
Multiagent coordination:
A Computer Science perspective

Paolo Ciancarini

mailto://ciancarini@cs.unibo.it
http://www.unibo.it/~cianca

Dipartimento di Scienze dell’Informazione
University of Bologna - Italy

MAAMAW, Annecy, May 2001

mailto://ciancarini@cs.unibo.it
http://www.unibo.it/~cianca

Multiagent coordination 2 of 32

Outline

Designing WWW-oriented multiagent applications

Active documents are agents

Towards agent-oriented software engineering

The role of coordination

Multiagent coordination 3 of 32

The Internet as a programmable platform

“The computer is the network”: the convergence of
Information and Communication Technologies produces new
opportunities for industry, research, and teaching.

Example 1 The mp3 format and the Napster service are
challenging the music industry: the old ways of distributing,
selling, storing and playing music are obsolete

Example 2 Several Universities are now offering courses for
designers, managers, and even art directors (eg. “Web DJ”) of
WWW-based enterprises: we started forming people for the
“contents industry” over the Internet

The convergence, or “networking”, of ICT industries is
pushing the development of novel appliances, applications,
services, and even organizational theories where the Internet
plays a major role

Computer scientists and engineers are challenged to adapt
themselves to the new platform, inventing new methods to
expoit the new computing models enabled by the Internet

Remark:
we should probably start speaking of “Internet science”
rather than “Computer science”

Multiagent coordination 4 of 32

The Internet as a platform for groupware

An important application of the Internet is in the field of
groupware, that is a domain offering interesting and important
design problems

Groupware: document-centric applications which organize
communities of users

• mobility of people, hosts, and documents
• communication: synchronous (“same time”) or

asynchronous (“any time”)
• multi-user interaction: “same place” or “different places”
• composition: groupware is usually the result of the

combination of several software technologies
• agenthood: in groupware several activies can be

performed by autonomous programs (that are possibly
mobile)

• document-centric: documents are complex data structures
with user-specific contents, structure, and behaviours

Multiagent coordination 5 of 32

WWW-based, agent oriented groupware

The software industry is redefining itself into a sw-intensive
service industry: eg. Microsoft says that its main competitor is
no more the software producer Oracle, but the Internet Service
Provider America On Line.

Currently most sw-intensive services are actually Web
applications supporting some form of groupware

 Example: Microsoft Hailstorm

WWW-based, agent-oriented groupware is quite challenging:

⇒ software technologies related to the WWW are fastly

evolving, usually as a result of some standardization
process (by organizations like W3C or OMG)

⇒ classic software engineering techniques are unsuitable for
Internet applications: in fact, we need novel network-aware
agent-oriented ontologies and tools

⇒ these applications usually offer services to different
organizations of the real world, which usually use different
ontologies for documents, services, and agents

Multiagent coordination 6 of 32

 The role of network layers

Software technologies for Internet applications need novel,
“network-aware” specification, design, and programming
languages and tools

A key issue when an application includes “network-aware”
(e.g. autonomous or mobile) components is how to design its
architecture, which can be decomposed in at least three
different layers:

• The physical network layer, made mostly of immobile hosts

and reliable and fast connections, where a mobile entity
consists of a piece of hardware using a connection usually
unstable (e.g. wireless) and with low bandwidth

• The middleware network layer, made of abstract machines

(e.g. a JavaVM, an XWindow server, etc.), where a mobile
entity consists of a whole process or a service able to
migrate from a host to another host

• The logical network layer, made of application code

scattered over the middleware network, where a mobile
entity consists of an agent able to move from an abstract
machine to another one

Remark:
network layers are usually related to different organizational
layers inside an organization, thus designing the logical layer
of groupware actually means to design (the behavior of) a
social organization

Multiagent coordination 7 of 32

 Mobile entities in the WWW

 The original WWW was based on two separate concepts:

⇒ HTTP servers distribute documents on demand to client

browsers: this is mobility of data (HTML and XML are not
Turing equivalent: they are just SGML dialects to specify
data structures like paragraphs or tables)

⇒ A browser can “navigate” through the hypertext links,

requesting HTML pages to a server, and sometimes
“jumping” from a server to another server. Although URLs
denote static, “physical” resources, they can be passed
around: this is mobility of references

Remark: Mobility of reference means both that a channel
name can be passed around, and that a process can detach a
channel and connect to another channel

 A third concept of mobile entity:

⇒ An active document (= contents+structure+behavior)

moves across the net, from servers to browsers and back

Multiagent coordination 8 of 32

 Technologies for active documents

Document lifecycles:

 Passive document Active document

 An “active” document provides support for interactions;
 that is, it can include animations, perform computations,
provide support for searching, etc.

 Active-X objects, Java applets, JavaScript scripts or even
complex PostScript or TeX programs can be used to build
documents offering more than their content

 The idea of “active document” consists of putting the
behaviour together with the contents: using generic markup
behaviors and actions are applied just like formatting

 Remark: an active document is an (autonomous) entity
including code and data, and moving around: it is an agent!

Multiagent coordination 9 of 32

 Representing documents

We use the term “document” with a broad scope, meaning any
kind of data structure which network-aware applications can
exchange

(passive) document: contents + (structured) representation

 Example: RTF is a language of commands that a word
processor has to apply to a document to render its contents, in
terms of fonts, justification, margins, etc.

HTML has been invented to write passive documents to be
displayed inside WWW browsers

 (HTML) document: contents + procedural markup

Document processing applications use two different
approaches to represent a document

 a) a proprietary, binary, machine-readable, code:
 Examples: MS Word, Adobe PDF, SUN Java bytecode
 b) an open (standard), ASCII-based, human-readable code:
 Examples: RTF, HTML, PostScript, TeX

 Remark: ASCII-based documents are “flat”: their structure
either is “wired” inside the applications which first parse then
can manage them, or some further code (markup) is needed to
give structure to an ASCII file

Multiagent coordination 10 of 32

 Procedural vs declarative markup

Formatters (eg. TeX or PostScript) assign a rendering
behaviour to documents represented as files mixing formatting
commands (mark-ups) and text

In order to build a “page”, formatters are driven by markup
commands interspersed in the document text: formatters are in
fact compilers

A system such as TeX produces high quality results because
layout algorithms are able to approximate the behaviour of
experienced professionals

However, TeX (and HTML) markups are very procedural, and
this is bad for two reasons:

• the logical structure of a document is not expressed in the
markup, thus searching document abstractions (eg. all titles,
represented by indented bold lines) is difficult

• the concept of style is non existent, thus changes in style
require revising all markup commands

A solution was the introduction of declarative markup
languages (like LaTeX), useful to declare both the logical
structure of a document and the styles to be used

 Example
⇒ \documentstyle[twocolumn]{article}

Multiagent coordination 11 of 32

 Declarative markup: SGML

As an a effort to develop a standard declarative markup
language, in 1980 IBM proposed the Generalized Markup
Language, which when adopted in 1986 by ISO became
SGML (ISO/DIS 8879)

A SGML document is composed of three parts: the SGML
declaration, the Document Type Declaration, and the
document instance.

⇒ SGML only specifies the structural elements composing a

document
⇒ SGML does not specify rendering semantics of its

documents (this is a task for stylesheets)
⇒ SGML does not provide support for hypertext links (meant

for non-interactive uses)

SGML includes a meta-language to declare new tag types, to
form a Document Type Declaration (DTD)

A SGML document contains elements, entities, comments and
processing instructions (eg. the LINK marker is used to give
behavioural semantics to declarative tags)

Multiagent coordination 12 of 32

 Towards active documents: XML

XML is a standard markup language (defined by W3C, and
derived from SGML) to describe the structure of documents;
instead, documents behaviours are specified using either
stylesheet languages (e.g. XSL) or even programming
languages (e.g. Java)

 document: contents + structure + behaviours

 Remark: declarative markup is either structural or semantic

 Structure: A book is composed of chapters, sections, titles,
notes, etc. A letter is composed of sender, addressee,
salutations, body, signature, attachments, etc.

 Semantics: A news item about a criminal act may specify the
source of the news item itself, the description of a sequence of
acts, the name of the place where the acts took place, the name
and rank of the involved police officers, the stolen amount,
etc.

Multiagent coordination 13 of 32

 What is a hypertext document

 Definition : a hypertext document is defined by
• its contents,
• its structure,
• one or more “behaviours”, and
• its relationships with other documents

Intuitively, a document carries some information and has some
structure: a book, a report, a letter, a program are examples of
documents of different forms

When documents live inside a computer they have a physical
representation based on some data structure

When we consider a document in abstract, it is fully defined
by its contents and logical structure: the structure of a
document is an instance of a document model, that is an
ontology of abstract entities suitable to describe the
document’s elements (eg. chapters, sections, paragraphs,
pages, etc.)

 Any document can display several behaviours:
⇒ a rendering, or presentation behaviour, defines how a

document is displayed on an output device, like a screen
or a printer (e.g. pretty printing is a rendering behaviour)

⇒ a view, or control behaviour, defines how a user can
interact with a document (e.g. using hypertext)

⇒ a static semantics defines how a document can be analysed
with respect to some verification rules

Multiagent coordination 14 of 32

 Active document are agents

 XSL is not up to XML in terms of generality: specialized
notations are not supported. At UniBologna, we have created
an open set of formatting objects that are loaded when needed,
depending on the required behavior of a document.

 Each document has a stylesheet associated that maps its
elements to the available formatting objects; each formatting
object is then associated to a sw module (a JavaBean), that we
call displet, displaying the information (we exploit the
dynamic linking capabilities of Java)

XMLC

XML

XML
parser

XSL
processor

XSL
processor

XSL

XSL

Java

object
generator

DOM tree

 Some applications that we have explored:
• Special typographical elements; layout management
• Notations for software engineering documents
• Management system for hypertext UML documents
• Porting of ToolBooks inside standard browsers
• DSS for financial applications
• WorkSpaces (a workflow management system)

Multiagent coordination 15 of 32

 Declaratively active documents

 We have two reference architectures for displets, that we call
“server-side” and “client-side”, respectively

 The server-side architecture is more efficient, but less flexible
(a behaviour is pre-processed and “wired-in” a document, that
then is sent to a browser and displayed)

 The client-side architecture is a multiagent system that can be
used to have documents performing activities, rather than just
be displayed

 Since we associate displets which are Java Beans to XML
documents, we can ask a Bean to paint itself, or to perform
any other method of its classes

 Depending on the stylesheet and the Java classes, then the
same document can behave in any of different ways

 The code performing the activities is not part of the document
(as in Active X or similar systems) but declaratively
associated to the document

 Example: Music scoresheets
 We have defined a DTD for music scoresheets, thus we can
represent textually any music score. Then we have defined
stylesheets to display, animate, and play a score. Then we
have enriched the displets able to display scores with editing
capabilities, so that the original document can be modified

Multiagent coordination 16 of 32

 The impact of agent-hood

 The WWW made clear that documents should be considered
as portable, application-independent components requiring
specific models and languages

 However, the design of WWW-based groupware needs more
than just a technology for sw components: documents are not
only active; they are interactive agents (their users play some
role) and moreover they activities need to be coordinated

 Databases were the focus of application design in the ’80
 Components were the focus of application design in the ’90
 Agents are being the focus of application design in the ’00

 Component-based applications are usually built on top of a
distributed middleware platform

⇒ CORBA (Common Object Request Broker Architecture)
⇒ Lotus Notes
⇒ World Wide Web
⇒ Sun’s Jini
⇒ Microsoft .NET initiative

 All these architectures offer some concept of agent-hood

Multiagent coordination 17 of 32

 Agent oriented sw engineering

 Sw engineering deals with development processes and tools

 “Classic” sw engineering is not adequate for the network,
 because it lacks of conceptual tools to deal with interaction

 Classic vs. agent-oriented sw engineering process:

Requirements
analysis

Architectural
design

Detailed
design

Modeling
cooperation

Modeling
coordination

Modeling
composition

Domain-or iented
languages and tools

Design-or iented
languages and tools

Component-or iented
languages and tools

⇒ Organizational model: the abstract description and analysis

of all roles involved in a system (cf. Use cases in UML)
⇒ Coordination model: the description of a sw architecture in

terms of agents and their activities (eg. UML is weak in
dealing with agent-oriented architectures)

⇒ Composition model: the set of mechanisms used to
implement, reuse, or activate components and assign
resources (eg. “JavaBeans components representing XML
documents and roaming a web of HTTP servers”)

Multiagent coordination 18 of 32

A case study in Internet groupware

International scientific conferences are organised involving
several people distributed all over the world
- authors of papers
- reviewers of papers
- Program Committee members
- Program Chairs (co-ordinators)
- conference organisers

The following activities have to be performed:
0. The "social laws" of conference management are stated
1. PC-members state their competence fields
2. Authors submit their papers by a given deadline
3. PC-chairs distribute papers according to the competence
4. Reviewers return they evaluations by a given deadline
5. PC-members decide according to the social laws
6. Authors of accepted papers prepare a final version
7. PC-chairs edit the proceedings
8. Organisers handle the list of talking/attending people

⇒ Most people involved are mobile: scientists travel a lot
⇒ Activities involve people cooperating on structured docs
⇒ Most activities are routinary and can be managed by

automatic scripts exploiting e-mail/ftp/WWW services

How should we design applications like a conference
management system in terms of cooperation laws,
coordination mechanisms, and component architectures?

Multiagent coordination 19 of 32

 Conference management over the Internet

 Basic idea: submitted papers are agents (active documents)

 Organizational model: which social laws for roles and
activity workflows? we have to decide which conference
organization we prefer:
 single/multiple tracks and conference workflow;
 tyrannical, oligarchic, democratic cooperation management;
 authors of papers anonymous/known to reviewers; etc.

 Coordination model: how do we organise agents?
 we have to decide which sw architecture we offer to the
agents, eg. a database-like or a peer-to-peer or a MUD-like
one, and how agents interact with their environment

 Composition model: how do we reuse and compose
components into architectures?
 we have to detail which components we allow and how do
they "connect", eg. we could ask that all papers are based on
PostScript (so that some browser could manage them) or on
XML/XLink-Xpointer (so that they could form an hypertext
and be managed by a search engine) or on .NET components

Multiagent coordination 20 of 32

The impact of software architectures

The importance of studying software architectures and their
related co-ordination models cannot be overestimated:

Napster is a service based on a peer-to-peer software
architecture: its success is so big that it is redefining the music
industry, and inspiring novel services and projects (eg. Sun's
Peer-to Peer networking initiative)

In order to build a new generation of Internet-aware
programming languages, we need to study and understand
how co-ordination can be modelled and embodied in a
software architecture

Multiagent coordination 21 of 32

Agents and organisations

Internet-aware applications are designed by integrating several
technologies; from a sw engineering perspective, we need
methods and tools to master the complexity of such an
integration

In my opinion the most interesting questions to be studied are
in the field of specifying and analysing the organisations of
agents, or organizational models. For instance, we need
notations to describe and study e-commerce service chains, or
logistic support systems

The increasing success of the concept of ERP shows that the
introduction, or the adaptation, of Internet-aware services to a
company reshapes its organisational forms and behaviours

We lack of notational and reasoning tools able to support the
analysis of societies of agents, and the related organisation of
services

Research on agent-based software is currently spread over
several computer science sub-disciplines, like for instance
Artificial Intelligence, Distributed System Programming,
Network-aware Programming Languages, Information
Retrieval Systems (a very partial list!)

A task for Agent-Oriented Software Engineering researchers:
to develop a uniform framework including specific
development process models, meta-models for co-operation,
co-ordination, and composition, and tools and environments to
support all the related design activities

Multiagent coordination 22 of 32

 Coordination

 Coordination is a key concept for studying the activities of
complex dynamic systems

⇒ Coordination is managing dependencies between activities

[Malone&Crowston 94]. All instances of coordination
include agents performing activities that are interdependent

⇒ Coordination is the process of building programs by gluing

together active pieces; a coordination model is the glue that
binds separate activities into an ensemble”
[Carriero&Gelernter 92]

 A coordination model is the formal basis (semantics) for a
coordination language; usually a coordination language has to
be combined with a conventional programming language to
obtain a fully-fledged programming language

A number of co-ordination languages have been defined and
studied in the last ten years; however the field is far from
being exhausted, especially because the concept of "co-
ordinable entity", or agent, has still to be fully understood

Multiagent coordination 23 of 32

 Coordination models

 A coordination model is an formal framework useful to study
and understand problems in designing programming languages
and software architectures including several agents

 In other words, a coordination model defines how agents
interact and how their interactions can be controlled

 This includes dynamic creation and destruction of agents,
control of communication flows among agents, control of
spatial distribution and mobility of agents, as well as
synchronisation and distribution of actions over time

 Coordination models differ mostly in the way they control
interaction: for instance, different models could offer different
kinds of mobility :

• planned: an agent's itinerary across some locations is

statically predefined;
• spontaneous: an agent's itinerary is not statically predefined,

but the next location is computed by the agent itself at run-
time;

• controllable: a migration is forced by an authority in some
location, using some I/O mechanisms to communicate with
a remote agent. Interestingly, there are two types of
controllable mobility: sender-controlled and receiver-
controlled.

 Different kinds of mobility require different coordination
models

Multiagent coordination 24 of 32

 Communication, cooperation, coordination

 synchronous asynchronous
 communication Messaging, chat e-mail
 cooperation Napster ftp, HTTP,

WebDAV
 coordination distributed game

playing (MUD),
auction system

 workflow
 (eg. conference
management)

 Communication mechanisms allow to exchange msgs and/or
data streams; these are the basic services needed to build
applications like IRC (Internet Relay Chat), e-mail, or
teleconferencing systems

 Cooperation mechanisms allow to share documents and
resources; groupware applications like Napster and shared
data repositories need specific cooperation protocols,
respectively synchronous or asynchronous.

 Coordination mechanisms allow the orchestration of multiple
activities and services; sw platforms based on some
coordination architecture are useful to build distributed game-
playing environments or workflow support systems

Multiagent coordination 25 of 32

 Applications requiring coordination
management: examples

 Example 1:
 Parallel simulation. Simulation models based on some notion
of discrete, backtrackable time, require specific coordination
techniques for a parallel implementation

 Example 2:
 Integration of whole applications, reconfiguring and
coordinating the computations of several independent decision
support systems (eg. inter-related spreadsheets under the
control of different users)

 Example 3:
 Multiagent symbolic computing, as in an environment
integrating theorem proving with model checking and other
reasoning tools

 Example 4:
 Workflow systems for active documents. Modern document
management systems are usually based on a notion of
document-agent whose interactions with users, tools, and other
documents-agents have to be explicitly managed

Multiagent coordination 26 of 32

 Coordinable software architectures

 Examples of software architectures requiring coordination are
• the master-worker
• the client-server
• the peer-to-peer
• the software pipeline
• the blackboard
• the shared repository

 We say that these architectures require coordination because
their basci entities (the coordinables) are arranged in some
special, well-defined, reusable structures including several
components requiring some specific interaction protocols

 Currently, software designers usually design a (coordinable)
software architecture using low-level communication
primitives and/or special module configuration languages

 Instead, we suggest that a software designer should have clear
a coordination model, embedded in a coordination language,
to implement a specific software architecture

Multiagent coordination 27 of 32

 Coordination models

 A coordination model offers mechanisms to control agent
creation/connection/termination, and simple abstractions to
define the semantics of connectors

 Definition :
 A coordination model is a triple (E,M,L), where:

• E are the coordinable entities (components):
these are the agents which are coordinated. Ideally, these
are the building blocks of a coordination architecture (eg.
agents, processes, tuples, atoms, etc.)

• M are the coordinating media (connectors):
these are the coordinators of interagent entities. They also
serve to aggregate a set of agents to form a configuration.
(eg. channels, shared variables, tuple spaces, bags)

• L are the coordination laws ruling actions by coordinable
entities wrt the coordination media. Usually the laws
define the semantics of a number of coordination
mechanisms that can be added to a host language

Multiagent coordination 28 of 32

 Some dimensions of coordination

 The basic ideas in all coordination models and languages are
“minimalism”(a small set of coordination primitives should
suffice) and “optimizability” (it should be possible to reason
on and compile coordination primitives)

 Coordination models and related languages can be classified
along a number of dimensions:

• location-less vs locality-based (named) coordination media

• transactional (multiset based) vs asynchronous (tuple based)
coordination media

• procedural (imperative, functional, or logic) vs object-oriented
(or agent-oriented) coordinables

• centralized vs decentralized coordination laws

• data-driven vs event-driven coordination primitives

Multiagent coordination 29 of 32

 Example: coordination and mobility

 The issue of coordination mechanisms for mobile agents has
been studied expecially in the context of environments for
network-aware programming

 Multiple Tuple Spaces are natural coordination media for both
mobile code (eg. Java) and mobile agents (code+state)

 The following proposals differ in the coordinable entities,
 in the mechanisms used to access the tuple spaces, and
 in the possibility of extending the coordination laws

 System Coordinables Media Language Laws
 JavaSpaces JavaAgents TS Java+Linda Fixed
 Lime MobileAgents Local and

global TS
 Linda+asynch
primitives

 Fixed

 MARS Java Agents Network
aware TS

 Java+Linda Programmabl
e
 (in Java)

 PageSpace Agents+
 Services

 Network
unaware TS

 Java+Linda Fixed

 TSpaces Agents Network
unaware TS

 Linda+
 user-defined
primitives

 Programmabl
e
 (Overriding)

 TUCSON Information
agents

 Network
aware TS

 Logic
oriented
Linda

 Programmabl
e
 (in Prolog)

 WCL Agents,
applications

 Automatic
 reallocation

 Linda+asynch
primitives

 Fixed

 See ftp://ftp.cs.unibo.it/cianca/slides/rif.ps.gz

 for a reference list

ftp://ftp.cs.unibo.it/cianca/slides/rif.ps.gz

Multiagent coordination 30 of 32

 Conclusions

 Coordination models are a new exciting research field

 Coordination models are an important tool for a new class of
distributed applications, in which several agents (humans,
tools, programs) have to be coordinated

 There are several questions that are being addressed:

⇒ which coordination mechanisms are more expressive and

useful?

⇒ which semantic models should be used to study such

mechanisms?

⇒ which implementation techniques are best?

⇒ which software architectures match some specific

coordination requirements?

⇒ which programming logics can be used to reason about

coordination programs?

⇒ which new applications can be developed, which exploit

the new technology?

Multiagent coordination 31 of 32

 A roadmap

Internet scientists and practitioners have to follow closely
what organizations for “network governance” like W3C or
OMG develop and define as software standards

In the next five years, we believe that:

⇒ the family of XML technologies will have a strong impact
on sw technologies, programming languages and tools

⇒ the concepts of agent-oriented software engineering will

gain momentum, possibly succeeding object-oriented
software engineering as the dominant design method

⇒ “Active document”-centric software architectures will

substitute client-server architectures

Multiagent coordination 32 of 32

 Conclusions

Network-aware, agent-based applications and services are
designed by integrating several technologies; from a sw
engineering perspective, we need methods and tools to master
the complexity of such an integration and to study their impact
on social organizations

Coordination and composition models are important concepts
for agent-oriented software engineering; we nedd to improve
our understanding of organizational models

However, we have a long way before understanding their
inter-relationship

 At present we are especially interested in:
⇒ developing and evaluating network-aware models and

languages for agent-documents and related software
architectures

⇒ developing formal specification languages useful to design
software architectures including mobile components

⇒ building a Web-based software architecture able to support
active documents (integrating XML and Java)

