
On the Expressiveness and Decidability of Higher-Order Process Calculi

On the Expressiveness and Decidability of
Higher-Order Process Calculi

Ivan Lanese (Univ. of Bologna)
Jorge A. Pérez (Univ. of Bologna)

Davide Sangiorgi (Univ. of Bologna)
Alan Schmitt (INRIA Rhône-Alphes)

The Copenhagen Programming Language Seminar (COPLAS)
August 15 2008

On the Expressiveness and Decidability of Higher-Order Process Calculi

Motivation

Higher-order (HO) process calculi: features

Languages which allow communication of processes, i.e. pieces of
code a recipient can run.

Usual operators: parallel composition, input and output prefixes,
restriction. Infinite behavior can be encoded.

As in the λ-calculus, computation involves term instantiation.

Examples: CHOCS and Plain CHOCS (Thomsen); the Higher-Order
π-calculus (Sangiorgi); Homer (Hildebrandt et al); Kell (Schmitt and
Stefani).

On the Expressiveness and Decidability of Higher-Order Process Calculi

Motivation

HO calculi: facts

They have been used primarily to investigate the expressiveness of
first-order calculi such as the π-calculus.

In π, the first- and higher-order paradigms have the same expressive
power.

Process communication has strong consequences on semantics.
In particular, behavioral equivalences are problematic.

First-order techniques usually do not carry over to the HO case.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Motivation

HO languages are increasingly relevant nowadays

We find HO features in languages for emerging applications in
concurrency:

HO languages with localities have proven useful in component-based
programming and mobile computing.

Languages for service-oriented computing and systems biology
usually include HO features (or elements reminiscent of them).

On the Expressiveness and Decidability of Higher-Order Process Calculi

Motivation

This work

We aim at a better understanding of the HO communication paradigm.
We propose to do so by:

identifying a core language for HO concurrency;

studying sensible behavioral equivalences for it;

addressing issues little studied or not studied at all:
absolute expressiveness and decidability.

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

HOcore: a core calculus for higher-order concurrency

Syntax
P, Q ::= a〈P〉 output

| a(x).P input prefix

| x process variable

| P ‖ Q parallel composition

| 0 nil

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

HOcore: a core calculus for higher-order concurrency

Semantics
Labeled Transition System

Inp a(x).P
a(x)−−−→ P Out a〈P〉 a〈P〉−−−→ 0

Act1
P1

α−→ P ′
1 bv(α) ∩ fv(P2) = ∅

P1 ‖ P2
α−→ P ′

1 ‖ P2

Tau1
P1

a〈P〉−−−→ P ′
1 P2

a(x)−−−→ P ′
2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2{P/x}

Structural congruence, ≡:
P ‖ 0 ≡ P, P1 ‖ P2 ≡ P2 ‖ P1, P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3.

Reductions P −→ P ′ are defined as P ≡ τ−→≡ P ′.

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

HOcore: a core calculus for higher-order concurrency

Main features

HO communication is strict: no name passing is allowed.

No output prefix: asynchronous calculus.

No restriction operator: every communication is public.
Behavior is exposed.

A located, concurrent λ-calculus:

a(x).P: a function with parameter x and body P, located at a;

a〈Q〉: an argument Q for a function located at a.

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

HOcore: a core calculus for higher-order concurrency

Main features

HO communication is strict: no name passing is allowed.

No output prefix: asynchronous calculus.

No restriction operator: every communication is public.
Behavior is exposed.

A located, concurrent λ-calculus:

a(x).P: a function with parameter x and body P, located at a;

a〈Q〉: an argument Q for a function located at a.

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

Main Results

1 HOcore is Turing complete.

2 Strong bisimilarity is decidable.

3 A number of sensible equivalences coincide with strong bisimilarity.

4 Strong bisimilarity has a sound and complete axiomatization.

5 Using (4), bisimulation checking has a polynomial complexity.

6 Decidability breaks with four static restrictions.

In this talk

I will focus on (1)-(3). Some hints on (4) and (6).

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

Main Results

1 HOcore is Turing complete.

2 Strong bisimilarity is decidable.

3 A number of sensible equivalences coincide with strong bisimilarity.

4 Strong bisimilarity has a sound and complete axiomatization.

5 Using (4), bisimulation checking has a polynomial complexity.

6 Decidability breaks with four static restrictions.

In this talk

I will focus on (1)-(3). Some hints on (4) and (6).

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

Main Results

1 HOcore is Turing complete.

2 Strong bisimilarity is decidable.

3 A number of sensible equivalences coincide with strong bisimilarity.

4 Strong bisimilarity has a sound and complete axiomatization.

5 Using (4), bisimulation checking has a polynomial complexity.

6 Decidability breaks with four static restrictions.

In this talk

I will focus on (1)-(3). Some hints on (4) and (6).

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

Main Results

1 HOcore is Turing complete.

2 Strong bisimilarity is decidable.

3 A number of sensible equivalences coincide with strong bisimilarity.

4 Strong bisimilarity has a sound and complete axiomatization.

5 Using (4), bisimulation checking has a polynomial complexity.

6 Decidability breaks with four static restrictions.

In this talk

I will focus on (1)-(3). Some hints on (4) and (6).

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

Main Results

1 HOcore is Turing complete.

2 Strong bisimilarity is decidable.

3 A number of sensible equivalences coincide with strong bisimilarity.

4 Strong bisimilarity has a sound and complete axiomatization.

5 Using (4), bisimulation checking has a polynomial complexity.

6 Decidability breaks with four static restrictions.

In this talk

I will focus on (1)-(3). Some hints on (4) and (6).

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

Main Results

1 HOcore is Turing complete.

2 Strong bisimilarity is decidable.

3 A number of sensible equivalences coincide with strong bisimilarity.

4 Strong bisimilarity has a sound and complete axiomatization.

5 Using (4), bisimulation checking has a polynomial complexity.

6 Decidability breaks with four static restrictions.

In this talk

I will focus on (1)-(3). Some hints on (4) and (6).

On the Expressiveness and Decidability of Higher-Order Process Calculi

A core calculus for higher-order concurrency

Main Results

1 HOcore is Turing complete.

2 Strong bisimilarity is decidable.

3 A number of sensible equivalences coincide with strong bisimilarity.

4 Strong bisimilarity has a sound and complete axiomatization.

5 Using (4), bisimulation checking has a polynomial complexity.

6 Decidability breaks with four static restrictions.

In this talk

I will focus on (1)-(3). Some hints on (4) and (6).

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Roadmap

1 Motivation

2 A core calculus for higher-order concurrency

3 Focus on some of the results
Absolute Expressiveness
Behavioral Equivalences in HOcore

4 A bird-eye view on other results
Axiomatization
Limits of decidability

5 Final Remarks

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

HOcore is Turing complete

We show HOcore is Turing complete by encoding Minsky machines.

The encoding:

Uses basic forms of replication and guarded choice.

The cornerstone: counters that may be tested for zero.

Counters and registers based on HO communication.

Requires a finite number of fresh names (linear on the number of
instructions).

The encoding is termination-preserving. Hence, termination in HOcore
is undecidable.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Expressivity of HOcore

Guarded Choice

Assume that, for i ∈ {1, 2}, a process Pi can be only triggered by a
behavior selector âi :

(a1.P1 + a2.P2) ‖ âi −→ Pi

This is encoded as

[[a1.P1 + a2.P2]]+ = a1〈[[P1]]+〉 ‖ a2〈[[P2]]+〉
[[âi]]+ = a1(x1). a2(x2). xi

and an extra communication is introduced:

[[(a1.P1 + a2.P2) ‖ âi]]+ −→−→ [[Pi]]+

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Expressivity of HOcore

Input-guarded replication

Divergence-free adaptation of the usual encoding of replication:

[[!a(z).P]]i! = a(z). (Qc ‖ P) ‖ c〈a(z). (Qc ‖ P)〉

where

Qc = c(x). (x ‖ c〈x〉)
P contains no replications (nested replications are forbidden)

[[·]]i! is an homomorphism for the other operators.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Two-counter Minsky machines

Turing complete model with n labeled instructions and two registers.

Registers rj (j ∈ {0, 1}) can hold arbitrarily large natural numbers.

Instructions can be of two kinds:

Instruction rj == 0 rj > 0

INC(rj) rj = rj + 1 rj = rj + 1
DECJ(rj , k) jump to k rj = rj − 1

A program counter indicates the label of the instruction being
executed.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Numbers as nested higher-order processes

A number k > 0 is encoded as the wrapping of its predecessor in a
“successor” channel, and a “non-zero” flag:

(| k + 1 |)j = rS
j 〈(| k |)j〉 ‖ n̂j

Similarly, (| 0 |)j = r0
j ‖ ẑj (the “zero” channel and the “zero” flag).

Example: Encoding 2

To increment it:
put it as the argument of a message on rS

j along with the n̂j flag.
To decrement it:

consume the message on rS
j and use n̂j to trigger some behavior.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Numbers as nested higher-order processes

A number k > 0 is encoded as the wrapping of its predecessor in a
“successor” channel, and a “non-zero” flag:

(| k + 1 |)j = rS
j 〈(| k |)j〉 ‖ n̂j

Similarly, (| 0 |)j = r0
j ‖ ẑj (the “zero” channel and the “zero” flag).

Example: Encoding 2

(| 0 |)j = r0
j ‖ ẑj

To increment it:
put it as the argument of a message on rS

j along with the n̂j flag.
To decrement it:

consume the message on rS
j and use n̂j to trigger some behavior.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Numbers as nested higher-order processes

A number k > 0 is encoded as the wrapping of its predecessor in a
“successor” channel, and a “non-zero” flag:

(| k + 1 |)j = rS
j 〈(| k |)j〉 ‖ n̂j

Similarly, (| 0 |)j = r0
j ‖ ẑj (the “zero” channel and the “zero” flag).

Example: Encoding 2

(| 1 |)j = rS
j 〈(| 0 |)j〉 ‖ n̂j

To increment it:
put it as the argument of a message on rS

j along with the n̂j flag.
To decrement it:

consume the message on rS
j and use n̂j to trigger some behavior.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Numbers as nested higher-order processes

A number k > 0 is encoded as the wrapping of its predecessor in a
“successor” channel, and a “non-zero” flag:

(| k + 1 |)j = rS
j 〈(| k |)j〉 ‖ n̂j

Similarly, (| 0 |)j = r0
j ‖ ẑj (the “zero” channel and the “zero” flag).

Example: Encoding 2

(| 1 |)j = rS
j 〈r0

j ‖ ẑj〉 ‖ n̂j

To increment it:
put it as the argument of a message on rS

j along with the n̂j flag.
To decrement it:

consume the message on rS
j and use n̂j to trigger some behavior.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Numbers as nested higher-order processes

A number k > 0 is encoded as the wrapping of its predecessor in a
“successor” channel, and a “non-zero” flag:

(| k + 1 |)j = rS
j 〈(| k |)j〉 ‖ n̂j

Similarly, (| 0 |)j = r0
j ‖ ẑj (the “zero” channel and the “zero” flag).

Example: Encoding 2

(| 2 |)j = rS
j 〈(| 1 |)j〉 ‖ n̂j

To increment it:
put it as the argument of a message on rS

j along with the n̂j flag.
To decrement it:

consume the message on rS
j and use n̂j to trigger some behavior.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Numbers as nested higher-order processes

A number k > 0 is encoded as the wrapping of its predecessor in a
“successor” channel, and a “non-zero” flag:

(| k + 1 |)j = rS
j 〈(| k |)j〉 ‖ n̂j

Similarly, (| 0 |)j = r0
j ‖ ẑj (the “zero” channel and the “zero” flag).

Example: Encoding 2

(| 2 |)j = rS
j 〈rS

j 〈r0
j ‖ ẑj〉 ‖ n̂j〉 ‖ n̂j

To increment it:
put it as the argument of a message on rS

j along with the n̂j flag.
To decrement it:

consume the message on rS
j and use n̂j to trigger some behavior.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Registers: counters that can be incremented and decremented

Operations as two mutually recursive behaviors on r0
j and rS

j .

Increment: the process sends a message on rS
j containing the

successor of the current register value.

Decrement: the register is recreated with the decremented value (or
zero) and the corresponding flag (ẑj or n̂j) is spawned.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Instructions: encoded hand-in-hand with registers.

An instruction (i : Ii) is a replicated process guarded by pi .

Once pi is consumed, the instruction is active and an interaction
with a register occurs.

A choice representing the kind of instruction is sent to the register,
which returns an acknowledgment.

Upon reception of the acknowledgment, either

case INC: the next instruction is spawned
case DECJ: a jump to the specified instruction (if the register was
zero) OR the next instruction is spawned (otherwise).

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Instructions (i : Ii)

[[(i : INC(rj))]]M = !pi . (dincj ‖ ack. pi+1)

[[(i : DECJ(rj , k))]]M = !pi . (ddecj ‖ ack. (zj . pk + nj . pi+1)

Registers rj

[[rj = 0]]M = (incj . (rS
j 〈(| 1 |)j〉 ‖ ack) + decj . ((| 0 |)j ‖ ack)) ‖ REGj

[[rj = m]]M = (incj . (rS
j 〈(| m |)j〉 ‖ ack) + decj . ((| m − 1 |)j ‖ ack)) ‖ REGj

where:

REGj = !r 0
j . (incj . (rS

j 〈(| 1 |)j〉 ‖ ack) + decj . ((| 0 |)j ‖ ack)) ‖
!rS

j (Y). (incj . (rS
j 〈rS

j 〈Y 〉 ‖ bnj〉 ‖ ack) + decj . (Y ‖ ack))

(| k |)j =

(
r 0
j ‖ bzj if k = 0

rS
j 〈(| k − 1 |)j〉 ‖ bnj if k > 0.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Instructions (i : Ii)

[[(i : INC(rj))]]M = !pi . (dincj ‖ ack. pi+1)

[[(i : DECJ(rj , k))]]M = !pi . (ddecj ‖ ack. (zj . pk + nj . pi+1)

Registers rj

[[rj = 0]]M = (incj . (rS
j 〈(| 1 |)j〉 ‖ ack) + decj . ((| 0 |)j ‖ ack)) ‖ REGj

[[rj = m]]M = (incj . (rS
j 〈(| m |)j〉 ‖ ack) + decj . ((| m − 1 |)j ‖ ack)) ‖ REGj

where:

REGj = !r 0
j . (incj . (rS

j 〈(| 1 |)j〉 ‖ ack) + decj . ((| 0 |)j ‖ ack)) ‖
!rS

j (Y). (incj . (rS
j 〈rS

j 〈Y 〉 ‖ bnj〉 ‖ ack) + decj . (Y ‖ ack))

(| k |)j =

(
r 0
j ‖ bzj if k = 0

rS
j 〈(| k − 1 |)j〉 ‖ bnj if k > 0.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Instructions (i : Ii)

[[(i : INC(rj))]]M = !pi . (dincj ‖ ack. pi+1)

[[(i : DECJ(rj , k))]]M = !pi . (ddecj ‖ ack. (zj . pk + nj . pi+1)

Registers rj

[[rj = 0]]M = (incj . (rS
j 〈(| 1 |)j〉 ‖ ack) + decj . ((| 0 |)j ‖ ack)) ‖ REGj

[[rj = m]]M = (incj . (rS
j 〈(| m |)j〉 ‖ ack) + decj . ((| m − 1 |)j ‖ ack)) ‖ REGj

where:

REGj = !r 0
j . (incj . (rS

j 〈(| 1 |)j〉 ‖ ack) + decj . ((| 0 |)j ‖ ack)) ‖
!rS

j (Y). (incj . (rS
j 〈rS

j 〈Y 〉 ‖ bnj〉 ‖ ack) + decj . (Y ‖ ack))

(| k |)j =

(
r 0
j ‖ bzj if k = 0

rS
j 〈(| k − 1 |)j〉 ‖ bnj if k > 0.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Lemma

Let [[·]]M represent the encoding of Minsky machines into HOcore.
Given a Minsky machine N, we have:

N −→ N ′ if and only iff [[N]]M −→∗ [[N ′]]M;

N 6−→ if and only iff [[N]]M 6−→;

N diverges if and only iff [[N]]M diverges.

Since the encoding preserves termination we have:

Corollary

Termination in HOcore is undecidable.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Absolute Expressiveness

Encoding Minsky machines into HOcore

Lemma

Let [[·]]M represent the encoding of Minsky machines into HOcore.
Given a Minsky machine N, we have:

N −→ N ′ if and only iff [[N]]M −→∗ [[N ′]]M;

N 6−→ if and only iff [[N]]M 6−→;

N diverges if and only iff [[N]]M diverges.

Since the encoding preserves termination we have:

Corollary

Termination in HOcore is undecidable.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Roadmap

1 Motivation

2 A core calculus for higher-order concurrency

3 Focus on some of the results
Absolute Expressiveness
Behavioral Equivalences in HOcore

4 A bird-eye view on other results
Axiomatization
Limits of decidability

5 Final Remarks

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Behavioral Equivalences in HOcore

HOcore has a unique reasonable relation of strong bisimilarity (∼) that
enjoys a number of nice properties:

1 it is decidable;

2 it is a congruence (and with a simple proof);

3 it coincides with a number of equivalences, including barbed
congruence.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Bisimilarities for HO calculi in a nutshell

Consider two processes, P and Q:

“Ordinary” (i.e. CCS-like) bisimilarity: P and Q are bisimilar if any
action by one can be matched by an identical action from the other.

Drawback: This breaks basic laws, e.g., commutativity of ‖:

a〈P ‖ Q〉 6∼ a〈Q ‖ P〉

In Higher-order bisimilarity (∼HO) one requires bisimilarity, rather
than identity, of the processes emitted in an output action.

Drawback: It is over-discriminating and properties (e.g. congruence)
may be very hard to establish.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Bisimilarities for HO calculi in a nutshell

Consider two processes, P and Q:

“Ordinary” (i.e. CCS-like) bisimilarity: P and Q are bisimilar if any
action by one can be matched by an identical action from the other.

Drawback: This breaks basic laws, e.g., commutativity of ‖:

a〈P ‖ Q〉 6∼ a〈Q ‖ P〉

In Higher-order bisimilarity (∼HO) one requires bisimilarity, rather
than identity, of the processes emitted in an output action.

Drawback: It is over-discriminating and properties (e.g. congruence)
may be very hard to establish.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Bisimilarities for HO calculi in a nutshell

Context bisimilarity explicitly takes into account every possible
context the emitted process could go to.
It yields more satisfactory process equalities, and it coincides with
contextual equivalence (i.e., barbed congruence).

Drawback: It involves a universal quantification over contexts in the
clause for output actions.

Normal bisimilarity simplifies context bisimilarity by replacing
universal quantifications in the output clause with a single process.

Drawback: Its definition may depend on the operators in the
calculus. Also, the correspondence with context bisimilarity may be
hard to prove.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Bisimilarities for HO calculi in a nutshell

Context bisimilarity explicitly takes into account every possible
context the emitted process could go to.
It yields more satisfactory process equalities, and it coincides with
contextual equivalence (i.e., barbed congruence).

Drawback: It involves a universal quantification over contexts in the
clause for output actions.

Normal bisimilarity simplifies context bisimilarity by replacing
universal quantifications in the output clause with a single process.

Drawback: Its definition may depend on the operators in the
calculus. Also, the correspondence with context bisimilarity may be
hard to prove.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Strong bisimilarity is decidable in HOcore

We define Input/Output bisimilarity as an auxiliary bisimilarity.

it is a congruence and is decidable.

τ -actions do not participate in the bisimulation game but ...

...they are preserved by the bisimilarity, which allows to relate it to
other bisimilarities.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Strong bisimilarity is decidable in HOcore

We define Input/Output bisimilarity as an auxiliary bisimilarity.

it is a congruence and is decidable.

τ -actions do not participate in the bisimulation game but ...

...they are preserved by the bisimilarity, which allows to relate it to
other bisimilarities.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Input/Output bisimilarity

Input/Output bisimilarity (∼o
IO) is the largest symmetric relation R on

open processes such that whenever P RQ:

P

P ′

Q
R

ā〈P ′′〉

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Input/Output bisimilarity

Input/Output bisimilarity (∼o
IO) is the largest symmetric relation R on

open processes such that whenever P RQ:

P

P ′

Q

Q′

R

R

ā〈P ′′〉 ā〈Q′′〉R

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Input/Output bisimilarity

Input/Output bisimilarity (∼o
IO) is the largest symmetric relation R on

open processes such that whenever P RQ:

P

P ′

Q

Q′

R

R

ā〈P ′′〉 ā〈Q′′〉R
P

P ′

Q
R

a(x)

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Input/Output bisimilarity

Input/Output bisimilarity (∼o
IO) is the largest symmetric relation R on

open processes such that whenever P RQ:

P

P ′

Q

Q′

R

R

ā〈P ′′〉 ā〈Q′′〉R
P

P ′

Q

Q′

R

R

a(x) a(x)

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Input/Output bisimilarity

Input/Output bisimilarity (∼o
IO) is the largest symmetric relation R on

open processes such that whenever P RQ:

P

P ′

Q

Q′

R

R

ā〈P ′′〉 ā〈Q′′〉R
P

P ′

Q

Q′

R

R

a(x) a(x)

P ′ ‖ x P Q
R≡

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Input/Output bisimilarity

Input/Output bisimilarity (∼o
IO) is the largest symmetric relation R on

open processes such that whenever P RQ:

P

P ′

Q

Q′

R

R

ā〈P ′′〉 ā〈Q′′〉R
P

P ′

Q

Q′

R

R

a(x) a(x)

P ′ ‖ x P Q
R≡ ≡

Q′ ‖ x

P ′ Q′R

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Input/Output bisimilarity

Lemma

In HOcore, IO bisimilarity

is preserved by substitutions

is a congruence

is decidable.

Key in the proofs are:

The fact that it does not require to match τ -actions.

The size of processes always decreases during the bisimulation game
(because it’s open and has no τ , so no process copying).

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Input/Output bisimilarity

Lemma

In HOcore, IO bisimilarity

is preserved by substitutions

is a congruence

is decidable.

Key in the proofs are:

The fact that it does not require to match τ -actions.

The size of processes always decreases during the bisimulation game
(because it’s open and has no τ , so no process copying).

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Input/Output bisimilarity

The size of processes always decreases during the bisimulation game

P

P ′

Q

Q′

R

R

ā〈 〉 ā〈 〉R
P

P ′

Q

Q′

R

R

a(x) a(x)

P ′ ‖ x P Q
R≡ ≡

Q′ ‖ x

P ′ Q′R

P ′′ Q′′

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

τ -bisimilarity

P

P ′

Q

Q′

R

R

τ τ

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

IO bisimilarity implies τ -bisimilarity

Lemma

If P ∼o
IO Q and P

τ−→ P ′ then ∃Q ′ s.t. Q
τ−→ Q ′ and P ′ ∼o

IO Q ′.

Proof (Sketch)

Suppose P
τ−→ P ′: we have to find a matching transition from Q.

P’s transition can be decomposed into an output P
a〈R〉−−−→ P1 followed by

an input P1
a(x)−−−→ P2, with P ′ = P2{R/x}.

Q is capable of matching these transitions, and the final derivative is a
process Q2 with Q2 ∼o

IO P2.

Since HOcore is asynchronous, these two transitions from Q can be
combined into a τ -transition that matches that of P.

We conclude using the fact ∼o
IO is a congruence and preserved by

substitutions.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

IO bisimilarity implies τ -bisimilarity

Lemma

If P ∼o
IO Q and P

τ−→ P ′ then ∃Q ′ s.t. Q
τ−→ Q ′ and P ′ ∼o

IO Q ′.

Proof (Sketch)

Suppose P
τ−→ P ′: we have to find a matching transition from Q.

P’s transition can be decomposed into an output P
a〈R〉−−−→ P1 followed by

an input P1
a(x)−−−→ P2, with P ′ = P2{R/x}.

Q is capable of matching these transitions, and the final derivative is a
process Q2 with Q2 ∼o

IO P2.

Since HOcore is asynchronous, these two transitions from Q can be
combined into a τ -transition that matches that of P.

We conclude using the fact ∼o
IO is a congruence and preserved by

substitutions.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

IO bisimilarity implies τ -bisimilarity

Lemma

If P ∼o
IO Q and P

τ−→ P ′ then ∃Q ′ s.t. Q
τ−→ Q ′ and P ′ ∼o

IO Q ′.

Proof (Sketch)

Suppose P
τ−→ P ′: we have to find a matching transition from Q.

P’s transition can be decomposed into an output P
a〈R〉−−−→ P1 followed by

an input P1
a(x)−−−→ P2, with P ′ = P2{R/x}.

Q is capable of matching these transitions, and the final derivative is a
process Q2 with Q2 ∼o

IO P2.

Since HOcore is asynchronous, these two transitions from Q can be
combined into a τ -transition that matches that of P.

We conclude using the fact ∼o
IO is a congruence and preserved by

substitutions.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

IO bisimilarity implies τ -bisimilarity

Lemma

If P ∼o
IO Q and P

τ−→ P ′ then ∃Q ′ s.t. Q
τ−→ Q ′ and P ′ ∼o

IO Q ′.

Proof (Sketch)

Suppose P
τ−→ P ′: we have to find a matching transition from Q.

P’s transition can be decomposed into an output P
a〈R〉−−−→ P1 followed by

an input P1
a(x)−−−→ P2, with P ′ = P2{R/x}.

Q is capable of matching these transitions, and the final derivative is a
process Q2 with Q2 ∼o

IO P2.

Since HOcore is asynchronous, these two transitions from Q can be
combined into a τ -transition that matches that of P.

We conclude using the fact ∼o
IO is a congruence and preserved by

substitutions.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

IO bisimilarity implies τ -bisimilarity

Lemma

If P ∼o
IO Q and P

τ−→ P ′ then ∃Q ′ s.t. Q
τ−→ Q ′ and P ′ ∼o

IO Q ′.

Proof (Sketch)

Suppose P
τ−→ P ′: we have to find a matching transition from Q.

P’s transition can be decomposed into an output P
a〈R〉−−−→ P1 followed by

an input P1
a(x)−−−→ P2, with P ′ = P2{R/x}.

Q is capable of matching these transitions, and the final derivative is a
process Q2 with Q2 ∼o

IO P2.

Since HOcore is asynchronous, these two transitions from Q can be
combined into a τ -transition that matches that of P.

We conclude using the fact ∼o
IO is a congruence and preserved by

substitutions.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

IO bisimilarity implies τ -bisimilarity

Lemma

If P ∼o
IO Q and P

τ−→ P ′ then ∃Q ′ s.t. Q
τ−→ Q ′ and P ′ ∼o

IO Q ′.

Proof (Sketch)

Suppose P
τ−→ P ′: we have to find a matching transition from Q.

P’s transition can be decomposed into an output P
a〈R〉−−−→ P1 followed by

an input P1
a(x)−−−→ P2, with P ′ = P2{R/x}.

Q is capable of matching these transitions, and the final derivative is a
process Q2 with Q2 ∼o

IO P2.

Since HOcore is asynchronous, these two transitions from Q can be
combined into a τ -transition that matches that of P.

We conclude using the fact ∼o
IO is a congruence and preserved by

substitutions.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Equivalence collapsing in HOcore

In HOcore, a number of sensible equivalences coincide with IO
bisimilarity and inherit its properties:

Higher-order bisimilarity

Context bisimilarity

Normal bisimilarity

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

Barbed Congruence

Strong bisimulation also coincides with barbed congruence, the
contextual equivalence in concurrency.

We consider an asynchronous version:

it implies the result for the synchronous version;

barbs are only produced by output messages; this fits better with
HOcore asynchrony.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

(Asynchronous) Barbed Congruence

Definition

Asynchronous barbed congruence, ', is the largest symmetric relation on
closed processes that

1 is a τ -bisimilarity;

2 is context-closed (i.e., P ' Q implies C [P] ' C [Q], for all closed
contexts C [·]);

3 is barb preserving (i.e., if P ' Q and P ↓a, then also Q ↓a).

On the Expressiveness and Decidability of Higher-Order Process Calculi

Focus on some of the results

Behavioral Equivalences in HOcore

(Asynchronous) Barbed Congruence

Lemma

Asynchronous barbed congruence coincides with normal bisimilarity.

In synchronous barbed congruence, input barbs are also observable
(condition 3).

Corollary

In HOcore asynchronous and synchronous barbed congruence coincide.

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Axiomatization

Roadmap

1 Motivation

2 A core calculus for higher-order concurrency

3 Focus on some of the results
Absolute Expressiveness
Behavioral Equivalences in HOcore

4 A bird-eye view on other results
Axiomatization
Limits of decidability

5 Final Remarks

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Axiomatization

Axiomatization

Consider ≡E, the extension of ≡ with the distribution law:

a(x). (P ‖
k−1∏

1

a(x).P) =
k∏
1

a(x).P

A process P is in normal form n(P) if it can’t be further simplified in ≡E.

Theorem

For any processes P and Q, we have P ∼ Q iff n(P) ≡ n(Q).

Corollary

≡E is a sound and complete axiomatization of bisimilarity in HOcore.

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

Roadmap

1 Motivation

2 A core calculus for higher-order concurrency

3 Focus on some of the results
Absolute Expressiveness
Behavioral Equivalences in HOcore

4 A bird-eye view on other results
Axiomatization
Limits of decidability

5 Final Remarks

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

Limits of decidability

Consider the following extension of HOcore, with static restrictions:

T ::= νa.T | P

P ::= a〈P〉 | a(x).P | x | P ‖ Q | nil

(Recursion can not be encoded.)

Four static restrictions are enough to break decidability.

The proof uses a reduction from the Post correspondence problem
(PCP).

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

Post correspondence problem (PCP)

Definition

A PCP instance consists of

an alphabet A containing at least two symbols

a finite list T1, . . . ,Tn of tiles, each tile being a pair of words over A.

Ti = (ui , li) is the tile with upper word ui and lower word li .

A solution is a non-empty sequence of indices i1, . . . , ik , 1 ≤ ij ≤ n
(j ∈ 1 · · · k), such that ui1 · · · uik = li1 · · · lik .

Decision problem: to determine whether a solution for PCP exists or not.
This is known to be undecidable.

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

A PCP instance

Given the following four tiles

T1
aba
a

T2
bbb
aaa

T3
aab
abab

T4
bb

babba

The sequence (1,4,3,1) is a solution:

aba bb aab aba
a babba abab a
T1 T4 T3 T1

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

A PCP instance

Given the following four tiles

T1
aba
a

T2
bbb
aaa

T3
aab
abab

T4
bb

babba

The sequence (1,4,3,1) is a solution:

aba bb aab aba
a babba abab a
T1 T4 T3 T1

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

A PCP instance

Given the following four tiles

T1
aba
a

T2
bbb
aaa

T3
aab
abab

T4
bb

babba

The sequence (1,4,3,1) is a solution:

aba bb aab aba
a babba abab a
T1 T4 T3 T1

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

Encoding PCP into HOcore

Encoding Strategy
Let D be the divergent process that makes τ transitions indefinitely.

Build a set of processes P1, . . . ,Pn for each tile T1, . . . ,Tn.

Pi is bisimilar to D iff the PCP instance has no solution ending with
tile Ti .

Thus, PCP is solvable iff there exists a Pj not bisimilar to D.

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

Encoding PCP into HOcore

Processes P1, . . . ,Pn: execute in two distinct phases:

first they build a possible solution of PCP

then non-deterministically they stop building the solution and
execute it.

If the chosen composition is a solution then a signal on a free channel
success is sent, thus performing a visible action, which breaks bisimilarity
with D.

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

Encoding PCP into HOcore

Encoding Pj

We consider words made of an alphabet of two letters, a1 and a2:

Letters [[a1, P]]u = [[a2, P]]l = a〈P〉
[[a2, P]]u = [[a1, P]]l = a(x). (x ‖ P)

Strings [[ai · s, P]]w = [[ai , [[s, P]]w]]w
[[ε, P]]w = P (ε is the empty word)

Starter Sui ,li = up〈[[ui , b]]u〉 ‖ low〈[[li , b. success]]l〉
Creators Ci = up(x). low(y). (up〈[[ui , x]]u〉 ‖ low〈[[li , y]]l〉)
Executor E = up(x). low(y). (x ‖ y)
System Pj = νup νlow νa νb (Suj ,lj ‖ !

Q
i Ci ‖ E)

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

Encoding PCP into HOcore

Encoding Pj

We consider words made of an alphabet of two letters, a1 and a2:

Letters [[a1, P]]u = [[a2, P]]l = a〈P〉
[[a2, P]]u = [[a1, P]]l = a(x). (x ‖ P)

Strings [[ai · s, P]]w = [[ai , [[s, P]]w]]w
[[ε, P]]w = P (ε is the empty word)

Starter Sui ,li = up〈[[ui , b]]u〉 ‖ low〈[[li , b. success]]l〉
Creators Ci = up(x). low(y). (up〈[[ui , x]]u〉 ‖ low〈[[li , y]]l〉)
Executor E = up(x). low(y). (x ‖ y)
System Pj = νup νlow νa νb (Suj ,lj ‖ !

Q
i Ci ‖ E)

On the Expressiveness and Decidability of Higher-Order Process Calculi

A bird-eye view on other results

Limits of decidability

Encoding PCP into HOcore

We call complete τ -bisimilarity a bisimilarity with clauses for input,
output, and τ -actions.

Theorem

Given an instance of PCP and one of its tiles Tj , Pj is bisimilar to D
according to any complete τ -bisimilarity iff there is no solution of the
instance of PCP ending with Tj .

Corollary

Barbed congruence and any complete τ -bisimilarity are undecidable in
HOcore with four static restrictions.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Final Remarks

Final Remarks

We have studied the basic theory of HOcore, a minimal, expressive,
and convenient process language.

Bisimilarity is shown to be decidable and a congruence with
relatively simple proofs.

One could argue that bisimilarity is very discriminating:

systems behavior is completely exposed;
one can tell whether two processes are bisimilar, but in general one
cannot tell whether the processes will terminate

That would also explain the collapsing of several behavioral
equivalences and the simplicity of the axiomatization.

The language is not trivial: it is Turing complete and allows to
model basic data structures.

In fact, our encodings of Turing complete models suggest that
HOcore could be a convenient modeling language.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Final Remarks

Final Remarks

We have studied the basic theory of HOcore, a minimal, expressive,
and convenient process language.

Bisimilarity is shown to be decidable and a congruence with
relatively simple proofs.

One could argue that bisimilarity is very discriminating:

systems behavior is completely exposed;
one can tell whether two processes are bisimilar, but in general one
cannot tell whether the processes will terminate

That would also explain the collapsing of several behavioral
equivalences and the simplicity of the axiomatization.

The language is not trivial: it is Turing complete and allows to
model basic data structures.

In fact, our encodings of Turing complete models suggest that
HOcore could be a convenient modeling language.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Final Remarks

Final Remarks

We have studied the basic theory of HOcore, a minimal, expressive,
and convenient process language.

Bisimilarity is shown to be decidable and a congruence with
relatively simple proofs.

One could argue that bisimilarity is very discriminating:

systems behavior is completely exposed;
one can tell whether two processes are bisimilar, but in general one
cannot tell whether the processes will terminate

That would also explain the collapsing of several behavioral
equivalences and the simplicity of the axiomatization.

The language is not trivial: it is Turing complete and allows to
model basic data structures.

In fact, our encodings of Turing complete models suggest that
HOcore could be a convenient modeling language.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Final Remarks

Final Remarks

We have studied the basic theory of HOcore, a minimal, expressive,
and convenient process language.

Bisimilarity is shown to be decidable and a congruence with
relatively simple proofs.

One could argue that bisimilarity is very discriminating:

systems behavior is completely exposed;
one can tell whether two processes are bisimilar, but in general one
cannot tell whether the processes will terminate

That would also explain the collapsing of several behavioral
equivalences and the simplicity of the axiomatization.

The language is not trivial: it is Turing complete and allows to
model basic data structures.

In fact, our encodings of Turing complete models suggest that
HOcore could be a convenient modeling language.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Final Remarks

Final Remarks

We have studied the basic theory of HOcore, a minimal, expressive,
and convenient process language.

Bisimilarity is shown to be decidable and a congruence with
relatively simple proofs.

One could argue that bisimilarity is very discriminating:

systems behavior is completely exposed;
one can tell whether two processes are bisimilar, but in general one
cannot tell whether the processes will terminate

That would also explain the collapsing of several behavioral
equivalences and the simplicity of the axiomatization.

The language is not trivial: it is Turing complete and allows to
model basic data structures.

In fact, our encodings of Turing complete models suggest that
HOcore could be a convenient modeling language.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Final Remarks

Final Remarks

We have studied the basic theory of HOcore, a minimal, expressive,
and convenient process language.

Bisimilarity is shown to be decidable and a congruence with
relatively simple proofs.

One could argue that bisimilarity is very discriminating:

systems behavior is completely exposed;
one can tell whether two processes are bisimilar, but in general one
cannot tell whether the processes will terminate

That would also explain the collapsing of several behavioral
equivalences and the simplicity of the axiomatization.

The language is not trivial: it is Turing complete and allows to
model basic data structures.

In fact, our encodings of Turing complete models suggest that
HOcore could be a convenient modeling language.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Final Remarks

Final Remarks

Current/future work on HOcore involves:

More on the expressiveness of pure process passing.

Type systems.

Weak equivalences.

Orthogonal extensions for modeling.

On the Expressiveness and Decidability of Higher-Order Process Calculi

Final Remarks

Thanks

Thank you!

	Motivation
	A core calculus for higher-order concurrency
	Focus on some of the results
	Absolute Expressiveness
	Behavioral Equivalences in HOcore

	A bird-eye view on other results
	Axiomatization
	Limits of decidability

	Final Remarks
	Final Remarks

