
Moving in the Dark:
Progress through Uncertainty in

Kriegspiel

Andrea Bolognesi1 and Paolo Ciancarini2

Dipartimento di Scienze dell’Informazione
University of Bologna, Italy

1 : abologne@cs.unibo.it
2 : cianca@cs.unibo.it

Contents First Last Prev Next J

[1]Contents

1 Introduction . 4
1.1 Complete vs partial information in games 4
1.2 Kriegspiel . 5
1.3 Research works on Kiegspiel . 6
1.4 Why do we study Kriegspiel? . 7
1.5 Our Aim . 8

2 Boyce Algorithm . 9
2.1 Boyce Algorithm Implementation . 10

3 Our algorithm . 11
3.1 Metapositions . 11
3.2 Kriegspiel Metapositions . 12
3.3 Building a metaposition tree . 13
3.4 Pseudomoves and Metamoves . 14
3.5 Tree Structure . 15
3.6 The evaluation function . 17

4 Results: Comparing the Two Programs . 18
4.1 Evaluating the Search Algorithm with Other Endings . . . 19

Contents First Last Prev Next J

4.2 Progress through Uncertainty . 20
4.3 When progress is not satisfactory . 21

5 Conclusions and Future works . 22

Contents First Last Prev Next J

1. Introduction

1.1. Complete vs partial information in games

I Board Games based on complete information:

. The current state of the game is fully accessible to each player

. Examples: Chess, Go.

I Board Games based on partial information:

. Players have partial (and different) knowledge about the state of the game

. Examples: Battleship, Stratego, Kriegspiel

Contents First Last Prev Next J

1.2. Kriegspiel

I The players cannot see the opponent pieces

I All other rules of Chess still apply

I The players never communicate directly with each other, but instead interact
with a referee.

I Only the referee knows the full state of the game.

I Players try moves which can be either accepted or rejected by the referee; if a
move is rejected another move can be tried

I The referee announces checks and captures. These messages are sent to both
players.

Contents First Last Prev Next J

1.3. Research works on Kiegspiel

I Modeling and implementing a Kriegspiel referee program (Burger, Wetherell
and others)

I Abstract algorithms for simple endings (Boyce, Ferguson, Ciancarini and oth-
ers)

I Planning based on MonteCarlo Sampling

I AND-OR search of belief-state trees

I Reasoning about partially observed actions

I Algorithms for Kriegspiel variants

I Development of a Kriegspiel player program (Parker, Favini, others - see ICC)

Contents First Last Prev Next J

1.4. Why do we study Kriegspiel?

I Complex: extremely large belief state makes an explicit representation of it
computationally intractable

I Challenging: currently, the best humans are still far ahead of computer
players at this game

I Convenient: same rules as Chess: this allows for reuse of a certain amount
of game theory and software

Why do we study simple endings in Kriegspiel?

I In order to build a complete program able to play a good Kriegspiel game, the
study of simple endings is useful because these endings are quite common in
the practice of the game between humans.

I There is also a game-theoretic interest: in fact, a number of papers discuss
abstract, rule based procedures suitable to solve the simplest endings from any
initial position.

Contents First Last Prev Next J

1.5. Our Aim

We have recently developed a complete playing program named Darkboard [Cian-
cariniFavini 2007]: when we let it to play on the Internet Chess Club (ICC), human
Kriegspiel players are very clever in exploiting its weaknesses in dealing with simple
endings.

I Our goal is to study how our approach is effective, namely we aim at showing
that our algorithm progresses even if it ”moves in the dark”.

I We initially compare our algorithm with an abstract algorithm proposed by
Boyce [Boyce 1981].

I Our algorithm instead is search-based.

Contents First Last Prev Next J

2. Boyce Algorithm

I Boyce showed a way to force checkmate by considering positions where both
Kings are in the same quadrant of the board as seen from the Rook, or where
the black King is restricted to one or two quadrants of the board.

I The procedure applies when

1. both Kings are in the same quadrant as designed by the Rook;

2. the black King cannot exit from the quadrant;

3. the white Rook is safe.

8

7

6

5

4

3

2

1

a b c d e f g h

Fig. 1. Initial position of the Boyce’s procedure

rectangle to keep the Black king away from its rook. White then forces the Black
king back until it can occupy only those squares on a single edge. The final phase
to checkmate is then fairly simple.

We have implemented a program which uses a search algorithm and a special
evaluation function with the aim to obtain an initial position similar to that
shown in Fig. 1. Then we apply the Boyce rules, and count how many moves are
necessary in order to give mate.

2.2 Our algorithm

Our search-based algorithm has been presented in [6]. Here we summarize only
the main ideas in its evaluation function. The function includes six different
euristics.

1. it avoids jeopardizing the Rook;
2. it brings the two Kings closer;
3. it reduces the size of the quadrant where the Black king should be found;
4. it avoids the Black king to go between White rook and White king;
5. it keeps the White pieces close to each other;
6. it pushes the Black King toward the corner of the board.

These features are evaluated numerically and added to obtain the value for
a given metaposition: a search program then exploits the evaluation function to
visit and minimax a tree of metapositions [6].

2.3 Comparing the two programs

Figure 2 shows a graph which depicts the result of all the 28000 matches which
can occur considering all the possible initial metapositions for the rook ending
from the White’s point of view, starting with greatest uncertainty, that is starting
from metapositions where each square not controlled by White may contain a
Black king. The number of matches won is on the ordinate and the number

Contents First Last Prev Next J

2.1. Boyce Algorithm Implementation

I Basically,

. the algorithm first ensures that the Rook is safe from capture.

. Next White plays to a position where all the possible squares for the
black King are in a rectangle where one corner is at the Rook.

. White will put its King in that rectangle to keep the black King away
from its Rook.

. White then forces the black King back until it can occupy only those
squares on a single edge.

. The final phase to checkmate is then fairly simple.

I We have implemented a program which uses a search algorithm and a par-
itcular evaluation function with the aim to obtain an initial position similar
to that shown in the previous figure.

I Then we apply the Boyce rules in order to give mate.

Contents First Last Prev Next J

3. Our algorithm

3.1. Metapositions

I Our program plays building a tree of metapositions

I A metaposition groups several game states together to provide the illusion of
complete information

I The states with the same strategy space (set of moves available to the player)
may be merged together and a game tree can be built

I Concept introduced in [Sakuta 2001] to deal with a Shogi equivalent of Kriegspiel,
used to solve endgame positions

Contents First Last Prev Next J

3.2. Kriegspiel Metapositions

I Simple structure; a metaposition is a board with both allied pieces and enemy
pseudopieces on it

I Each square has a set of boolean flags telling which types of enemy pseudo-
pieces can be on it.

I Each square has an integer number that serves as history, telling how many
moves ago the square was last explored (not strictly required, but coding the
history of the game helps prioritize some game states).

I Other information such as castling data.

Contents First Last Prev Next J

3.3. Building a metaposition tree

I A metaposition can be used to take incomplete information out of the picture.
Instead of playing the original game, we can play a complete information game
whose states are metapositions.

I If we can build a game tree of metapositions, we can then apply a minimax-
like algorithm to evaluate moves. An evaluation function would be used that
examines metapositions as a whole instead of single game states.

I Updating metapositions is the crucial step here

Contents First Last Prev Next J

3.4. Pseudomoves and Metamoves

I Pseudomoves

. represent the players move.

. May be rejected by the referee in Kriegspiel.

. A pseudomove and the referees responses uniquely define the resulting
metaposition.

I Metamoves

. represent the opponents hidden move.

. The player does not know what the move is, so the new metaposition is
uniquely defined by the referee’s messages

Contents First Last Prev Next J

3.5. Tree Structure

I 2-ply example.

I As many pseudomoves as there are possibly legal moves; the assumed referee
response is generated with a set of rules.

I Only one metamove, generated in the same fashion.

I The agent is playing against the environment.

Contents First Last Prev Next J

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

8

7

6

5

4

3

2

1

a b c d e f g h

c3

e2

e2

d4

e5

e3

f4

d1

f4

Fig. 9. Example of tree of metapositions

Contents First Last Prev Next J

3.6. The evaluation function

Our search-based algorithm has been presented in [BolognesiCiancarini 2006]. Here
we summarize only the main ideas in its evaluation function. The function includes
six different heuristics.

1. it avoids jeopardizing the Rook;

2. it brings the two Kings closer to each other;

3. it reduces the size of the quadrant where the black King should be found;

4. it avoids the black King going between the white Rook and the white King;

5. it keeps the white pieces close to each other;

6. it pushes the black King toward the corner of the board.

These features are evaluated numerically and added to obtain the value for a given
metaposition; a search program then exploits the evaluation function to visit and
minimax a tree of metapositions.

Contents First Last Prev Next J

4. Results: Comparing the Two Programs

!

"!

#!!

#"!

$!!

$"!

%!!

%"!

! " #! #" $! $" %! %" &! &" "! "" '! '" (! ("

)*+,-./)01),02.3

,4567.3))80*

)))9:23;)5/..)3.4/67

)))9:23;)/+<.)-43.=

Fig. 2. Comparison of the rule-based program with the search-based program

of moves needed to win each match is on the abscissa. The graphic shows the
distribution of the matches won normalized to 1000.

The rule based program spends the first 25 moves looking for one of the
initial positions; when it reaches one of these positions the checkmate procedure
is used and the program wins very quickly. However, the average of moves needed
is around 35. Our program based entirely on the search of game tree wins with
a better average, around 25 moves.

This is due to the fact that the program analyzes from the beginning each
position trying to progress to checkmate. On the other hand, the rule-based pro-
gram is faster in deciding the move to choose, with respect to the tree-searching
program. In fact, the rule-based program has a constant running time, whereas
the second one has a running time exponential on the game tree depth.

We remark, however, that from a practical viewpoint the Boyce approach is
useless because on the ICC Kriegspiel is played with the normal 50-moves draw
rules derived from chess.

2.4 Evaluating the search algorithm with other endings

Figure 3 shows the results obtained with our search-based algorithm when ana-
lyzing some different basic endings. We performed a test choosing random meta-
positions with greatest uncertainty for , , and endings;
then we normalized the results to 1000 and we merged them to produce the

figure.
In figure 3 we see that the program wins the ending quicker than the

ending. This result was expected, because the queen is more powerful

This graph depicts the result of all the 28000 matches which can occur considering
all the possible initial metapositions for the rook ending from the White’s point of
view, starting with greatest uncertainty.

Contents First Last Prev Next J

4.1. Evaluating the Search Algorithm with Other Endings

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

 number of moves

matches won

 KRvsk tree search

 KQ vs k

 KBB vs k

 KBN vs k

Fig. 3. Comparing the behavior of the search-based algorithm on different endings

than the rook: the queen controls more space so metapositions have a lesser
degree of uncertainty.

The case is instead more difficult with respect to . In fact, the
former is won on average in a larger number of moves: sometimes our program
needs more than 100 moves.

Finally, we see that the behavior of our program in the ending is
not good at all. The program often spends more than 100 moves to win and the
distribution of victories does not converge to zero, meaning that sometimes it
takes an unbound number of moves to win. We conclude that in this ending our
program is not really able to progress.

2.5 Progress through Uncertainty

An effective way to analyze the progress toward victory consists in considering
how the value of White’s reference board changes after playing each pseudomove.
The reference board is the metaposition which describes all positions were the
opponent King can be, compatibly with the past history of the game.

Figure 4 shows the trend of evaluations assigned to each reference board
reached during a whole match for the ending. The number of attempts
needed during the game is shown on the abscissa, while the grades assigned by
the evaluation function are on the ordinate.

We see that, at each step, the value of metapositions increases. From White’s
point of view, this means that the state of the game is progressing and this is
actually a good approximation for the real situation.

We have performed the same test for the case of ending, whose
result is depicted in Figure 5. Here the progress is not satisfactory for White, in

Contents First Last Prev Next J

4.2. Progress through Uncertainty

An effective way to analyze the progress toward victory consists in considering how
the value of White’s reference board changes after playing each pseudomove.

-250

-200

-150

-100

-50

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

pseudomoves

 values

Fig. 4. Trend of evaluations assigned to metapositions crossed during ending

fact he does not improve the state of the game at each step. The graph shows
how the evaluations of the reference board change during a match which ends
with the win of White: the value of metapositions does not increase at each
pseudomove, but at some lucky situation for White. Thus the program basically
wins this game by chance, that is by exploiting either some lucky metapositions
or its opponent’s errors.

We conclude that our program is able to progress to victory when we deal
with pieces able to divide the board in separate areas, which can then be reduced
to trap the Black King; whereas when we have a piece which does not offer this
feature, like the Knight, the behavior of the program is not fully satisfactory.

3 Optimality

In this section we deal with the issue of the optimality of our approach. We will
show that our program is not able to win against an opponent using an oracle. If
it won against an omniscient opponent it would be able to give optimal solutions,
due to the search algorithm properties. We will point out that problems arise
when the possibility of an illegal answer is considered into the tree of moves.

We remark that, according to its author, the algorithm given in [1] (or the
(different) one given in [8]) can win against an omniscient opponent. However,
these abstract algorithms do not always chose the optimal 1 move for each posi-
tion the player may be in. Alas, these solutions follow a strategy fixed in advance
that let the player to win even against an opponent using an oracle.

We showed in [6] that with a search on the tree of moves our program can
guarantee the optimality if a checkmate position is among the visited nodes. In

1 i.e. the move which leads to victory with the minimum number of moves

This graph shows the trend of evaluations assigned to each reference board reached
during a whole match for the KQk ending.

Contents First Last Prev Next J

4.3. When progress is not satisfactory

We have performed the same test done so far for the case of KBNk ending.

-2300

-1800

-1300

-800

-300

200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

pseudomoves

values

Fig. 5. Trend of evaluations assigned to metapositions crossed during ending

all the other cases what we can say is that the move chosen by the program
depends on the evaluation function which judges the positions. In these cases we
cannot claim optimality.

a) b) c)

Fig. 6. Difficult positions against an omniscient opponent

We will see in this section that the program with the evaluation function
proposed in [6] does not always win against an omniscient opponent.

If the program ends up in the position a) depicted in figure 6 no checkmate
state is found during the search on the tree of moves, so the program entrusts
the evaluation function with the task to judge for sub-optimal positions. Since
the evaluation function for the ending tries to reduce the uncertainty
about the black King by decreasing the number of black kings on his reference
board, it tries to push the white King inside the quadrant controlled by the rook.

d5 and d4 are illegal moves, so the program plays c3: the program plays
subsequently d2, then e3, trying to pass through the row controlled by the
rook.

Here the progress is not satisfactory for White, in fact he does not improve the state
of the game at each step.

The value of metapositions does not increase at each pseudomove, but at some lucky
situation for White.

Contents First Last Prev Next J

5. Conclusions and Future works

I Our program (with the evaluation function proposed in [BolognesiCiancarini
2006]) does not always win against an omniscient opponent

I Very difficult to implement the abstract algorithms, and possibly non conve-
nient for practical goals

I Study of more complex endings

Contents First Last Prev Next J

	Introduction
	Complete vs partial information in games
	Kriegspiel
	Research works on Kiegspiel
	Why do we study Kriegspiel?
	Our Aim

	Boyce Algorithm
	Boyce Algorithm Implementation

	Our algorithm
	Metapositions
	Kriegspiel Metapositions
	Building a metaposition tree
	Pseudomoves and Metamoves
	Tree Structure
	The evaluation function

	Results: Comparing the Two Programs
	Evaluating the Search Algorithm with Other Endings
	Progress through Uncertainty
	When progress is not satisfactory

	Conclusions and Future works

