
On the Expressiveness of Polyadicity in Higher-Order
Process Calculi (Extended Abstract)?

Ivan Lanese1, Jorge A. Pérez1, Davide Sangiorgi1, and Alan Schmitt2

1 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy
2 INRIA Grenoble - Rhône Alpes, France

Abstract. In higher-order process calculi the values exchanged in communica-
tions may contain processes. We describe a study of the expressive power of
strictly higher-order process calculi, i.e. calculi in which only process passing is
allowed and no name-passing is present. In this setting, the polyadicity (i.e. the
number of parameters) allowed in communications is shown to induce a hierar-
chy of calculi of strictly increasing expressiveness: a higher-order calculus with
n-adic communication cannot be encoded into a calculus with n − 1-adic com-
munication. In this note we outline this result, and discuss the conditions under
which it holds.

Introduction. Higher-order process calculi are formal languages for concurrency in
which processes can be communicated. They have been put forward in the early 1990s,
with CHOCS [1] and Plain CHOCS [2], the Higher-Order π-calculus [3], and oth-
ers. Recent proposals of higher-order calculi include the Kell calculus [4] and Homer
[5]. Higher-order, or process-passing, concurrency is often presented as an alternative
paradigm to the first order, or name-passing, concurrency of the π-calculus for the
description of mobile systems. Higher-order calculi are inspired by, and are formally
closer to, the λ-calculus, whose basic computational step — β-reduction — involves
term instantiation.

An important criterion for assessing the significance of a paradigm is its expressive-
ness. The expressiveness of higher-order communication has received little attention in
the literature; previous works are mostly concerned about issues of relative expressive-
ness between higher- and first-order calculi. A good example is [6] in which a tight
correspondence between name-passing calculi based on internal mobility and process-
passing calculi is shown. In a previous work, we have studied expressiveness and decid-
ability issues for HOCORE, a core calculus for higher order concurrency [7]. HOCORE
is a strictly higher-order process calculus, in that only the operators necessary to ob-
tain higher-order communications are retained. Notably, no name-passing features are
present. The grammar of HOCORE is:

P ::= a(x).P | aP | P ‖ P | x | 0

An input prefixed process a(x).P can receive on name (or channel) a a process that will
be substituted in the place of x in the body P ; an output message aP can send P on

? Research partially supported by the INRIA Équipe Associeé BACON.

a; parallel composition allows processes to interact. HOCORE is minimal in that con-
tinuations following output messages have been left out (i.e. communication is asyn-
chronous) and, more importantly, it has no restriction operator. Thus all channels are
global, and dynamic creation of new channels is impossible. This makes the absence of
recursion also relevant, as known encodings of fixed-point combinators in higher-order
process calculi require the restriction operator. Despite this minimality, HOCORE was
shown to be Turing complete. Therefore, in HOCORE, properties such as termination
(i.e. non existence of divergent computations) and convergence (i.e. existence of a ter-
minating computation) are both undecidable. In contrast, somewhat surprisingly, strong
bisimilarity is decidable, and several sensible bisimilarities in the higher-order setting
coincide with it. A recent work [8] has studied a fragment of HOCORE in which output
actions have limited capabilities over previously received processes. In such a fragment,
similarly as in HOCORE, convergence is undecidable but, unlike HOCORE, termination
is decidable.

This Work. In this note we continue our study of the fundamental properties of higher-
order process calculi. We shall analyze the consequences that polyadicity (i.e. the num-
ber of parameters in higher-order communications) has on the expressiveness of this
kind of calculi. We consider variants of HOCORE with different degrees of polyadicity,
and study their relative expressive power. Our main result is a hierarchy of calculi of
strictly increasing expressiveness: a higher-order process calculus with n-adic commu-
nication cannot be encoded into a calculus with n − 1-adic communication. In the re-
mainder, as a way of introducing the peculiarities of the higher-order setting, we discuss
the classic encoding of polyadic first-order communication into monadic one; then, we
comment on a notion of encoding with a refined account of internal communications.
Our result depends critically on this notion. We conclude by giving intuitions on the
proof of the main result; more details can be found in [9].

Our Setting. We recall the encoding of the polyadic π-calculus into the monadic one
in [10]:

[[x(z1, . . . , zn).P]] = x(w).w(z1). · · · .w(zn). [[P]]
[[x〈a1, . . . , an〉.P]] = νw xw.wa1. · · · .wan. [[P]]

(where [[·]] is an homomorphism for the other operators). A single n-adic synchroniza-
tion is encoded as n + 1 monadic synchronizations. The first such synchronizations
establishes a private link w: the encoding of output creates a private name w and sends
it to the encoding of input. In other words, by virtue of the synchronization on x, private
name w is now shared, and its scope is extruded. As a result, name w can be used to
communicate each of a1, . . . , an through (monadic) synchronizations.

This encoding is very intuitive, and satisfies a tight operational correspondence
property: a public synchronization of the source term (i.e. a synchronization on an un-
restricted name such as x) is matched by the encoding with a public synchronization
on the same name that is followed by a number of internal synchronizations (i.e. syn-
chronizations on a private name such as w). The observable behavior is thus preserved:
the encoding does not perform visible actions different from those performed by the

2

source term. Also, thanks to the ability of setting a private link on w, the encoding is
robust with respect to interferences: once the private link has been established between
two parties, any surrounding —possibly malicious— context cannot get access to the
monadic communications on w. We observe that both name-passing and a disciplined
use of private links are crucial for an atomic implementation of polyadic communica-
tion.

Higher-order process calculi are much more constrained: in the absence of name-
passing scope extrusions have only a partial effect. Let us explain what we mean by
this. In a process-passing setting, received processes can only be executed, forwarded,
or discarded. A receiving context then cannot gain access to the (private) names of
those processes it receives; to the context these are much like a “black box”. Although
higher-order communications might lead to scope extrusion of the private names con-
tained in the transmitted processes, such extrusions are vacuous: without name-passing,
a receiving context can not make use of such names. (It is worth remarking that here
we understand process-passing that does not consider abstraction-passing, i.e. the com-
munication of functions from processes to processes. With abstraction-passing the sit-
uation is rather different.) This way, e.g., in the communication of a process P with
an (input, ouput) capability on a restricted name x, any receiver R will not be able to
exploit the (input, output) capability of P on x. In a loose analogy with security proto-
cols, the communication of private names with process-passing only would correspond
to the communication of an encrypted message to some recipient that does not have the
key to decrypt the message (nor a way of obtaining it). The sharing of (private) names
one obtains from using process-passing only is then incomplete: names can be sent
(as part of processes) but they cannot be actually used. This suggests that an encoding
of polyadic process-passing into monadic process-passing that enjoys basic properties
(notably, compositionality and robustness with respect to interferences) might not exist.
However, formalizing this intuition into a non encodability result is far from trivial.

Our Notion of Encoding. A crucial aspect in any expressiveness study is the notion
of encoding considered. There is no general agreement on the definition of “good” en-
coding, even if this has been a matter of discussion for several years now, and proposals
have been made (see, e.g., [11]). A notion of encoding usually consists of syntactic and
semantic criteria; the former state basic requirements on the translation of terms (such
as, e.g., compositionality), whereas the latter define the relationship between the behav-
ior of a term and that of its encoding. In the case of negative results, as in our case, one
is interested in the most liberal notion possible, for the results to hold for the largest
possible class of encodings.

To prove our main result, we shall require a notion of encoding that departs from
“traditional” notions by taking a more refined standpoint with respect to internal com-
munications. Indeed, in our notion, semantic criteria enforce the distinction between
public and internal synchronizations discussed for the encoding in the first-order case.
This is achieved by decreeing synchronizations on public names to be visible actions
of the associated labeled transition system. This way, we use aτ−−→ to denote the syn-
chronization on a public name a. As a result, internal behavior τ−−→ is only obtained
by synchronizations on restricted names. This kind of distinctions between internal and

3

public communications is studied in, e.g., [12]. As customary, we use⇒ to stand for the
reflexive, transitive closure of τ−−→. Given an action α, notation α=⇒ stands for⇒ α−→⇒.
The observability predicates (barbs) are defined in the expected way. Given a process
P and a name a, we write P ↓a (resp. P ↓a) if P can perform an input (resp. output)
action with subject a. Given µ ∈ {a, a}, we define a weak barb P ⇓µ if, for some P ′,
P =⇒ P ′ ↓µ.

We are now ready to state our notion of encoding. It comprises four of the five cri-
teria suggested in [11]. The definition of encoding assumes a language L is defined as
a set of processes P , a behavioral equivalence ≈, and a reduction relation −→ (which
is characterized by the τ actions of a labeled transition system). A translation is an
injective function from a source language Ls = (Ps,≈s,−→s) into a target language
Lt = (Pt,≈t,−→t). An encoding is then a translation that satisfies the following syn-
tactic and semantic conditions. (Below we use notation fn(P) to stand for the set of free
names of a process P .)

Definition 1 Suppose a translation [[·]] : Ps → Pt. We say that [[·]] is

1. Compositional: if for every k-ary operator op of Ls and for all S1, . . . , Sk with
fn(S1, . . . , Sk) = N , then there exists a k-ary context CNop ∈ Pt such that

[[op(S1, . . . , Sk)]] = CNop [[[S1]], . . . , [[Sk]]].

2. Name invariant: if [[σ(P)]] = σ([[P]]), for any injective permutation of names σ.

Definition 2 Suppose a translation [[·]] : Ps → Pt.

1. We say that [[·]] is operational corresponding if the following properties hold:
(a) Completeness/Preservation: For every S, S′ ∈ Ps such that S α=⇒s S

′, it holds
that [[S]] α=⇒t≈t [[S′]]

(b) Soundness/Reflection: For every S ∈ Ps, T ∈ Pt such that [[S]] α=⇒t T there
exists an S′ ∈ Ps such that both S α=⇒s S

′ and T α=⇒t≈t [[S′]].

Furthermore, we shall require adequacy: if P ≈s Q then [[P]] ≈t [[Q]].

Notice that adequacy is necessary because we make no assumptions on the nature
of ≈s and ≈t.

Definition 3 (Encoding) We shall call encoding any translation that satisfies both the
syntactic conditions in Def. 1 and the semantic conditions in Def. 2.

A Hierarchy of Higher-Order Process Calculi. We now give an intuition on our
main result: a hierarchy of higher-order process calculi that is induced by the degree
of polyadicity associated to each such languages. As for the calculi, we shall con-
sider HOπm, the family of languages that is a synchronous variant of HOCORE, with
polyadicity m ≥ 1, and extended with the construct νr P which allows to (statically)
define a private name r in the scope of P . This way, e.g., HOπ1 stands for a strictly
higher-order calculus allowing monadic process passing. We first discuss the non exis-
tence of an encoding (cf. Def. 3) of HOπ2 into HOπ1. Then, we generalize such a result

4

so as to define a hierarchy of expressiveness in which the calculus HOπn+1 is strictly
more expressive than the calculus HOπn, for any n > 0.

The result relies on the intuition mentioned above: higher-order processes cannot
share private names by means of process passing only. The set of private names of a
process then remains invariant along its evolution. This is captured by the notion of
disjoint form (below, we use P̃ to represent the sequence P1, . . . , Pk, for some k > 1):

Definition 4 (Disjoint Form) Let T ≡ νñ(P ‖ C[R̃]) be a HOπ1 process where

1. ñ is a set of names such that ñ ⊆ fn(P, R̃) and ñ ∩ fn(C) = ∅;
2. C is a k-ary (multihole) context;
3. R̃ contains k guarded, closed processes.

We then say that T is in k-adic disjoint form with respect to ñ, R̃, and P .

Intuitively, a disjoint form T ≡ νñ(P ‖ C[R̃]) represents a result of a public
synchronization in which a series of objects R̃ has been transmitted. Since R̃ and its
(receiving) context C only share public names —and sharing of private names is not
possible—, their private names cannot really “mix”: C is not able to gain access to
the private names in R̃ and viceversa. The arity of R̃ corresponds to the degree of
polyadicity considered; this way, in the case of HOπ1, one has monadic disjoint forms,
with a single R. Similarly, when the arity of R is 2, one obtains biadic disjoint forms.
Disjoint forms (of any arity) enjoy the following properties:

Lemma 5 (Stability of Disjoint Forms) Disjoint forms are preserved by internal syn-
chronizations and output actions that do not extrude names. Also, the notion of encoding
in Def. 3 respects disjoint forms: if T is in disjoint form with respect some ñ, R̃, and P
then [[T]] is in disjoint form with respect some ñ, [[R̃]], and [[P]] too.

Lemma 6 (Swapping Lemma) Let T ≡ νñ(P ‖ C[R̃]) be a disjoint form as in Def.

4. If T α−→ β−→ T ′, where α originates in P and β originates in C[R̃], then T
β−→ α−→ T ′

also holds.

The following theorem gives the base case of the hierarchy of languages.

Theorem 7 There is no encoding of HOπ2 into HOπ1.

Proof (Sketch). The proof proceeds by contradiction, assuming such an encoding does
exist. Take the following HOπ2 process

P0 = νm1,m2 (a〈S1, S2〉.0) ‖
νb (a(x1, x2). (b〈b1.x1〉.0 ‖ b〈b2.x2〉.0 ‖ b(y1). b(y2). y1)

where S1, S2 have different private names (m1 and m2, resp.) and observable behavior.
While after the communication on a, P0 evolves into a P that is in biadic disjoint
form, after the corresponding synchronization on a the HOπ1 process [[P]] can be shown
to be in monadic disjoint form. Once in P , either S1 or S2 is executed; this depends
on a mutually exclusive choice that relies on the private name b. Notice that P only

5

involves output actions and internal synchronizations. By completeness, P and [[P]]
should be behaviorally equivalent; during the bisimulation game, since output actions
and internal synchronizations preserve (monadic) disjoint forms (Lemma 5), [[P]] (and
its derivatives) will be in (monadic) disjoint form as well. Using Lemma 6 it is possible
to prove that certain enabling capabilities associated to the mutually exclusive choice of
the source term are lost in its encoding, basically because they rely on a private name.
As a result, the encoded term (which is in monadic disjoint form) can exhibit observable
behavior that is different from the observable behavior in the source term (which is in
biadic disjoint form), thus leading to a fail in the bisimulation game and therefore to a
contradiction. ut

The above lemma can be generalized by a straightforward extension of the notion
and properties of disjoint forms to processes with arbitrary polyadicity. As a result, we
have the following theorem, which defines the desired hierarchy of strictly higher-order
process calculi:

Theorem 8 For any n ≥ 1, there is no encoding of HOπn+1 into HOπn.

Concluding Remarks. We have given a very succinct account of an expressiveness
study of polyadicity in process calculi with a process-passing communication disci-
pline. By identifying the limits of process-passing, we have better understood the sig-
nificance of name-passing in this setting, and have deepen our understanding of higher-
order calculi as a whole. Current investigations study the expressiveness that communi-
cation of abstractions (i.e. functions from processes to processes) can have on the kind
of languages discussed here.

References

1. Thomsen, B.: A calculus of higher order communicating systems. In: Proc. of POPL’89,
ACM Press (1989) 143–154

2. Thomsen, B.: Plain CHOCS: A second generation calculus for higher order processes. Acta
Inf. 30(1) (1993) 1–59

3. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci. (1992)

4. Schmitt, A., Stefani, J.B.: The kell calculus: A family of higher-order distributed process
calculi. In: Proc. of Global Computing. Volume 3267 of LNCS., Springer (2004) 146–178

5. Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation congruences for homer —
a calculus of higher order mobile embedded resources. Technical Report TR-2004-52, IT
University of Copenhagen (2004)

6. Sangiorgi, D.: π-calculus, internal mobility and agent-passing calculi. Theor. Comput. Sci.
167(2) (1996) 235–274

7. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and decidability of
higher-order process calculi. In: Proc. of LICS’08, IEEE Computer Society (2008) 145–155

8. Di Giusto, C., Pérez, J.A., Zavattaro, G.: On the Expressiveness of Forwarding in Higher-
Order Communication. In: Proc. of ICTAC’09. Volume 5684 of LNCS., Springer (2009)
155–169

9. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: Separation Results for Higher-Order
Process Calculi (Preliminary Title) (2009) In preparation. Available at http://www.cs.
unibo.it/~perez/hocore.

6

10. Milner, R.: The Polyadic pi-Calculus: A Tutorial. Technical Report ECS-LFCS-91-180,
University of Edinburgh (1991)

11. Gorla, D.: Towards a unified approach to encodability and separation results for process cal-
culi. In: Proc. of CONCUR. Volume 5201 of Lecture Notes in Computer Science., Springer
(2008) 492–507

12. Lanese, I.: Concurrent and located synchronizations in pi-calculus. In: Proc. of SOFSEM.
Volume 4362 of Lecture Notes in Computer Science., Springer (2007) 388–399

7

