UML basics

Paolo Ciancarini

The soul
never thinks
without an image

Aristotle, De Anima

Agenda

 Evolution of UML: UML 1.* and UML 2.*
o Structures, behaviors, interactions
* The basic diagrams of UML 1.*

UML is a modeling language

A modeling language allows the specification,
the visualization, and the documentation of the
development of a software system

The models are artifacts which clients and
developers use to communicate

UML 1.7 is a modeling language
UML 2.* is also a programming language

Meaning of models for software

A model is a description of the structure
and meaning of a system

A model is always an abstraction at some
level: it captures the essential aspects of a
system and ignores some details

* Important. a model can be also generator
of potential configurations of systems

Roots of UML

At the beginning of the " 90 there was a convergence:

« Booch method (Grady Booch) | "94 — join Rational Software
. Corporation

= OMT (Jim Rumbaugh)

g

= Fusion/OOSE (Ivar Jacobson) 95 — joins Rational

Evolution of UML

« OO languages appear, since mid 70’ s to late 80’ s ™
« Between 89 and ' 94, OO methods increased from 10 to 50
« Unification of ideas began in mid 90’ s > pre-UML

* 1994 Rumbaugh joins Booch at Rational
— 1995 v0.8 draft Unified Method

« 1995 Jacobson joins Rational (Three Amigos) —
— 1996 June: UML v0.9 published

— 1997 Jan: UML 1.0 offered to OMG
— 1997 Jul: UML 1.1 OMG standard
— 1998: UML 1.2

— 1999: UML 1.3 ’ UML 1.x

— 2001: UML 1.4
+ 2003 Feb: IBM buys Rational

— 2003: UML 1.5
— 2004: UML 1.4.2 becomes the standard ISO/IEC 19501

— 2005: UML 2.0
— 2007: UML 2.1.2
— 2009: UML 2.2
— 2010: UML 2.3 F UML2.0
— 2011: UML 2.4
— 2013: UML 2.5

OMG

Object Management Group, founded in 1989

Consortium of 800 industries (eg. IBM, HP, Apple, etc.)
and interested universities (Bologna is member)

Produces specifications of reference architectures, eqg.
CORBA

Other specifications: UML, various MDA technologies

UML as managed by OMG is a standard de facto in
continuous evolution

UML1.4 is a ISO standard de jure

Main UML specification documents

Superstructure:
defines the UML elements (diagrams, etc.)

Infrastructure: defines the UML core metamodel

OCL (Object Constraint Language):
formal language for writing predicates,
constraints, and formulas inside diagrams

XMI (XML Metadata Interchange):
DTD for UML models

UML Diagram Interchange: XMl + graphic info

Canonical diagrams (vers 1.5)

Use case
Class (Object diagrams are class diagrams without classes ')

Behavior
— Statecharts
— Activity
— Interaction

« Sequence
» Collaboration

Implementation
— Components
— Deployment

Canonical diagrams (Superstructure, vers. 2.4)

Version 2.4 includes 14 canonical diagrams

. Structure
Class
Composite structure
Component
Deployment
Object
Package
. Profiles (added in version 2.4)
. Behavior

1. Activity

2. Statecharts

3. Usecase
. Interaction
Communication
Interaction Overview
Sequence
Timing

NOoO Ok oON~

~wnN =

UML 2.5 Diagram

RN

Class Diagram

Object Diagram

Structure Diagram Behavior Diagram
A A

U M L Package Diagram

5 Model Diagram ’J
2 - .

Composite Structure
2013) o=

Component Diagram

v",

]

:

Manifestation Diagram

Deployment Diagram

' Network Architecture |
Diagram

Profile Diagram

UseCase Diagram

Information Flow
Diagram

Activity Diagram =}

State Machine
Diagram

Interaction Diagram

i

Sequence Diagram

Communication
Diagram

Timing Diagram

Interaction Overview
Diagram

Structure and behavior

« UML focusses on two aspects of object
oriented models: structure and behavior

|t aims at visualizing both

Tour Eiffel (1889) G. Balla: Dinamismo di cane al guinzaglio (1912)

Describing the structure of software

* The description of structure offers an
account of what a system is made of, in
terms of both its parts and the
relationships among them

» A structure may be a hierarchy featuring
one-to-many relationships, a network
featuring many-to-many links, or a lattice
featuring connections between
components that are neighbors in space

Corporate
Board

Developers

Educators

Alumni

Hierarchy

Advisors

Resource
Pool

Network

Lattice

AMA ZonN GOOGLE

FACEBOOK :
—_— e ,——e(

M L

Organizational
structures

-—

/}/ {L ey
A ITNAL AN A
I A%MM“L{& m&\

Modules vs components

Discuss

* Which ways do you know to pictorially
describe “behaviors” - or actions?

"I
-'.',..

N
h

Flowchart

Find IMissing
Wrie Desaiptire Name
for Process (i.e. Howrto Ste}:(S) !
Flowchart) Resolve [ssues
Determine Inputs
A1 Steps
IS4

Y

3 Determine
mequential Steps

Flowchart
corplete

Assembly
Instructions

Lullaby

Johannes BRAHMS
1833-1807
Andante cantabile arr. MA. Caux
viols B == =
©
P
0o A — \ — It A \
y s w—) S — S o i — A s ih
ity gty
o < _° — & - ° o A
s NS J
Prano P a——
S T
i T = ™ + =
Ed - ! +
5
e = = . =
Do 4 \ X i | \
24—} T e s 5 > — " +
g P F e
R ‘ S
— E————e
EE= z =] = : = =
- ' - - '
% S— — i
Do o |
£ + } t t » =
g3 =t F—F—2 =t P—r—g < e
e U |4 4 3 |4 |4 |4
v = T ra T = T
i i i T T i T + i
- T 4 i -

Source : Wiegenlied, Op. 49, No. 4 (1868)

Copyright © 2006 by Caux Multimedia Solutions, Inc.

sheetmusic2print.com

State 1. Twisting three corners anti-clockwise

R'U'RU'R'U2R U2

Photographs by Eadweard Muybridge

PARTIES
TOURNOI INTERCLUBS DE PARIS

183. — Défense des deux cavaliers.
Le 24-2-1929.

O. S. BERNSTEIN-]. Cukierman

1. %48 548

2. H3ESH AH3E W

3. WAEY HIES

4. A4 EXAY

5. 0—0 £ 3%y

La suite 5. ,,00<2&; 6. B1&, ad4w; 7. TXAW,
WXE; 8. H3EW, wirnw! ete., conduit en fin

de compte & I’égalité, Le coup du text_e as-
sure par contre aux Blancs une supériorité
en espace dans la premiére phase de la partie.

6. BV AW w2S
7. 3ITW 0—0
8. H$H2H

Valocs (4)

\

%

6

e 4

Lento 18)

Lerso (3]

Veloce (1)

Napoleon in Russia

{es

Bees 2'h,

Deessée par JIL.

3 p csemts dows P esemté: Tm/»&dl g 3%5;”6 colorées a naison 'wn Mrowrammﬁmm; ibs dom— de Peudéauﬁ e travers
es 5&«:4. Lo o vaééiﬁw&o Bommes.quiventioms—en Mia/, fe

dams fes ouotages de I Z"’bzem, dr_cf{lflll”,’ rlcc%Z(’/llddC; de (,%amlﬁrqy ely/&?awzual inedin—de. Jatﬂbj T.-&mm,hl'mm’u depuis e 28 Octobre .
g’ou wiieua WM&L&/l'mﬁfyawmxaej’am&ﬁd'buuwwéolw&o cotps o Lrisce Jerome_er—du Maréchal Ubwvau»wq;d/ awaiem—ote. détachés swe INGusr

7

y ﬂm}mﬁ««, W 266 Touts er— Chaussies en rebeate

ol cewacquis eudottom—s —_ Seb nomses

@dl’l/e (%:gllraﬁ()e/ azoMoﬂmmw'mgommw de N Qomée Jﬂia,uccd.ée/ bami/fa/ Campagne— de &XWL& 812 ~1813.

Bt il 35 Tommalis 1965,

ot qui om—dewis & dresser fa cante. ow-%yukoe’a,

MoSCOU

o

o®

Autnj. par Rgm"r-, 8. Pas. S Marie S*G¥™d Paris.

&
e Mobilow ngmvuo Ovscha a WihﬁéK,, Maimw‘a’om wanche Mec/l' ce. § 2
%
£ Zarantino
Gloubokoe
LS
) 2 g %, jarosewli
N2 3 §
R.
Kowno Wilna
Smopgoni
— .
S 3 S
& e 3 g $ Liaues communes de France (Gurto de M de Fizensac,)
§ Mploderno § D e 3
Studs
Mokilow
Ll{im/t
TABLEAU CRAPHIQUE dela températute en degrés du thermométre de Réaurnur au dessous de zéro.
Zérole 18 8™
Pluie 24 8% T
Zes Cosagues passent aw, galop 7 = 10
lo Nitmen gele. —1% 79719 9. Lis
20
e TTR0° Ie 28 9 ot Tt o 125
— 26717 X" ” TRk X, et
—30"1e6 X

(Minard 1869)

Imp.Litk. Regnier et Dourdet.

THESE CHARTS SHOW MOVIE CHARACTER INTERACTIONS,
THE HORIZONTAL AXIS 1S TIME. THE VERTICAL GROUPING OF THE
LINES INDICATES WHICH CHARACTERS ARE TOGETHER AT AGIVEN TIME.

LORD oF THE RINGS

STAR WARS
“"""\ (ORIGINAL TRILOGY) .
=N ey e N\
AT A S
e S ,// cFY “\ - 777\'*”";‘ - ;;mnm R — - 7;\‘7

/’ "/

o — | % .
— B

- ;
= =1
T

=
: i1
= =
] i
=
‘ JRR 2

|

Exercise:
structural or behavioral?

—-—

-

4] T

/

Hint: this picture describes modules (static) or components (dynamic)?

Discuss

 Are structures and behaviors all we
need for software design?

5
»

Three modeling axes

Functional

Use case diagram

(System sequence diagram)

(Activity diagram)

Static Dynamic

Class diagram State diagram
(Object diagram) Collaboration diagram
Component diagram (Sequence diagram)

(Deployment diagram) (Activity diagram)

Example

« A chess program could be “stand-alone”,
“client-server”, “agent based”, etc.

* Its behavior should always be coherent
with the rules of chess

 What is its goal? To play and win a chess
game against an opponent

Goals and responsibilities

* The very same chess program, with identical structure
and behavior, could be used with a different goal?

« Forinstance, could it be used to learn to play chess?
Responsibility of the program: teach chess

* Or to write a chess book, like a chess game editor?
Responsibility of the program: write chess texts

« Or to play a game of loser’ s chess (where who is
checkmated wins)? Responsibility: play games with rules
slightly different from chess

Each responsibility corresponds to (at least) a use case

From responsibilities to use cases

7
/\
User \

Use Case diagram

It describes the externally observable behavior
of a system, as related to requirements

It describes the main interactions between the
system and external entities, including users and

other systems

It is @ summary of the main scenarios where the
system will be used

It describes the main user roles

Example

O Negotiate policy O

>

Sales staistics

|

Customer Insurance Salesperson

Customer statistics

Use Case: elements

system _
N boundary ™\
\ v

association —~~_

use case

\
\ //
R - Register -
actor ~. =
\
-3

-
T

Grades

“~o_ <<include>>

~
~
:k

Validate User

Elements of a Use Case Diagram

 Actor:

— Represents a role played by external entities
(humans, systems) that interact with the system

 Use case:
— Describes what the system does (i.e., functionality)

— Scenario: sequence of interactions between the
actors and the system

* Relationships:
— Association between actors and use cases
— Extension (or generalization) among actors
— Dependency among use cases: include and extend

A

)

VAN
User

o

AR

Student Faculty

Example

>0

User

>0

Student

>0

/\

Faculty

o

Check Grades <|nclude>>
Validate User
/ Get Roster <<|nclude>>

|
: <<extend>>

Enter Grades

Use Case Scenario

Use Case: Check Grades

Description: View the grades of a specific year and semester
Actors: Student

Precondition: The student is already registered

Main scenario:

User System

1. The system carries out “Validate User”, e.g.,
for user “miner” with password “allAs”.

2. The system prompts for the year and semester.
3. The user enters the year and
semester, e.g., Fall 2013.

4. The system displays the grades of the courses
taken in the given semester, i.e., Fall 2013.

Alternative:
The student enters “All” for the year and semester, and the system displays
grades of all courses taken so far.

Exceptional:
The “Validate User” use case fails; the system repeats the validation use case.

<<extend>> vs
<<Include>>

A use case B is included in
use cases C and D when
these have some common
steps represented by B

A use case B extends a
use case C when B applies
optionally, under some
condition (usually specified
in the scenario)

Note: the lower diagram is
formally correct but should be
avoided, because the main
functions should NOT be
described as extensions of
logon

Guest

i—@

Reserver make reservation

check in guest

Recept:omst e

check out guest

PSR mclude

log-on

s mclude

-

!

Reserver

Receptionist

«extend»_-~

-
-

«extend»

-~
~
-~

«extend»"~(

C D

“ make reservation

C_ D

check in guest

-

check out guest

Exercise

Draw a use case diagram and a related scenario
for the following situation:

* A user can borrow a book from a library;
— extend it with borrowing a journal

* a user can give back a book to the library
— including the use case when the user is identified

Exercise: include or extend?

Main use cases: a customer buys something (eg. a book)
from a virtual store like Amazon

* The user must be identified

* The book is not currently available, delayed delivery

* When the book is received the service must be graded
* The book is delivered via air mail

* The book is an ebook and can be delivered via Internet

Structure
diagrams

Object-Oriented Modeling

* Models describe structures of objects and their behavior

« A system is modeled as a set of objects that interact by
exchanging messages

 No semantic gap, seamless development process

4 Conceptual/computational world \

Real world .
Abstraction > —]
N =
Interpretation

Data-oriented Object-oriented

Key ldeas of OO Modeling

Abstraction

— hide minor details so to focus on major details
Encapsulation

— Modularity: principle of separation of functional concerns

— Information-hiding: principle of separation of design decisions
Relationships

— Association: relationship between objects or classes

— Inheritance: relationship between classes, useful to represent
generalizations or specializations of objects

Object-oriented language model
= object (class) + inheritance + message send

The basic building blocks of UML

Water

Water /
- De
can be d fresh water
Rivers

\

hav

Crocodiles

@ Oceans | Oceans \w
hawve
P I tive,in -W o have Sul
ave 5 Ll alt water
havs ive in

Penguins

— Elements: domain modeling concepts

Fresh water

— Relationships: connection between model elements
that adds semantic information to a model

— Diagrams: collections of elements and relationships
representing some “perspective” on a model

Main idea

« With UML we model systems made of

objects which have relationships among
them

* Objects are instances of classes

» Classes define the structure of objects and
their relationships

Example

* A university is an organization where some
persons work, some other study

* There are several types of roles and
grouping entities

* We say nothing about behaviors, for the
moment

A taxonomy

Citizen Female
Foreigner >| Person <] Male
Student Employee <
Undergraduate | | Masters PhD
student student | | student

Professor [<l

Full professor

Administrative

Technician

Associate
professor

Research
fellow

Class

* |s the description of a set of objects

* Defines the structure of the states and the
behaviors shared by all the objects of the
class (called instances)

* Defines a template for creating instances

— Names and types of all fields
— Names, signatures, and implementations of all
methods

Class diagram

* Most common diagram in OO modeling

* Aclass diagram is a graph including:

— Nodes representing classes (types of objects)
« Nodes can have just a name, or expose some internal structure

— Links representing relationships among classes
 Inheritance
» Association
« Aggregation or composition
» Dependency

— Links can have multiplicities and/or names for roles
played by participants

Class diagram: example

Order Customer class name
dateReceived: Date[0..1] * association 1
isPrepaid: Boolean(1] > name[1] i
;;‘ig‘eﬁ’e,\;oﬁtefg‘glﬂ . address[0..1] attributes
class ’ getCreditRating(): String | operation
{if
Order.customer.getCreditRating generalization
is “poor” then Order.isPrepaid
must be true}
lineltems * {ordered}
_ constraint
Order line
price: Money contaciName
N creditRating Personal Customer
creditLimit
multiplicity . creditCardNumber
| {getCreditRating()=="poor”}
1 v role name salesRep J, 0..1
Product Employee

Notation for classes

« The notation for classes is a rectangular box with
three compartments

ClassName [The top compartment shows the class name

field, _ _
The middle compartment contains the
fId declarations of the fields, or attributes, of the
1€1C0n class
method,

The bottom compartment contains the
declarations of the methods of the class

method,

Example

A point defined by classes at three different abstraction levels

Point

Point

Move

Point
- X: int
- y:int

+ move(dx: int, dy: int): void

Example

A document defined by classes at three different abstraction levels

Document

Pages]]
nPages

Document

display

Document

- Pages: array of Page
- nPages: int

+ display(k:int, p:Page): void

Exercise

Draw a class diagram for the following Java code

class Person {
private String name;
private Date birthday;
public String getName() ({
/] ..

}
public Date getBirthday() {

/] ..
}
}

)

A counter class

Counter

- counter: integer

+ display: integer
+ tic: void
+ reset: void

A class in UML

c3:Counter

class Counter/{

private counter: integer;

public integer display()
{return counter};

public void tic()
{counter = counter + 1};

public void reset()
{counter = 0};

A corresponding class
in @ programming language

p:Printer

Using an object of type class
in an object oriented system

Object diagram

An object diagram represents a “snapshot” of a
system composed by set of objects

An object diagram looks like a class diagram

However, there is a difference: values are
allocated to attributes and method parameters

While a class diagram represents an abstraction
on source code, an object diagram is an
abstraction of running code

Notation for Objects

* Object: Rectangular box with one or two compartments
* Object name: object name/role name:class name

objectName: Classname

field, = value,

field, = value,

The top compartment shows the
name of the object and its class.

The bottom compartment contains
a list of the fields and their values.

p1:Point :Point P2/origin:Point
x =10 X =30 x =20
y =20 y =30 y =30
named anonymous named

with role

Object diagrams: examples

homepage:
Document

mythesis:
Document

p1: Point
X=0 Y=0
t1: Triangle p2: Point
t =[p1,p2,p3] X=0 Y=1
p3: Point

X=1 Y=0

Example (object diagram)

r:Robot
[moving]
/
w:World
al:Area a2:Area
w1: Wall w2: Wall d1: Door w3: Wall

width = 36 width = 96 width = 36 width = 96

Example: chemical elements
(class diagram)

Element

T

C| carbon <<covalent>> Hydrogen

C H

<<covalent>>

Example: molecule
(object diagram)

:Hydrogen :Hydrogen
:Hydrogen :Carbon :Carbon :Hydrogen

:Hydrogen :Hydrogen

Objects vs. Classes

Interpretation in the
real world

Representation in the
model

Object

Class

An object is anything in the
real world that can be
distinctly identified

A class is a set of objects
with similar structure and
behavior. These objects are
called instances of the class

An object has an identity, a
state, and a behavior

A class defines the structure
of states and behaviors that
are shared by all of its
instances

Object = ldentity + State + Behavior

 |dentity
— Distinguishes an object from all other objects

e State

— Consists of a set of attributes (or fields), which have
names, types, and values

« Behavior

— Defined by the set of operations (or methods) that may
operate on the object

— Each method has a name, a type, and a value, where

« The type consists of the return type and the list of parameter types of
the method, often called signature.

« The value is the implementation of the method often expressed as a
sequence of statements, in languages like Java and C++

Association

* An association is a binary relationship between
classes or objects

 Represented as a line between boxes

Student Course

:John :SWArch

Assoclation and roles

The simplest relationship among classes is the
association

An association represents a structural relationship that
connects two classes

It means that the two classes “know” each other: all
objects in a class have some relationship with some
object(s) in the other class

An association can have a name, which usually
describes its role

Class diagrams denote systems of objects

from

Flight City

to

Roma:City from AZ611:Flight to Boston:City

Association with direction

 An association may have an optional label
consisting of a name and a direction arrow

 The direction arrow indicates the direction of
association with respect to the name

enroll »

Student

v

Course

An arrow may be attached to the end of path
to indicate that navigation is supported in that direction:

Student knows Course, Course does not know Student

Roles and multiplicity

* An association line may have a role name and a
multiplicity specification

« The multiplicity specifies an integer interval, e.g.,
— [..u closed (inclusive) range of integers
— | singleton range
— 0..* nonnegative integer, i.e., 0, 1, 2, ...

* 1
Student 0.. Faculty

advisee advisor

Association example

A Student can take up to five Courses

Every Student has to be enrolled in at least one course
Up to 300 students can enroll in a course

A class should have at least 10 students

Student

takes »

10..300

1.

D

Course

Example

A teacher teaches 1 to 3 courses

Each course is taught by only one teacher
A student can take between 1 to 5 courses
A course can have 10 to 300 students

1 teaches » 1..3
Teacher Course

1..5

Students takes »

10..300

Exercise

Explain the meaning of this diagram

Student

6.."

enroll ™

0.*

] /N
advisee | 0..*

1

Course

/\1*

A teach

1

advisor

Teacher

Bank

accountNumber:Integer
0..1

customer

Person

isMarried : Boolean
isUnemployed : Boolean
birthDate : Date

Exercise (=©

Company

manager 0..*

managedCompanies

name: String
numberOfEmployees: Integer

age : Integer ooree——emevels stockPrice() : Real
firstName : String |
lastName : String
sex : Sex wife
Income(Date) : Integer o
husband|0..1
Job
title : String
startDate: Date
Marriage salary: Integer
place: String

date: Date

Net data structures

 How we can represent a net of objects from the

same class?

* A class with an association to itself with both
ends of the association marked with 0..*

b1:A

c1:A

al:A
d1:A — f1:A
e1:A L gl:A

Hierarchic data structures

* How we can represent a hierarchy of objects from

the same class?

* A class with an association to itself with one end
of the association marked with 0..* (children) and

the other as 0..1 (parent)

al:A

b1:A

0.1

d1:A

c1:A

f1:A

el:A

Hierarchic file system

» A directory can contain any number of
elements (either a file or a directory)

* Any element is part of exactly one directory

~ Element
1 $

Directory File

Non-hierarchic file system

» A directory can contain any number of
elements (either a file or a directory)

* An element can be part of many directories

$ ~ Element

Directory File

Aggregation

* An aggregation is a special form of association
representing has-a or part-whole relationship

|t distinguishes the whole (aggregate class) from its parts
(component class)

« WARNING: an aggregation does not bind the parts’ lifetime
to the whole (they can exist separately)

Whole Part

Course Students

Example of an aggregation hierarchy

Computer Science
Degree

I

Calculus

Programming

Algorithms Geometry

OpSystems

Logic

Composition

* A composition is a stronger form of aggregation

|t implies exclusive ownership of the component
class by the aggregate class

* The lifetime of the parts is entirely included in the
lifetime of the whole (a part can not exist without
its whole)

Whole <& Part

Apartment @ Room

Example of a composition hierarchy

MicrowaveOven

|

Clock

DoorSensor

Beeper Display

Keypad

Lamp

University

1
1.*

College

Example

A member-of

Faculty

0—1%'* Department
1 ¢ 1
chair-of A
1 1..*

Student

Example

sub-team
' 0.*
0.1 Team Employee

1

builds

v
1.%

1 1. 0.*
Airplan @ Component [| sub-assembly

0.* Q

assembly

Aggregation vs composition

Person

homePhone
>

workPhone

PhoneNumber

CountryCode
Prefix
Number

Person

homePhone
 o— >

PhoneNumber

workPhone
. >

CountryCode
Prefix
Number

Aggregation:
A Person uses two phone numbers;

Numbers are independent from
Persons

Composition:
A Person has two phone numbers;

Numbers are dependent from
Persons

Aggregation vs composition

Windsurf usep
0..1 1 Sail

Boat usep

0.1 1

Windsurf |e—n2sk
0..1 1 Sail

Boat |e__N2sk

0.1 1

Aggregation:

Windsurfs and boats use sails.
The same sail can be used

in a Windsurf or in a Boat

Composition:

Here windsurfs and
boats have each their
own sails which are
destroyed when the
“container” is
destroyed

Exercise

aggregation or composition ?
— Building and rooms
— Course and lessons
— TV channel and programs
— Parliament and members
— Sky and stars
— Country and cities
— City and buildings
— Wood and trees

Example

+contq(:\ModeIEIement
- \qrﬁame:String
+behaviou ' —T
¢| StateMaching o7
+supmachine £
i
+ransition
+source| :outmg
mmﬁf StateVertex |Lyarget| +incoming| Transition
A 1) +internal
+op
’ K
InitialState State strigger
0.1
A 0.f +deferrableEvent
0.+ __Eveats
[l 1 0.,
%mmsitﬁtate SimpleState| | FinalState
) ordered}
? N +parameters
- SubmachinState Operation Parameter
(from Class Diagram) {from Class Diagram)

Figure 4. A fragment of the Statechart diagram metamodel
(excerpt from the UML standard v1.4)

Exercise -

Imagine some aggregation or composition
relationships among the following classes
and draw a corresponding class diagram

— Employee

— Manager

— Office

— Department

Dependency

* A dependency of A from B is a relationship
between two entities A and B such that the proper
operation of A depends on the presence of B, and
changes in latter would affect the former

« Example: a common form of dependency is the
use relation among classes

<<uyse>>
Class1 |---------m-mmmmmmmmmm e > Class2

<<uyse>> .
Program oo > Compiler

Example: dependencies in a class diagram

Registrar % CourseSchedule
+ addCourse(s: CourseSchedule, c: Course): void /// ?
+ removeCourse(s: CourseSchedule, c: Course): void {1/_/___________> Course
+ findCourse(title: String): Course \\
+ enroll(c: Course, s: Student): void \\\
+ drop(c: Course, s: Student): void \\\ <f

A Student

Dependencies are often omitted from a class diagram unless they
convey some significant information

Example: realizing a use case

i S—_—
©< ————— .~ Collaboration

Use case <<Implements>%~ ,,
) <<Impléments>> \
L’ ,' <<Implements>>
Class A i Y

Use case description: Class B
1. Actor pushes button Class C
2. Use case does something
3. Use case responds with Op1()

message Op2() Op1()
4. .. Op2() Op1()

Op2()

Class and superclass

Point

X

y
Point Move
AN AN

Colored Point Colored Point

color

SetColor

Phonenbill

Example

>——1 Phonecall [
A .
Origin
JA
Mobileorigin
Mobilecall = o

Phone

T{complete,disjoint}

0.* 0.*

Cellphone

Fixedphone

Inheritance

» Key relationship in object modeling

 Inheritance defines a relationship “IS A" among
classes or interfaces

 |In UML there are three kinds of inheritance

— extension relation between two classes (subclass and
superclass)

— extension relation between two interfaces
(subinterface and superinterface)

— Implementation relation between a class and an
interface

Three kinds of inheritance

* An extension relation is called specialization and

generalization

* An implementation relation is called realization

Superclass Superinterface Interface
A
i
|
Subclass Subinterface Class

extension of
classes

extension of
interfaces

implementation
of interfaces

Interface

* |nterfaces are like classes,
but have no “implementation”

* Aclass implementing an
interface has a special
iInheritance arrow toward the
interface

* LinkedList implements List

<<interface>>
List

add(object 0)
get(int index)

/N

LinkedList

add(object o)
get(int index)

Interfaces In Java

<<interface>>

interf Drawable
Drawable tertace awab {

void draw(Graphics g);

+ draw(g: Graphics): void }

Interfaces

A class and an interface
differ: a class can have
an actual instance of its
type (but it can also
have zero instances),
whereas an interface
must have at least one
class to implement it

Example: both the
Professor and Student
classes implement the
Person interface

<<interface>>
Person

firstName: String
lastName: String

Professor

salary: Euros

Student

major: String

Example

Student
{abstract}
JAN
| |
Graduate
No-degree Undergraduate {abstract}

T

Master

PhD

Example

Student
{abstract}
JAN
| |
Graduate
No-degree Undergraduate {abstract}
Master

i

PhD

Exercise

* Draw a class diagram showing inheritance
relationships among classes Person,
Employee, and Manager

* Draw a class diagram showing inheritance
relationships among classes Person,
Student, Professor, and Assistant

Real example: online shopping cart

Customer

% address: String[0..1]
% phone: String[0..1]

acc

customer

Account

1 % billingAddress: String[0..1]
L % open: Date[0..1]
% closed: Date[0..1]

% isClosed: Boolean[0..1]

account
r S

items

WebUser

login: String[0..1] customer
meiassward: Shina(0..] 1 1 & email: String[0..1]
% state: UserState[0..1] webuser

T @ isVIP(): Boolean
webuser

cart
1
ShoppingCart sc
shoppincart # creationDate: Date[0..1] 1

0.1

« Enumeration »
UserState

=] New
=l Active
= Banned

« Enumeration »
OrderStatus

= New

= Old

= Shipped
= Delivered
= Closed

Lineltem

¢ quantity: Integer[0..1]
% price: Real[0..1]

* |item
1 | product

Product

¢ name: String[0..1]
% description: String[0..1]

items

account

p Payment
* 4 paidDate: Date[0..1]
acc 4 total: Real[0..1]
1 % details: String[0..1]

order

W
Order

number: Integer{0..1]
% ordered: Date[0..1]

-
~

% shipped: Boolean[0..1]
% shipTo: String[0..1]

total: Real[0..1]

% status: OrderStatus[0..1]

This class model represents
the entities and relations of
an online shopping cart
system. It's one of the
possible designs for such a
system. Fork it to generate

http://blog.genmymodel.com/class-diagram-public-top5.html

Real
example:
LinkedIn

class Lmkedln/

+connection

0.r
Grou,
el +groupMember +group P
+connection |© fistName: Sting 4 name: String
0" - lastName: String | 0.
1 1 1
1 1
Dizcussions Promotions

Jobs

0.7 0.7 |0.F

Discussion

fitle: String

0.r

Post

text Stiing

Real example: Facebook

Photo 0..1

+eventPicture

Network

+name: string
+/numberOfMembers: integer

+password: string
+securityQuestion: string
+securityAnswer: string

Regionallietwork

22?

Event

+friendsEvents= | +name: string

+members
Account
+friends| +name: string =
+email: Email

[+quest???

+markedEvents *

+tagline: string[0..1]
+host: string

+status: string

X

1

=

‘mation

ContactInformation

Job

=

[}

School

+sex: Sex

+interestedinMen: boolean
+interestedinWomen: boolean
+lookingForFriendship: boolean

+lookingForARelationship: boolean
+lookingForWhateverICanGet: boolean

+lookingForDating: boolean
+birthdayDay: Date
+hometown: string
+politicalViews: PoliticalView
+religiousViews: string

+activites: text
+interests: text
+favoriteMusic: text

+favoriteMovies: text
+favoriteBooks: text
+favoriteQuotes: text
+aboutMe: text

+favoriteTVShows: text

+emailsOnlyForFriends: boolean
+screenNamesOnlyForFriends: boolean
+mobilePhoneOnlyForFriends: boolean
+andPhoneOnlyForFriends: boolean
+addressOnlyForfFriends: boolean
+websiteOnlyForFriends: boolean

<<enumeration>>
PoliticalView

+veryLiberal
+iberal
Fuee

[K

+employer: string
+position: string
+description: text
+city: string

+state: string
+country: string
+startMonth: integer
+startYear: integer
+stillinThisJob: boolean
+endMonth: integer
+endYear: integer

+name: string
+year: integer

B2

+addjtionalEmai ScreenName =
+contactEmail1 - 1 Website
Email Address ::'\ame: string +website: text
gerSyst
e e s]
+email: Email | | +address: string

+city: string

+state: strin

“+country: strgmg <<enumeration>>
+aim
+googleTalk
+skype
+windowsLive
+yahoo

+gaduGadu

+name: string
+year: integer
+attendedFor
+concentration: string[1..3]

E i 7 -administrator

CreditCard

+cardHolderSName: string

+creditCardNumber: integer
+expirationDateMonth: integer
+expirationDateYear: integer
+country: string

+address: string
+cityOrTown: string

+zipOrPostalCode: string

+creditCardType: CreditCardType

+stateOrProvinceOrRegion: string

+description: string[0..1]
+start: DateAndTime
+end: DateAndTime
+location: string
+street: string[0..1]
ityOrTown: string

<<enumeration>>
CreditCardType

+visa
+mastercard
+discover
+americanExpress

<<enumeration>>
AttendanceStatus

+attending
+notAttending
+maybeAttending
+notYetReplied
+blocked

+phone: string[0..1]
+efmail: string[0..1]
+showTheGuestList: boolean
+wallEnabled: boolean
+photosEnabled: boolean

+videosEnabled: boolean
+postitemEnabled: boolean

+access: EventAccessKind
+isShown: boolean

+/type | EventType

+name: string

}:

EventSubtype

+name: string

+onlyAdminPhotoUpload: boolean

<<enumeration>>
EventAccessKind

+onlyAdminVideoUpload: boolean

+onlyAdminVideoUpload: boolean

+open
+closed
+secret

Real example: DOM

Logical View

DOM (Core) Level One

Invoke "get Name" to read instance variable name when using XML::DOM or XML4J

Document

tdoctype [READONLY] : DocumentType
tdocumentElement [READONLY] : Element

trereateTexdNode(data : DOMString) @ Text

tereateElement(tagName : DOMString) : Element
tereateDocumentFragment)) : DocumentFragment

Node

+nodeName [READONLY] : DOMString
+nodeValue : DOMString

+nodeType [READONLY] : unsigned short
+parentNode [READONLY] : Node
+childNodes [READONLY] : NodeList

Element

rrtagName [READONLY] : DOMString

tgetAttribute() : DOMString
rsetAttribute(name : DOMString, value : DOMString) : void

trremoveAttribute(name : DOMString) : void
rrgetAttributeNode(name : DOMString) : Attr

tcreateComment(data : DOMString) : Comment +firstChild [READONLY] : Node
tcreateCDATASection(data : DOMString) : CDATASection (>+|ast_hild [READONLY] : Node 4
tcreatePI*(target : DOMString, data : DOMString) : PI® +previousSibling [READONLY] : Node
tcreateAttribute(name : DOMString) @ Attr +nextSibling [READONLY] : Node

tcre ateEntityReference(name : DOMString) : EntityReferenck +attributes [READONLY] : NamedNodeMap
FaetElementsByTagName(tagName : DOMString) : NodeLis +ownerDocument [READONLY] : Document
+insertBefore(newChild : Node, refChild : Node): Nod Adtr

tsetAttribute(newAttr : Attr) © Attr
trremoveAttributeNode(oldAttr : Attr) : Attr
trgetElementsByTagName(name : DOMString) : NodeList
fFnormalize() : void

*Pl=Pracessinglnstruction

+replaceChild(newChild : Node, oldChild : Node) : Node

DocumentFragment +removeChiId(oIdChil}1 : Node): Node nam}ejREADDNLY] : DOMString
+appendChild(newChild : Node): Node rrspecified [READONLY] : booleary
+hasChildNodes() : boolean tvalue : DOMString
+cloneNode(deep : boolean): Node

JANINN 1} l}
| CharacterData
DocumertType

trdata : DOMString

rsubstringData(offset : u_long, count: u_long): DOMString
tappendDatalarg : DOMString) : vod

rinsertData(offset : u_long, arg : DOMString) : vod
tdeleteData(offset : u_long, count: u_long): void
treplaceData(offset : u_long, count: u_long, arg : DOMStrin) : vo|d

tname [READONLY] : DOMString Notation

tentities [READONLY] : NamedNodeMap
tnotations [READONLY] : NamedNodeMag

kpublicld [READONLY] : DOMString
ksystemld [READONLY] : DOMString

Entity |'

tpublicld [READONLY] : DOMString

tsystemld [READONLY] : DOMString

b notationName [READONLY] : DOMString EntityReference Processinglnstruction Text Comment CDATASection
rtarget [READONLY] : DOMString
[rdata : DOMString +splitTest{offset : u_long) : Tex]

XML::Parser
...................... NamedNodeMap

*setHandlers()
*parse_star()

#+parse() : Document :
:-i-parsestringo :Document .
+parsefileQ) : Document

-length [READONLY] : u_long
+getNameditem(name : DOMString) : Node
+setNamedltem(arg : Node) : Node
+removeNamedltem(name : DOMString) : Nodp
+item(index : u_long): Node

DOMString NodelList

tlength [READONLY] : u_lon
rritem(index : u_long) : Node

"u_long" ="unsigned long"

Strange examples

Behavior
diagrams

£ S S e
| = e P = = =
B e e = e ==

G. Balla: Dinamismo di cane al guinzaglio (1912)

M.Duchamp: Nude descending a staircase (1912)

Modeling Behavior

Statechart diagram

— Depicts the flow of control inside an object using
states and transitions (finite state machines)

Activity diagram

— Describes the control flow among objects by
actions organized in workflows (Petri Nets)

Sequence diagram
— Depicts objects’ interaction by highlighting the
time ordering of method invocations

Communication (collaboration) diagram
— Depicts the message flows among objects

OBJETCS’

OBJETC' S
DYNAMICS

INTERACTION

Behavioral elements

O Verbs in the requirements
O Dynamic parts of UML models: “behavior over time”
O Usually connected to structural elements

Two primary kinds of behavioral elements:

U Interaction
a set of objects exchanging messages, to accomplish a specific purpose.

harry: Student ask-for-an-A paul: Professor

name = “Harry White” » name = “Paul Smith”

U State Machine
specifies the sequence of states an object goes through during its lifetime in

response to events

) received-an-A/buy-beer | .
inStudy > inParty
sober/turn-on-PC >

State diagram: booking object

State diagram

A state diagram represents the behavior of an object
Graph: net of states (nodes) and transitions (arrows)
Graph representing a finite state machine

Useful for modeling a reactive (event-driven) system
Animation by “foken game”

push switch

State diagram: elements

Initial State Final State

$ Trarjfition ?

VAN /
Idle ai }

\'4

Example: Unix process

fork Pre-empted

scheduled

I.g }end *

l/Sys call

@ |

Sys return

State

 Situation in the life of an object (or system)
during which it:
— Satisfies some condition,
— Performs some activity, or
— Waits for some events

« Set of values of properties that affect the
behavior of the object (or system)
— Determines the response to an event,

— Thus, different states may produce different
responses to the same event

State in a state diagram

« States are rounded rectangles with at least one section

— Mandatory field: name
« optional: list of internal actions (with optional guards)

— format: event-name argument-list | [guard condition] / action-expression

— special actions: 'entry/' and 'exit/' (these cannot have arguments or guards)
« optional: invoking a nested state machine

— format: do/machine-name

— 'machine-name’ must have initial and final states

(Enter Passwordw

entry/ set echo
char/ handle char

® Counter

J/ class Counter({

private counter: integer;
public integer display()

(create W {return counter};
public void tic()
entry/ setc =0 {counter = counter + 1};

public void reset()
{counter = 0};

}
tic reset
display
(tic R 4 display R , 4 reset W
display
- tic] <
entry/ c:=c+1 ~ entry/ print c entry/ ¢c:=0
//dspmy)

tic

tic

Transition

* Relationship between two states indicating that a
system (or object) in the first state will:

— Perform certain actions and

— Enter the second state when a specified event occurs
or a specified condition is satisfied

A transition consists of:
— Source and target states
— Optional event, guard condition, and action

W Event [Condition] / Action
[Source J >[Target }

Definition: event and action

 Fvent

— An occurrence of a stimulus that can trigger a state
transition

— Instantaneous and no duration
 Action

— An executable atomic computation that results in a
change in state of the model or the return of a value

Example

dial digit(n)
[incomplete]

I Cw[Ringing }
[Dialing >[Connecting

J dial digit(n)
dial digit(n) [valid] / connect

i i busy
[invalid] [Busy }

=3

Example

recovery success O

recovery failure

anomaly Recovery

|ldentification |——
temperature
pressure
recovery
v failure
recovery Pressure Temperature
SUCCESS Recovery Recovery
recovery
failure

recovery success

Composite states

o
\L / Recovery \
anomaly p
Normal > ®—> Recovery
<— |dentification
recovery S
success
pressure temperature

W Pressure } [Temperatur

e
recovery [Recovery Recovery }
failure \ /

Composites and transitions

Transition to/from composite state

.

N
[|dle J\\ [Validating}H
N\ | \L

[Selecting }%; | Processing}

)

[Maintenance}(

Transition frorft’w substate

Including composite states

~
Dial Number

Include / Dialing —>
o)

/Dialing. \

\L [number.isValid()]

(Start w digit(n) (Partial Dialing W
>

entry / start dial tone Lentry / number.append(nﬂ

exit / end dial tone

N wol)

Composite state

Used to simplify diagrams

Inside, it looks like a statechart

It may have composite transitions

It may have transitions from substates
It can be sequential or parallel

Example

I

Adding assets

N\ [not all assets added]

do / add assets <

J

o)

[all assets added]

/

Ve”fy assets [verified /complete check out]

Check out assets J

do / verify eligibility J \
cancel /
cancel
cancel
\{ Cancelled Complete }

o)

Exploiting
a
composite
state

-

.

V
ﬂiding Asseh

Active

bo/add assetﬂ(

[not all assets added]

[all assets added]

f Verifying

verified / complete

Checi oul Checking Out

Qverify eligitw

Assets

J

cancelled

[l) @.,I.m]

Parallel composition

« Concurrency (multiple threads of control)
* Synchronization

/ Superstate

7‘% substate1 > substate2 %@\

- J - J
(N (N

3‘% substate3 —>| substate4 %@;

Example

>IH[Passed }

il >[Failed }

Protocol state machine

* Normally we use a state diagram to show the internal
behavior of all objects of a class

« Sometimes, however, we want to show a complex
protocol (set of rules governing communication) when
using an interface for a class

 For example, when we access a database we need to
use operations like open, close and query. But these
operations must be called in the right order: we cannot
query the database before we open it

Protocol state
machine

DBaccessor {protocol})

create /

close /

<<boundary>>
DatabaseAccessor

O

DBaccess

-dbname
-password
-comArea
-queryStatement

+open()
+close()
+query()
+fetch()
+cancel()
+create()
+Kill()

p

[queryStatement <> null] query / [comArea set]

open / [successful login]

fetch / [comArea.recordAvailable]

cancel / [comArea cleared]

Fetching

__

close /

Y|

(Closed

kill /

Queried

cancel / [comArea cleared]

R

close /

Behavioral vs protocol state machine

« Two kinds of state machines: behavioral state
machines and protocol state machines

« Behavioral state machines can be used to model
the behavior of individual entities (e.g., class
iInstances)

* Protocol state machines are used to express
usage protocols and can be used to specify the
legal usage scenarios of classifiers, interfaces,
and ports

History pseudo state

A history pseudostate represents the most recent active substate of
its containing state

There are two kinds of this pseudostate: shallow or deep
— Shallow (H): only the topmost active level of superstate is recorded
— Deep (H*): all nested active levels in the superstate are recorded

(See the Superstructure sect 15.3.8 for pseudostate definitions and icons)

V

'''''''''

Consistency
among diagrams

attends

1

UniversityCourse

new enrollment to
a different course
A

[Student

|

end studying
studies

change role

h
[Graduate Lc ange career { Sportsman

)
~

@

Student
practices
Name *
Surname
Age
Role 0.*
Sport

Exercise: Cellular Phone)

« Draw a statechart describing the operation of a
cellular phone. Assume that the phone has keys for:
— power on and off
— keypad locking and unlocking
— 0-9,#,and *
— talk (or send) and end
Model the following operations:
— power on/off
— keypad locking/unlocking
— making calls (e.g., dialing, connecting, talking),
— receiving calls (e.g., ringing, talking)

Activity diagrams

Activity diagrams represent workflows of actions
of several objects (but objects are not shown)

Actions are composed by sequence, choice,
iteration, and concurrency

AD can be used to describe the activities of the
components of a system

In UML1 AD are based on State Diagrams
in UML2 they have a different semantics

Activity diagram: elements

I initial

[Initialize course] Activity (rounded rectangle)

>[Add student]

A diagram whose nodes

fork/spawn e
represent activities,
‘L ‘L while arrows represent the
[Notify Registrar] [Notify Billing] order the activities happen
‘I/ ‘I/ synchronization

decision [else]

[count <10]

guard
[Close course]—>© final

!

] [incorrect] \f

Example

Obtain help
to fill out forms

N

Fill out
enroliment forms J
[correct]
[Enroll in L
university T

[rejected]

| Attend university |

“l overview presentation |

g [accepted]

—>[Enroll in seminars H Make initial
tuition payment

|-

\/
@

A

Example

!

[Receive order]

v

! ,

[Fill order] [Send invoice]

[rush order] /L [else]

[Overnight deIivery] [Regular delivery] [Receive payment]

S

’\/<

v
[Close order]

v
®

Activity diagram

mix ingredients\

cook mixture \ serve

J

Cook Rice \

J
Cook Entree Cook Dessert
i)

o2/

k. o/ o

C clean ruouseop>

send acceptance
letter

[3.0 <=GPA]
>
[else]

[else]

send rejection
letter

[2.0<=GPA] send conditional Leke]
< acceptance
[2.0<=GPA]

()

send acceptance’

letter ®

[3.0<=GPA]

eval GPA >

send conditional
< acceptance

[else]

send rejection
letter

Example: hotel reservation

[else)

0 O [Process No Show] [Billing }(—
[suitable room]

Reservation Inquiry

Check Availability

[cancel) [no show]

Check In

Make Reservation Confirm Reservation

[update] [customer arrives]

Update Reservation

[stay duration] 'I

©< Check Out

Activity control nodes

* Initial node Merge node
« Decision node « Activity final node
 Fork node * Flow final node
« Join node
nial node fork node join node

merge node

decision node

activity

\ final node

Activity partition

« Partitions divide the diagram to constrain and show some special view
» Partitions often correspond to organizational units in a business model

Seattle Reno

[order
rejected)

<<dass»>
Order Processor

[order
accapted]

<<class»>
Accounting Clerk
g
s o
-
g

Swimlanes
INn an
activity diagram
showing a
workflow
with several roles

Evaluator

Facilitator

Chairperson

Student

Coordinator

X
l6m description available |

Exercise Whichisthe maximum degree of
parallelism in this activity diagram®?

Portal

([Getworkflow from storage _3— -

" Subrmitworkflow as job

P)

Job Execution Service (JES)

workflowDefinition:WorkflowString

job:JobURN
'Y Create job) —

—

Pall job status

P)

[iob running]

<

~

[iob done]

C Get job results

P)

$

(_Determine ready job- steps

[far each ready job-step)

C Launch job-step) S ——

CEA service

jobStep:_tool

s

[more steps & not akjorted]

[Recoverjob-step 3

Execute job-step

P)

(_ Record job-step status

[otherwise]

[Recordjobstatus 3

$

®)

What an AD does not show?

Objects (but they can be inferred)
States

Messages

Data passed between steps

User interface

2R o

How to create an AD

|dentify the activities (steps) of a process

|dentify who/what performs activities (process steps)
|dentify decision points (if-then)

Determine if a step is in loop

Determine if a step is parallel with some other
|dentify the order of activities, decision points

Example

Step Process Step Who/What Parallel Loop Preceding
ID or Decision Performs Activity Step

1 Request quote Customer No No -

2 Develop Salesperson | No Yes 1
requirement
notes

3 Decision: Help? | Salesperson - Yes 2

4 Salesperson Salesperson | No Yes 3
enters data

5 Check Technical No Yes 3
requirements Expert

6 Tech. expert Technical No Yes 5
enters data Expert

7 Calculate quote | System No Yes 4,6

8 Review quote Customer No Yes 7

9 Decision: Customer No Yes 8
Changes?

10 Accept quote as | Customer No No 9

order

10.
11.

12.

How to create an AD (cont)

Draw the swimlanes

Draw the start point of the process in the swimline of the first
activity (step)

Draw the oval of the first activity (step)
Draw an arrow to the location of the second step

Draw subsequent steps, while inserting decision points and
synchronization/loop bars where appropriate

Draw the end point after the last step.

Request
quote
Develop notes
of requirements

‘ Check
requirements

Enter data Enter data
into system into system
Calculate
‘ quote

Accept quote
as order

Example

State vs activity diagrams

Both diagrams describe behaviors, by state
changes and actions, respectively

In UML1 they are equivalent (in AD states are
actions)

In UML2 they differ: ActivityD are based on Petri
Nets, StateD on Harel automata

Their typical usage is also different:
— State diagrams are single context
— Activity diagrams are multiple context

State machine: chess game

Black wins

(White’ s move

o [| ®
start 7 Jwnate
black white
moves moves @ Draw
y |/@nate
{ Black’ s move) =@

White wins

Activity diagram: chess game

[0]

=

<

§ . % move move

X move move
(&)

E A

Y
o0

Nb8c6

g1f3
Ng1f3

Pe7e5

e’e

m\

eZe
o—>

State vs activity diagrams

UM 3oe|d

State vs activity diagrams

Statechart diagram of an order management system

/T:nnuuon

Activity diagram of an order management system
Initial state Intermediate

of the object / state

Activities

Condition
c k
omer Order request system
Normal f::tm . n“:od:t confirms the receipt of the :
Initials e - T / [c _
zation
>y Send order request « Select normal or

order is normal
special order

order]
Start of
process [No)
Ab 1
::::. Action Confirm order
Initial Final state (Event) Jg::f:: u“:al
state (Faillure) ___\ o'do:;‘c
Order confirmation N
\ @ [Yes] Confirm the
Final
state / [No]
\/ Termination
Complete N\
transaction ;
Dispatch order Dls;:‘tc; the £

Activity diagram vs flowchart

* An activity diagram shows the order in
which to do tasks

* The key difference between an activity
diagram and a flowchart is that the activity
diagram can describe parallel processes,
while flowcharts are sequential

Behavior
diagrams:
Interaction

Balla: Dinamismo di cane al guinzaglio, 1912

Modeling Interaction

Statechart diagram

— Depicts the flow of control inside an object using
states and transitions (finite state machines)

Activity diagram

— Describes the control flow among objects by
actions organized in workflows (Petri Nets)

Sequence diagram
— Depicts objects’ interaction by highlighting the
time ordering of method invocations

Communication (collaboration) diagram
— Depicts the message flows among objects

INTERACTION

Interaction diagrams

A use case diagram presents an outside view of
the system

The inside view of a system is shown by
iInteraction diagrams

Interaction diagrams describe how a use case is
realized in terms of interacting objects

Two types of interaction diagrams
— Sequence diagrams
— Collaboration (Communication) diagrams

Sequence diagram: main entities

« participant: an object that acts in the
sequence diagram

* message: communication between
participant objects

» the axes in a sequence diagram:
— horizontal: which object/participant is acting
— vertical: time (down -> forward in time)

Sequence diagram: elements_

\
/
. : \
.customer .order .payrgent :product 7'\ :supplier
I.’ Y y I!
// ~ place an order R) \ p
A Y | pY object{ ~~F~-
\ process \ |
I < _____) I \
I “ I |
! | validate '\|—-| 1
I : 7T I
| : if (payrhent ok)ideliver
" ,' : : if (not in stock) back order>f:|
‘\ " (‘q’et addres;:: .'
v L B T to%ddress
\ / \ 1
bt T T Mt T;
.customer .order \ payment \ :product .supplier
L \ lifetime
activation message

bar

Sequence diagram
2 HO HO O O

Basic Course 1: Customer 2: Search Page 3: Search Results Page 4: Catalog 5: Search Results

The Customer specifies an
author on the Search Page

l onSearch()
and then presses the Search u
I
I
l
I
I
I
I
l
l
I
I

button.

The system validates

the Customer's search criteria, validateSearchCriteria()

The system searches the Catalog
for books associated with the
specified author,

searchByAuthor()
~
~U create()

When the search is complete, the
system displays the search results
on the Search Resuits Page.

A
display() I.I
|

Alternate Course

If the Customer did not enter the

name of an author before pressing

the Search button, the system displays |
an error message to that effect and |
prompts the Customer to re-enter an
author name.

displayErrorMessagel()

|
|

I

I I
| I
I |
| |
I |
I I
% |
|)
I

<
gs

I l
I I
| I
I |
| |
I I
I |

Messages between objects

* message (method call) indicated by an
horizontal arrow to another object

— write the message name and arguments above arrow

ess09® aents
e orod
nao
:Hospital
Admit (patientID, roomType) i
>4
[|

— dashed arrow back indicates return
— different arrowheads for synchronous / asynchronous

:Controller
:Controller Qe,d\-“‘e' co\\
7 — 7
T] o& Cof\‘\'ro\ (_____
gt F1O% <
N
:Controller \,.e;(u
.

Arrows Iin a sequence diagram

* A sequence diagram describes sequences
of method calls among objects

* There are several types of method calls

<<eate>>
....... c _e_at_e._-____> p1:(Class

>
<<destroy> ’X

- A Synchronous Message

= An Asynchronous Message

<.

A Return Message

A Participant Creation Message

A Participant Destruction Message

Example with different msgs

sender : SenderClass

receiver : ReceiverClass

1:d
2 met <<create>>
2 ¢ new('
) -
3 [quard] : result :=m1{al, a2) E
p_...
P e b e] p=|
4 : result :
S *[quard] : m2(a3, a4) \E
< <destroy > >
6 : delete() :

X

Lifetime of objects

creation: arrow with 'new' —
label T

query database
— an object created after
the start of the scenario Comman
appears lower than the new | aDatabase
others e

deletion: an X at bottom of — T s
object's lifeline resuls

— Java does not explicitly Moy
delete objects; they fall l
out of scope and are oo
garbage-collected T

-

Indicating method calls

« activation: thick box over object's life line

— The object is running its code, or it is waiting for
another object's method to finish

— nest to indicate recursion

Activation -

-:Controller

1
: \
—_— !
¢ = = =
«=-==5
1
1
1
1

Nesting T

Sequence diagram: flow

: Custom : Order : Paymen : Product : Supplier

| |

| |

| |

‘ ‘ - -
Sequence of message transmissions

if (not in stock)

process

|
| t |
|
|

deliver
ack order

|
ail ‘to addre:!
(‘
|
|

;l‘
\
|

I

; L \
grt auurecss

|

Y
“'h

Linking sequence diagrams

* if a sequence diagram is too large or refers to

another diagram, indicate it with either:

— an unfinished arrow and a comment
— a ‘ref’” frame that names the other diagram

Customer Info

ref)

Approved?

e S

Verify customer credit

Conditionals and loops

« frame: box around part of a sequence diagram to
iIndicate selection or loop

— if : (opt) [condition]
— if-else: (alt)[condition] else [condition]
— loop: (loop)[condition to loop over]

Examples: see the next three slides

register : RegisterOffice ar : AccountsReceivable drama : Class

getPastDueBalance ({ studentld) |

pastDueBalance
¢:-:" ..

opt) |
[pastDueBalance = 0]

addStudent (studentld) |

O pt getCostOfClass () ol

classCost

(ify T '

chargeForClass ()

bank : Bank theCheck : Check

account : Checkingaccount

getamount ()

amount

R e R

getBalance ()|

|

balancp

n s e

Alt
(if-else)

alt

I 4
[balance == amount]

|

T

addDebitTransactjon { check
Number , amount)

storePhotoOfChecl { theCheck)

addInsufﬁentFunAFee ()

|
noheReturnedChech { theCheck)

returnCheck (theCfLeck 3

analyst : Financial&nalyst system : ReportingSystem secSystemn @ SecuritySystemn : Reports availableReports : Reports reportsEnu : Reports aReport : Report

|
|
getAvailableReports () | |
|

Ll

getSecurityClearance (userIgL)]

[hasanotherReport = true]
getNextRepcfrt(3
I

Loop

getRequlredSecuritylevel {)

[userClearancelevel k= required | |
Level] add (aRe) ; rt) |

L
L]

hasAnotherRFport ()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| loop)
|
|
|
|
|
|
|
|
|
|
|
|
|
|

availableReports L|'|

|
| hasAnotherRt%:ort | u
(E T i St e e R D e A e e e A S s O ST S S P S S S
! L L .
|
I

Example

A SD highlights the objects involved in an activity

tudent: Student . Seminar . Course

enrollStudent(aStudent)

|
|
|
|
isStudentEligible(aStudent) ™
getSeminarHistory()

_______________________ alo i oo . BOTINBIAIRION: .. o

R On AT O RN AT PR LA R an

————

http://www.agilemodeling.com/artifacts/sequenceDiagram.htm

Example

Order Entry

Order Entry

Order

Order Input Window

* prepare()

A
T p—
S @
o 0
T L Y p——
4| @
= T x
i)
= e
o [
3 b A
Z =
o =
< 5
i)
i g
K] 22
A 4
F A
% w
& T
o i
2| i :
oD o =
5| &3 58
_ R

Enroll In Seminar

Example

Basic Course of Action SeminarSelecto nedul
. 3 Semi schedule
A Student :EnrdllinSeminar :Securi on e — :FeeDispl : . theStudent e
SD#: UC17-01 oty e e gy & e Student seminar:Seminar Shdent ‘StudentSchedule | | StudentFees
<<lUl>> —_ e
wish to enroll
<<create>>
1. Student indicates wish to enroll
g
. |_student number,_
2. Student inputs name and number isEligible(name, studentNumber) ecrontons
i theStudent
3. System verifies student theStudent estudent o
-« — — Note: Need to
4. System displays seminar list <cdeatrop>> flesh this message
/ out more.
<<creates>. .
5. Students picks seminar
seleclion . /

6. System determines eligibility to enroll

7. System determines schedule fit

8. System calculates fees

9, System displays fees

10. System verifies students wishes to enroll
11. Students indicates yes.

12. System enrolls student in seminar

isEligibleToEnroll(theStudent)

Qualiﬁcaﬁoné()

getSchedule()

etermir -uFﬁ(semmgg_

~

<<creales>

verification

4 anrollStudent(theStudent)

calculate Fees{seminar, theStudent) u

sing a SD for workflow

customer | vendor
| -
business coftwore project development Team technical test sext
e . onalyst : architect manager manager leaders developers specialists designer eerers
need '
want -
feasibility study
promise| | order
kick off D Dﬁ" “‘#]
7 \
meeting - = —
requirements
" - analyse]
analysis — gather requirements req. Vs
design /destgn sysiem
communicate D - B B
and review |:|,< e /\ ,D
(- A -
the p.roposed T >l | .
solution N = |
define _design [
timeline tests
and >
milestones
 — | |
» develop
create team ™
manage timeline - B test
review
tests
development - |develop

acceptance H

lead and review

[Nee

i)

A real
example
(from
Mozilla.org)

]

BrowserControlF actory

i
controlPanel:
Panel

BrowserControlimpl

.
H
H
H
H
! H
H '
H '
: } :
! H
' setdppDatad) o \
Il | o '
Concerning the custom E] appinitialize |
application Ul functionality: Note . - >
that before controlPanel is created, H - ! createVWrapperFactorv
aEMwWindow creates a TextField | [!
called urlField and aEMWindow is H H H !
added as an ActionListerner to it H . '
Note also that browser control H | !
buttons are added to a button sub ! . H new
panel and aEMWindow is added as | H ' H w| WrapperFactory:
an ActionListener to each ofthem. ' [1 " wrapperFactory
The actionPerformed() method then ' ! H ' initializeq) ;
spells outthe appropriate method 1 o ! >
calls, leading to the appropriate 1 Lol ! [-
native method to call when a button ! . ' 1 nativeAppinitialize()
is pushed or the text field is | ' HE— ' :l
‘ '
changed. i newBrowserControl() : : ;
| et
: I H
H o H
' o = !
. [,
' N 1 L] ' H
' N 1 . ' H
! ' i hew b h |
v { BrowserControlimpl_ | ! !
| gueryinterface H ! - - ' H
1 (BrowserControl EIROWER_}_CONTROL_CANVAS_[\IAMIIE) \ H
h — > ' |
H ' H
H - | nefy browserCanvas: !
H ' H — P BrowserControlCanvas '
h ' H
; o b :
! add{controlPanel) ! I ! | :
' : i '
| | . |
: P b oo :
' [[H H H
' X i '
: Pt P .
! ' ' ' ' H H !
' add(browserCanvas) Vo ! ! '
\ o
: b bl ;
[- ' ogddNoti) !
1] : L 1 = L]
. : o . ! new we:
L7 ' I Vo ' I WindowControl
ol ' ' " H ' 1
t queryinterface ! i v H \createWindow() E
| (BrowserControl NAVIGATION_NAME) o L - This method
H ' ' ' ~
addNotfiy() is T 1 » ! ! . |creates a new
called from 1 return R | ' new NativeEventThread
java.awt when i S Tt H called eventThread,
browserCanvas H . H invokes start(), then
is added to the L URREN : Lo waits for
frama, ' (BrowserCunlruI.CU: REI‘J:JT_PAGE_NAME) _ : E E nutiﬁcatipn that
— » H i native initialization
[h !

I
_______________ ne currentPage:
CurrentPage

querylnterface

|
.
i
H
i
:
(BrowserControl EVE)
\
1
H
1
i

'
_______________ ! ne eventReqistration
EventRedistration

i

H
addMouseListener(aEMWjindow)
\

A §

YN

has occurred.

Consistency among diagrams

We can derive the dependencies shown in a class diagram
from the interactions defined in a sequence diagram

| ¢ :Sales Clerk I I @ :OrderEntry | | @® :CustomerManagement]

| @ :AccountManagement

er l

I
|
1.1: getCustomerDetails |

1.1, II:leateOrder

H

(9 OrderEntry

.
p
p
L

b
AN
N

(9 CustomerManagement

(3 AccountManagement

|
1: addprderltem

— 44— t—]

valid for

‘Ticket

Transaction buys Ticket Zone
amount paid Coin
Balance <
Bill
Traveler :TicketDistributor .Zone :Balance
| | |
selectZone() , getPrice() X ,
I
<_.amountDue |
insertChange() T I
updateBalance() : L
amountDue | 'U
""""""""""" 1 I
insertChange() ! : '
ack updateBalance() | I
;- -------------------- J """ <<create>> T :7D>
printedTicket | I I

Exercise -

Draw a sequence diagram showing how a
customer interacts with a travel agency, a station
and a train to reach some destination

Draw a sequence diagram to show how a user
prints a document on a printer, and a counter
keeps a count of printed pages

Communication (collaboration) diagram

« Communication diagrams show the
message flow between objects in an
application

* They also show implicitly the basic
associations between classes

« Communication diagrams are drawn in the
same way as sequence diagrams (and
can be semantically equivalent to them)

Communication diagram

object

link

—
’— ‘\

X

c : Customer 2.2

message

() _:Payment

Communication diagram

() _:Payment

. deliver(c)

RN J
: Product IJ

K 1.2.1 [notin : back order(p)

“place an order(c)

o omindd
C : Customel l——4=12.2get-address()——

R——

b

. Supplier

Actor

T 1.1: login{)

OrderSystem

1: login(pwd, d) —

ONIE

LoginScreen 1.2: permission= checkUser) —p

UserValidator

cart= search() —P»

2.3: cart= addToCart{book) '

2: browseCatalogus{) —

3: placeOrder() —

SearchScreen

2.2: book= sslectBook() —pp

web page

OrderScreen

3.1: assembleOrdar{cart) —}

Example

book :Book

Order

v

w
w

. stocklLevel= updstelnventory(order)

Inventory

SD vs CD

*These two diagrams are
equivalent

«Communication diagrams
correspond to simple
Sequence diagrams that

use none of the
structuring mechanisms

such as interaction uses
or combined fragments

«Some complex sequence
diagrams can not be
represented by equivalent
communication diagrams

<<abor>> w createNewAoou
admin : Administrator

ntController ;
KecountCreationld (reateNewAccoentControlier

<<@estroy>> -J

— ma'.eke'a‘.lqumm:

sel«'.slor,&uan:l%'ly;\'.\

enter AutherDetalls (author - AutherDetaiks)

<<reate>>
i 2 et

didSubmit()

<<HWO>> <IN

acd - Author(redentialsD8 CE

. ne-;'.eNtnRequa}shoqkwwt!uhorﬁeu s : AutheeDetalls)
checkAuthee Detaiis| autharDetals - AuthorDetads)

emailBlogDetailsl newAccount : ReqularBloghccount)

opt l [checked = true]
<<create(authorDetails)> >
> newAccount :
RegularBloghccount

 sendEmaii(email : Email) |

acount(reatedistificationl)

<<AO>>

A2 seleat
42 aawnt(vealedvolifxabo‘nN

4, (idSubmlt()

4.1, createNewReqularBlogAccount(customerDetails ; (u&lon'aeﬂ)emﬂs1 3 1. <<wreate>>
413 email(newAccount)
415, <\66"0y)/

(checked = true]

admin : Administrator | 1. ceateNewBlogAccount()

BlogAccountType{type)
3. enterAuthorDetails()

A«ount(reatmm

createNewAccountController ;
CreateNewAccountController

authorDetaiks :

AuthorDetails

4.1.4 sendEmail{email : Email)
[checked = lruc]‘/

4.1.2. <<create{authorDetails) > > l

<<aqor>> 1 zA
&5 EmailSystem [checked = true]

newAccount :

RegularBlogAccount

<<actor>>
acd : AuthorCredentialsDB

N:n«umnommaunmm; AuthorDetails)

Consistency among diagrams

evaluate()

1 evaluate() left 1: Constant
P
*2\. Ri 2.1 evaluate()
1+(2*3): Binary
Expression 2 evaluate() -~
right 2*3: Binary
1
2.3 appl
: Adder
/right
Expression l;ft
evaluate() 3
0’“‘1"9
Constant Binary Operation
Expression
evaluate()
evaluate() apply(l,r)

2.2 evaluate()

left

2 : Constant

3 : Constant

: Multiplier

Exercise

Draw a communication diagram showing how a
customer interacts with a travel agency, a station
and a train to reach some destination

Draw a communication diagram to show how a
user prints a document on a printer, and a counter
keeps a count of printed pages

Basic diagrams we have seen

Diagram

i

Structure
Diagram

1

—_—

| e

Class Diagram

/\>

Component /Object
Diagram Diagram

v

v

)

Behavior
Diagram

r

Activity Use Case
Diagram Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

&7‘4

~

e
—
ﬁe Machine
Diagram

N A

Interaction
Diagram

[

" seq)
Sequence

Diagram

N

JA
[

Interaction
Overview
Diagram

C

ommunm

Diagram /)

Timing
Diagram

O ——

Other diagrams

Diagrams we have seen in this lecture:

» Use case, class, object, statechart, activity,
interaction (sequence and collaboration)

We could add (using UML 1.7):

* Component, Deployment

We could add (using UML 2.%):

« Composite structure, Profiles, Package,
Interaction Overview, Timing

Usage survey

Survey on Usage of UML 1.x Diagrams

100.00%

91,63%
90,00%
0,
50.00% 1 718.01% 73.43%
70.00% -
60,00% A
50,00% 47,50%
. 41 ,14°/o 39 370/0
40,00% - 3591% 34769
0,
30,00% 30,39% 27,94%
20.00% -
10.00% 4
0.00% - , : : , . . ; : :
%) [. S~ (] < X X
& & & & & o & S & &
© 00 00 vS}' (:50) @ ,bat. oo *&
N 9 N) Q L)
F S @02006, No Magic, Inc. & R 13
& © Q

00

See also: www.projectpragmatics.com/Home/resources-for-you-1/the-uml-survey-results-are-in

Main diagrams

The main diagrams that are used in most
views are :

* Use case diagram
 Class diagram

* Sequence diagram
* Activity diagram

Discuss

* Which diagrams are most useful in each
lifecycle phase?

Diagrams in lifecycle

Requirements | ... | Design

Implementation

Use Case

Class diagram

Sequence diagram

Activity diagrams and Statecharts

Diagrams during design

hree main types:

» Class diagrams for domain entities and
data structures

* Sequence diagrams for multiple objects
interactions via messages

« Statecharts for behaviors and algorithms
of a single object

Exercise

Draw, on some game-playing domain (eg. Chess):
— Aclass diagram
— An object diagram
— A statechart
— A sequence diagram
— A communication diagram
— An activity diagram

Conclusions

UML is a notation still evolving under control of OMG

It offers several diagram types, in order to describe
different views on a model

Basic diagrams from UML 1.* are: use cases, classes,
behaviors (statechart+activity), interactions (sequence
+communication)

Several tools available

UML and the diagrams need a process to be used
consistently and effectively (for instance, RUP)

Summary

 UML includes a number of diagram-based
notations to model software systems
using an object oriented approach

 UML is not a process (it needs a process,
like for instance the RUP)

* Itis not proprietary: it is an OMG (Object
Management Group) and ISO standard

Caveat emptor

When Jim, Ivar, and | began our journey that became manifest in the UML,
we never intended it to become a programming language...UML was to be
a language for visualizing, specifying, constructing, and documenting the
artifacts of a software-intensive system—in short, a graphical language to
help reason about the design of a system as it unfolds.
Most diagrams should be thrown away, but there are a few that should be
preserved, and in all, one should only use a graphical notation for those
things that cannot easily be reasoned about in code.
As I've also often said, the code is the truth, but it is not the whole truth,
and there are things such as rationale, cross-cutting concerns, and
patterns that cannot easily be recovered or seen from code...
These are the things for which a graphical notation adds value, and any
such notation should be used only if it has predictive power or reasoning
power (meaning, you can ask questions about it).

Grady Booch

Self test questions

Which are the UML 1.* canonical diagrams?
What is a use case?
What is a class diagram? What is an object diagram?

How do we describe a tree-like data structure in a
class diagram?

What is an interaction diagram?
What is a protocol state machine?

What is the difference between statecharts and
activity diagrams?

Readings

* On use cases

www.ibm.com/developerworks/rational/library/5383.html

* On class diagrams

www.ibm.com/developerworks/rational/library/content/
RationalEdge/sep04/bell/index.html

* On activity diagrams

www.ibm.com/developerworks/rational/library/2802.html

* On sequence diagrams

www.ibm.com/developerworks/rational/library/3101.html

UML Specification Documents

« OMG, UML Specification version 1.5, 2003
« OMG, UML Superstructure version 2.4.1, 2011

 Rumbaugh, Jacobson, Booch, The UML Reference
Manual, Addison Wesley, 1999 and 2004 (2"9 ed)

References on using UML

Booch, Rumbaugh, Jacobson, The UML User Guide,
Addison Wesley, 1998 and 2005 (2ed)

Fowler, UML Distilled, 3ed, Addison Wesley, 2003
Pilone and Pitman, UML 2.0 in a Nutshell, OReilly, 2005

Ambler, The Elements of UML 2.0 Style, Cambridge
University Press, 2005

Useful sites

www.uml.org Documents defining the standard

WWW . Omg .org

www.uml-diagrams.org/
www.agilemodeling.com/essays/umlDiagrams.htm
www.tutorialspoint.com/uml/index.htm
www—-306.ibm.com/software/awdtools/rmc/library
msdn.microsoft.com/en-us/library/dd409436.aspx
www.Cs.gordon.edu/courses/cs211/ATMExample
opensource.objectsbydesign.com

vinci.org/uml/

Www.cragsystems.co.uk/ITMUML/index.htm Online courseware
www.eclipse.org/modeling/mdt/uml2/docs/articles/Getting Started with UML2/article.html

Tools

Eclipse + several plugins, like Omondo

argouml.tigris.org Argo or Poseidon

www . genmymodel . com free online tool, sharable diagrams
www.lucidchart.com web application, need license
violet.sourceforge.net Open source editor for UML
www.borland.com/us/products/together/index.html Borland Together
www.visual-paradigm.com Visual Paradigm suite
www.nomagic.com Magicdraw suite

abstratt.com text UML

www.umlgraph.org web application for class and seq diagrams
www-01.ibm.com/software/rational/ Rational Rose
jazz.net IBM platform

smartuml.sourceforge.net UML on tablet PC
metauml.sourceforge.net Beautiful UML diagrams in LaTeX
softwarestencils.com/uml Images reusable in a graphic editor
yuml.me Fast draw of UML diagrams for web pages

UML blogs and fan clubs

« www.linkedin.com/groups/UML-Lovers-143183/about
» bulldozer00.com/uml-and-sysml/
» geertbellekens.wordpress.com/about-geert-bellekens/

Questions?

&

