
1 An introduction to coordination 1

Lecture 1:
An introduction to coordination

Contents

• Background and motivation

• What is a coordination language?

• Coordination mechanisms in Linda and derived languages

Specific references

Carriero, Gelernter “Coordination Languages and their Significance”, CACM 35:2, 1992.
Carriero, Gelernter, How to Write Parallel programs. A first course, MIT Press, 1990
Carriero, Implementing Tuple Space Machines, PhD Thesis, Yale 1987

www.lindaspaces.com



1 An introduction to coordination 2

Beyond sequential programming
Programming languages theory developed two basic
paradigms useful for designing operating systems:

- shared data (semaphores, monitors, etc.)
- message passing (rendezvous, RPC, etc.)

They do not cover the whole range of coordination
problems

• AI researchers developed a whole series of special-
purpose architectures for multi-agent systems (e.g.
blackboards, contract-nets, actors, etc.)

 
• Parallel programmers developed several organizative

techniques that do not fit exactly in any of the two
paradigms (e.g. master-worker, agenda, pipeline, etc.)

 
• Software engineers in designing distributed software

architectures found a whole set of novel integration
problems not easily solved within the classic paradigms
(runtime interoperability, multiparadigm programming,
associative invocation of services, dynamic multiclient-
multiserver systems, mobile code, etc.)

 
• The Internet can be enhanced by coordination

middleware to a programmable platform offering support
for large-scale groupware, agent-based applications, and
high-performance computational services (eg. the GRID)

 
• From a theoretical point of view there are several

properties of coordinated behaviour (eg. locality,
mobility, security, etc.) that are not easily analysable using
formal semantics and logic developed for conventional
concurrent languages

 



1 An introduction to coordination 3

 Coordination

 Coordination is a key concept for studying the activities of
complex dynamic systems
 
 Coordination is managing dependencies between activities
 
 Such a definition implies that all instances of coordination
include agents performing activities that are interdependent
[Malone and Crowston 94]
 
 Due to its fundamentality, this notion covers a lot of facets,
for instance in distributed artificial intelligence, robotics,
biology, and organisational sciences
 
 Here we see coordination from the viewpoint of
programming languages and software engineering
 
 Coordination is the process of building programs by gluing
together active pieces [Carriero and Gelernter 92]
 
 Active pieces here can mean processes, objects with
threads, agents, or whole applications
 
 programming = coordination + computation
 



1 An introduction to coordination 4

 Coordination programming

 Coordination programming [CarGel90] is “more natural”
than sequential programming for applications requiring
explicit parallelism
 
 To write a coordinated program:

1. choose the conceptual class that is most natural for the
problem

2. write a program using the software architecture  that
is most natural for that conceptual class

3. if the resulting program is not acceptably efficient,
transform it in a more efficient version by switching
from a natural architecture to a more efficient one

 
 Conceptual classes [Carriero Gelernter 1990]

o coordination by result
o coordination by specialisation
o coordination by agenda

 
 These classes differ in the starting approach to design a
program to solve the problem:
 
⇒  we can start from the intended result,
⇒  or from the organisation of computing agents,
⇒  or from the list of subtasks to be performed
 
 Example: planning the building of a house
⇒ we can decompose the intended final layout, separately

building the components and then putting them together
⇒ we can assign a special task to each available agent,

aiming at exploiting each (specialist) agent in parallel
given a list of building phases, or

⇒ we can try to parallelize the building process



1 An introduction to coordination 5

 Coordination by result

 The intended result of a program can usually be
decomposed in several subresults; all the components of the
result can then be processed separately and simultaneously
 
 We can design a parallel application around the data
structure yielded as the ultimate result, and we get
parallelism by computing simultaneously all the elements of
the result
 
 Result coordination focuses on the shape of the finished
product: usually it has to be a complex structure whose
elements can be computed in parallel
 
 Typical examples:
 When the program has to produce structured data and if we
can specify precisely how each element of the resulting
structure depends on the rest and on the input, then it is a
good idea to attempt result parallelism
 
 Examples:
 - Given 2 n-element arrays A and B, compute their sum S
 - Given 2 matrices M1 and M2, compute their product P
 - Sort a list using parallel merge sort



1 An introduction to coordination 6

 Coordination by specialisation

 Each available worker is assigned to perform one specified
kind of work, and they all work in parallel (e.g. in pipeline)
up to the natural restrictions imposed by the problem
 
 We can plan an application around an ensemble of specialist
programs connected into a logical network of some kind;
parallelism results form all the nodes of the logical network
being active simultaneously
 
 Specialist coordination focuses on the makeup of the work
crew (i.e. the “software architecture”)
 
 Examples:
 - A number of servers in an operating system;
 - A number of monitor/control processes in a realtime system
 - A parallel compiler built as a pipeline of fine-grain tools
(eg. scanner, parser, code generator, optimizer)



1 An introduction to coordination 7

 Coordination by agenda

 Each worker is assigned to help out with the current item
on the agenda, and they all work in parallel up to the natural
restrictions imposed by the problem
 
 We can plan an application around a particular agenda of
activities and then assign several workers to each step
 
 Agenda coordination focuses on the list of tasks to be
performed; in this case, workers are not specialist: their
structure is uniform (they input a task, solve it, and finally
output the solution)
 
 Two special cases of agenda coordination:
 - Data parallelism (synchronous)
 - Speculative parallelism (or-parallelism)
 
 Coordination by agenda involves a series of transformations
to be applied to all elements of some set in parallel: typically
we have a master-worker structure
 
 A master process initialises the computation and creates a
collection of identical worker processes; each worker is
capable of performing any step in the computation; the
master waits for solutions computed by workers
 
 Workers repeatedly seek in the agenda a task to perform,
get a task, perform the selected task, output the solution,
and repeat; when no task remains, the program terminates
 
 Examples:
 - A make utility which distributes sources to allow for
parallel compilation
 - A chess program which searches in parallel the game tree



1 An introduction to coordination 8

 Message passing

 Message passing models allow to coordinate processes that
can communicate with other processes through channels or
ports on which messages are sent and received
 

 

sendreceive

 
 Typical languages of this class are Ada, CSP, Occam,
POOL, concurrent logic languages, data flow languages
 
 This programming model is the basis of most operating
systems architectures that use the client-server model
 
 It is also the basis of the actor (OO) model of computation



1 An introduction to coordination 9

 Live data structures

 Live data structures coordination models allow to define
data structures that contain active threads of computation;
the threads can read/write other data structures under the
control of other threads using synchronising primitives (e.g.
semaphores, monitors, critical conditional regions, path
expressions)
 

 

read/write

 
 Typical languages of this class are Concurrent Pascal, DP,
Edison, Argus, Modula, Mesa, Concurrent Euclid, Unity
 
 Most ancient operating systems were designed using this
kind of concurrency (e.g. Unix)



1 An introduction to coordination 10

 Distributed data structures (tuple space)

 A distributed data structure is logically separated from
processes that can manipulate it; in Linda, for instance, the
distributed data structure is contained in a Tuple Space, that
is a multiset of tuples; processes produce/consume tuples
and create other processes
 

 

out

in

read

 
 Linda is the most known language that provides a
distributed data structure; other languages that offer
distributed data structures are Orca, Shared Prolog, Gamma



1 An introduction to coordination 11

 Linda

 Linda consists of a few simple operations that have to be
embedded in a host sequential language to obtain a parallel
programming language
 
 programming = coordination + computation
 
 Linda introduced a new paradigm: generative coordination
 
 A Linda program refers to a (physically distributed) data
structure called Tuple Space, that is a multiset of tuples;
there are two kinds of tuples:
 
 - passive tuples containing data
 - active tuples containing processes
 
 A tuple is a sequence of typed fields
 
 Types are inherited from the host sequential language (eg.:
C-Linda types are C basic types or C arrays)
 
 However, not all types are allowed
 (eg. in C-Linda pointer fields are forbidden)



1 An introduction to coordination 12

 A coordination model

 The Tuple Space is a global computing environment
conceptually including both data, in form of passive tuples,
and agents, in form of active tuples
 

 

("data", 2, 4)

("A", 1,1, 15)

(1,4,[2,4,6])

("paul","capricorn")

("worker", f(2,4))

("process", g(2))

 
 All tuples are created by agents; they are atomic data (they
can only be created, read or deleted)
 
 Agents cannot communicate directly:
 
 an agent can only read (rd ) or consume (in ) a tuple, write
(out ) a new tuple or create (eval ) a new agent that when
terminates becomes a data tuple



1 An introduction to coordination 13

 Operations

 Tuples are created and manipulated by agents using the
following operations:
 
 out(t)  puts a new passive tuple in the Tuple Space, after
evaluating all fields; the caller agent continues immediately
 
 eval(t)  puts a new agent in the Tuple Space (each field
containing a function to be computed starts a process); the
caller agent continues immediately; when all active fields
terminate the tuple becomes passive
 
 in(t)  looks for a passive tuple in the Tuple Space; if not
found the agent suspends; when found, reads and deletes it
 
 rd(t)  looks for a passive tuple in the Tuple Space; if not
found the agent suspends; when found, reads it
 
 inp(t)  looks for a passive tuple in the Tuple Space; if
found, deletes it and returns TRUE; if not found, returns
FALSE
 
 rdp(t)  looks for a passive tuple in the Tuple Space; if
found, copies it and returns TRUE; if not found, returns
FALSE



1 An introduction to coordination 14

 Matching rules

 Operations in , read , inp , readp  access tuples in the
Tuple Space associatively (by pattern matching)
 
 Their argument is a tuple schemata, namely a tuple
containing formal fields used to search a tuple by pattern
matching in the Tuple Space;
 
 if a matching tuple is found, the operation is successful
 
 
 Matching rules for original Linda:
 
 A tuple T in the tuple space matches a tuple schemata S in a
tuple operation if their arguments match in number and
type, and

 i) if argument Ti is actual and argument Si is formal, or
 ii) if argument Ti is formal and argument Si is actual, or
 iii) if argument Ti is actual and argument Si is actual, and
Ti=Si



1 An introduction to coordination 15

 Matching tuples

 Example:
 out("string", 10.1, 24, "another string")
 
 real f; int i;
 rd("string", ?f, ?i, "another string")
succeeds
 in("string", ?f, ?i, "another string")
succeeds
 rd("string", ?f, ?i, "another string")
does NOT succeed
 
 Example:
 out(1,2)
 rd(?i,?i)  does not succeed
 
 Example:
 eval("worker",7,exp(7))  creates an active tuple
 in("worker",?i,?f)  succeeds when eval  terminates
 
 Example:
 eval("double work", f(x) , g(y) )
 in("double work", ?h, ?k)
 succeeds when both active fields terminate



1 An introduction to coordination 16

 Coordination patterns of tuple space

 Master-worker
 
 master(){
 for all tasks {
 /* build task structure for this iteration */
 …
 out(“task”, task_structure);
 }
 for all tasks {
 in(“result”,?&task_id,?&result_structure);
 /* update total result using this result */
 …
 }
 }
 
 worker(){
 while( inp(“task”,?&task_structure) {
 /*exec task*/
 …
 out(“result,task_id,result_Structure);
 }
 



1 An introduction to coordination 17

 Distributed data structures in C-Linda

 Semaphors
 out("sem"); out("sem"); out("sem");
 This is equivalent to an integer semaphore initialized to "3"
 
 Distributed records
 out("Smith","Paul"); out("Smith",34);
out("Smith","professor");
 
 Distributed arrays
 out("A", 1,1, 15);
 out("A", 1,2, 7);
 out("A", 2,1, 10);
 out("A", 2,2, 22);
 
 for (next=1; next<2; next++)
    rd("A", 1, next, ?LocalA[next])
 
 Distributed lists
 out("A", "atom", value1)
 out("B", "atom", value2)
 out("A", "cons", ["A","B"])
 
 Streams
 out("strm",1,val1);
 out("strm",2,val2);
 out("strm",3,val3);
 out("strm","tail",4)
 
 To append a value to the stream:
 in("strm","tail",?index);
 out("strm","tail",index+1);
 out("strm",index,NewElem);



1 An introduction to coordination 18

 A queue as a “live” data structure
 init_queue(name)
 char *name;
 {
 out(“queue head ptr”,name,0);
 out(“queue tail ptr”,name,0);
 }
 
 add_to_tail(name,val)
 char *name; int val;
 { long ptr;
 in(“queue tail ptr”,name,?&ptr);
 out(“queue tail ptr”,name,ptr+1);
 out(“queue”,name,ptr,val);
 }
 
 take_from_head(name)
 char *name;
 { long ptr;
 in(“queue head ptr”,name,?&ptr);
 out(“queue head ptr”,name,ptr+1);
 in(“queue”,name,ptr,?&val);
 return val;
 }
 



1 An introduction to coordination 19

 Dining philosophers
 #define NUM 5
 
 phil(i)
 int i;
 {
 while(1) {
 think();
 in("room ticket");
 in("fork", i);
 in("fork", (i+1)%NUM);
 eat();
 out("fork", i);
 out("fork", (i+1)%NUM);
 out("room ticket");
 }
 }
 
 real_main()
 {
 int i;
 for (i=0, i<NUM, i++){
 out("fork", i);
 eval(phil(i)) ;
 if (i<(NUM-1)) out("room ticket");
 }
 }



1 An introduction to coordination 20

 Implementations of Linda

 Linda has been proved to be efficiently implementable on a
wide set of hardware architectures, even if efforts have to
be devoted to exploit the features of specific machinery
 
 There are two approaches to Linda implementation:
 
⇒ build a library for Linda primitives, and include it in a

host sequential language; the resulting run time system
extends the sequential one with distributed programming
capabilities based on the Tuple Space abstraction.
This approach is used in some simple prototype
implementations (e.g. POSYBL, LiPS, Minix Linda) and
in some programming systems for Linda-like high-level
coordination languages

 
⇒ build a new compiler for a sequential language extended

with Linda primitives; the compiler optimizes the
implementation of Linda primitives and data structures
for specific architectures (works by Carriero and others)

 
 A Linda implementation has to consider if:
 
 1) the underlying hw includes shared memory
 2) the hw does not include shared memory (eg. network)
 
 The main problems to be solved by the Linda run time
system are how to find a tuple and where to store a tuple
 



1 An introduction to coordination 21

 Linda™ run time

 The (commercial) Linda run time has the goal to implement
the Tuple Space abstraction, offering support for tuple
search, matching, communication, and synchronization
 
 The Linda compiler is machine independent for all that
concerns tuple parsing and active tuple analysis
 
 Instead, the implementation of tuple operations like
in()/rd()  are typically machine dependent
 
 1) where are stored tuples? in which host? in which
memory level?
 2) when the area has been found, how it is searched?
 
 The Tuple_Space can be partitioned inserting tuples
generated by out()  and eval()  in different “signature”
sets
 
 Each set is then again partitioned in subsets,
 one for all tuples with the same constant fields
 



1 An introduction to coordination 22

 Issues in distributed implementations

⇒ Tuple space organization and distribution
⇒ Eval implementation
⇒ Load balancing scheme used for process creation
⇒ Procotol implementation for transfer of tuples
⇒ Configuration of the processor network
 
 The Linda concept has been implemented in a number of
flavors
 
 Original Linda™ by SCA™
 VAX Linda by Leichter
 Unix Linda
 Minix Linda
 
 Network implementations:
 - POSYBL
 - LIPS
 - Pinakis’ Tuple Server
 - GLENDA
 - Laura (TU Berlin)
 
 Multiple tuple spaces:
 - Piranha™ by SCA™  (Yale)
 - Paradise™ by SCA™  (Yale)
 - Bonita (York Univ.)



1 An introduction to coordination 23

The master worker model

Linda programs exhibit automatic load balancing; in the
“Piranha” environment, running over a network of
workstations, programs “steal” computing power when the
processors are idle

Linda/Piranha also allows for “adaptive parallel programs”,
i.e. computations that dynamically change the set of
processors they use: processors may join or withdraw from
the computations as it proceeds

A typical program consists of two types of processes: one
master and several workers

• The master manages the task agenda, that has to be
always available; it distributes computations and gathers
results; it can also consume tasks

• A worker typically executes a loop that inputs a task
and the corresponding input data, performas the task,
creates 0 or more task, and outputs data

The set of processors is partitioned in available and
withdrawn processors: only available processors run
piranhas; if an available processor withdraws, the local
piranha is destroyed (the user program does not creates
processes);

Workers do not migrate; they communicate through the
tuple space that persists irrespectively of which processors
are available

Typical applications for Linda are:
- Montecarlo simulations
- LU decompositions
- domain decomposition (simulations)



1 An introduction to coordination 24

 Paradise™

 Paradise™ [Kaminsky 93; SCA™ 1996] enhances the
Linda model of coordination with multiple tuple spaces
 

 

Private Virtual
Shared memory

Common Virtual
Shared memory 1

Common Virtual
Shared memory 2

Parallel data mining
application
running on
networked
workstations

sequential
visualization

database
system

database
on mainframesimulation

on multiprocessor

data
analysis

 



1 An introduction to coordination 25

 Paradise

 Paradise is a flat multiple tuple spaces extension of Linda,
implemented over a network of heterogeneous workstations
(both Sun and Intel)
 
 It includes the standard Linda operators, except eval , plus
several other coordination operators for tuple space
manipulation
 
 #include <paradise.h>  % producer
 main()
 { TSHANDLE myts, rmyts;
 open @ rootts() ; % default root ts
 myts = create @ rootts(PARADISE_PERSISTENT,
 PARADISE_LABEL(“my TS”)) ;
 out @ myts(“message”, “Hello world!”) ;
 rmyts = restrict @ myts(PERM_RD) ;
 register_handle(“info”,”gen”,”xxxx”,&rmyts) ;
 close @ myts() ;
 close @ rootts() ;
 }
 
 #include <paradise.h>  % consumer
 main()
 { TSHANDLE myts;
 char s[1024]; int stat;
 
 stat = lookup_handle(“info”,”gen”,&myts) ;
 open @ myts() ;
 rd @ myts(“message”,?s) ;
 printf(“Message is: %s\n”,s);
 close @ myts() ;
 }



1 An introduction to coordination 26

 Paradise primitives

 The Paradise system is controlled by a server process which
provides Paradise’s services to client programs
 
 The paradise  command is used to boot the system:
 - creating the root rootts  and temporary tmpts  tuple spaces
 - placing tuples into roots, including a handle for tmpts.
 - starting the handle server, which immediately registers
rootts  and tmpts

 - maintaining the time tuple in the format (“time”,host,sec,usec)

 
 Operations:
 
 in@ts(“coord”,?x) inp@ts(“coord”,?x)
 rd@ts(“coord”,?x) rdp@ts(“coord”,?x)
 out @ ts(“coord”,3.0)
 
 matching is complicated in case of heterogeneous hw
 • big endian vs little endian
 • floating point representation
 • structure alignement
 
 create @ ts()   creates a new tuple space at the same
Paradise server as the specified handle
 
 open @ ts()  opens a tuple space handle
 
 close @ ts()  closes a tuple space handle, cancelling
any pending transactions
 
 catch @ ts(handler)
 specifies a ts handle-specific error handler



1 An introduction to coordination 27

 Protection scheme

 allow @ ts(pmask)
 checks handle privileges and determine wheter the specified
handle has all of the specified permissions in pmask
 
 restrict @ ts(pmask)
 creates a less (or equally) privileged ts handle, setting its
permissions as specified in pmask
 
 Paradise allows the admin to limit access to the system:
 
 nodelist  lists the hosts which can connect to the
Paradise server
 uidlist  specifies the users (by userid) who are permitted
to use the Paradise server
 gidlist  specifies the UNIX user groups (by gid) who are
permitted to use the Paradise server
 
 A tuple space can be checkpointed periodically, to recover
from unexpected events
 
 xaction @ ts()  initiate a transaction
 commit @ ts()  commit a pending transaction
 cancel @ ts()  cancel the current transaction
 



1 An introduction to coordination 28

 Example

 A simple e-mail system
 

 

sender sender sender

Post office tuple space

out

broker

employee 1
tuple space

employee 3
tuple space

employee 2
tuple space

employee1 employee2 employee3

i n

i n
i n

i n

out out

out out out



1 An introduction to coordination 29

 Example

 Create persistent PostOffice and LetterBox tuple spaces
 
 #include <paradise.h>
 
 main()
 { TSHANDLE myts,rmyts;
 open @ rootts() ; /*  this is the root ts */
 
 /* create Post Office ts  */
 myts = create @ rootts(PARADISE_PERSISTENT,
 PARADISE_LABEL(“PostOffice”));
 
 rmyts= restrict @ myts(PERM_OUT);
 register_handle(“PostOffice”,”Sender” ,”xxxx”,&rmyts);
 rmyts= restrict @ myts(PERM_IN);
 register_handle(“PostOffice”,”Broker”,”xxxx”,&rmyts);
 close @ myts();
 
 /* Create a LetterBox for each employee  */
 myts = create@roots(PARADISE_PERSISTENT,
 PARADISE_LABEL(“LetterBox Employee 1”));
 
 rmyts= restrict @ myts(PERM_OUT);
 register_handle(“Employee 1”,”Broker”,”xxxx”,&rmyts);
 rmyts= restrict @ myts(PERM_IN);
 register_handle(“Employee 1”,”Employee”,”xxxx”,&rmyts);
 close @ myts();
 
 …
 close @ rootts();
 }



1 An introduction to coordination 30

 Example

 Insert a new msg into PostOffice
 
 #include <paradise.h>
 main()
 { TSHANDLE myts;
 lookup_handle(“PostOffice”,”Sender”,&myts);
 open @ myts();
 out @ myts(“Employee 1”,”Hello!”);
 close @ myts();
 }
 
 Broker
 
 #include <paradise.h>
 main()
 { TSHANDLE myts;
 char addressee[100]; char message [256]; int stat;
 while(TRUE){
 lookup_handle(“PostOffice”,”Broker”,&myts);
 open @ myts();
 in @ myts(?addressee,?message);
 close @ myts();
 
 if ( lookup_handle(addressee,”Broker”,&myts) ==1){
 open @ myts();
 out @ myts(addressee,message);
 close @ myt s();
 }else{
 lookup_handle(“Unknown”,”Broker”,&myts)
 open @ myts();
 out @ myts(addressee,message);
 close @ myts();
 
 }



1 An introduction to coordination 31

 Paradise

 Paradise implements a simple “flat” multiple tuple space
concept: the tuple spaces are named and they cannot be
nested
 
 Tuple spaces are protected under an access control scheme
 
 Tuple spaces can be used as shared relational databases,
and transactions can be defined
 
 A Paradise client can use tuple spaces under control of
different TS servers
 
 There are several ways that programs may share data using
Paradise
 
• one program may visualize or analyze data generated by

other programs
• a program may compare and cross-analyze data

generated by other programs
• a program may use the data from another program to

perform its own computations or simulations



1 An introduction to coordination 32

 Coordination

 Coordination is a key concept for studying the activities of
complex dynamic systems
 
⇒ Coordination is managing dependencies between

activities [Malone&Crowston 94]. All instances of
coordination include agents performing activities that are
interdependent

 
⇒ Coordination is the process of building programs by

gluing together active pieces; a coordination model is
the glue that binds separate activities into an ensemble”
[Carriero&Gelernter 92]

 
 A coordination model is the formal basis (semantics) for a
coordination language; usually a coordination language has
to be combined with a conventional programming language
to obtain a fully-fledged programming language
 
A number of co-ordination languages have been defined and
studied in the last ten years; however the field is far from
being exhausted, especially because the concept of "co-
ordinable entity", or agent, has still to be fully understood



1 An introduction to coordination 33

 Conclusions

 What is a coordination model?
 
 Historically, Linda was introduced as a new model for
parallel programming, more flexible and high level wrt its
competitors (“Linda Is Not aDA”)
 
 It proved that it is possible to “think in a coordinated way”
abstracting from low level mechanisms for concurrent,
parallel, or distributed programming
 
 It showed that a careful design can avoid to pay a
performance price to use a high-level coordination model
 
 It opened the way for a new reasearch area:
 Coordination Languages and Models
 
 A coordination model is an abstract (semantic) framework
useful to study and understand problems in designing
concurrent and distributed programs
 
 “A coordination model is the glue that binds separate
activities into an ensemble”' [CarGel92]
 
 In other words, a coordination model provides a
minimalistic framework in which the interaction of
individual agents can be expressed.
 
 This covers the issues of dynamic agent creation and
destruction, control of communication flows among agents,
control of spatial distribution and mobility of agents, as well
as synchronization and distribution of actions over time


