How to Fail with the Rational Unified Process:

Seven Steps to Pain and Suffering

Craig Larman
Chief Scientist, Valtech USA
craig@craiglarman.com

Philippe Kruchten
Rational Fellow, Rational Software Canada
pbk@rational .com

Kurt Bittner
General Manager, Process and Project Management Business Unit, Rational Software
kbittner @rational.com

Abstract: The Rational Unified Process provides a valuable framework for approaching
the business of developing software. Asaframework, however, it must be adapted to the
needs of each project team and their circumstances; it isintended to be applied in alight
and agile style, and not adopted as a one-size-fits-all process. This article shares a number
of common pitfalls experienced by teams attempting to adapt the Rational Unified
Process to their needs, presented with alittle tongue-in-cheek.

The Rational Unified Process (RUP®) [1] [2] has emerged as a popular de facto standard modern software
development process—we feel with good reason. It combines recognized best practices such as adaptive,
iterative, and risk-driven development; has been devel oped by world-class |eaders with experience in both

small and large systems development; is flexible in its application and extension; and has been coherently
documented in both print and the online RUP product.

Y et, there are factorsinhibiting the successful adoption of the RUP, leading to far less than optimal results.
There are patternsin these failuresif you wish to learn from them; to that end, if your goal is spectacular
failure with the RUP, we recommend the following steps.

Step 1. Superimpose “Waterfall” Thinking

Does your development process look something like this?
1. Trytodefine and stabilize most of the requirements; sign-off on them.
2. Do detailed design, based on the requirements.

3. Implement, based on the design.
4. Integration, system testing, and deployment.

© Copyright Valtech Technologies & Rational Software, 2001 114 7/14/2002

Thisisan example of alinear, sequential “waterfall” lifecycle, and isthe first, best, and most common
strategy for total RUP failure. If your process feels anything like the above, you know you have
successfully not adopted the RUP.

It has been argued [3] that the waterfall lifecycle as originally intended would not |ead to the degree of
failureit has engendered, and it is rather due to misunderstanding that it has been unskillfully applied. Point
taken, but we are discussing the waterfall asit is commonly applied or misapplied today.

With respect to failure levels, note that an analysis of project success and failure in 1994 [4], when most
development was purely ad hoc or based on waterfall process practices (as today, we would argue),
estimated that only 70% of software projects were completed, that over 50% cost at |east twice their
original estimate, and that $81 billion US was spent on cancelled projectsin the USA alone. Thisisan
extraordinary problem rate; business as usual is not working.

To their credit, the US Department of Defense, amajor contractor of software development services, which
originally promoted waterfall processes and attitudes, upon observing so much failure with the approach,
has not only dropped this requirement (removed in 1988 in STD-2167A), but in a 1994 report started to
actively encourage more modern iterative lifecycles to replace the waterfall [5]. Yet, inertiais a problem
and there remains superimposition of “waterfall attitudes” on to projects—*" Congratul ations, the DoD will
use an iterative process for this project. Now, step one: Please submit the compl ete requirements so we can
sign off on them. Then we'll nail down the design, ...”

The waterfall -inspired processes were a reaction to prior 1960sad hoc approaches to devel oping software.
In contrast to the prior lack of structure, it was arational response; indeed, waterfall methods of this era
were called structured to emphasize this point. The approach drew inspiration—as is usually the casein
new frontiers—from what was known and familiar; that is, from engineering and construction in other
domains, such as building—do the requirements, then do the design, then construct. Unfortunately, the
approach was adopted and taught without critical research into itsreal suitability for software development,
and several generations of students and educators simply learned and repeated the advice.

Some things should be built like buildings, like, well...buildings. However, it turns out that software is not
usually one of them.

There are anumber of reasons for this. The most compelling is the wrong assumption that most
requirements can be defined in the first project phase. The research deconstructing this myth includes work
by Capers Jones[6]. Asillustrated inFigure 1, in this very large study of 6,700 projects, creeping
requirements—those not anticipated near the start—are avery significant fact of software development life,
ranging from around 25% on average projects up to 50% on larger ones. Boehm and Papaccio present
similar research-based conclusionsin [7].

© Copyright Valtech Technologies & Rational Software, 2001 2114 7/14/2002

60 1

50 1

40 -

30

20 1

10 A

Creeping Requirements as % of Original

10 100 1000 10000 100000

Project Size in Function Points

Figurel Changing Requirementsarethe Norm

Waterfall attitudes, which struggle against (or simply deny) this fact by assuming requirements and designs
can—with enough effort and skill—be correctly specified and frozen, are starkly incongruous with project
reality.

There are varied reasons for thisinability in software development to pin down the requirements before
design and implementation. They include:

0 theunparalleledflexibility and options available for software;

0 psychological and organizational forces which impede the ability to fully, accurately, and
appropriately speculatively define a software system (without feedback-adaptation cycles);

0 imprecise languages of specification;

o imperfect designs and implementations;

o fast-changing market forces, which motivate changes, and so forth.

Whatever the reasons, the skillful responseis not to “fight change” and try harder to pin requirements down
(aswas the waterfall response), but rather, as Kent Beck has evocatively phrased it [8], to embrace change
asacoredriver in the process.

Consequently, in the RUP, development proceeds instead via a series of iterations, each of whichis
“timeboxed” to afixed duration (such as exactly four weeks), and which endsin a stable internal release of
asubset of the final system. Timeboxing is akey concept in iterative development: it means to fix the end
date of theiteration, and not normally allow date slippage. If al the objectives can’t be met, requirements
areremoved from the iteration, rather than expanding the iteration duration.

Within an iteration, there is something like a miniwaterfall. A small set of requirements is chosen and more
fully analyzed (perhaps prioritized by high risk or business value); afew days are spent on design; and then
the team quickly starts implementation, integration, and realistic system and stress testing for a portion of
the system. The end of each iteration resultsin arunning partial system, which generates feedback, that
leads to adaptation of the requirements and design in future iterations. Over time, these feedback-adaptation
iterative cyclesreveal an appropriate set of requirements and arobust, proven design and i mplementation.
Note that a sequential waterfall approach is being applied at the scale of weeks, not many months or years,

© Copyright Valtech Technologies & Rational Software, 2001 314 7/14/2002

and that there is abuilt-in mechanism for feedback and adaptation. At the time scale of afew weeks, a
sequential lifecycle can work; however, it breaks down as the length increases.

Since thereality isthat the requirements do change during design and implementation—significantly—the
waterfall model postpones dealing with this important risk (and therefore reality) until late in the lifecycle,
often until it istoo late to do much about it. A waterfall lifecycle project may be as failure-prone as the
prior ad hoc approaches it replaced, but it goes about it in a more orderly way (the project can be right on
track up until a catastrophic failure). Y et, because of the perceived lack alogical alternative, many people
have felt that they have had no choice but to continue to use a model based on flawed assumptions.
Organizations have becomeinured to the ongoing obvious failures or difficulties in software development
that is based upon waterfall principles, without really challenging the underlying assumptions. Even today,
more than a decade after the warning was first sounded, there are consulting companies, managers,
teachers, and writers who promote the waterfall lifecycle or attitudes as skillful, which is unfortunate.

Thus, waterfall thinking pervades our development beliefs in systemic and sometimes subtle ways, and as a
consequence, it is especially common among RUP adopters to superimpose waterfall values and practices
on to the RUP.

To be clear on common waterfall values and practices:

o First, do most of the requirements, making the implicit assumption that requirements can be well
defined by the users of a product they have not seen before.

0 Second, do the detailed design on the assumption that the solution to a poorly -defined problem
can be defined with precision.

0 Third, implement even though the design is unproven and often not provable.

o Fourth, integrate, test, and deploy.

Within the scope of these activities:

0 Try thoroughly develop an artifact, such as the requirements or design, before moving on. Try
hard to get them complete and stabilized. Polish carefully.

0 A later discovery that forces significant change in the requirements, models, or design that we
tried hard to get correct in thefirst place, isasign of some failure. The solution isto try harder or
be more skillful—polish more intensely—in the future in order to get the requirements or design
closer to being complete and correct.

0 Itisproper to expect to be ableto deliver abelievable estimate and plan for anovel system based
on new technology, quite early in the project. Failure to do soisasign of lack of skill.

Many of uswereincorrectly taught that the above practices and attitudes were skillful. However, they are
not adopted in the RUP and other iterative processes (such as XP). They are not rejected out of a perverse
desire to be contrary or novel, but out of recognition that the solution is not to fight change, but to embrace
it, and make it a core driver in the process.

The fact that that we are misled by the waterfall approach into increasing the risk of failure (rather than
reducing it) runs counter to our education and the old lore of software development. But we cannot keep
customers from changing the requirements by requiring them to “sign-off” on the specifications any more
than we can alter the laws of physics. Thereality isthat if the requirements are wrong or the business
changes, we need to devel op the system in aflexible way that allows usto learn from experience as we go
along. Overcoming the conscious or unconscious superimposition of waterfall values on the RUP and
iterative development is one of the greatest challenges a project team faces. The most significant shift to
truly adopting the RUP is not in technical skills such as doing use cases, object modeling, and so on, or in
learning the many possible artifacts and activities that the RUP offers (all of which are optional), but in
fundamental attitude and expectation adjustments related to waterfall thinking.

© Copyright Valtech Technologies & Rational Software, 2001 414 7/14/2002

The following sections describe how superimposing waterfall values and practices can be applied to help
fail with the RUP.

Superimpose Waterfall Phases on the RUP Phases

A RUP development cycle is composed of four phases:. inception, elaboration, construction, and transition.
The most common strategy for RUP failureisto in some way consider their definition as similar to the
waterfall phases. That is,

Inception—do most of the requirements
Elaboration—do the detailed design and models A

Construction—implement
Transition—integration, system test, deployment

AW E

The above description is quite incorrect, but acommon misinterpretation—either consciously or
unconsciously—of the RUP phases. It is not hard to find this misinterpretation in various books, articles,
presentations, and consulting “advice” on the RUP. One sign of this kind of misconception isto seethe
phase names turned into verbs (“are we done incepting yet?’) or states of requirements (“have al the key
use cases been elaborated yet?').

A careful explanation of the RUP phasesis not within the scope of this article, but a brief and more
accurate description of the phasesis:

1. Inception—devel op the business case for the system; this requires us to explore a small but
significant set of the requirements (perhaps 10%) in order to obtain an order of magnitude sense of
the scope, the key risks, and to decide whether to fund the elaboration phase.

2. Elaboration—iteratively build the core architecture and resolve the technical risks of the project.
When we say build the architecture we mean really program, integrate, and test it—thisisnot a
“paper” exercise or throw-away prototyping. In order to do thiswe may haveto iteratively
explore most of the requirements in detail (perhaps 80%) whilein parallel implementing the core
risky parts of the system. The requirements may significantly change throughout this phase, via
feedback-adaptation cycles, in response to regularly evaluating partial implementations. Note that
in contrast to classic waterfall -style requirements definition, the majority of the requirements are
refined in parallel with developing the core architecture, and informed from the feedback of that
real development. We also need to make the decision whether to fund project completion.

3. Construction—iteratively build the elements not done in elaboration; iterative integration and
quality assurance; prepare for deployment. Requirements change lessin this phase, as most of the
requirementsinstability was iteratively clarified in the prior elaboration phase.

4. Transition—complete betatesting, resolve issues, and deploy the system.
Define Iterations Too Long or Too Short
We know of some organizations “adopting” the RUP, when asked about their planned average iteration
length, are advising six or even twelve months for an iteration. In the vast majority of cases, thisis
definitely undesirable. “Ideally, an iteration should span from two to six weeks’ isthe RUP rule of thumb.
The essence of iterative development and the RUP approach is to take small steps of commitment to a

possibly imperfect implementation, rapidly do integration, QA, and testing, quickly obtain feedback, and
then adapt the requirements, design, and implementation based upon that feedback. Short steps, feedback,

© Copyright Valtech Technologies & Rational Software, 2001 514 7/14/2002

and adaptation are key ideas Long iterations miss the point, and so provide an excellent strategy for failure
with the RUP.

On the other hand, a project with 300 developers will not run smoothly with two-week iterations, due to the
overhead of alarge team. In order to achieve sufficient throughput, the iteration length will need to be
perhaps even eight or ten weeks. Note that a smaller, temporarily independent, subsystem team may divide
the macro-level project iteration of eight weeks into local micro-iterations of two weeks each.

Polish the Requirements before Design

As mentioned, the idea that requirements can be significantly defined and stabilized in the absence of
feedback runs counter to software development (and indeed, common human) experience. Think about
buying clothing the way that the waterfall method would have us “buy” software: we would have to
describe exactly what we want without ever seeing what we are getting; we could not even try the clothing
on first to see how it looks. Every measurement would have to be specified precisely, months or years
ahead of the actual time when we would receive the clothing. Heaven help usif we changed our minds or
gained (or lost) afew pounds. Y et thisis exactly how the waterfall method proceeds—specify most
requirements before doing design or implementation.

If we wouldn’t even buy clothes this way, what makes us think it works for software?

Thereality isthat we are bundles of inconsistency, a constant contradiction of needs and wants, and the
choice of what isright is often a complex balance requiring usto try different approaches to see what works
best. The fastest path to asolution isusually one that generates a number of likely approaches and then
allows us to choose between these reasonabl e alternatives. An iterative approach allows for thiskind of
directed experimentation and creativity; waterfall approaches force usto be brilliant on our first try. It runs
counter to human nature and—more pointedly—software project research.

Expect Believable Estimates and Detailed Plans Near the Start of a Project

Consider this scenario in the oil business. An oil executive invites you into her office and says, “| hear
there’'s ail in FooBarKhan. | want it! Please head back to your office and take aweek to write up areport
telling me how much ail is there, how much and how long it will take to set up the ail fields, the resources
we will need, and a plan with milestones.”

In the oil business, the above scenario would be considered ludicrous. Why isit acceptable in the software
industry? Qil people, who work rationally, know that such answers cannot be provided without a significant
investment in exploratory drilling. Only after investigation to uncover the true (and originally hidden)
nature of the reservoirs and geology is an estimate or a semblance of a plan possible.

And yet, with similar uncertainty and very high complexity, we expect to be able to estimate and plan
software projects without investing in realistic “ exploratory drilling.”

If you've never done something before, it’s hard to tell how long it will take. Sometimes thisfact is used as
areason for rejecting an iterative approach—if you are doing something very novel it’s hard to know how
long it will take. In fear of this unknown, people sometimes retreat to the comfortableillusion of the
waterfall method. But, just because we can make a plan that shows us marching along, completing
milestones, it does not mean that we can really doit.

It iseasy to put down precise dates on a schedule in absence of any real information about the amount of
work to be done—thisisthe classic problem of planning where the plan becomes nearly useless as soon as
itispublished. If perfect planningisrequired to deliver aproject, then our failureis assured.

Theiterative approach allows for us to learn as we go; as iterations proceed we have more information
about the real requirements, a better view of the real risks, and a better sense of our abilitiesin meeting the
challenges of the project. In short, experience makes us better planners.

© Copyright Valtech Technologies & Rational Software, 2001 6/14 7/14/2002

Sometimes the existence of afixed-price delivery requirement is used as justification for awaterfall
approach, asif thisjustifies making decisionsin the absence of real information. The reality isthat if you
have never done a project of the kind on which you are asked to deliver afixed bid, you are flying blind. If
you want to be successful you had better pad your estimates as much as you can, hire as many people
experienced in the problem domain as you can, and hope for the best. Making major decisionsin the
absence of information isaways risky. With an iterative approach, you' [l do no better on the initial
estimate, but you'’ [l know soon enough how well you are doing and you can start negotiating, setting
expectations, and managing scope much earlier, when it may actually do some good.

A rational approach, advocated by the RUP, to fixed-price bids and contracts is atwo-step strategy. In step
one, contract for an initial short (for example, four week) fixed-length, fixed-price contract to do enough
realistic investigation and exploratory programming to generate a more insightful scope, risk, and
requirements specification. Thisimproved specification is then used as the basis for bidding in step two
(the complete development). The investment in step one investigation is not lost—the results will reduce
the effort for the second step, and lead to amore realistic second (final) contract.

Step 2: Apply the RUP as a Heavy, Predictive Process

Some methodol ogists speak of processes which are heavy versus light, or predictive versus adaptive. A
heavy processis apejorative term meant to suggest one with the following qualities [9]:

rigidity and control

many activities and artifacts are created in a bureaucratic atmosphere

lots of documents

elaborate long-term detailed planning

significant process overhead on top of the essential work

process-oriented rather than people-oriented; treats people as pluggable partsin a mechanical
method

o predictiverather than adaptive

OO O0OO0OO0Oo

A predictive processisone that attemptsto plan and predict the activities and resource (people)
allocations in detail over arelatively long time span, such as the majority of the project. It tends to be
implicitly waterfall in its values, emphasizing defining the requirements first and a detailed design second,
before implementation.

In contrast, alight or agile processis meant to suggest “lean and mean.” with the following qualities:

0 itisstripped of unnecessary bureaucratic process overhead, eliminating lowvalue or thoughtless
document creation;
o itisfocused ontherealities of human nature in the context of work, making software
development fun; and
o itisadaptive.
To encourage failure with the RUP, apply these heavy, predictive practices:

o0 Plantheentireiterative project in detail. Early on, define the number and dates of all iterations,
and specify what will happen in each.

0 Create most—or even better, all—of the RUP artifacts

0 Addlotsof project and process formal ceremony, and even better, several project committees.

o Strivefor amechanistic, clockwork feel in the project, with people as specialist cogsin the
project machinery.

The RUP was not meant by its authors to be either heavy or predictive, and it is due to superimposition of
incorrect process ideas or misunderstanding of the RUP, exacerbated by the large set of detailed process

© Copyright Valtech Technologies & Rational Software, 2001 7114 7/14/2002

documentation that the RUP product provides, that it could be so mischaracterized or poorly implemented.
The authors of the RUP intended and encourage it to be applied in alight, agile, adaptive process spirit.
Some examples of how this applies:

o A minimal set of RUP activities and artifacts should be created; just those that add real value. As
the project proceeds, if any processoverhead activity is not adding value, it is dropped.

0 Thereare nodetailed plansfor all theiterations. Thereisahigh-level plan (called the phase plan)
that estimates the project end date and other major milestones, but it does not detail the exact path
to those milestones. A detailed plan (called the iteration plan) only plans with greater detail one
iteration in advance (for example, the following two week iteration). Detailed planning is done
adaptively from iteration to iteration. Thisisnot to imply it isimpossible to speculatively allocate
some work to future iterations, but to appreciate that it is speculation, which isincreasingly
unreliable the further you project into the future. Adaptation from the original planisnot seen asa
failure in planning or execution, but a sensible adjustment to project realities. The macro-level
milestone dates and objectives are known, but the path to each milestoneis left to adaptively
evolve.

Step 3: Avoid Object Technology Skills

The RUP isaimed at developing object-oriented systems, although most practices are applicable to other
technologies. Over the years that we' ve observed (first- or second-hand) object technology (OT) projects
fail or face serious problems, acommon thread is not having people who arereally skilled in thinking in
objects, object design, design patterns, and object-oriented programming. If we don’t have skilled OT
developers, no amount of processis going to save the project. The presence of skilled OT developersisa
paramount critical success factor, and adopting the RUP (or any process) is arelatively minor element in
comparison.

As Grady Booch has said, “ People are more important than process” [10]. Similarly, Alistair Cockburn, the
author of Surviving Object-oriented Projects, succinctly phrased it as “Processis a second-order effect.”

Therefore, to really fail with the RUP, ignore having or educating people with deep object skills.
Meaningful OT education does not mean a one-week coursein Java? technologiesfollowed by aone-
week course in object-oriented analysis and design (which is grossly inadequate for the vast and deep
discipline of OT), but software engineers with something like eight weeks of intensive teacher-led
education, spread out over six months, followed by twelve months of close mentoring by an expert.

Thisisnot acall for software gurus or geniuses, but the recognition that object technology development
skills are very non-trivial, and successful designing and programming in objects takes well-educated and
mentored devel opers, not novices.

Lack of appreciation of the large investment required to hire or develop skilled object technol ogists, or
cutting corners on this investment with wishful thinking that we can get by with less skilled engineers, isa
superb way to guarantee failure.

Finally, we want to stress the need for intensive education and skill in object design and design patterns,
not just object programming. To quote David Parnas [12]:

“ Instead of teaching people that OO is a type of design, and giving them design
principles, people have taught that OO is the use of a particular tool. We can write good
or bad programs with any tool. Unless we teach people how to design, the language
mattersvery little. Theresult isthat people do bad designs with these languages and get
very little value from them.”

© Copyright Valtech Technologies & Rational Software, 2001 8/14 7/14/2002

Step 4: Undervalue Adaptive Iterative Development

The RUP documents introduce its key ideas and best practices:

M anage requirements

Developiteratively

Control changes

Verify quality

Architecture and comp onent-centric design

OO O0OO0OO0oOOo

A person new to an iterative process and the RUP reads this list without a sense of the relative impact of
these ideas, viewing the elements more or less as having equal weight. However, compared to the other
ideas of the RUP, iterative development isin aleague of its own in terms of profound impact on how we
think about and practice software development. The list should be read like this:

Manage requirements

Develop iteratively

Control changes

Verify quality

Architecture and component-centric design

©0Oooo Q o

Properly understood, iterative development is like arevolution, if an organization is moving from waterfall
values and practices. Indeed, if an organization is moving from those to the RUP, and doesnot experience a
deep and perhaps traumatic transformation at many levelsin how they think about devel oping software,
thisis probably asign that they didn’t “get” iterative development and truly adopt it.

There are several waysto ignore the implications of iterative devel opment, some areiteration of
superimposing waterfall attitudes, and some with a different emphasis:

Embrace Rigid and Predictive Attitudes

That is, try to freeze the requirements and design, rather than embracing change. Try to plan all the future
iterations, rather than adaptively adjusting.

Changing an organization’s or ateam’s processisaBIG change—potentially disruptive, potentially
invigorating, but always challenging. Thereisno way to ease into these kinds of changes—one must
approach them directly and deliberately. Change is threatening to some people, and they will actively resist
it even when it is good for them in the long run. Change also shifts the balance of power on a project away
from the status quo and toward the “new thing.” Asaresult, change must be planned and carefully
orchestrated.

The waterfall model comes with its own special challenges with respect to change. Since the waterfall
model evolved out of aresponse to uncontrolled change, it comes with an extraordinary bias against
change. To some degree, the entire waterfall approach might be viewed as largely antagonistic to change—
once requirements are “approved” (frozen), it requires an act of great effort to make changesto a
reguirement even when it has been found to be incorrect. Itisasif the waterfall method says “well, you
agreed that these were the requirements, so you better just be quiet and take what we give you.”

In transitioning to an iterative lifecycle, change must be embraced at two levels: the organizational level
and the project level. At the organizational level, one must embrace the change to a new way of doing
things. At the project level, one must allow for feedback and continuous learning to say that it’s acceptable
to make a considered response to new information.

© Copyright Valtech Technologies & Rational Software, 2001 914 7/14/2002

Pervert the Practice of Iterative Development

As Andy Grove observed, “what gets measured gets done.” |f you measure and reward people for
“freezing requirements”, “freezing design”, and so forth, you' re going to get awaterfall lifecycle no matter
what you call the phases. If you don’t embrace change, you' re practicing the waterfall method no matter
what you say.

Project managers seem to like the superficial certainty of the waterfall lifecycle because it hasapparent
stability and certainty: it’s possible to say “it’s December the 2" and we' re done analyzing all the
requirements.” The problem isthat thiskind of statement is delusional—you’ re only saying that you're
done but you know at some level that thisis not true—since nothing has been implemented yet, thereisno
real way to be sure that you arereally done. It’s only by testing that your assumptions about something
being true or false can be assessed; it's only by implementing something that you know how much work it
will really take.

On aproject, we are all playing agame—we make assumptions, we have hunches about how things will be
and what the solution should look like, and we pretend we are sure of what we are saying. But in truth we
really don’t know much for certain; we are bluffing alot and hoping for the best. We are acting on
imperfect information, and the results often show that.

The wise project manager takes this into account, building in checkpoints at which assumptions can be
validated and undertaking activities to gather better information. The iterative approach is perfect for this:
it allowsinformation to be gathered whileit can still be used to improve our plans and change direction.
There’ sasaying that “no plan survivesintact contact with the enemy.” The wise project manager
understands this and builds in opportunities to adjust the plans based on new information.

Probably the greatest failing of the waterfall approach asit is popularly practiced isthat plans are madein
isolation from reality and then must not be updated as new information is gathered. Changing the planis
considered afailure to foresee the future. But no one can foresee the future, and adjusting the plan is not so
much afailure to predict asit is an opportunity to improve.

Don’t Educate Stakeholders in the Implications of Iterative Development

Customers and management have become acculturated to the waterfall approach. Customers have come to
expect that they can hand over requirements and wash their hands of the project until the completed product
isdelivered.

Management has become conditioned that they should be able to expect that perfect plans can be
formulated on Day 1 of aproject and then merely executed, and that reliable estimates can be generated
with minimal investigation and virtually no meaningful exploratory programming or proof of concepts. If a
project fails, they think, it is not because the plan was bad but because it was not followed, or because of
unskillful planners or estimators. This kind of the thinking is the very sort of thing that gives management a
bad name.

In order for iterative development to work, the customer must beinvolved. The heart and soul of iterative
development is to adapt based upon feedback, rather than speculation. If the customer isnot interested and
actively engaged in making sure that the system that they want and need gets built, then they will get
exactly what they deserve. The hardest thing about building software is building the right thing, getting the
functions and usability solid. Developers are rarely domain experts and they need hel p understanding what
is needed to solve the problem. They need help building theright system. The waterfall approach robs the
team of meaningful interaction between the devel opment team and the customer.

Customers have to be reeducated to appreciate that they need to take an active role in the definition of what
needs to be developed, and they have to come to understand that there is an interplay between what a

© Copyright Valtech Technologies & Rational Software, 2001 10/14 7/14/2002

system should do and inspiration from new technol ogies. Perhaps they ask for some kind of “traditional”
system, unaware of the possibilities that wireless and mobile-networked devices could bring to the vision.
The thing about technology isthat it changes the nature of the problem. The Internet is agreat example of
this: it allows us to approach problemsin new ways that are not always obvious to the people who are
steeped in an existing business process.

Theideal approach is one in which we can start with an understanding of the problem that needs to be
solved and explore that problem (its challenges and opportunities) in an evolutionary way, in a partnership
between devel opers and the users/customer. An iterative approach allows for the kind of adaptive feedback
that is essential to this style of development.

Over-Model and Create Many Low-Value Artifacts

The Rational Unified Processis aframework that solves alot of different problems. Itisunlikely,
however, that you will encounter all of these problems. Asaresult, it isunlikely (and even undesirable)
that you would use all of the Unified Process on your project.

Further, the idea of iterative development isto quickly start programming, when only partial requirements
and designs are developed, in order to get realistic feedback, rather than speculate on the requirements and
design.

Therefore, a skillful meansto RUP demise and iterative failure isto create all the RUP artifacts, and try to
elaborately, and with great specificity, detail each one. Draw at least twenty pages of UML diagrams before
programming.

The RUP islike amedicine cabinet or adrug store. Most of uswould not think of walking into adrug
store, buying one of every kind of medicine and then taking those medicines. We know that we would get
sick (or maybe worse); we have learned that we should only take what we need, and then sometimes only
under the advice of an expert.

Some people suggest that the RUP istoo big; thisis like saying that there are too many medicines. There
are many medicines that we do not have that many people need, even though most people do not need very
many medicines at all (maybe we just have afew aches and pains now and then). Thereal issueis that
people need to understand better how to know what they need.

A good way to look at how much of the RUP one should use isto use risk mitigation as a guide.

0 Istherearisk that developers may not understand what the system should do? Y ou may want to
use some “requirements management.”

0 Isthere some behavior that has complex control flow or is hard to understand? Y ou may want to
use “use cases.”

0 Isthetechnical solution to the system novel and complex? Y ou may need “architecture.”

Y ou begin to see how to decide what to choose. Understand the problems you face, and then choose
techniques (medicines) that will help reduce these problems.

Step 5: Avoid Mentors Who Understand Iterative Development

Thereis nothing quite like inexperience, misunderstanding, and ignorance to help a new practice really fail
spectacularly. Therefore, on your first iterative RUP project, only use ateam that has never done short
timeboxed adaptive iterative devel opment before—especially the project leaders. Look for people wedded
to waterfall attitudes and practices. Asan aside, it is also helpful to choose an architect for your first Java
technology project who is not a Java expert and can’t do Java programming.

Definitely avoid contracting with a mentor who knows how to do iterative development. If a

knowledgeable mentor unfortunately joins the project, ensure they have arole with no influence or
leadership, and that their advice is debated, viewed skeptically, and ultimately rejected by the project

© Copyright Valtech Technologies & Rational Software, 2001 11/14 7/14/2002

leadership. Ridicule the mentor. If amentor must join the team, search for one who misunderstands the
RUP and subtly superimposes waterfall predictive attitudes, such as thinking that the elaboration phaseisto
clarify the models which are implemented in construction, or that the work for all iterations should be
planned and allocated near the start of the project. They should be easy to find.

Step 6: Adopt the RUP in a Big Bang

If possible, introduce the RUP to the entire I T organization on aMonday, and demand all projects do it by
Tuesday, but don’t tell anyone the details. If that isn’t possible, and education is forced on the organization,
educate only the devel opers (rather than managers or the I T executives). It is especially amusing if
management has waterfall attitudes and expectations, and the development team was taught instead to drop
waterfall habits. If everyone must be educated in a RUP course, try to do so with at least a six month lag
before RUP adoption, so it will be completely forgotten, and make it one of those short one-day seminars
from a RUP “educator” who superimposes waterfall ideas. If the RUP adoption must be applied right after
education, then at least do it for the entire organization and switch everyone at the same time, across all
projects. Avoid doing asmall pilot project with a skilled mentor using a simple minimal set of RUP
practices, learning from the experience, incrementally adopting it, and moving on to a second project with
the experience of the first. If someone suggests that idea—fire them. At all costs, do not explain or solicit
reasons for adopting the RUP—that could rationally justify the expense and alleviate the discomfort of
change. |dentify RUP/iterative skeptics and waterfall proponents, and put them in charge of the adoption
project.

Step 7: Take Advice from Misinformed Sources

Even among so-called expertswho do books, articles, teaching, or speeches on the RUP, there are some
who don't really “get” iterative development and its fundamental rejection of waterfall values and
predictive practices. The “RUP” information they present is not correct, and usually belies an underlying
waterfall mentality. Don’t take our word for it. Study the original RUP documents deeply and thoroughly,
understand the true values of iterative development, and then compare for yourself.

We have recently seen misinformation purporting to explain the RUP in at least the following sources:

0 A book on object-oriented project management
0 A bookonJava? server-side programming
0 Alectureat aUML conference

Thetypical sign of misinformation is usually some variation of describing the four phases as follows:

Inception—do most of the requirements

Elaboration—do the detailed design and models
Construction—implement; translate the models into code
Transition—integration, quality assurance, deployment

E IS o

We have also observed so-called RUP experts make incorrect statements such as:

0 “Inthe RUPItisimportant to get 100% of the requirements defined before starting the design.”
o0 “A good, typical iteration length in the RUP should be around 6 months.”

To increase your chances of failing with the RU P, we recommend you accept what you read or hear about
the RUP without discrimination. There are presently many sources that can help misinform you.

© Copyright Valtech Technologies & Rational Software, 2001 12/14 7/14/2002

You Know You Didn’t Understand the RUP When...

In order to ensure absol ute misunderstanding and failure in RUP adoption, we provide the following
checklist or score sheet. Of course, the more points scored, the more successful the RUP failure.

You know you didn’t understand the RUP when ...

(0]

(0]

OO0 oo o

o

Y ou think that inception = requirements; elaboration = design; and construction =
implementation.

Y ou think that the purpose of elaboration isto fully and carefully define models, which are
translated into code during construction.

Y ou think that only prototypes are created in elaboration. In reality, the production-quality core of
the risky architectural elements should be programmed in elaboration.

Y ou try to define most of the requirements before starting design or implementation.

You try to define most of the design before starting implementation.

A “long time” is spent doing requirements or design work before programming starts.

An organization considers that a suitable iteration length is measured in months, rather than
weeks.

Y ou think that the pre-programming phase of UML diagramming and design activitiesisatimeto
fully and accurately define designs and modelsin great detail, and of programming asasimple
mechanical translation of these into code.

You try to plan aproject in detail from start to finish, allocating the work to each iteration; you try
to speculatively predict all the iterations, and what will happen in each one.

An organization wants believable plans and estimates for projects before they have entered the
elaboration phase.

An organization thinks that adopting the RUP means to do many of the possible activities and
create many documents, and thinks of or experiences the RUP as aformal process with many
stepsto be followed.

Conclusion

We are confident that by following these seven steps, and applying the checklist of misunderstandings,
your adoption of the RUP and iterative development will be a spectacular mess.

References

1

Kruchten, Philippe. The Rational Unified Process—An Introduction, 2™ ed. Reading, MA:
Addison-Wesley (2000).

Jacobson, I., Booch, G., and Rumbaugh, J. The Unified Software Devel opment Process. Reading,
MA: Addison-Wesley.(1999)

Royce, Walker. Software Project Management—A Unified Framework. Reading, MA: Addison-
Wesley.(2000)

Johnson, Jim. Chaos: Charting the Seas of Information Technology. Published Report. The
Standish Group (date?)

Druffel, Larry and Heilmeyer, George. Report of the Defense Science Board Task Force on
Acquiring Defense Software Commercially. (USA Department of Defense)

Jones, Caper. Applied Software Measurement. NY, NY: McGraw-Hill.

© Copyright Valtech Technologies & Rational Software, 2001 13/14 7/14/2002

7. Boehm, B. and Papaccio, P. “Understanding and Controlling Software Costs,” in |[EEE
Transactions on Software Engineering. Oct 1988.

8. Beck, K. Extreme Programming Explained—Embrace Change. Reading, MA: Addison-
Wesley.(2000)

9. Fowler, Martin “Put Y our Process on a Diet,” in Software Development. Dec 2000. CMP Media.

10. Booch, G. Object Solutions: Managing the Object-oriented Project. Reading, MA: Addison-
Wesley.(1996)

© Copyright Valtech Technologies & Rational Software, 2001 14/14 7/14/2002

