
UML basics

Paolo Ciancarini

The soul
never thinks

without an image
Aristotle, De Anima

Agenda

•  Evolution of UML: UML 1.* and UML 2.*
•  Structures, behaviors, interactions
•  The basic diagrams of UML 1.*

UML is a modeling language

•  A modeling language allows the specification,
the visualization, and the documentation of the
development of a software system

•  The models are artifacts which clients and
developers use to communicate

•  UML 1.* is a modeling language
•  UML 2.* is also a programming language

Meaning of models for software

•  A model is a description of the structure
and meaning of a system

•  A model is always an abstraction at some
level: it captures the essential aspects of a
system and ignores some details

•  Important: a model can be also generator
of potential configurations of systems

Roots of UML

At the beginning of the ’90 there was a convergence:

§  Booch method
§  OMT
§  Fusion/OOSE

’94 – join Rational Software
Corporation

(Grady Booch)

(Jim Rumbaugh)

’95 – joins Rational (Ivar Jacobson)

Evolution of UML
•  OO languages appear, since mid 70’s to late 80’s
•  Between ’89 and ’94, OO methods increased from 10 to 50
•  Unification of ideas began in mid 90’s

•  1994 Rumbaugh joins Booch at Rational
–  1995 v0.8 draft Unified Method

•  1995 Jacobson joins Rational (Three Amigos)
–  1996 June: UML v0.9 published

–  1997 Jan: UML 1.0 offered to OMG
–  1997 Jul: UML 1.1 OMG standard
–  1998: UML 1.2
–  1999: UML 1.3
–  2001: UML 1.4

•  2003 Feb: IBM buys Rational
–  2003: UML 1.5
–  2004: UML 1.4.2 becomes the standard ISO/IEC 19501

–  2005: UML 2.0
–  2007: UML 2.1.2
–  2009: UML 2.2
–  2010: UML 2.3
–  2011: UML 2.4
–  2013: UML 2.5

pre-UML

UML 1.x

UML 2.0

OMG
•  Object Management Group, founded in 1989
•  Consortium of 800 industries (eg. IBM, HP, Apple, etc.)

and interested universities (Bologna is member)
•  Produces specifications of reference architectures, eg.

CORBA
•  Other specifications: UML, various MDA technologies
•  UML as managed by OMG is a standard de facto in

continuous evolution
•  UML1.4 is a ISO standard de jure

Main UML specification documents
•  Superstructure:

defines the UML elements (diagrams, etc.)
•  Infrastructure: defines the UML core metamodel
•  OCL (Object Constraint Language):

formal language for writing predicates,
constraints, and formulas inside diagrams

•  XMI (XML Metadata Interchange):
DTD for UML models

•  UML Diagram Interchange: XMI + graphic info

Canonical diagrams (vers 1.5)

•  Use case
•  Class (Object diagrams are class diagrams without classes)
•  Behavior

–  Statecharts
–  Activity
–  Interaction

•  Sequence
•  Collaboration

•  Implementation
–  Components
–  Deployment

Canonical diagrams (Superstructure, vers. 2.4)
Version 2.4 includes 14 canonical diagrams
•  Structure

1.  Class
2.  Composite structure
3.  Component
4.  Deployment
5.  Object
6.  Package
7.  Profiles (added in version 2.4)

•  Behavior
1.  Activity
2.  Statecharts
3.  Usecase

•  Interaction
1.  Communication
2.  Interaction Overview
3.  Sequence
4.  Timing

UML
2.5

(2013)

Structure and behavior
•  UML focusses on two aspects of object

oriented models: structure and behavior
•  It aims at visualizing both

Tour Eiffel (1889) G. Balla: Dinamismo di cane al guinzaglio (1912)

Describing the structure of software

•  The description of structure offers an
account of what a system is made of, in
terms of both its parts and the
relationships among them

•  A structure may be a hierarchy featuring
one-to-many relationships, a network
featuring many-to-many links, or a lattice
featuring connections between
components that are neighbors in space

Hierarchy

Lattice

Network

Organizational
structures

Modules vs components

Discuss
•  Which ways do you know to pictorially

describe “behaviors” - or actions?

Flowchart

Assembly
instructions

Napoleon in Russia

(Minard 1869)

Exercise:
structural or behavioral?

Hint: this picture describes modules (static) or components (dynamic)?

Discuss
•  Are structures and behaviors all we

need for software design?

Three modeling axes

Functional

Dynamic Static

Use case diagram
(System sequence diagram)
(Activity diagram)

State diagram
Collaboration diagram
(Sequence diagram)
(Activity diagram)

Class diagram
(Object diagram)
Component diagram
(Deployment diagram)

Example

•  A chess program could be “stand-alone”,
“client-server”, “agent based”, etc.

•  Its behavior should always be coherent
with the rules of chess

•  What is its goal? To play and win a chess
game against an opponent

Goals and responsibilities
•  The very same chess program, with identical structure

and behavior, could be used with a different goal?
•  For instance, could it be used to learn to play chess?

Responsibility of the program: teach chess
•  Or to write a chess book, like a chess game editor?

Responsibility of the program: write chess texts
•  Or to play a game of loser’s chess (where who is

checkmated wins)? Responsibility: play games with rules
slightly different from chess

Each responsibility corresponds to (at least) a use case

From responsibilities to use cases

Play

Teach

Write

Play with other rules

<<extend>>

User

Use Case diagram

–  It describes the externally observable behavior
of a system, as related to requirements

–  It describes the main interactions between the
system and external entities, including users and
other systems

–  It is a summary of the main scenarios where the
system will be used

–  It describes the main user roles

Example

Insurance Salesperson Customer

Negotiate policy

Sales staistics

Customer statistics

Use Case: elements

Check
Grades

Register actor

system
boundary

use case

Validate User

<<include>>

Student

association

Elements of a Use Case Diagram

•  Actor:
–  Represents a role played by external entities

(humans, systems) that interact with the system
•  Use case:

–  Describes what the system does (i.e., functionality)
–  Scenario: sequence of interactions between the

actors and the system
•  Relationships:

–  Association between actors and use cases
–  Extension (or generalization) among actors
–  Dependency among use cases: include and extend

Example

<<include>>

User

Student

Faculty
Enter Grades

Validate User

Check Grades

Get Roster

Register

<<include>>

<<extend>>

User

Student Faculty

Use Case Scenario
Use Case: Check Grades

Description: View the grades of a specific year and semester
Actors: Student
Precondition: The student is already registered
Main scenario:

User System

3. The user enters the year and
 semester, e.g., Fall 2013.

1. The system carries out “Validate User”, e.g.,
 for user “miner” with password “allAs”.
2. The system prompts for the year and semester.

4. The system displays the grades of the courses
 taken in the given semester, i.e., Fall 2013.

Alternative:
 The student enters “All” for the year and semester, and the system displays
 grades of all courses taken so far.
Exceptional:
 The “Validate User” use case fails; the system repeats the validation use case.

<<extend>> vs
<<include>>

•  A use case B is included in
use cases C and D when
these have some common
steps represented by B

•  A use case B extends a
use case C when B applies
optionally, under some
condition (usually specified
in the scenario)

•  Note: the lower diagram is
formally correct but should be
avoided, because the main
functions should NOT be
described as extensions of
logon

Exercise

Draw a use case diagram and a related scenario
for the following situation:

•  A user can borrow a book from a library;

–  extend it with borrowing a journal

•  a user can give back a book to the library
–  including the use case when the user is identified

Exercise: include or extend?
Main use cases: a customer buys something (eg. a book)
from a virtual store like Amazon

•  The user must be identified
•  The book is not currently available, delayed delivery
•  When the book is received the service must be graded
•  The book is delivered via air mail
•  The book is an ebook and can be delivered via Internet

Structure
diagrams

Object-Oriented Modeling
•  Models describe structures of objects and their behavior
•  A system is modeled as a set of objects that interact by

exchanging messages
•  No semantic gap, seamless development process

Data-oriented

Conceptual/computational world
Real world

Abstraction

Interpretation
Object-oriented

Key Ideas of OO Modeling
•  Abstraction

–  hide minor details so to focus on major details

•  Encapsulation
–  Modularity: principle of separation of functional concerns
–  Information-hiding: principle of separation of design decisions

•  Relationships
–  Association: relationship between objects or classes
–  Inheritance: relationship between classes, useful to represent

generalizations or specializations of objects

•  Object-oriented language model
= object (class) + inheritance + message send

The basic building blocks of UML

– Elements: domain modeling concepts
– Relationships: connection between model elements

that adds semantic information to a model
– Diagrams: collections of elements and relationships

representing some “perspective” on a model

Water

Rivers
Oceans

Fish

Penguins
Crocodiles

Fresh water

Salt water have have

have
live in

have

have

Main idea

•  With UML we model systems made of
objects which have relationships among
them

•  Objects are instances of classes
•  Classes define the structure of objects and

their relationships

Example

•  A university is an organization where some
persons work, some other study

•  There are several types of roles and
grouping entities

•  We say nothing about behaviors, for the
moment

A taxonomy

Person

Professor

Employee

Male

Female

Foreigner

Citizen

Student

PhD
student

Masters
student

Undergraduate
student

Administrative Associate
professor

Full professor

Research
fellow

Technician

Class

•  Is the description of a set of objects
•  Defines the structure of the states and the

behaviors shared by all the objects of the
class (called instances)

•  Defines a template for creating instances
– Names and types of all fields
– Names, signatures, and implementations of all

methods

Class diagram
•  Most common diagram in OO modeling
•  A class diagram is a graph including:

–  Nodes representing classes (types of objects)
•  Nodes can have just a name, or expose some internal structure

–  Links representing relationships among classes
•  Inheritance
•  Association
•  Aggregation or composition
•  Dependency

–  Links can have multiplicities and/or names for roles
played by participants

Class diagram: example
dateReceived: Date[0..1]
isPrepaid: Boolean[1]
number: String[1]
price: Money

contactName
creditRating
creditLimit

Employee

Order line

Product

quantity: Integer
price: Money

Customer
name[1]
address[0..1]

getCreditRating(): String

*

* {ordered}

*

*

1

0..1 salesRep

lineItems

1

1

creditCardNumber

Personal Customer

{getCreditRating()==“poor”}

{if
Order.customer.getCreditRating
is “poor” then Order.isPrepaid
must be true}

Order

generalization

association

role name

constraint

attributes

operation class

multiplicity

class name

Corporate Customer

Notation for classes

•  The notation for classes is a rectangular box with
three compartments

ClassName
field1

……

fieldn
method1

…
methodn

The top compartment shows the class name

The middle compartment contains the
declarations of the fields, or attributes, of the
class

The bottom compartment contains the
declarations of the methods of the class

Example

Point
- x: int
- y: int

+ move(dx: int, dy: int): void

Point

x
y

Move

Point

A point defined by classes at three different abstraction levels

Example

Document
- Pages: array of Page

- nPages: int

+ display(k:int, p:Page): void

Document

Pages[]
nPages

display

Document

A document defined by classes at three different abstraction levels

Exercise

Draw a class diagram for the following Java code

class Person {!
 private String name;!
 private Date birthday;!
 public String getName() {!
 // …!
 }!
 public Date getBirthday() {!
 // …!
 } !
}!

A counter class
class Counter{!
 private counter: integer;!
 public integer display()!
 {return counter};!
 public void tic()!
 {counter = counter + 1};!
 public void reset()!
 {counter = 0};!
}!

Counter

- counter: integer

+ display: integer
+ tic: void
+ reset: void

c3:Counter p:Printer

A class in UML
A corresponding class
in a programming language

Using an object of type class
in an object oriented system

Object diagram

•  An object diagram represents a “snapshot” of a
system composed by set of objects

•  An object diagram looks like a class diagram
•  However, there is a difference: values are

allocated to attributes and method parameters
•  While a class diagram represents an abstraction

on source code, an object diagram is an
abstraction of running code

Notation for Objects
•  Object: Rectangular box with one or two compartments
•  Object name: object name/role name:class name 	

objectName: Classname

field1 = value1
……

fieldn = valuen

The top compartment shows the
name of the object and its class.

The bottom compartment contains
a list of the fields and their values.

p1:Point

x = 10
y = 20

:Point

x = 30
y = 30

P2/origin:Point

x = 20
y = 30

named anonymous named
with role

Object diagrams: examples

homepage:
Document

mythesis:
Document

p1: Point

X = 0 Y = 0

p2: Point

X = 0 Y = 1

p3: Point

X = 1 Y = 0

t1: Triangle

t =[p1,p2,p3]

Example (object diagram)

r:Robot
[moving]

w:World

a1:Area a2:Area

w1: Wall

width = 36

w2: Wall

width = 96

d1: Door

width = 36

w3: Wall

width = 96

59

Example: chemical elements
(class diagram)

 Hydrogen

Element

 Carbon

<<covalent>>

C <<covalent>>

C
C H

60

Example: molecule
(object diagram)

:Carbon :Carbon

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen:Hydrogen

Objects vs. Classes
Interpretation in the
real world

Representation in the
model

Object An object is anything in the
real world that can be
distinctly identified

An object has an identity, a
state, and a behavior

Class A class is a set of objects
with similar structure and
behavior. These objects are
called instances of the class

A class defines the structure
of states and behaviors that
are shared by all of its
instances

Object = Identity + State + Behavior

•  Identity
–  Distinguishes an object from all other objects

•  State
–  Consists of a set of attributes (or fields), which have

names, types, and values
•  Behavior

–  Defined by the set of operations (or methods) that may
operate on the object

–  Each method has a name, a type, and a value, where
•  The type consists of the return type and the list of parameter types of

the method, often called signature.
•  The value is the implementation of the method often expressed as a

sequence of statements, in languages like Java and C++

Association

•  An association is a binary relationship between
classes or objects

•  Represented as a line between boxes

Student Course

:John :SwArch

Association and roles

•  The simplest relationship among classes is the
association

•  An association represents a structural relationship that
connects two classes

•  It means that the two classes “know” each other: all
objects in a class have some relationship with some
object(s) in the other class

•  An association can have a name, which usually
describes its role

AZ611:Flight Boston:City
from to

Roma:City

Flight City

from

to

Class diagrams denote systems of objects

Association with direction
•  An association may have an optional label

consisting of a name and a direction arrow
•  The direction arrow indicates the direction of

association with respect to the name

Student Course
enroll

An arrow may be attached to the end of path
to indicate that navigation is supported in that direction:

Student knows Course, Course does not know Student

Roles and multiplicity
•  An association line may have a role name and a

multiplicity specification
•  The multiplicity specifies an integer interval, e.g.,

–  l..u closed (inclusive) range of integers
–  i singleton range
–  0..* nonnegative integer, i.e., 0, 1, 2, …

Student Faculty
advisee advisor

1 0..*

Association example
•  A Student can take up to five Courses
•  Every Student has to be enrolled in at least one course
•  Up to 300 students can enroll in a course
•  A class should have at least 10 students

Student Course
 takes

10..300 1..5

Association - Multiplicity
•  A teacher teaches 1 to 3 courses
•  Each course is taught by only one teacher
•  A student can take between 1 to 5 courses
•  A course can have 10 to 300 students

Teacher Course
teaches 1..3

 Example

1

Students takes

1..5

10..300

Exercise

Explain the meaning of this diagram

Student Course
enroll

advisee

advisor
Teacher

teach

1..*

6..*

0..*

1
1

0..*

 Person
isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
sex : Sex
income(Date) : Integer

Bank

 Marriage
place: String
date: Date

 Company
name: String
numberOfEmployees: Integer

stockPrice() : Real

 Job
title : String
startDate: Date
salary: Integer

manager

employee employer
0..* 0..*

0..*
managedCompanies

wife

husband 0..1

0..1

customer

accountNumber:Integer
0..1

Exercise

Net data structures
• How we can represent a net of objects from the
same class?

A

0..*

0..*

a1:A

b1:A d1:A f1:A

g1:A e1:A c1:A

• A class with an association to itself with both
ends of the association marked with 0..*

Hierarchic data structures
• How we can represent a hierarchy of objects from
the same class?

A

0..*

0..1

a1:A

b1:A d1:A f1:A

g1:A e1:A c1:A

• A class with an association to itself with one end
of the association marked with 0..* (children) and
the other as 0..1 (parent)

Hierarchic file system

•  A directory can contain any number of
elements (either a file or a directory)

•  Any element is part of exactly one directory

Element

Directory File

1

*

Non-hierarchic file system

•  A directory can contain any number of
elements (either a file or a directory)

•  An element can be part of many directories

Element

Directory File

*

*

Aggregation
•  An aggregation is a special form of association

representing has-a or part-whole relationship
•  It distinguishes the whole (aggregate class) from its parts

(component class)
•  WARNING: an aggregation does not bind the parts’ lifetime

to the whole (they can exist separately)

Whole Part

Course Students

Example of an aggregation hierarchy

Computer Science
Degree

Calculus Logic OpSystems Geometry Algorithms Programming

Composition
•  A composition is a stronger form of aggregation
•  It implies exclusive ownership of the component

class by the aggregate class
•  The lifetime of the parts is entirely included in the

lifetime of the whole (a part can not exist without
its whole)

Whole Part

Apartment Room

Example of a composition hierarchy

MicrowaveOven

Clock Lamp Keypad Display Beeper DoorSensor

Example

Department

member-of

Faculty

College

chair-of

Student

1

1 1

1

1 1

1..*

0..*
1..*

1..*

University

Example

Component Airplan

builds

Employee
1

1

0..*

1..*

1..*
Team

1..*

0..*

0..1

sub-team

sub-assembly

assembly

0..*

0..*

Aggregation vs composition

Person PhoneNumber

CountryCode
Prefix
Number

homePhone
Aggregation:
A Person uses two phone numbers;
Numbers are independent from
Persons

workPhone

Person PhoneNumber

CountryCode
Prefix
Number

homePhone

workPhone

Composition:
A Person has two phone numbers;
Numbers are dependent from
Persons

Aggregation vs composition

Windsurf

Boat

Sail

use

use
1

1 0..1

0..1

Windsurf

Boat

Sail

has

has
1

1 0..1

0..1

Aggregation:
Windsurfs and boats use sails.
The same sail can be used
in a Windsurf or in a Boat

Composition:
Here windsurfs and
boats have each their
own sails which are
destroyed when the
“container” is
destroyed

Exercise

aggregation or composition ?
– Building and rooms
– Course and lessons
– TV channel and programs
– Parliament and members
– Sky and stars
– Country and cities
– City and buildings
– Wood and trees

Example

Exercise

Imagine some aggregation or composition
relationships among the following classes
and draw a corresponding class diagram

– Employee
– Manager
– Office
– Department

Dependency
•  A dependency of A from B is a relationship

between two entities A and B such that the proper
operation of A depends on the presence of B, and
changes in latter would affect the former

•  Example: a common form of dependency is the
use relation among classes

Class1 Class2
<<use>>

Program Compiler
<<use>>

Example: dependencies in a class diagram

Registrar

+ addCourse(s: CourseSchedule, c: Course): void
+ removeCourse(s: CourseSchedule, c: Course): void
+ findCourse(title: String): Course
+ enroll(c: Course, s: Student): void
+ drop(c: Course, s: Student): void

CourseSchedule

Course

Student

Dependencies are often omitted from a class diagram unless they
convey some significant information

Use case description:
1. Actor pushes button
2. Use case does something
3. Use case responds with
 message
4. ...

Use case

Class A

Op1()
Op2()

Class B

Op1()
Op2()

Class C

Op1()
Op2()

Collaboration

<<Implements>>
<<Implements>>

<<Implements>>

<<Realizes>>

Example: realizing a use case

Class and superclass

Point

Colored Point

Point

x
y

Move

Colored Point

…
color

…
SetColor

Example

Phonebill

Cellphone Fixedphone Mobilecall

Phonecall Phone
call

from

1 1..*
0..* 1

0..* 0..*

call

Origin

Mobileorigin

{complete,disjoint}

Inheritance

•  Key relationship in object modeling
•  Inheritance defines a relationship “IS_A” among

classes or interfaces
•  In UML there are three kinds of inheritance

–  extension relation between two classes (subclass and
superclass)

–  extension relation between two interfaces
(subinterface and superinterface)

–  implementation relation between a class and an
interface

Three kinds of inheritance

•  An extension relation is called specialization and
generalization

•  An implementation relation is called realization

Superclass

Subclass

Superinterface

Subinterface

 Interface

Class

extension of
classes

implementation
of interfaces

extension of
interfaces

Interface

•  Interfaces are like classes,
but have no “implementation”

•  A class implementing an
interface has a special
inheritance arrow toward the
interface

•  LinkedList implements List

<<interface>>
List

add(object o)
get(int index)

LinkedList

add(object o)
get(int index)

Interfaces in Java

 interface Drawable {

 void draw(Graphics g);
 } + draw(g: Graphics): void

<<interface>>
Drawable

Interfaces
•  A class and an interface

differ: a class can have
an actual instance of its
type (but it can also
have zero instances),
whereas an interface
must have at least one
class to implement it

•  Example: both the
Professor and Student
classes implement the
Person interface

<<interface>>
Person

firstName: String
lastName: String

Professor
salary: Euros

Student
major: String

Example

Student
{abstract}

Undergraduate Graduate
{abstract} No-degree

Master PhD

Example

Student
{abstract}

Undergraduate Graduate
{abstract} No-degree

Master

PhD

Exercise

•  Draw a class diagram showing inheritance
relationships among classes Person,
Employee, and Manager

•  Draw a class diagram showing inheritance
relationships among classes Person,
Student, Professor, and Assistant

Real example: online shopping cart

http://blog.genmymodel.com/class-diagram-public-top5.html

Real
example:
LinkedIn

Real example: Facebook

Real example: DOM

Strange examples

A

1

1

A

1

1

A

A

Behavior
diagrams

M.Duchamp: Nude descending a staircase (1912) G. Balla: Dinamismo di cane al guinzaglio (1912)

Modeling Behavior

•  Statechart diagram
–  Depicts the flow of control inside an object using

states and transitions (finite state machines)
•  Activity diagram

–  Describes the control flow among objects by
actions organized in workflows (Petri Nets)

•  Sequence diagram
–  Depicts objects’ interaction by highlighting the

time ordering of method invocations
•  Communication (collaboration) diagram

–  Depicts the message flows among objects O
B

JE
TC

S’

IN
TE

R
A

C
TI

O
N

O

B
JE

TC
’
S

D
YN

A
M

IC
S

Behavioral elements

Two primary kinds of behavioral elements:

q  Verbs in the requirements
q  Dynamic parts of UML models: “behavior over time”
q  Usually connected to structural elements

q  Interaction
a set of objects exchanging messages, to accomplish a specific purpose.

ask-for-an-A

q  State Machine
specifies the sequence of states an object goes through during its lifetime in
response to events

inParty inStudy

harry: Student
 name = “Harry White”

 paul: Professor
 name = “Paul Smith”

received-an-A/buy-beer

sober/turn-on-PC

State diagram: booking object

State diagram
•  A state diagram represents the behavior of an object
•  Graph: net of states (nodes) and transitions (arrows)
•  Graph representing a finite state machine
•  Useful for modeling a reactive (event-driven) system
•  Animation by “token game”

Off On

push switch push switch

push switch push switch

push switch

State diagram: elements

Idle

Initial State

Running

Final State

State

Transition

Example: Unix process

Ready

Running

Waiting

Sys call

Sys return

Pre-empted

scheduled

end
fork

State

•  Situation in the life of an object (or system)
during which it:
–  Satisfies some condition,
–  Performs some activity, or
–  Waits for some events

•  Set of values of properties that affect the
behavior of the object (or system)
–  Determines the response to an event,
–  Thus, different states may produce different

responses to the same event

State in a state diagram
•  States are rounded rectangles with at least one section

–  Mandatory field: name

•  optional: list of internal actions (with optional guards)
–  format: event-name argument-list | [guard condition] / action-expression
–  special actions: 'entry/' and 'exit/' (these cannot have arguments or guards)

•  optional: invoking a nested state machine
–  format: do/machine-name
–  'machine-name’ must have initial and final states

Enter Password

entry/ set echo
char/ handle char

Counter
create

entry/ set c = 0

tic
entry/ c:=c+1

tic

display
entry/ print c

display

reset
entry/ c:=0

reset

tic
display

reset

reset

tic
display

display

tic

class Counter{!
 private counter: integer;!
 public integer display()!
 {return counter};!
 public void tic()!
 {counter = counter + 1};!
 public void reset()!
 {counter = 0};!
}

Transition
•  Relationship between two states indicating that a

system (or object) in the first state will:
–  Perform certain actions and
–  Enter the second state when a specified event occurs

or a specified condition is satisfied
•  A transition consists of:

–  Source and target states
–  Optional event, guard condition, and action

Source
Event [Condition] / Action

Target

Definition: event and action
•  Event

–  An occurrence of a stimulus that can trigger a state
transition

–  Instantaneous and no duration
•  Action

–  An executable atomic computation that results in a
change in state of the model or the return of a value

Example

dial digit(n)
[incomplete]

Dialing Connecting

busy

connected

dial digit(n)
[valid] / connect dial digit(n)

[invalid]

Invalid

Ringing

Busy

Example

anomaly
Normal Recovery

Identification

Pressure
Recovery

Temperature
Recovery

recovery success

recovery success

recovery
success

temperature
pressure

recovery failure

recovery
failure

recovery
failure

Composite states

anomaly

Normal Recovery
Identification

Pressure
Recovery

Temperature
Recovery

recovery
success temperature pressure

Recovery

recovery
failure

Composites and transitions

Idle

Maintenance

Printing

Selecting Processing

Validating

Transition from substate

Transition to/from composite state

Active

Including composite states

 Start

entry / start dial tone
exit / end dial tone

 Partial Dialing

entry / number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

 Dial Number

Include / Dialing

Composite state

•  Used to simplify diagrams
•  Inside, it looks like a statechart
•  It may have composite transitions
•  It may have transitions from substates
•  It can be sequential or parallel

Example

Adding assets

do / add assets

Verify assets

do / verify eligibility
Check out assets

Complete

[not all assets added]

[all assets added]

[verified /complete check out]

Cancelled
cancel

cancel
cancel

Exploiting
a

composite
state

Parallel composition

•  Concurrency (multiple threads of control)
•  Synchronization

substate1 substate2

Superstate

substate3 substate4

Example

Mod1 Mod2

Incomplete

Project

Midterm Final

Passed

Failed
fail

Protocol state machine
•  Normally we use a state diagram to show the internal

behavior of all objects of a class
•  Sometimes, however, we want to show a complex

protocol (set of rules governing communication) when
using an interface for a class

•  For example, when we access a database we need to
use operations like open, close and query. But these
operations must be called in the right order: we cannot
query the database before we open it

Protocol state
machine

<<boundary>>
DatabaseAccessor

-dbname
-password
-comArea
-queryStatement

+open()
+close()
+query()
+fetch()
+cancel()
+create()
+kill()

DBaccess

Behavioral vs protocol state machine

•  Two kinds of state machines: behavioral state
machines and protocol state machines

•  Behavioral state machines can be used to model
the behavior of individual entities (e.g., class
instances)

•  Protocol state machines are used to express
usage protocols and can be used to specify the
legal usage scenarios of classifiers, interfaces,
and ports

History pseudo state
•  A history pseudostate represents the most recent active substate of

its containing state
•  There are two kinds of this pseudostate: shallow or deep

–  Shallow (H): only the topmost active level of superstate is recorded
–  Deep (H*): all nested active levels in the superstate are recorded

 (See the Superstructure sect 15.3.8 for pseudostate definitions and icons)

Consistency
among diagrams

*

Student

0..*

*

1

practices attends

UniversityCourse Sport

Name
Surname
Age
Role

new enrollment to
a different course

change career

change role

studies
end studying

Student

Graduate Sportsman

Exercise: Cellular Phone

•  Draw a statechart describing the operation of a
cellular phone. Assume that the phone has keys for:

–  power on and off
–  keypad locking and unlocking
–  0-9, #, and *
–  talk (or send) and end

 Model the following operations:
–  power on/off
–  keypad locking/unlocking
–  making calls (e.g., dialing, connecting, talking),
–  receiving calls (e.g., ringing, talking)

Activity diagrams

•  Activity diagrams represent workflows of actions
of several objects (but objects are not shown)

•  Actions are composed by sequence, choice,
iteration, and concurrency

•  AD can be used to describe the activities of the
components of a system

•  In UML1 AD are based on State Diagrams
in UML2 they have a different semantics

Activity diagram: elements

synchronization

Initialize course

[count < 10]

A diagram whose nodes
represent activities,
while arrows represent the
order the activities happen

Add student

Close course

[else]

Notify Registrar Notify Billing

fork/spawn

Activity (rounded rectangle)

guard

initial

final

decision

Example
Fill out

enrollment forms

Enroll in
university

Enroll in seminars Make initial
tuition payment

Attend university
overview presentation

Obtain help
to fill out forms

[correct]

[incorrect]

[accepted]

[rejected]

Example
Receive order

Fill order

[else] [rush order]

Send invoice

Overnight delivery Regular delivery Receive payment

Close order

Activity diagram

Example: hotel reservation

Activity control nodes
•  Initial node
•  Decision node
•  Fork node
•  Join node

•  Merge node
•  Activity final node
•  Flow final node

Activity partition
•  Partitions divide the diagram to constrain and show some special view
•  Partitions often correspond to organizational units in a business model

Swimlanes
in an

activity diagram
showing a
workflow

with several roles

Exercise Which is the maximum degree of
parallelism in this activity diagram?

What an AD does not show?

•  Objects (but they can be inferred)
•  States
•  Messages
•  Data passed between steps
•  User interface

How to create an AD
1.  Identify the activities (steps) of a process
2.  Identify who/what performs activities (process steps)
3.  Identify decision points (if-then)
4.  Determine if a step is in loop
5.  Determine if a step is parallel with some other
6.  Identify the order of activities, decision points

Example
Step

ID
Process Step
or Decision

Who/What
Performs

Parallel
Activity

Loop Preceding
Step

1 Request quote Customer No No -

2 Develop
requirement
notes

Salesperson No Yes 1

3 Decision: Help? Salesperson - Yes 2

4 Salesperson
enters data

Salesperson No Yes 3

5 Check
requirements

Technical
Expert

No Yes 3

6 Tech. expert
enters data

Technical
Expert

No Yes 5

7 Calculate quote System No Yes 4, 6

8 Review quote Customer No Yes 7

9 Decision:
Changes?

Customer No Yes 8

10 Accept quote as
order

Customer No No 9

How to create an AD (cont.)

7.  Draw the swimlanes

8.  Draw the start point of the process in the swimline of the first
activity (step)

9.  Draw the oval of the first activity (step)
10. Draw an arrow to the location of the second step
11. Draw subsequent steps, while inserting decision points and

synchronization/loop bars where appropriate
12. Draw the end point after the last step.

Example

1

2

3

4

5

6

7

8

9

10

State vs activity diagrams

•  Both diagrams describe behaviors, by state
changes and actions, respectively

•  In UML1 they are equivalent (in AD states are
actions)

•  In UML2 they differ: ActivityD are based on Petri
Nets, StateD on Harel automata

•  Their typical usage is also different:
–  State diagrams are single context
–  Activity diagrams are multiple context

State machine: chess game

White’s move

Black’s move

start

white
moves

black
moves

Black wins

Draw

White wins

stalemate

stalemate

Activity diagram: chess game

move

move

move

move

W
hi

te

B
la

ck

State vs activity diagrams

e2e4 e7e5 g1f3 b8c6

Pe2e4

Pe7e5

Ng1f3

Nb8c6

W
hi

te

B
la

ck

State vs activity diagrams

Activity diagram vs flowchart

•  An activity diagram shows the order in
which to do tasks

•  The key difference between an activity
diagram and a flowchart is that the activity
diagram can describe parallel processes,
while flowcharts are sequential

Behavior
diagrams:
interaction

Balla: Dinamismo di cane al guinzaglio, 1912

Modeling Interaction

•  Statechart diagram
–  Depicts the flow of control inside an object using

states and transitions (finite state machines)
•  Activity diagram

–  Describes the control flow among objects by
actions organized in workflows (Petri Nets)

•  Sequence diagram
–  Depicts objects’ interaction by highlighting the

time ordering of method invocations
•  Communication (collaboration) diagram

–  Depicts the message flows among objects IN
TE

R
A

C
TI

O
N

Interaction diagrams
•  A use case diagram presents an outside view of

the system
•  The inside view of a system is shown by

interaction diagrams

•  Interaction diagrams describe how a use case is
realized in terms of interacting objects

•  Two types of interaction diagrams
–  Sequence diagrams
–  Collaboration (Communication) diagrams

Sequence diagram: main entities

•  participant: an object that acts in the
sequence diagram

•  message: communication between
participant objects

•  the axes in a sequence diagram:
– horizontal: which object/participant is acting
– vertical: time (down -> forward in time)

Sequence diagram: elements

message lifetime activation
bar

object

Sequence diagram

•  message (method call) indicated by an
horizontal arrow to another object
–  write the message name and arguments above arrow

–  dashed arrow back indicates return
–  different arrowheads for synchronous / asynchronous

methods

Messages between objects

Arrows in a sequence diagram

•  A sequence diagram describes sequences
of method calls among objects

•  There are several types of method calls

Example with different msgs

Lifetime of objects
•  creation: arrow with 'new'

label
–  an object created after

the start of the scenario
appears lower than the
others

•  deletion: an X at bottom of
object's lifeline
–  Java does not explicitly

delete objects; they fall
out of scope and are
garbage-collected

163

Indicating method calls

Activation

Nesting

:Controller

•  activation: thick box over object's life line
–  The object is running its code, or it is waiting for

another object's method to finish
–  nest to indicate recursion

Sequence diagram: flow

 : Customer : Order : Payment : Product : Supplier

place an order

process

validate

deliver
if (payment ok)

back order

if (not in stock)

get address

mail to address

Sequence of message transmissions

Linking sequence diagrams
•  if a sequence diagram is too large or refers to

another diagram, indicate it with either:
–  an unfinished arrow and a comment
–  a “ref” frame that names the other diagram

Verify customer credit

refCustomer Info

Approved?

Conditionals and loops
•  frame: box around part of a sequence diagram to

indicate selection or loop
–  if : (opt) [condition]!
–  if-else: (alt)[condition] else [condition]
–  loop: (loop)[condition to loop over]!

Examples: see the next three slides

Opt
(if)

Alt
(if-else)

Loop

Example

A SD highlights the objects involved in an activity
and the time ordering of method calls among them

http://www.agilemodeling.com/artifacts/sequenceDiagram.htm!

Example

Example

Using a SD for workflow

A real
example

(from
Mozilla.org)

Consistency among diagrams
We can derive the dependencies shown in a class diagram
from the interactions defined in a sequence diagram

Transaction Ticket
valid for

Balance

Zone buys

Coin

Bill

amount paid

:TicketDistributor :Zone :Balance

:Ticket

getPrice()

updateBalance()

updateBalance()

<<create>>

:Traveler

amountDue

amountDue

insertChange()

insertChange()

printedTicket

ack

selectZone()

Exercise
Draw a sequence diagram showing how a
customer interacts with a travel agency, a station
and a train to reach some destination

Draw a sequence diagram to show how a user
prints a document on a printer, and a counter
keeps a count of printed pages

Communication (collaboration) diagram

•  Communication diagrams show the
message flow between objects in an
application

•  They also show implicitly the basic
associations between classes

•  Communication diagrams are drawn in the
same way as sequence diagrams (and
can be semantically equivalent to them)

Communication diagram

p : Product

 : Order : Payment

c : Customer

 : Supplier

1.1 : ok := validate()

1.2 [ok] : deliver(c)

1.2.1 [not in stock] : back order(p)

1.2.2 : get address()

1 : place an order(c)

object

link

message

Communication diagram

p : Product

 : Order : Payment

c : Customer

 : Supplier

1.1 : ok := validate()

1.2 [ok] : deliver(c)

1.2.1 [not in stock] : back order(p)

1.2.2 : get address()

1 : place an order(c)

 Collaboration

Example

SD vs CD

• These two diagrams are
equivalent

• Communication diagrams
correspond to simple
Sequence diagrams that
use none of the
structuring mechanisms
such as interaction uses
or combined fragments

• Some complex sequence
diagrams can not be
represented by equivalent
communication diagrams

Consistency among diagrams

Exercise
Draw a communication diagram showing how a
customer interacts with a travel agency, a station
and a train to reach some destination

Draw a communication diagram to show how a
user prints a document on a printer, and a counter
keeps a count of printed pages

Basic diagrams we have seen

Other diagrams

Diagrams we have seen in this lecture:
•  Use case, class, object, statechart, activity,

interaction (sequence and collaboration)
We could add (using UML 1.*):
•  Component, Deployment
We could add (using UML 2.*):
•  Composite structure, Profiles, Package,

Interaction Overview, Timing

Usage survey

See also: www.projectpragmatics.com/Home/resources-for-you-1/the-uml-survey-results-are-in

Main diagrams

The main diagrams that are used in most
views are :
•  Use case diagram
•  Class diagram
•  Sequence diagram
•  Activity diagram

Discuss
•  Which diagrams are most useful in each

lifecycle phase?

Diagrams in lifecycle

Requirements Design Implementation

Use Case

Class diagram

Activity diagrams and Statecharts

Sequence diagram

Diagrams during design

Three main types:
•  Class diagrams for domain entities and

data structures
•  Sequence diagrams for multiple objects

interactions via messages
•  Statecharts for behaviors and algorithms

of a single object

Exercise

Draw, on some game-playing domain (eg. Chess):
–  A class diagram
–  An object diagram
–  A statechart
–  A sequence diagram
–  A communication diagram
–  An activity diagram

Conclusions
•  UML is a notation still evolving under control of OMG
•  It offers several diagram types, in order to describe

different views on a model
•  Basic diagrams from UML 1.* are: use cases, classes,

behaviors (statechart+activity), interactions (sequence
+communication)

•  Several tools available
•  UML and the diagrams need a process to be used

consistently and effectively (for instance, RUP)

Summary

•  UML includes a number of diagram-based
notations to model software systems
using an object oriented approach

•  UML is not a process (it needs a process,
like for instance the RUP)

•  It is not proprietary: it is an OMG (Object
Management Group) and ISO standard

Caveat emptor
When Jim, Ivar, and I began our journey that became manifest in the UML,
we never intended it to become a programming language…UML was to be
a language for visualizing, specifying, constructing, and documenting the
artifacts of a software-intensive system—in short, a graphical language to
help reason about the design of a system as it unfolds.
Most diagrams should be thrown away, but there are a few that should be
preserved, and in all, one should only use a graphical notation for those
things that cannot easily be reasoned about in code.
As I've also often said, the code is the truth, but it is not the whole truth,
and there are things such as rationale, cross-cutting concerns, and
patterns that cannot easily be recovered or seen from code…
These are the things for which a graphical notation adds value, and any
such notation should be used only if it has predictive power or reasoning
power (meaning, you can ask questions about it).

Grady Booch

Self test questions

•  Which are the UML 1.* canonical diagrams?
•  What is a use case?
•  What is a class diagram? What is an object diagram?
•  How do we describe a tree-like data structure in a

class diagram?
•  What is an interaction diagram?
•  What is a protocol state machine?
•  What is the difference between statecharts and

activity diagrams?

Readings

•  On use cases
www.ibm.com/developerworks/rational/library/5383.html!

•  On class diagrams
www.ibm.com/developerworks/rational/library/content/

RationalEdge/sep04/bell/index.html!

•  On activity diagrams
www.ibm.com/developerworks/rational/library/2802.html!

•  On sequence diagrams
www.ibm.com/developerworks/rational/library/3101.html!
!

UML Specification Documents

•  OMG, UML Specification version 1.5, 2003
•  OMG, UML Superstructure version 2.4.1, 2011
•  Rumbaugh, Jacobson, Booch, The UML Reference

Manual, Addison Wesley, 1999 and 2004 (2nd ed)

References on using UML

•  Booch, Rumbaugh, Jacobson, The UML User Guide,
Addison Wesley, 1998 and 2005 (2ed)

•  Fowler, UML Distilled, 3ed, Addison Wesley, 2003
•  Pilone and Pitman, UML 2.0 in a Nutshell, OReilly, 2005
•  Ambler, The Elements of UML 2.0 Style, Cambridge

University Press, 2005"

Useful sites
•  www.uml.org Documents defining the standard!
•  www.omg.org!
•  www.uml-diagrams.org/!
•  www.agilemodeling.com/essays/umlDiagrams.htm!
•  www.tutorialspoint.com/uml/index.htm!
•  www-306.ibm.com/software/awdtools/rmc/library!
•  msdn.microsoft.com/en-us/library/dd409436.aspx!
•  www.cs.gordon.edu/courses/cs211/ATMExample!
•  opensource.objectsbydesign.com!
•  vinci.org/uml/!
•  www.cragsystems.co.uk/ITMUML/index.htm Online courseware
•  www.eclipse.org/modeling/mdt/uml2/docs/articles/Getting_Started_with_UML2/article.html

Tools
•  Eclipse + several plugins, like Omondo
•  argouml.tigris.org Argo or Poseidon
•  www.genmymodel.com free online tool, sharable diagrams
•  www.lucidchart.com web application, need license!
•  violet.sourceforge.net Open source editor for UML!
•  www.borland.com/us/products/together/index.html Borland Together
•  www.visual-paradigm.com Visual Paradigm suite!
•  www.nomagic.com Magicdraw suite!
•  abstratt.com text UML!
•  www.umlgraph.org web application for class and seq diagrams!
•  www-01.ibm.com/software/rational/ Rational Rose
•  jazz.net IBM platform
•  smartuml.sourceforge.net UML on tablet PC!
•  metauml.sourceforge.net Beautiful UML diagrams in LaTeX
•  softwarestencils.com/uml Images reusable in a graphic editor!
•  yuml.me Fast draw of UML diagrams for web pages!

UML blogs and fan clubs
•  www.linkedin.com/groups/UML-Lovers-143183/about
•  bulldozer00.com/uml-and-sysml/
•  geertbellekens.wordpress.com/about-geert-bellekens/

Questions?

