

AGENT BASED PROCESS SIMULATION FOR MANAGEMENT AND
ECONOMICS

Marco Remondino

Department of Computer Science
University of Turin
C.so Svizzera 185
10149 Turin, Italy

E-mail: remond@di.unito.it

KEYWORDS
Simulation, model, intelligent agent, complex behaviour,
process, metaphor

ABSTRACT

Simulation is an increasingly popular way of describing
social models, alternative to other two symbol systems: the
verbal argumentation and the mathematical one. The
advantage is the high portability on computers; programs can
then be used to model either quantitative theories or
qualitative ones.
There are mainly two approaches: Process Simulation, which
is generally used to create models of well known parts of
enterprises or mechanical/electronic systems and Agent
Based Simulation, which allows to study the emergence of
social behaviour with the creation of models, known as
"artificial societies".
The main goal of this work is to present a hybrid formalism,
which uses the best parts of the two, to build realistic
economical, management and social models. Metaphors
Based Modelling is also introduced as a technique for
converting a real social system into a computer model.

INTRODUCTION

According to (Ostrom 1988), simulation can be considered a
third way to represent social models; in particular, it can be a
powerful alternative to other two symbol systems, the verbal
argumentation and the mathematical one. Simulation has a
great advantage over the other two, which is to be found in
its high portability on a computer, through a program or a
particular tool. Computer programs can then be used to
model either quantitative theories or qualitative ones.

There are mainly two different approaches to computer
simulation, both of which lead to the creation of a
computational model of a social or complex system:

1. Process Simulation, which is used to create models of

well known parts of enterprises or
mechanical/electronic systems. Its greatest advantage is
that it starts with a basic scheme, often derived from
existent documents, through which it becomes very

easy to bring a real situation into a process simulator.
This kind of approach is widely spread and allows to
deeply analyze a part of a whole, studying its behaviour
with "what if" analysis. This is why process simulation
is a great support to decisions. Unfortunately there isn't
a universal modelling language for process simulation
and this often requires deep translations for the models
to be ported from one tool to another. The second
disadvantage is that, in order to use this approach to
simulate a process, this must be very well known; if a
part of the process is uncertain, then it's impossible to
validate a simulation as a model of the real world to be
represented. Besides, this method is quite static,
meaning that the relations between the various parts
involved in the model must be well described and there
is no possibility of self-organization.

2. Agent Based Simulation; in a social context, the single

parts and the whole are often very hard to describe in
detail. For this reason, process simulation is not the
ideal tool to model these complex environments. On
the other side, there are formalisms which allow to
study the emergency of social behaviour with the
creation and study of models, known as "artificial
societies". Thanks to the ever increasing computational
power, it's been possible to use such models to create
software, based on Intelligent Agents, which aggregate
behaviour is often complex and difficult to predict, and
which can be used in open and distributed systems.

A software agent can be described as a flexible system,
capable of dynamic, autonomous actions, in order to meet its
design objectives, that is situated in some environment. The
main features for a software agent are: situatedness, that is
ability to perform actions according to a particular input
received from outside, which can, in turn, change the
environment itself; autonomy in performing actions, without
intervention of humans; flexibility and adaptability. Some
particular agents can also be proactive, which means they are
goal-directed, and social, in the way they can interact with
other artificial agents, robots, and humans. Such an
intelligent agent can be referred to as a Belief-Desire-
Intention (BDI) one.

There are many agent based paradigms that can be applied to
social simulation.

Symbolic: highly structured agents, described through
expressions of modal logic. This is perfect when there is a
single agent, which must interact with the environment, but
it's not versatile when used to simulate big communities
Sub-symbolic: simple agents, which can be described
through metaphors. A multi-agent context of this kind allows
the emergency of complex behaviour and self-organization.
Intelligent behaviour is a product of the interaction among
agents and environment, and of the interaction among many
simple behaviours.
It can be really hard to describe the real world under every
aspect: some fundamental macro-actions can thus be defined
on single agents, which allow cooperation with the
environment and with other agents.
The concept of Multi Agent System for Social Simulations is
thus introduced: the single agents have a very simple
structure. Only few details and actions are described for the
entities: the behaviour of the whole system is a consequence
of those of the single agents, but it's not necessarily the sum
of them. This can bring to unpredictable results, when the
simulated system is studied.
Hybrid Architectures: at the lower levels, we find reactive
agents, like the ones described above, while at the upper
levels there are more complex and structured agents. In this
way, we can combine reactive capabilities with planning.

Since an agent based model must be converted into software,
this kind of simulation has a perfect counterpart in Object
Oriented languages. In this kind of high level languages, it's
possible to create a parent class, from which many similar
objects will derive, with the same features. In this way, the
code will be written just once, while creating all the agents
that are needed. Besides, the single objects interact among
each other in a simple, yet very powerful way. An object can
"ask" something to another one, which "answers"; this is the
ideal way for letting the single agents communicate among
them.
Though, the fundamental step from a simple OO program
and an agent based model is that, while in the former the
objects can only communicate and execute actions, in the
latter we want the single agents to have self-organization
capabilities, and autonomous behaviour, which are based on
Artificial Intelligence systems, like neural networks, genetic
algorithms or classifier systems.
We can thus build an open system, with information
interchange and coordination among agents.

ENTERPRISE SIMULATION: THE SCENARIO

Both Process Simulation and Agent Based Simulation are
powerful approaches for creating models of enterprises and
complex systems, but they also have some flaws. In order to
overcome the limits of both the simulation approaches, the
possibility of a hybrid methodology is studied here. I’ll
concentrate the discussion on enterprise simulation, since
this is the most interesting field for the proposed approach.
While deeply describing both the approaches is beyond the
purpose of the present work, I’ll just write few words on
them, which will lead to the hybrid formalism that I’m
studying.

Usually, Process Simulation is used to model a very well
structured and known situation, in order to perform a “what
if” analysis. The simulator can answer to many questions
and problems, that would require big efforts, in the real
environment; for example, a part of a manufacturing plant
can be simulated, by dividing it into its main processes, and
then it’s possible to check what would happen on the final
output if something is changed. This is a very powerful tool,
but requires a very deep knowledge of the real environment
to be studied.

On the other end, it’s advisable to choose Agent Based
Simulation when the system to be simulated is very complex
and not easy to describe; in a word, when the sum of the
parts is not enough to describe the whole. So, if we want to
model an entire supply chain, or a stock market, it will be
impossible to do that with a process based approach, thus
leaving Agent Based Simulation as the only feasible
approach. By creating many, yet simple, intelligent agents,
and letting them interact, complex behaviour emerges. For
example, an artificial stock market can be simulated by
creating some different types of intelligent agents, which
follow inner rules; some of them can simply act randomly,
while others will “study” the trend before acting. Some of
them could even use advanced techniques, such as stop loss.
By observing the general trend of an artificial stock market
created with these rules, one can be amazed, by seeing that it
resembles in many ways a real one.

Besides, agents can be modelled with inner reasoning
capabilities, which can increase the coherence of a simulated
system. Each agent has the capacity to reason on the global
effects of local actions, or even to create its own forecasts on
the actions that will be performed by other agents. The
agents built using this approach can decide on which action
to perform, according to the stimuli coming from the
environment, and not only according to their internal rules.

AGENT BASED PROCESS SIMULATION

There are many intermediate situations, though, in which
neither Process Simulation nor Agent Based approach can be
applied with good results: we may think of a generic
enterprise, in which many sub-systems can be described with
a process based approach. The interaction between these
basic subsystems, though, is usually really complex, and
generally involves a human or non deterministic
participation. This would be very difficult, or even
impossible to represent, with a process based model; that’s
where we can use agent based connections between the sub-
systems.

These agents could simulate the behaviour of people that
must take decisions, with certain rules or through artificial
intelligence patterns; the agents should be quite simple, but
structured ones, able to act starting from stimuli coming
from the environment (i.e. the output of a sub-system
modelled with process based approach), and to produce an
output, that will effect the way other sub-systems will work.

As an example for this approach, we can think of two
assembly lines, both belonging to the same enterprise. The
second one needs the output of the first one, in order to
produce its own output; it wouldn’t be realistic just to create
a process based simulator, in which the two lines are directly
linked. Between them, we can have many different agents,
that are, for example, people who manage the warehouses,
or simply robots that must collect the output of the first
assembly line, and bring it to the second (Figure 1). That’s
where the agent based approach shows its strength, allowing
the observer to create self organizing entities, which can
react to different situations in different ways. In a simulation
built in this way, we can see what happens if we change the
way we use the warehouses, or, for example, if the workers
are on a strike.

Figure 1: An Agent as the Connection among Processes

The one described above is the situation that might take the
biggest advantage on the Agent Based Process approach I’m
describing here, but it’s not the only one. If we think of a
single, but very complex machinery, not all the parts are
strictly deterministic, in the sense that they can be affected
by some unforeseen influence coming from the environment.
By using a process based approach, it is possible to model
the machinery quite deeply, but just in a single situation, that
is the optimal environment, in which nothing can change its
way of working.

Figure 2: A Simple Agent as a Part of a Machinery

 By considering certain parts of the machinery as very
simple agents (Figure 2), it would be possible to create a
more realistic model of the object, that will be able to react
to the stimuli coming from the environment according to
certain rules, written in the single agents, that would give the

whole machinery a complex, and less deterministic
behaviour, just as the one it would have in the real world.

APPLICATION SCHEMES

Usually, in process based models, the connections between
the parts are managed with random numbers generators,
probability functions or static sets of rules. That can be
realistic when we must deal with simple Yes/No problems,
but becomes insufficient when the situations are more
complex. In Figure 3, a typical scheme for a process based
model is shown: when a process is not linear, meaning that
two or more different ways can be followed by the token, a
binary function is used.

Figure 3: A Traditional Process Based Model

This construction, very simple and effective for static
situations, becomes unusable for complex environments,
where a decision can’t be simply a Yes or No, but also a
change in the next step.
For example, we can now suppose that, in the model
description, we have some subjects (units, components,
products, planner, and warehouses) and these rules:

1. One or more final products, made of components, can be
assembled at each step
2. Each unit can produce only one kind of component
3. Not all the units require the same time to complete their
own component
4. At Each step, a unit can, according to the Planner’s
previsions:

Start producing a component for the warehouses
Start producing a component for the market
Continue the production started in a previous step
Do nothing

5. Warehouses can be managed in different ways (LIFO,
Last In First Out, FIFO, First In First Out…) according to
the market
6. The Planner decides whether “answering” Yes or No to a
unit, according to its previsions
7. Unit [n], in order to decide whether producing or not,
must “ask” to the Planner
8. If the Planner says Yes, then the Unit[n] must watch into
the warehouse:
9. If the component is in the warehouse, then use it, else
produce it

A
G
E
N
T

p
r
o
c
e
s
s
e
s

p
r
o
c
e
s
s
e
s

INPUT

p

p

p

AGENT

p

p

p

OUTPUT

E
N
V
I
R
O
N
M
E
N
T

This simple example is very difficult to represent in a
standard process simulator, since the way to manage
warehouses can’t be dynamically changed according to the
market and to the orders. Besides, if we want the Planner to
be realistic, then it can’t be just a random generator or a
probability function, but must be able to decide, according to
the different environment (orders, market, goods in the
warehouses, and so on).

That’s why, while the manufacture units of the enterprise
can be described with a process based approach, it’d be
much more realistic to use intelligent agents for warehouse
management and decision making. Neural networks, genetic
algorithms or classifier systems can be encapsulated into the
agents, which, in this way, could be proactive towards the
environment.

METAPHORS BASED MODELING

Even if Object Oriented approach is optimal to create agent
based models and simulations, it’s often very hard to
transpose the observed features of a social system into a
computer language. A formal method, called Metaphors
Based Modelling is thus introduced here. It consists in using
powerful metaphors, which allow the porting of a real
situation into a software model. Of course, a computer can’t
understand concepts like “product”, “seller”, “buyer”,
“cost”, “value chain” and so on; it’s necessary to translate
these concepts into something more similar to the
computational structure of a machine.

If this action is performed without studying the
consequences, it could bring to wrong results; in fact, an
error at this level could compromise the whole model. That’s
why I propose a simple, yet powerful formalism, to validate
the metaphors used to translate the real system into the
model.

A metaphor must be found, which corresponds to the real
situation, and which makes it easy to convert the observed
situation into a programming language. High level
languages, such as Java or C++, have advanced functions
built in, such as multi-dimension arrays, typed variables,
polymorphic objects, and so on. Above all, qualitative
measures are very difficult to achieve, from a computer
simulation: if we want to simulate customer satisfaction, or
the quality of products, we must find a way to convert these
in quantitative values. In Figure 4, the basic scheme that I
propose to create metaphors is shown.

Figure 4: From the Real Situation to the Model

The metaphor layer is a conversion one, and works like a
function, which maps a real situation onto a computer
program, that can be executed by a machine. The results

obtained by the simulation built with this approach, don’t
necessarily apply one-to-one to the real situation. Therefore,
an inverse function is required, which makes them suitable
for the observed reality; this inverse function, which I’ll call
counter-metaphor, has to be directly derived from the
metaphor used to port the observed system into the
simulated model. This counter-metaphor will allow going
back from the results obtained from the model to others that
can be compared to the real data. So the previous scheme
can be completed in the way shown in Figure 5.

Figure 5: Metaphors Based Modelling Formalism

If, and only if, the counter-metaphor is exactly the inverse of
the metaphor used, a model can be validated as
representative for the reality we observed and want to
simulate. For example, if we try to simulate a database-
security environment for an enterprise information system,
we can think of a metaphor which allows us to translate into
a computer program the risk deriving from allowing
everyone to access our files. Before doing this, we must
study the statistics of the files accidentally destroyed in the
real situation, in a previous period, and then build a function
of probability, to be applied on an array, which represents
the whole database.

At this point, we can change the security features, denying
permissions to certain agents, and see what happens. Of
course, this will reduce the risk of destroying files, but will
require a longer time to operate on data. In fact, a subject
who doesn’t have the permission of modifying a file, must
ask another one, which in turn has the permission, to do the
work for him. Also the hierarchy must be derived from the
real situation.

The results, which are “time elapsed” and “data corruption”,
are effective for the simulated model, but can be brought
back and applied to the real situation, since we used a
mathematical function of probability to simulate the
corruption of the files, and a hierarchy which is directly
derived from the real one. A counter-metaphor is thus easy
to find and apply to the simulated results.

This is, of course, a very simple example, but this method
can be used both for easy and complex systems, and assures

Real
Observed
Situation

MMetaphor
Computer

Model
(Simulation)

?

Real
Observed
Situation

Metaphor

Program

execution

f -1

Computer
Model

(Simulation)

CounterM
Expected

Real
Results

Simulated
Results

good results and a correspondence of the simulation to the
reality.

Another example is found in (Terna 2002): here, the author
uses a powerful metaphor to model complex products, made
of many different components. As shown in Figure 6, each
part is represented by an integer number, that can be easily
manipulated by a computer, and the whole product is a bi-
dimensional matrix, in which the first row is an ordered
array, containing these numbers, and the second row is
another array, which has a zero (0) when the corresponding
component is not yet assembled, and a one (1) when it is.

component 10 22 27 24 18 8 16 14 25 25
status 1 0 0 0 1 1 1 0 1 0

Figure 4: Example of a Metaphor

This is a very general metaphor, which can be applied to
different enterprises, just by studying the frequency of the
components to be used, and the composition of the final
products.

A counter metaphor is also very easy to find, since we can
just step back, with a conversion matrix, from the numbers
to the real components, and a model based on this metaphor
can be easily validated, according to the formalism I
proposed here.

CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, I have examined the feasibility of a hybrid
approach for enterprise and social simulations, which takes
the best part of both Process and Agent Based Modelling.
Additionally, I presented a formalism to convert a real
situation into a computer program, based on metaphors,
which can be used to validate the models.

In the future work, I’d like to apply both methods to real
enterprise models and create a simple tool which allows
creating Agent Based Process Simulation. I also plan to
create a general meta-model for this new kind of approach,
which could be a framework for all the simulations built in
this way.

REFERENCES

Huhns, M. and Singh, M. 1997. “Readings in Agents”, Morgan

Kaufmann
Bahrami, A., Sadowski D. and Bahrami S. 1998. “Enterprise

architecture for business process simulation”, Proceedings of
the 1998 Winter Simulation Conference

Gilbert, N. and K.G. Troiztsch 1999. “Simulation for the Social
Scientist”, Open University Press

Gilbert, N. and Terna, P. 2000. “How to build and use agent-based
models in social science”, Mind & Society 1, 57-72

Pistoiesi, G and Paolucci, M. 2000. “ Simulazione Sociale e
Sistemi Multi-Agente”, ThinkinGolem pscrl

Terna, P. 2002. “jVEFrame: a Virtual Enterprise Frame in Swarm”,
SwarmFest 2002 Conference, working paper

AUTHOR BIOGRAPHY

MARCO REMONDINO was born in Asti, Italy, and went
to the University of Turin, where he studied Economics and
obtained his Master Degree in March, 2001 with 110/110
cum Laude and a Thesis in Economical Dynamics. In the
same year, he started attending a PhD at the Computer
Science Department, which will last till the end of 2004. His
main research interests are Computer Simulation applied to
Social Sciences, Enterprise Modelling, Agent Based
Simulation and Multi Agent Systems. He is also
participating to a University project for creating a cluster of
computers, to be used for Social Simulation. He is part of the
team working to a European project which aims to define a
Unified Language for Enterprise Modelling (UEML).

