
ACM SIGSOFT Software Engineering Notes vol 20 no 3 July 1995 Page 49

DSSA
(Domain-Specific Software Architecture)

Pedagogical Example
Will Tracz

Loral Federal Systems - Owego
tracz@lfs.loral.com

ADAGE-LOR-94-13A

3 April 1995

A b s t r a c t

A Domain-Specific Software Architecture (DSSA) t
has been defined as:

• "an assemblage of software components, special-
ized for a particular type of task (domain),
generalized for effective use across that domain,
composed in a standardized structure (topol-
ogy) effective for building successful applica-
tions" [Hay94] or, alternately

• "a context for patterns of problem elements,
solution elements, and situations that define
mappings between them [Hid90].

The following small example 2 illustrates these defini-
tions as well as provides the reader with some insight
into the types of processes and tools needed to support
the creation and use of a DSSA.

1 I n t r o d u c t i o n

This paper describes an exemplary DSSA for a small domain
(i.e., theater ticket sales). The material is presented in the
logical order of its creation in the DSSA process [TC92]. Figure
1 depicts the DSSA artifacts in relationship with the individuals
who use or create them.

Key "insights" appear at appropriate points
throughout the text and are distinguished in this
manner.

The first section describes the d o m a i n m o d e l 3 that was gen-
erated based on scenar ios or "operational flows" that reflect

tTlfis effort is sponsored by the US Department of Defense Advanced
Research Projects Agency in cooperation with the US Air Force Wright
Laboratory Avioxfics Directorate under contract F33615-91-C-1788.

2Tiffs paper is a condensed version of the orginal technical report -
ADAGE-LOR-94-13A.

3For tlfis example, all diagrams use Object Modeling Technique (OMT)
symbols [RBP + 91] in combination with Feature-Oriented DomMn Analy-
sis (FODA) conventions [KCH + 90].

the behavior of applications in the domain being analyzed -
ticket sales. The domain model consists of:

1. scenarios,

2. domain dictionary,

3. context (block) diagram,

4. entity/relationship diagrams,

5. data flow models,

6. state transition models, and

7. object model.

The second section focuses on the r e f e r e n c e r e q u i r e m e n t s .
Besides specifying the functional requirements identified in the
domain model, the reference requirements also contain:

1. non-functional requirements,

2. design requirements, and

3. implementation requirements.

The third section describes the resulting r e f e r e n c e a rch i t ec -
t u r e consisting of:

1. reference architecture model,

2. configuration decision tree,

3. architecture schema or design record,

4. reference architecture dependency diagram (topology),

5. component interface descriptions,

6. constraints, and

7. rationale.

The final section provides an analysis of differences between
"real world" problems and this "toy" example.

For additional information on DSSA processes, the reader can
refer to [TC92, CT92].

ACM SIGSOFT Software Engineering Notes vol 20 no 3

Domain Model

Analyze/Validate

Reference
D o m a / n R e q u i r e m e n t s

Systems

Design

Software

July 1995 Page 50

Reference A r c h i t e c t u r e

Figure 1: DSSA Artifacts

Key

Uses

. L inks

One of the insights to be gained from this example
is the separation of "problem space" from "solu-
tion space" or "design space."

The domain model generally tries to characterize
fully the former, while the reference architecture
addresses a portion (for reasons of practicality) of
the latter.

unambiguous 4 understanding of various aspects of the domain.

A domain analyst is like a systems analyst except
instead of analyzing just one system to be devel-
oped, the domain analyst focuses on families of
systems or a product line.

2 .1 C u s t o m e r s ' N e e d s S t a t e m e n t

2 D o m a i n M o d e l

Every DSSA starts with an analysis of the application domain.
This domain analysis process often involves several domain "ex-
perts" who are intimately familiar with legacy systems of this
kind or other aspects of the domain of interest. It also may
involve customer inputs as well as inputs from others familiar
with various aspects of the application.

The purpose of a domain model is to provide to individu-
als who will develop or maintain applications in a domain an

An informal needs s ta tement is a good place to
learn to "talk the talk" of the customers. There-
fore it can be valuable as a basis for the domain
dictionary.

Often a customer's system requirements are first expressed in-
formally in terms of what "needs to be done." Such an opera-

4One can not overly stress the impor tance of using consistent,
unambiguous terminology throughout any sys tem development process.
Tha t is why the domain dictionary plays a central role in the domain
modeling process.

ACM SIGSOFT

tional needs statement for the ticket sales application domain
could be stated as follows.

"I am in charge of the finances for a play that is being
performed by our communi ty theatrical group. This
is a one time shot, but I think it would be nice to
have a computer program to help the person taking
phone and mail orders for tickets. Depending on how
it works, I may want to use it for the the rest of the
performances by our theatrical group.

The theater we are using has reserved seats (i.e., row
number, seat number). We are charging $10 for or-
chestra seats and $7 for seats in the balcony.

We would like the program to tell us such things as:
how many tickets are sold, how many are left, and
how much money has been taken in. To help the
ticket agent, we also would like a display of the seat-
ing arrangement that shows which seats are sold and
which are available."

Software Engineering Notes vol 20 no 3 July 1995 Page 51

2.2 .2 T i c k e t R e t u r n S c e n a r i o

1. R e t u r n : The customer gives the agent tickets that are no
longer needed.

2. R e f u n d : The agent gives the customer money back.

3. U p d a t e : The agent records the transaction.

2.2 .3 T i c k e t E x c h a n g e S c e n a r i o

1. Ask: The customer asks the agent what seats are avail-
able.

2. Look: The agent enters the appropriate command into
his/her terminal and relates the results to the customer
(cost, section, row number, and seat number).

3. Dec ide : The customer decides what seats are desired, if
any, and tells the agent.

While there are clearly several clues on the requirements for the
system, a more general model needs to be constructed to factor
in all the implications of the domain and to create more general
requirements.

4. E x c h a n g e : The customer gives the agent the old tickets,
then the agent gives the customer the new tickets.

Depending on the price of the new tickets, the agent either
collects additional money from the customer or issues a
refund.

One important difference between DSSA require-
ments analysis and traditional systems require-
ments analysis is the emphasis on the separation
of f u n c t i o n a l r e q u i r e m e n t s from des i gn a n d
i m p l e m e n t a t i o n r e q u i r e m e n t s .

In the customer's mind, these are all "require-
ments." but from the DSSA perspective, the func-
tional requirements define the (problem) domain,
while the design and implementation requirements
constrain the design/architecture.

5. U p d a t e : The agent records the transaction.

2.2.4 T i c k e t Sa les A n a l y s i s S c e n a r i o

1. S t o p Sales: The sales manager enters the command to
stop the sale of tickets for a particular performance.

2. Tal ly: The ticket sales program generates a report listing
total sales.

2.2.5 T h e a t e r C o n f i g u r a t i o n S c e n a r i o

2 . 2 S c e n a r i o s
1. P e r f o r m a n c e Log i s t i c s : The sales manager enters in the

name, time, location, and date of the performance.

The following scenarios consist of a list of numbered, labeled
scenario steps or events followed by a brief description.

2. S e a t i n g A r r a n g e m e n t : The sales manager decides if the
performance is "Reserved Seating" or "Open Seating."

2.2.1 T icke t P u r c h a s e S c e n a r i o

1. Ask: The customer asks the agent what seats are avail-
able.

2. Look: The agent enters the appropriate command into
his/her terminal and relates the results to the customer
(cost, section, row number, and seat number).

3. Dec ide : The customer decides what seats are desired, if
any, and tells thc agent.

4. Buy : The customer pays the agent for the tickets.
agent gives the tickets to the customer.

5. U p d a t e : Tile agent records the transaction.

The

.

4.

T h e a t e r Log i s t i c s : If this performance is reserved seat-
ing, then the sales manager enters the number and kind
of sections in the theater, what rows are in what sections,
and what seats are in what rows.

If this performance is open seating, then the sales manager
enters the total number of tickets to be sold.

P r i c ing : The sales manager enters in the price of each
ticket, determined by section and seating style.

Scenarios are not only a good way of eliciting func-
tional requirements, da ta flow, and control flow
information from a customer but they also allow
the analyst to get an idea of what kind of "look
and feel" the system should have.

ACM SIGSOFT

2.3 Domain Dictionary
Software Engineering Notes vol 20 no 3 July 1995 Page 52

Seating Style: Either open seating or reserved seating.

The following "initial" version of the domain dictionary consists
of commonly used words or phrases found in the scenarios and
customer needs document (statement of work).

At this point in the domain analysis process the following words
have been used:

Agent:

Avai l ab le :

Balcony:

Configuration:

Cost:

The person who interacts with the applica-
tion, answers customer questions, and han-
dles tickets and money.

The status of a seat. If a seat is avail-
able, then a ticket can be issued for it. See
"Sold."

The farthest away and usually the least ex-
pensive seats in a theater.

Information describing the performance and
seating style for which tickets are sold. "See
Performance" and "Seating Style."

See "Price."

Customer:

Date:

Location:

O p e n Seating:

O r c h e s t r a :

P e r f o r m a n c e :

P r i c e :

The person who interacts with the agent
to inquire about, purchase, return, or ex-
change tickets.

The date of the performance.

The physical location of the performance.

A seating style where there are no reserved
seats (a ticket is good for any seat in the
theater).

The closest and generally the most expen-
sive seats in a theater.

The date, time, location, and name of a the-
atrical production.

The cost of a ticket.

R e s e r v e d S e a t i n g : A seating style where a ticket allows the
customer to sit in one particular seat de-
noted by section, row, and seat number.

R o w : The row is a sequence of numbered seats.

Sales M a n a g e r : The person who configures a performance,
closes sales, and issues status report re-
quests.

Sales R e p o r t : A description of how many tickets have been
sold, how many are left, and how much
money has been collected.

Seat: What a ticket entitles a customer to sit in.
A seat is located in a row, in a section of a
theater.

Section: A section is a sequence of named rows (of
seats).

Seating Arrangement: A display showing what seats are
sold and what seats are available.

Sold:

Theater:

Ticket:

T o t a l Sales:

The status of a seat indicating tha t a ticket
has been given to a customer for that seat.
See "Available."

The place full of named sections, rows, and
seats where performances are held.

A ticket is what the customer buys, sells,
and uses to get in the door of a performance.

How much money was collected.

As additional domain analysis artifacts are gener-
ated (e.g., in da ta flow and state transition mod-
els), the domain dictionary will evolve. In particu-
lar, the events, objects, instances, actors, and da ta
stores labels used in various diagrams and models
should be consistent with entries in the domain
dictionary.

Finally, not everyone will always agree on the
"right word" or the "right definition." The Do-
main Dictionary should store all such information
for possible resolution at a later time.

2.4 Context (Block) Diagram

Figure 2 depicts the high-level da ta flow between the major
components in the system.

Everyone has one of these, what they call it is not
important . Wha t is impor tan t is that it is n o t the
software architecture.

What is important is that it shows what is in the
domain and what is outside the domain.

2.5 Entity/Relationship Diagrams

The following figures (3, 4, 5, and 6) depict a portion of the
entity relationship diagrams for this problem domain. There
are basically two types of relationships of interest:

1. A g g r e g a t i o n : "a-part-of" relationships (denoted by a di-
amond symbol in figures 4 and 6, and

2. G e n e r a l i z a t i o n : "is a" relationships (denoted by a trian-
gle in figures 3, and 5).

Note that by convention, little circles 5 (i.e., o) denote optional
or alternative entities. For example, figure 5 shows that the
sections (in a theater) can be any combination of orchestra,
mezzanine, or balcony (or none).

S M o r e p r e c i s e l y , t h e o i n d i c a t e s z e r o o r o n e o c c u r r e n c e s , w l d l e t h e •
i n d i c a t e s z e r o o r m a n y o c c u r r e n c e s .

4

ACM SIGSOFT

I
1

I

Software Engineering Notes vol 20 no 3

Customer

Queries,
Cash &
Tickets

Agent

Tickets,
Cash &
Seat Info

,r

Queries, Sales

Returns

Tickets &
Seating Info

L Sales Manager

Configuration
Data &
Status Request

i I Ticket Sales
System

Seating Sales
Info Info

Figure 2: Context or Block Diagram

I Person I

Lustomer] I A clent
I

Isa,es Manager I

1
Status

Figure 3: Person Types Taxonomy

3uly 1995 Page 53

I Open

I Theater ~ " " ~ Section p '1 Row [C, 1+ I Seat

Figure 4: Theater Aggregation Hierarchy

Seat I

A Style

l~eser~e~ i Iorc.estral

I Section

/ \

I"ezza°'nel I ~a,~on~
Figure 5: Seating Styles and Section Taxonomy

I
Date

I Penance I I

Time
I [

11 ~a~e I i ~oca,,o0 I[Pr,ce I

I Ticket

Seat

I

I

Figure 6: Performance and Ticket Aggregation

ACM SIGSOFT

"Generalization" relationships, which show alternatives or op-
tions, factor heavily into architecture design.

Iq
Software Engineering Notes vol 20 no 3 July 1995 Page 54

2.9 Generalizing the Domain Model

One will quickly observe that the domain model is
starting to become "generalized," based on these
"is a" and "a-part-of" relationships.

So far in this example the system configurability capability and
optional and alternative capabilities have introduced general-
izations to the initial customer "needs" statement. With min-
imal efforts, a domain analyst probably could factor in addi-
tional optional capabilities dealing with such things as:

2.6 Data Flow Model

Figures 7 and 8 represent amalgamated data flow diagrams in-
volving the customer/agent and sales manager. Note, because
this is a small example, the flow of data in figure 7 between the
customer and ticket agent has been combined.

• adding a matinee performance with change in ticket prices,

• generating additional reports,

• having multiple agents handle ticket sales,

• supporting mail order sales or season subscriptions, or

• choosing from pre-configured seating arrangements.

2.7 State Transition Model

Figure 9 describes the events and states that take place in this
domain. One leaves the initial state when the system is config-
ured. One enters the final state when sales are dosed.

About this point in time, the domain analyst
will recognize the inadequacies of the information
found in the initial scenarios and domain dictio-
nary and go back to update them accordingly.

2.8 Object Model

The object model is the first phase of component
interface design. As such, it provides valuable
insights into the resulting reference architecture.
The domain analyst/architect should not place too
much detail (over specify) on the attributes and
operations exported by each object because they
may unduly constrain the reference architecture.

Using an object-oriented approach to module decomposition
and specification, one can easily identify the following objects
(among others):

1. Seat,
2. Row (of seats),
3. Section (of rows), and
4. Theater (of sections).

The operations and attributes associated with these objects are
found in the table i °.

2.8.1 O b j e c t M o d e l Ana ly s i s

For all intents and purposes, a "seat" and a "ticket" are syn-
onymous. One could argue that "ticket," " agent," "balcony,"
"orchestra," "money," and "seating arrangement" are also ob-
jects, but those have been deferred as implementation details.
Similarly, "agent" is an imF!;_cit object in that the application
system will have an interactive interface.

6The information in tlds table could have been represented as OMT
Object Model Diagrams.

In addition, the experienced domain analyst might recognize
that the nature of the problem domain is analogous to other
problem domains (see Table 2) and either structure the archi-
tecture to leverage existing systems of this sort or expand the
domain of apphcability of the analysis to include these new
domains in order to exploit a larger customer base.

3 R e f e r e n c e R e q u i r e m e n t s

The domain architect uses the reference requirements to drive
the design of the reference architecture. The domain model
defines the behavior of appheations in the system through sce-
narios, data flow diagrams, and state transition diagrams. The
next step in the DSSA process it to identify the portion of the
solution space that the domain model (problem space) will map
into (see figure 10).

Functional requirements are defining characteris-
tics of the problem space. Non-functional, design,
and implementation requirements are limiting
characteristics (or constraints) in the solution
space.

One can gain further insight into this dichotomy
by examining the two kinds of requirements ob-
served by Ruben Prieto-Diaz in Establish Global
Requirements stage (A5113 - Stage 1.1.3) of the
STARS Domain Analysis Activities [PD91]:

1. S t ab l e R e q u i r e m e n t s - - ones that do not
change from application to apphcation, and

2. Va r i ab l e R e q u i r e m e n t s - - ones do/might
change.

Following the traditional separation of "what"
from "how," one could conclude that the

• stable requirements are the " w h a t " require-
ments and

• variable requirements are the " h o w " require-
ments.

The following are examples of "how" and "what" requirements:

ACM SIGSOFT Software Engineering Notes vol 20 no 3 July 1995 Page 55

Sea t R e q n e s t

Aqent t-
S e a t L i s t

Ticket

Ticket &
Money

Seating Sales
Info Info

~ Sea~ &
I 9eat. & bloney Ticket

Ticket

Figure 7: Data Flow Diagrams involving the Customer and Agent

' ! J Customer
_. Agent

' I
j Customer
- , Aqent

Objec t A t t r i b u t e s
Seat Name

Status (e.g., sold, available)

Row Name

Sect ion

T h e a t e r

Name (e.g., orchestra, balcony)

N a m e
Total Tickets Sold
Total Tickets Unsold
Total Sales

Opera t ions
Sell a Seat
Return a Seat
Initialize a Seat
Number of Available Seats in Row
List Available Seats in Row
List Seats in Row
Initialize a Row
List Rows in Section
List Available Rows in Section
Initialize a Section
List Sections
Display Seating Arrangement
Initialize a Theater

Table 1: List of Objects, Operations, and Attributes

T h e a t e r D o m a i n

Seat

Airl ine Doma in

Seat

L ib ra ry Doma in

Book
Row Row Shelf
Section Section
Performance
Seating Arrangement
Tickets Sold
Ticket Remaining
Price

Ticket Category
Flight Number
Seating Arrangement
Tickets Sold
Tickets Remaining
Price
Flight Departure
Flight Date
Ticket Agent

Performance time
Performance date
Ticket Agent

Title
Floorplan
Books on loan
Books available
Penalty for lateness
n/a
Due date
Librarian

I n v e n t o r y
Gene ra l i za t i on
Item
Room/Shelf/Bin
Aisle or Building
Description
Warehouse
Items sold
current inventory
Cost/Item
n/a
Expiration date?
Clerk

Table 2: Comparison of Theater, Airline, Library, and Inventory Domains

ACM SIGSOFT

Sales I Manager

I

Sales L
Manager ,_

Software Engineering Notes vol 20 no 3

Configuration

Seating Sales
Info Info

Report Reque t ~

Report

Close Request

Figure 8: Data Flow Diagrams involving the Sales Manager

C:onfigure /~
Performarlce e ~ P

E x , r h a n ~ st Ti _-:-~t ~
"i"k"ttP'~TSeats ~ ff Sold h

R o [. l l Yr l ,'~
' [' i < '] ;~ l

['FJ Dr Report Print Report

Figure 9: State Transition Diagram

July 1995 Page 56

Sales I Manager

• "what it does" (functional/behavioral requirement)
• "how often" (performance requirement),
• "how fast" (performance requirement),
• "how big,"
• " h o w accurate,"
• "how implemented" (physical requirements as well as lan-

guage),
• "how delivered,"
• "how it looks" (user interface), and
• "how it works" (operational requirements (protocols to fol-

low) or algorithmic alternatives).

The reference requirements listed in the following sub-sections
have the following naming convention:

1. each requirement has a unique name or label,

2. if the requirement is optional, then the suffix "-OPT" is
added to the requirement's name/label, and

3. if the requirement is an alternative, then the suffix "-
ALTn" is added to the requirement's name/label (where
"n" is the nth alternative).

Finally, as is to be expected, when additional functional re-
quirements are introduced, they result in a ripple effect through
previous documentation.

3.1 Funct iona l R e q u i r e m e n t s

3.1.1 Sales M a n a g e r

Conf igure : The system shall allow the sales manager to
enter performance information (e.g., time,
date, location) of the show as well as the
seating configuration of the theater (sec-
tions), and cost of the tickets.

Open S e a t i n g - A L T l : The system shall allow the sales man-
ager to specify an open seating format for
ticket sales.

R e s e r v e d S e a t i n g - A l t 2 : The system shall allow the sales
manager to specify a reserved seating for-
mat for ticket sales.

Close Sales: The system shall allow the sales manager to
halt the sale of tickets.

R e q u e s t R e p o r t : The system shall allow the sales manager
to request reports of current ticket sales in-
cluding: number of tickets sold, number of
tickets remaining, and total sales.

R e c o n f i g u r e - O P T : The system shall allow the sales man-
ager to adjust the configuration parameters

Software Engineering Notes vol 20 no 3 ACM SIGSOFT

Figure 10: Mapping between Problem Space and Solution Space

July 1995 Page 57

once the initial information has been en-
tered.

3.1 .2 A g e n t

Sell:

Q u e r y :

T r a n s a c t i o n s :

Will C a l l - O P T :

The system shall allow the agent to give the
customer a ticket for a seat to a performance
in exchange for payment of the cost of the
ticket.

The system shall display a "List of Available
Seats" upon the request of the agent.

The system shall allow the agent to record
the sale, return, and exchange of tickets.

The system shall allow the agent mark tick-
ets as "reserved" to be picked up by the cus-
tomer at the "Will Call" window.

3 . 2 N o n - F u n c t i o n a l R e q u i r e m e n t s

The following exemplify non-functional requirements for sys-
tems like this:

S e c u r i t y - O P T : The sales manager shall be the only person
to configure the system.

Faul t To le r ance : The system shall, in event of a power fail-
ure, not loose any ticket sale data.

M u l t i - u s e r A c c e s s - O P T : The system shall support the sale
of tickets by several agents at different loca-
tions.

Sa fe ty : The system shall allow only one ticket to be
sold for each seat of a performance.

R e s p o n s e : The system shall have a response time of less
than one second for each "List of Available
Seats" query.

3 . 3 D e s i g n R e q u i r e m e n t s

The domain architect is faced with a multitude of decisions
regarding design tradeoffs. The most significant design decision
is the issue of a r c h i t e c t u r a l s t y l e (e.g., hierarchical/layered,
transaction based, data flow, interpreter, blackboard system,
etc.). The style of architecture, besides affecting performance
and cost of development, will affect the interface style of the
corresponding components.

Another design decision is related to u se r i n t e r f a c e s ty le
(e.g., command line, puUdown menus, function keys, hot keys,
etc.). There is a dependency between the interface style and
the type of hardware and operating system that is selected.

Use r I n t e r f a c e - A L T l : The system shall provide a command
line user interface.

Use r I n t e r f a c e - A L T 2 : The system shah provide a menu
driven user interface.

U se r I n t e r f a c e - A L T 3 : The system shall provide a pulldown
menu driven user interface.

Obviously, the reference architecture could be de-]
signed to support numerous styles of user inter-[
faces, operating systems, etc., through the use of[
virtual machine interfaces and the creation of a[
family of plug-compatible components.]

3 . 4 I m p l e m e n t a t i o n R e q u i r e m e n t s

Implementation requirements are similar to design require-
ments in that the analyst or domain architect needs to de-
termine the subset of several implementation options that will
drive the design of the reference architecture and implementa-
tion of its respective components.

ACM SIGSOFT

Common implementation decisions that affect a reference ar-
chitecture include:

1. programming language: Ada, C++, Smalltalk, Visual
Basic, LISP, etc,

2. operating systems: Unix, DOS, VMS, OS2, NT, etc.

3. data base and/or data structures: Oracle, DB2,
CORBA, etc.

4. hardware platform: PC, workstations, X-Terminals,
dumb heads, etc.

5. n e t w o r k i n g c a p a b i l i t i e s : token ring, ATM, ethernet,
etc.

The implementation requirements for the theater example in-
clude:

Language: The system shall be implemented in Ada.

O p e r a t i n g S y s t e m A L T I : The system shall run on a Unix
platform.

O p e r a t i n g S y s t e m A L T 2 : The system shall run on a DOS
platform.

Size: The system shall handle ticket sales of up to
2,000 seats per performance.

There is no s u c h t h i n g as " d o i n g it r i g h t
the first t ime."

These requirements do not represent the "best"
requirements for this ap-
plication domain but they do illustrate a point.
Requirements need to evolve based on feedback.

The domain dictionary helps in developing "good"
reference requirements by supporting the use of
consistent and unambiguous terminology in the re-
quirements. But, when requirements are refined,
new terminology must be reflected back into the
domain dictionary.

Finally, a desirable artifact of the reference re-
quirements specification process is the capture
of the rationale and interdependence between re-
quirements (see section 4.6). Having this infor-
mation will assist the application engineer under-
stand configuration tradeoffs.

4 R e f e r e n c e A r c h i t e c t u r e

A reference architecture is a parameterized design that satis-
fies a clearly distinguished subset of the functional capabilities
identified in the reference requirements within the boundaries
of certain design and implementat ion constraints, also identi-
fied in the reference requirements 7.

7This definition implies tha t not all the requirements have to be satis-
fied by any one reference archi tecture, bu t tha t several reference architec-
tures may exist in arty one domain.

Software Engineering Notes vol 20 no 3 July 1995 Page 58

A reference architecture is more general than the design for a
single system because it was engineered to be reusable, extend-
able, and eonfigurable. Furthermore, significant documenta-
tion is associated with the reference architecture to provide the
application engineer or maintenance p rogrammer with enough
information to easily generate new applications or modify ex-
isting ones that are based on the reference architecture.

The sub-sections that follow illustrate the types of artifacts as-
sociated with a reference architecture along with the respective
doeumentation (see figure 1).

4 . 1 R e f e r e n c e A r c h i t e c t u r e M o d e l s

All designs start out with some simple abstract ion based on an
architecture style. Figure 11 reflects the overall structure ot
the theater ticket sales system tha t is being designed using a
"layered" architectural style.

Figure 11 sheds no major insights because it is
dealing with a simple problem at a very high leve l
of abstraction.

One should note that such models (the most fa-
mous being the toaster model) are n o t reference
architectures because they do not show the da ta
that flows between components nor do they indi-
cate any interfaces that exist on each component
or sub-architecture.

Figure 11 does indicate that the User Interface can be sepa-
rated out from the Functionality. This implies that a family ot
plug-compatible and separately selectable User Interface com-
ponents could exists for subsequent integration into the desired
system.

4 . 2 C o n f i g u r a t i o n D e c i s i o n D i a g r a m

Figure 12 contains a possible decision tree for configuring a
ticket sales reference architecture. One should note that for
illustrative purposes, this example makes the following implicit
assumption:

configuration takes place at reference architecture in-
stantiation time 8.

This is in contrast with having the generated system provide
interactive configurability 9, (i.e., the sales manager uses a gen-
erated sales ticket sales program to specify the configuration
parameters of a given performance rather than configures the
reference architecture to generate a sales program for a given
performance).

Therefore in configuring the reference architecture, the appli-
cation engineer (sales manager in this case) would:

• choose the user interface style,

SThis may or may not imply tha t the per formance can be reconfigurec
(see R e c o n f i g u r e - O P T requirement in section 3.1.1.

9This Mternative is argumenta t ively more intuitive, t h o u g h may not be
desirable for safety reasons.

10

ACM SIGSOFT July 1995 Page 59 Software Engineering Notes vol 20 no 3

User Interface, I

Funct!onality [

Data Structures]

Figure 11: Simple "Layered" Reference Architecture Model

• choose the seating styles,
* specify the date, time, name, and location of the perfor-

mance, and
• provide the seating arrangement (i.e., section names, rows

per section, and seats per row) and price of each seat.

Additional lower-level choices (e.g., implementations of list and
set packages to be used for internal data-structures) also could
be seleetable, if families of plug-compatible components have
been provided by the domain architect.

The key insight to be gained from this section
is that the design decision diagram can easily be
mapped onto tile reference requirements.

Therefore, configuring a system, in affect, becomes
the process of selecting a subset of the reference re-
quirements. Furthermore, technology exists (e.g.,
constraint-based reasoning systems) to assist the
user in this configuration process preventing the
specification of incomplete or incorrect systems.
Finally, additional technology exists to generate
applications, based on the configuration data.

4.3 Architecture Schema/Design Record
The purpose of an architecture schema or design record is to
serve as a vehicle for software understanding by functioning
as a collection point for knowledge about the components that
make up a DSSA. In particular, the design record organizes

• d o m a i n - s p e c i f i c knowledge about components or design al-
ternatives and

• i m p l e m e n t a t i o n - s p e c i f i c knowledge about alternate imple-
mentations,

The primary goal of a design record is to adequately describe
the components in a reference architecture such that the ap-
plication engineer can make design decisions and component
selections without looking at implementations. The secondary
goal of a design record is to provide information that the tools
in the supporting environment can use.

Two design record/architecture schemas are being used on
the ARPA DSSA program: Loral Federal Systems - Owego

[TSC94] and Teknowledge's [TPD+94]. The Tcknowledge ar-
chitecture schema for representing reference "architectures, de-
signs, and implementations based principally on components
and connections" compared to the Loral design record exam-
ple presented below, provides for finer grained specification of
architecture component information.

4.3.1 Lora l Des ign Record E x a m p l e

The design record data elements used by Loral Federal Systems
- Owego's DSSA ADAGE (Avionic Domain Application Gen-
eration Environment) [CS93], as proposed by Scherlis [Schg0]
and arranged according to phases in the software life cycle,
include:

1. n a m e / t y p e ,
2. description,
3. reference requirements satisfied,
4. design s tructure (data flow and control flow diagrams),

5. design rationale,
6. interface and archi tecture specif icat ions and de-

pendencies ,
7. P D L (Program Des ign Language) text ,
8. implementat ion ,
9. configuration and vers ion data, and

10. test cases.

In addition to the "primary" lifecycle elements listed
above, the following "secondary" elements aid in the (re-
)use of the components by capturing additional informa-
tion:

11. metric data,
12. access r igh ts ,

13. search points ,
14. catalog information,
15. l i b r a r y and D S S A l inks, and

16. hypertext paths.

For the avionics domain, the ADAGE design records con-
tain the basic data items listed above (with some domain-
specific clarifications) in addition to some DSSA-ADAGE
specific items including:

17. mode l s , and

18. c o n s t r a i n t s .

11

ACM SIGSOFT Software Engineering Notes vol 20 no 3 July 1995 Page 60

Ticket I I Seating User Interface

 .,ce I I .ea, I I e.or ance

Orchestra I IMezzanine I

Resewed

I I

v

Figure 12: Design Alternative Diagram

Menus

4.4 R e f e r e n c e A r c h i t e c t u r e D e p e n d e n c y Dia -
g r a m

The reference architecture dependency diagram reveals com-
ponent connections at a level of granularity reflecting the ar-
chitectural style chosen by the system architect. One form of
the dependency diagram is a call tree. Another form is an
inheritance hierarchy.

Figure 14 shows both the inheritance (horizontal structure) and
control flow (vertical structure) dependencies of one reference
architecture for the theater application domain.

4 . 5 C o m p o n e n t I n t e r f a c e D e s c r i p t i o n s

The following example uses the architecture description lan-
guage LILEANNA [Tra93b, Tra93a] to describe the interfaces
to components in the reference architecture. LILEANNA, by
design, is a superset of Ada, which facilitates the development
and integration of Ada packages into the resulting application.
Appendix A contains an example illustrating how LILEANNA
can be used to generate a ticket sales program, based on the
reference architecture and a set of Ada packages.

4.5.1 LILEANNA Package for Theater

The generic LILEANNA Theater package shown is figure 15
complies with the dependency diagram (figure 14) described in
the previous section except that instead of inheritance, gener-
icity is used to "gain visibility" into the Section component
(horizontal structure). The n e e d s c lause shows the vertical
dependency on the Set_Theory component (see figure 16), which
itself is parameterized by some component Triv.

4.6 C o n s t r a i n t s a n d R a t i o n a l e

The final attribute of a reference architecture is the composi-
tion and configuration constraints and rationale to be used by

g e n e r i c p a c k a g e T h e a t e r [S : : S e c t i o n]
n e e d s (S e t P : : S e t _ T h e o r y [I t e m : : T r i v]) i s

t y p e T h e a t e r ; - - a s e t o f s e c t i o n s o f r o . s o f s e a t s

t y p e C u r r e n c y ;
No_More_Sections : exception;
Duplicate_Section : exception;

function Total_Tickets_Sold (T : Theater) return Natura

function Total_Tickets_Unsold (T : Theater) return Natn
function Total_Sales (T : Theater) return Currency;

function T h e a t e r _ N a m e (T: Theater) return String;

function Is_Last_Section in Theater (T : Theater;

S in Section;) return Boolean;

-- raise No_More Sections is null section:?

procedure Get_First_Section (T: Theater; S: out Section

-- raise No_More_Sections is null Section?

p r o c e d u r e G e t _ N e x t _ S e c t i o n (T: T h e a t e r ;
C u r r e n t _ S e c t i o n : i n S e c t i o n
N e x t S e c t i o n : o u t S e c t i o n

-- raise No_More_Section if Current_Section is Last

p r o c e d u r e L i s t _ S e c t i o n s (T: T h e a t e r) ;

procedure Display_Seating_Arrangement (T: T h e a t e r) ;

procedure Initialize a Theater (T: in out Theater);

-- create an object of type Theater

-- create a set of sections k init them .ith unique name

end T h e a t e r ;

Figure 14: Theater LILEANNA Generic Package

the application engineer in the application generation process.
These constraints and rationale may take the form of tradi-
tional expert system rules or they may be informal text that is

12

ACM SIGSOFT

User
Interface

,l

Set

Software Engineering Notes vol 20 no 3

I fiSecti°nl q Row , q Seat

Key I,,s, I I,,s, I
Figure 13: Reference Architecture Dependency Diagram

Inherits

Calls

July 1995 Page 61

generic t h e o r y S e t _ T h e o r y [I t e m : : T r i v] i s

type S e t ;
exception Item_Not_Found;

The interested reader should consult D S S A Too l Require-
ments for Key Process Functions [HRT94] for additional
insight into the types of tools that assist in the DSSA process.

Furthermore, this example did not illustrate:

f u n c t i o n I s _ i n (E: E l e m e n t : S: S e t) r e t u r n boolean;

f u n c t i o n Add (E: E l e m e n t ; S: S e t) r e t u r n S e t ;

f u n c t i o n Remove (E: E l e m e n t ; S: S e t) r e t u r n S e t ;
- - [n o t I s I n (E , S) => r a i s e I t e m _ N o t _ F o u n d ;

function Size_of (S: Set) return integer;

1. the use of OO design patterns to represent sub-
architectures [GHJV94],

2. "flavors" of architecture components [Bat94] as a means
of "wrapping" components to facilitate different commu-
nication protocols (connections),

3. alternative architecture styles [GS93, SG95], and

- - s e e " P r o g r a m m i n g W i t h S p e c i f i c a t i o n s " by David Luckham, 4. alternative architecture description languages rrA~r+o~l.
- - pages 306-310 for a formal specification in Anna. L.L~ . r x . L * . J ,~, J

e n d Section; Each of these topics provides additional insights to the DSSA
process.

Figure 15: Set Generic (Requirement) Theory

included as part of the design record or architecture schema.

Constraints indicate ranges of parameter values, relationships
between parameter values or components (exclusion, depen-
dency, etc.). Rationale may take the form of "rules of thumb"
or "lessons learned" from using the reference architecture to
generate various applications.

5 Rea l Wor ld Di f fe rences

This was a "toy example." Had this been a real example, you
would have seen:

1. more vocabulary,

2. more diagrams, alternatives, requirements, etc.,

3. more time spent iterating over the domain model and ref-
erence architecture,

4. more disagreement between "experts," and

5. more complexity, which begs for tool support.

Closing Remarks

The DSSA process needs to be adapted to the cul-
ture of the domain it is being applied to. The do-
main model, reference requirements, and reference
architecture are "best" represented using the tools
and methodology that the application developers
in that domain traditionally use.

Finally, because a DSSA is generalized across a
product-line or family of applications, it costs ap-
proximately three times more to create [Wen94].
The expected savings can be appreciated in reduce
application development costs (approximately a
quarter) and reduced maintenance costs (approx-
imately a third) based on experience in software
reuse [Jon86, Tra87, Wen94].

For additional information on DSSA lessons
learned, the reader should consult A r c h i t e c t u r e -
Based A c q u i s i t i o n a n d D e v e l o p m e n t o f
So f tware G u i d e l i n e s a n d R e c o m m e n d a t i o n s
f r o m th e A R P A D o m a i n - S p e c i f i c S o f t w a r e
A r c h i t e c t u r e (D S S A) P r o g r a m [Hay94].

13

ACM SIGSOFT

References

[Bat04]

[cs93]

[CT92]

[GHJV94]

[GS93]

[Hay94]

[Hid90]

[HRT94]

[Jon86]

[KCH+90]

[LAK+95]

[PD91]

[RBP+91]

[S¢h90]

Software Engineering Notes vol 20 no 3

[SG95] M. Shaw and D. Garlan.

D. Batory. A Software Generator for Flavored Type
Expressions. Technical Report ADAGE-UT-94-02,
University of Texas at Austin, February 1994.

L. Coglianese and R. Szymanski. DSSA-ADAGE:
An Environment for Architecture-based Avionics
Development. In Proceedings of A GARD'93, May
1993.

L. Coglianese and W. Tracz. Architecture-Based
Development Process Guidelines for Avionics Soft-
ware. Technical Report ADAGE-IBM-92-02, IBM
Federal Systems Company, December 1992.

E. Gamma, R. Helm, R. Johnson, and J Vlissides.
Design Patterns - Microarchitectures for Reusable
Object- Oriented Software. Addison-Wesley, 1994.

D. Gatlan and M. Shaw. An Introduction to Soft-
ware Architectures. Advances in Software Engineer-
ing and Knowledge Engineering, 1:41-49, 1993.

Architecture-Based Acquisition and Development
of Software Guidelines and Recommendations from
the ARPA Domain-Specific Software Architecture
(DSSA) Program. Technical report, Teknowledge
Federal Systems, October 1994.

Proceedings of the Workshop on Domain-Specific
Software Architectures. Technical
Report CMU/SEI-88-TR-30, Software Engineering
Institute, Hidden Valley, PA, July 9-12 1990.

R. Hayes-Roth and W. Tracz. DSSA Tool Require-
ments for Key Process Functions. Technical Re-
port ADAGE-IBM-93-13B, Loral Federal Systems
- Owego, October 1994. Version 3.0.

T.C. Jones. Programming Productivity. McGraw-
Hill Book Company, New York, 1986.

K.C. Kang, S.G. Cohen, J.A. IIess, W.E. Novak,
and A.S. Peterson. Feature-Oriented Domain Anal-
ysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Insti-
tute, November 1990.

D.C. Luckham, L.M. Augustin, J.K. Kenney,
J. Vera, D. Bryan, and W. Mann. Specification
and Analysis of System Architecture Using Rapide.
IEEE Transactions on Software Engineering, TBD
1995.

R. Prieto-D~az. Reuse Library Process Model. Tech-
nical Report AD-B157091, IBM CDRL 03041-002,
STARS, July 1991.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object-Oriented Modeling and
Design. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1991.

W.L. Scherlis. DARPA Software Technology Plan.
In Proceedings of ISTO Software Technology Com-
munity Meeting, June 27-29 1990.

[TC92]

[TPD+94]

[T a87]

['l~a93a]

[Tra93b]

[TSC94]

[Wen94]

July 1995 Page 62

Software Architecture -
Perspectives on an Emerging Discipline. Prentice
Hall, 1995.

W. Tracz and L. Coglianese. DSSA Engineering
Process Guidelines. Technical Report ADAGE-
IBM-92-02A, IBM Federal Systems Company, De-
cember 1992.

A. Terry, G. Papanogopoulos, M. Devito, N. Cole-
man, and L. Erman. An Annotated Repository
Schema. Version 4.0. Technical report, Teknowl-
edge Federal Systems, 1994.

W. Tracz. Software Reuse: Motivators and In-
hibitors. In Proceedings of COMPCON87, February
1987.

W. Tracz. LILEANNA: A Parameterized Program-
ming Language. In Proceedings of Second Interna-
tional Workshop on Software Reuse, pages 66-78,
March 1993.

W. Tracz. Parameterized Programming in
LILEANNA. In Proceedings of A CM Symposium on
Applied Computing SAC'93, pages 77-86, February
1993.

W. Tracz, S. Shafer, and L. Coglianese. DSSA-
ADAGE Design Records. Technical Report
ADAGE-IBM-93-05A, Loral Federal Systems Com-
pany, July 1994. Version 1.1.

K. Wentzel. Software Reuse, Facts and Myths. In
Proceedings of 16th Annual International Confer-
ence on Software Engineering, pages 267-273, May
16-21 1994.

14

