
Function Point Measurement Tool for UML Design Specification

Takuya UEMURAy, Shinji KUSUMOTOy, and Katsuro INOUEy, z

y Graduate School of Engineering Science, Osaka University,
1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Tel: +81-6-6850-6571, Fax: +81-6-6850-6574
E-mail: fuemura, kusumoto, inoueg@ics.es.osaka-u.ac.jp

z Graduate School of Information Science, Nara Institute of Science and Technology

Abstract

Function point analysis(FPA) was proposed to help mea-
sure the size of a computerized business information system.
It is widely used in the actual software development. How-
ever, it has been reported that since function point counting
involves judgment on the part of the counter, some differ-
ence for the same product would be caused even in the same
organization. In this paper, we propose detailed FPA mea-
surement rules for the design specifications based on the
UML(Unified Modeling Language) and develop the func-
tion point measurement tool, whose input products are de-
sign specifications on Rational Rose. We have also applied
the tool to the actual design specification and examine the
difference between the values by the tool and one by the
specialist of FPA. The results show the applicability of our
tool.

1. Introduction

As the size and the complexity of software increase, it
becomes important to develop high-quality software cost-
effectively within a specified period. In order to attain it,
it is necessary to manage the entire software development
processes based on the effective project plan.

In order to construct the distinct project plan, it is essen-
tial to estimate various phenomena happened in the project
and take measures to meet them in advance. A subject of es-
timation about software development is size, effort invested,
development time, technology used and quality. Especially
development effort is the most important subject.

There have been proposed a lot of effort models and most
of them include software size as an important parameter. In
the models, LOC (lines of codes) is often adopted. How-
ever, using LOC as the software size has difficulties because
the definition of LOC is very vagueness and LOC depends

on the programming language.
Function point is a measure of software size that uses

logical functional terms business owners and users more
readily understand [1]. Since it measures the software re-
quirements or business models, the measured size stays con-
stant despite the programming language, design technology,
or development skills involved. Also, it is available early
in the development process, making its use opportune for
planning the design and development projects. Up to the
present, various FPA versions based on the Albrecht’s ver-
sion have been proposed. IFPUG (International Function
Point Users Group) version [2] and MarkII version [13] are
frequently used in software organizations.

However, it has been reported that since function point
counting involves judgment on the part of the counter, some
difference for the same product would be caused even in the
same organization [6]. For example, G. Low and R. Jeffery
reported that a 30-percent variance was caused within an
organization and more than 30-percent variance was caused
across organizations[8]. In order to get consistent value, it
is important to automate the function point measurement[1].
In the past, function point measurement could not be com-
pletely automated because there were no machine readable
requirements/design specifications. Recently, CASE tools
have been providing machine readable ones. Now, it is easy
to introduce the function point measurement tools for the
requirements/design specifications produced by the specific
CASE tool.

On the other hand, recently, many companies have
started to introduce object-oriented technology into their
software development environments and the object-oriented
development technologies are often used in software orga-
nizations. However, it has created new challenges for com-
panies and researchers which use software metrics as a tool
for managing the software and the process [4]. That is, it is
necessary to establish the method to calculate the software
metrics from the object-oriented software.

This paper proposes detailed FPA measurement rules for



the design specifications using the UML (Unified Model-
ing Language) and develop the function point measurement
tool. With respect to the development using the UML, sev-
eral CASE tools have been developed. Among them, Ratio-
nal Rose by Rational Software is the most prevalent one and
widely used in software development organizations. Thus,
as the input of the tool, we address the design specifications
on Rational Rose. Finally, We apply the tool to the actual
design specification and examine the difference between the
value by the system and one by the specialist of FPA. Then,
we examine the difference between them and discuss the
applicability of our tool.

Section 2 describes the overview of function point anal-
ysis, the IFPUG version and the several diagrams by the
UML. Next, Section 3 proposes detailed rules to count the
function point from the diagrams by UML. Section 4 de-
scribes a function point measurement system based on the
proposed rules and case study that evaluates the applicabil-
ity of our system. Finally, Section 5 concludes this paper.

2. Preliminaries

2.1. Function Point Analysis

Function point measures the functionality provided by
software. It can be determined from the requirements spec-
ification, design specification and program code. Unlike
LOC, since function point measures functionality, it should
be independent of the technology and language used for the
software implementation.

Allan Albrecht first proposed original function point
analysis [1]. Albrecht’s function point is computed by
counting the following software characteristics:(1)External
inputs and outputs, (2)User interactions, (3)External inter-
faces and (4)Files used by the system. Each of them is then
individually assessed for complexity and given a weighting
value which varies from 3 (simple) to 15 (complex).

Albrecht’s function point has been widely used but it has
some weakness. Thus, many kinds of function point, such
as IFPUG version[2], 3D Function Points version[5], Fea-
ture Points version[5] and MarkII version[13], have been
proposed. In this paper, we address the IFPUG version since
it provides the detail procedures and rules for function point
counting compared to other versions.

2.2. IFPUG version

IFPUG version is a modified-version of the Albrecht’s
function point. In the modification, the evaluation of the
complexity of the software was objectively established and
the rules of the counting procedures were also described
minutely and precisely.

In the IFPUG version, the counting procedure of func-
tion point consists of the following seven steps[2].

Step1 (Determine the Type of Function Point Count): Se-
lect the type of function point from the following
three ones:(1) Development project function point
count, (2)Enhancement project function point count
and (3)Application function point count.

Step2 (Identify the Counting Boundary): A boundary indi-
cates the border between the application or project be-
ing measured and the external applications or the user
domain. A boundary establishes which functions are
included in the function point count.

Step3 (Count Data Function Types): Data function types
represent the functionality provided to the user to meet
internal and external data requirements. Data function
types are classified into the following two types: Inter-
nal logical file(ILF) and External interface file(EIF).

The definition of data functions are described as fol-
lows:

Internal Logical File(ILF): (1)The group of data is
user identifiable group of data. (2)The group of
data is maintained within the application bound-
ary. (3)The group of data identified has not been
counted as an EIF for the application.

External Interface File(EIF): (1)The group of data is
user identifiable group of data. (2)The group of
data is not maintained by the application being
counted. (3)The group of data identified has not
been counted as an ILF for the application.

Here, the term “file” refers to a logically related group
of data and not to the physical implementation of those
group of data.

Then, assign each identified ILF or EIF a functional
complexity based on the number of data element types
(DETs) and record element types (RETs) associated
with the ILF or EIF using the RET/DET complexity
matrix(See Table 1). A data element type (DET) is
a unique user recognizable, nonrecursive field on the
ILF or EIF. A record element type(RET) is a user rec-
ognizable subgroup of data elements within an ILF or
EIF.

Table 1. RET/DET complexity matrix
RETnDET 1-19 20-50 51-

1 Low Low Average
2-5 Low Average High
6- Average High High



Step4 (Count Transactional Function Types):

Transactional function types represent the functional-
ity provided to the user for the processing of data by
an application. They are defined as the following three
types: External input(EI), External output(EO) and
External inquiry(EQ). The definition of transactional
functions are described as follows:

External input(EI): An external input processes data
or control information that comes from outside
the application’s boundary. The external input it-
self is an elementary process.

External output(EO): An external output is an ele-
mentary process that generates data or control in-
formation sent outside the application’s bound-
ary.

External inquiry(EQ): An external inquiry is an el-
ementary process made up of an input-output
combination that results in data retrieval. The
output side contains no derived data. Here, de-
rived data is data that requires processing other
than direct retrieval and editing of information
from internal logical files and/or external inter-
face files. No internal logical file is maintained
during processing.

Then, assign each identified EI or EO a functional
complexity based on the number of file types refer-
enced (FTRs) and data element types (DETs).A file
type referenced is ,(1) An internal logical file read or
maintained by a function type, or (2) An external in-
terface file read by a function type. Also, assign each
EQ a functional complexity based on the number of
file types referenced (FTRs) and data element types
(DETs) for each input and output component. Use the
higher of the two functional complexities for either the
input or output side of the inquiry to translate the exter-
nal inquiry to unadjusted function points. For each of
EI, EO and EQ, there is a FTR/DET complexity ma-
trix. Table 2 shows the FTR/DET complexity matrix
for EI.

Table 2. FTR/DET complexity matrix of EI
FTRnDET 1-4 4-15 16-

0-1 Low Low Average
2 Low Average High
3- Average High High

Step5 (Determine the Unadjusted Function Point Count):

As the result of Step3 and Step4, the counts for each
function type are classified according to complexity

Table 3. General System Characteristics
Article GSC

1 Data communications
2 Distributed data processing
3 Performance
4 Heavily used configuration
5 Transaction rate
6 Online data entry
7 End-user efficiency
8 Online update
9 Complex processing

10 Reusability
11 Installation ease
12 Operational ease
13 Multiple sites
14 Facilitate change

Table 4. Unadjusted Function Point Calcula-
tion Table

Complexity
Low Average High Total

ILF 2 � 7=2 2 �10=2 2 �15=2
EIF 2 � 5=2 2 � 7=2 2 �10=2
EI 2 � 3=2 2 � 4=2 2 � 6=2
EO 2 � 4=2 2 � 5=2 2 � 7=2
EQ 2 � 3=2 2 � 4=2 2 � 6=2

Unadjusted Function Point

and then weighted using the Table 4. The total of
all the function types is the unadjusted function point
count.

Step6 (Determine the Value Adjustment Factor):

The value adjustment factor (VAF) indicates the gen-
eral functionality provided to the user of the applica-
tion. VAF is comprised of 14 general system character-
istics that assess the general functionality of the appli-
cation. Each characteristic has associated descriptions
that help determine the degree of influence of the char-
acteristic. The degree of influence ranges on a scale
of 0 to 5, from no influence to strong influence. (See
Table 3.)

Finally, VAF is calculated based on the following for-
mula, VAF= 0:65 +

total
100

:

Step7 (Calculate the Final Adjusted Function Point
Count):

The final adjusted function point count is calculated
using a specific formula for development project, en-



hancement project or application based on the result of
Step1.

IFPUG version has been widely used in software organi-
zations and also will be included into the ISO standard.

2.3. Unified Modeling Language

The Unified Modeling Language (called UML) [14]
was developed to provide a common language for object-
oriented modeling. It was designed to be extensible in or-
der to satisfy a wide variety of needs and was also intended
to be independent of particular programming language and
development methods.

The concrete syntax of the UML is dominated by a
graphical notation. The UML defines a large number of dif-
ferent diagrams. They are divided into following three cat-
egories: Static structure diagrams, Behavior diagrams and
Implementation diagrams.

Static structure diagrams describe the structure of the
system and include class diagrams and object diagrams. Be-
havior diagrams describe the behavior/dynamic perspective
of the system and include use-case diagrams, interaction di-
agrams, sequence diagrams, collaboration diagrams, state
diagrams and activity diagrams. Implementation diagrams
provide the information of actual source code and includes
component diagrams and deployment diagrams.

In order to calculate the function point from the above di-
agrams, we use the sequence diagrams and class diagrams.
Because these diagrams include the information about all
functions and data manipulated in the system. In subsec-
tions 2.4 and 2.5, we briefly explain the class diagrams[10]
and sequence diagrams[10].

2.4. Class diagrams

Class diagrams describe the static structure of the model,
that is objects, classes and the relations between these en-
tities including generalization and aggregation. They also
represent the attributes and operations of the classes.

For example, Figure 1 shows the class diagrams for Per-
son, Student and Teacher that are used in the office system
in a University. In Figure 1, the class Person has two at-
tributes (Name and Address) and four operations (SetName,
SetAddress, GetName and GetAddress). Other classes, Stu-
dent and Teacher, inherit the information in the parent class
Person.

2.5. Sequence diagrams

A sequence diagram shows an interaction arranged in
time sequence. In particular, it shows the objects partici-
pating in the interaction by their “lifelines” and the mes-
sages that they exchange arranged in time sequence. It does

Figure 1. Example of the Class diagram

not show the associations among the objects. Sequence dia-
grams show the explicit sequenceof messages and are better
for real-time specifications and for complex scenarios.

The sequence diagram represents an interaction, which
is a set of messages exchanged among objects within a col-
laboration to effect a desired operation or result.

The sequence diagram has two dimensions: the vertical
dimension which represents time and the horizontal dimen-
sion which represents different objects. Normally time pro-
ceeds down the page. There is no significance to the hori-
zontal ordering of the objects. Objects can be grouped into
“swimlanes” on a diagram.

Figure 2 shows an example of a sequence diagram of the
office system in a University. In Figure 2, there are nine
messages and the set of these messages correspond to the
following processing: (1)a student hands his/her registra-
tion sheet of the lectures, that he/she wants to attend, to the
receptionist in the office of the University, (2)the reception-
ist inputs the data to the database through the Registration
system and (3)the student receives the result of the registra-
tion.

3. Proposed Rules for Function Point

3.1. Overview

We aim to calculate the Unadjusted Function Point. We
propose the following five steps to apply IFPUG version to
the requirements/design specifications (class diagrams and
sequence diagrams) based on the UML.

Step1 (Determine the Type of Function Point Count):

We handle only the development project function
point.

Step2 (Identify the Counting Boundary):



Figure 2. Example of the Sequence diagram

The counting boundary is determined by the type of
objects which appear in the sequence diagrams. That
is, actor objects are outside the boundary and other ob-
jects are inside the boundary.

Step3 (Count Data Function Types):

Data function types are automatically decided based
on the information of the class and sequence diagrams
according to the rules explained in subsection 3.2.

Step4 (Count Transactional Function Types):

Transactional function types are automatically decided
based on the information of the class and sequence di-
agrams according to the rules explained in subsection
3.3.

Step5 (Determine the Unadjusted Function Point Count):

As the result of Step3 and Step4, the counts for each
function type are automatically classified according to
complexity and then weighted. The total for all func-
tion types is the unadjusted function point count.

3.2. Rule of counting data function types

Based on the definitions of data function, we propose
following rules to extract the data functions from class and
sequence diagrams. Here, we classify the objects into actor
and non-actor object. Since actor objects exist outside of
the application, they are not regarded as the data function.

Step1: Select candidates of data functions:

We select the objects, that have some attributes and
exchange data with not-actor objects, as the candidates
of data functions.

Step2: Determine function type:

For each of the candidates selected in Step1, we de-
termine the function type. Objects that have opera-
tions which change the attributes of other objects in

exchanging the data are regarded as ILF. Others are re-
garded as EIF.

Step3: Judge complexity of data function

Complexity of ILF and EIF is determined by the data
element type(DET) and the record element type(RET).
Since the DET is a unique user recognizable, nonrecur-
sive field on the ILF or ELF, we count the number of
attributes of the corresponding class. If the class is de-
rived from other class, the number of attributes of the
base class is also added.

On the other hand, the RET cannot be counted from
the class and sequence diagrams. However, from our
previous experience, the RET is almost one in require-
ments/design specification. So, we consider that the
RET is one.

Finally, the functional complexity is rated based on
the RET/DET complexity matrix (See Table 1).

3.3. Rule of counting transactional function types

In accordance with IFPUG rules, we regard each of the
messages, which is exchanged by the object specified as
data function in sequence diagrams, as the candidate of
transactional function. Then, if a message has no argu-
ments, it means that it doesn’t exchange data and so we
determine that it is not a transactional function.

At first, in order to count the transactional function from
the class and sequence diagrams, we assume the following
restrictions:

� Assume that the sender object sends a message to other
object (receiver object) in the sequence diagram. If
the receiver object returns meaningful message to the
sender one, the reply message must be precisely de-
scribed in the sequence diagram (According to the def-
inition of the sequence diagrams of the UML, it is not
necessary to describe it).

� Data exchange must be written as the arguments of the
messages in the sequence diagram.

� When an argument of the message whose name is the
same as the sender object’s attribute, we recognize the
data stored in the argument is simply sent from the
sender object.

� If a message is repeatedly appeared in the sequence
diagrams, the arguments and message names must be
the same.

For each actor object in the sequence diagrams, we apply
the following two steps to count the transactional function
types. These steps are based on the fact that function types



Figure 3. Pattern 1

Figure 4. Pattern 2

of the transactional function can be determined by renewal
or reference of data functions or comparison of data ele-
ments outputted.

Step1: Select candidates of transactional function: List the
sequence of messages that the first message is sent by
the actor object and the last message is received by the
actor object or non-actor object in the sequence dia-
gram.

Step2: Determine the type of transactional function: For
each sequence listed in Step1, using the following five
patterns, we determine the type of the transactional
function and the complexity (DET and FTR) of them.

Pattern 1: An actor object sends message to a
DF(Data Function) (See Figure 3)
We regard this pattern as External Input. If no ar-
guments are given on the message, we don’t re-
gard it as EI. DET is the number of arguments of
the message. FTR is 1 since there is one DF.

Pattern 2: A DF sends message to an actor object (See
Figure 4)
If all the arguments of the message are the same
as the attribute of the DF, we regard it as Exter-
nal Inquiry. Otherwise, it means that the message
contains derived data. Then, we regard it as Ex-
ternal Output. DET is the number of arguments
of the message. FTR is 1 since there is one DF.

Pattern 3: An actor object sends message to a DF,
and returns message from the DF to the actor ob-
ject(See Figure 5)

Figure 5. Pattern 3

Figure 6. Pattern 4

In Figure 5, pay attention to a “message2”, if
all the arguments of the “message2” is the same
as the attributes of the DF, we regard two mes-
sages (message1 and message2) as one External
Inquiry. Otherwise, it means that the “message2”
contains elementary process, we regard two mes-
sages as one External Output. In other words, we
consider that the “message1” from the actor is the
input of the key for data retrieval.
DET is the number of arguments of outputted
message (message2). FTR is 1 since there is one
DF.

Pattern 4: An actor object sends message to a DF
and the DF sends message to another actor ob-
ject (See Figure 6)

We divide it into two transactional functions.
That is, Pattern 4 is the combination of the Pat-
tern 1 and the Pattern 2.

Pattern 5: An actor object sends message to a DF and
finally the actor object receives the reply message
through several DFs (See Figure7)

Pattern 5 handles a sequence of messages. That
is the case that when an actor object sends a mes-
sage, the reply message comes through several
DFs. For example, in Figure 7, a sequence of



Figure 7. Example of Pattern 5

five messages (message1,2,3,5,6) is a candidate
of transactional function. Then, we apply Pat-
tern3 to message1 and message6. In Figure 7,
since message4 is not included in the sequence,
we apply other pattern (in this case, Pattern2)
separately to the message.
DET is the number of arguments of outputted
message (message6). FTR is 2 since there are
two DFs in the sequence.

4. Function Point Measurement Tool and its
application

4.1. Outline of system

We have designed and implemented the tool that can
compute function points of the design specification devel-
oped by Rational Rose version 4.0 using Visual C++ lan-
guage on Windows98. The inputs for the tool are sequence
diagrams and class diagrams of the Rational Rose and the
output includes the values of function points, transactional
functions, data functions and objects which may be related
to the function points calculation.

The system structure is shown in Figure 8. The system
consists mainly of three units and two database: Analysis
unit, Analysis database, Counting unit, Counting database
and Interface unit.

Analysis unit executes syntax analysis to the input files
(that is, sequence diagrams and class diagrams of the Ra-
tional Rose), extracts data functions and stores them into
the Analysis database. Counting unit calculates the value
of function points using the data in the Analysis database
and stores them into the Counting database. Interface unit
shows the measurement results, that includes the value of
function point, candidates for the data functions and trans-
actional functions.

 Counting unit 

Interface unit

Analysis unit
Analysis DB

Counting DB

  Result
  List of
 function 
 type

Design
specification

Figure 8. Outline of the system

4.2. Case study

We applied the function measurement tool to the actual
design specifications for typical business application system
developed by the Rational Rose as follows:

Purchase processing system: It makes out several docu-
ments to purchase office equipments.

Order processing system: It manages to make up an esti-
mate for the office equipments and decide the shop to
which they are ordered.

Stock Control system: It controls the stock of the office
equipments and makes the production plans.

Figure 9 shows the part of the design specification for
the Purchase processing system.

We calculated the function points from the specifications
by our tool. Also, a function point analysis specialist (not
an author of this paper) of a software organization calculates
the function points manually from the same specifications.
The measurement results are shown in Table 5.

With respect to the data function, the values measured by
the tool are quite similar to the ones by the specialist. There
are no differences among them.

On the other hand, with respect to the transactional func-
tion, there are some differences among them. These dif-
ferences are caused by that in the several sequence dia-
grams, there is only one External inquiry, but the special-
ist considered that this transactional function would consist
of two transactional functions and counted two External in-
quiries. If the detailed descriptions existed in the sequence
diagrams, our tool could counted the transactional functions
correctly.

Thus, we can conclude that our proposed rules and mea-
surement system are considerably useful for the practical
software development.

5. Conclusions

In this paper, we have proposed detailed function point
analysis rules for design specification developed based on



Table 5. The measurement results
Function point analysis specialist Our tool

Purchase Order Stock Control Purchase Order Stock Control
Data Function 14 29 26 14 29 26
Transactional Function 18 63 36 16 50 33
Total 32 92 60 30 79 59

Figure 9. A part of the design specification

the UML. Then, based on the proposed rules, we have de-
veloped the function point measurement tool. We have also
applied several design specifications for typical business ap-
plication. The values calculated by the tool are considerably
adequate.

Class and sequence diagrams may be available only con-
siderably later during the development process than the time
when function points are usually applied. However, since
these diagrams can be easily constructed from use-case and
if we have enough experience data about class and sequence
diagrams, our system could be useful in the actual software
development.

Future research works include the following:

1. The target products of our tool are UML Version 1.1,
IFPUG Version 4.0, and Rational Rose Version 4.0.
Now, UML Version 1.3, IFPUG Version 4.1 and Ra-
tional Rose 98 have just been released. We are going
to modify our tool to cope with the new products.

2. In order to show the validity of our technique, we will
apply our tool to many software development projects
in actual software organizations.

3. Our proposed rules are based on only class and se-
quence diagrams. We must examine whether other
diagrams can be applicable to measure function point
more precisely.

Acknowledgments

We would like to thank Mr. Takashi Kasimoto, Mr. Mi-
chio Tsuda, Mr. Katuhiko Yuura, Ms. Ayane Suzuki, Mr.

Kenji Hatsuta, Ms. Mari Morita and Mr. Makoto Kurashige
of Hitachi, Ltd. for their discussions and advises in this pa-
per.

References

[1] A. J. Albrecht. Function point analysis.Encyclopedia of
Software Engineering, 1:John Wiley & Sons, 1994.

[2] A. J. Albrecht. Function Point Counting Practices Man-
ual, Release 4.0. International Function Points Users Group,
1994.

[3] A. J. Albrecht and J. E. Gaffney. Software function, source
lines of code, and development effort prediction: A software
science validation.IEEE Transactions on Software Engi-
neering, 9(6):639–648, 1983.

[4] V. R. Basili, L. C. Briand, and W. L. Melo. A valida-
tion of object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering, 20(22):751–
761, 1996.

[5] C. Jones. Applied Software Measurement. McGraw-Hill,
1996.

[6] B. A. Kitchenham. The problem with function points.IEEE
Transactions on Software Engineering, 14(2):29–31, 1997.

[7] L. Lian, S. Kusumoto, T. Kikuno, K. Matsumoto, and
K. Torii. A new fault localizing method for program de-
bugging process. Information and Software Technology,
39:271–284, 1997.

[8] G. C. Low and D. R. Jeffery. Function points in the estima-
tion and evaluation of the software process.IEEE Transac-
tions on Software Engineering, 16(1):64–71, 1990.

[9] T. Quatrani.Visual Modeling with Rational Rose and UML.
Addison Wesley Longman, 1998.

[10] Rational. UML 1.1 Notation Guide. Rational Software,
1997.

[11] M. Saito, N. Onari, K. Yuura, and T. Kameda. Visualiz-
ing tool for required specifications.The Hitachi Hyoron,
77(12):15–18, 1995.

[12] I. Sommerville. Software Engineering. Addison-Wesley,
1995.

[13] C. Symons.Software Sizing and Estimating. John Wiley &
Sons, 1991.

[14] S. Zamir. Handbook of Object Technology. CRC Press,
1999.


