pi . mi

‖ !mi . (loop ‖ uj . loop. setj(x). setj〈x ‖ Decj〉 ‖ pi+1)
‖ !mi . setj(x). (x ‖ setj〈0〉 ‖ ps)

where
Incj = loop ‖ checkj . loop Decj = checkj

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 41 / 43



Other Slides

Well-structured transition systems

A quasi-order is a reflexive and transitive relation.

Definition (Well-quasi-order)

A well-quasi-order (wqo) is a quasi-order ≤ over a set X such that,
for any infinite sequence x0, x1, x2 . . . ∈ X , there exist indexes i < j
such that xi ≤ xj .

Definition (Transition system)

A transition system is a structure TS = (S ,→), where S is a set of
states and →⊆ S × S is a set of transitions. We define Succ(s) as
the set {s ′ ∈ S | s → s ′} of immediate successors of S . We say that
TS is finitely branching if, for each s ∈ S , Succ(s) is finite.

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 42 / 43



Other Slides

Step 2: An upper bound for Ho−f processes

Invariance along reductions of the depth of a process, graphically.

Take a process P = x1 ‖ · · · ‖ xk ‖ a〈T 〉 ‖ a(x). R ′ ‖ S .
It reduces to Q = x1 ‖ · · · ‖ xk ‖ R ′{T/x} ‖ S .

x1, . . . , xk

a

R′T

a(x)

S
x

2 · n

R′′

n

(o) Tree representation of P

x1, . . . , xk

R′

T

S
2 · n

R′′

n

(p) Tree representation of Q

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 43 / 43



Other Slides

Step 2: An upper bound for Ho−f processes

Invariance along reductions of the depth of a process, graphically.

Take a process P = x1 ‖ · · · ‖ xk ‖ a〈T 〉 ‖ a(x). R ′ ‖ S .
It reduces to Q = x1 ‖ · · · ‖ xk ‖ R ′{T/x} ‖ S .

x1, . . . , xk

a

R′T

a(x)

S
x

2 · n

R′′

n

(q) Tree representation of P

x1, . . . , xk

R′

T

S
2 · n

R′′

n

(r) Tree representation of Q

Jorge A. Pérez (Univ. of Bologna, Italy) Forwarding in Higher-Order Concurrency ICTAC’09 43 / 43


	Motivation
	This Talk
	The Ho-f calculus
	Convergence is Undecidable in Ho-f
	Termination is Decidable in Ho-f
	Concluding Remarks
	Other Slides

