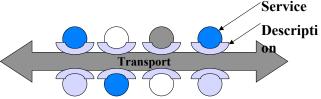
Service Oriented Architectures


bocchi@cs.unibo.it v.cs.unibo.it bocch

Service Oriented Architecture (cont.)

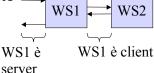
- Quando utilizzare una SOA
 - Lo sviluppo delle componnti è loosely coupled
 - Le componenti del sistema vengono eseguite su diverse piattaforme
 - Si vuole rendere accessibile un'applicazione attraverso una rete
 - Si vuole rendere accessibile un'applicazione a utenti sconosciuti
 - Si opera su una Internet dove l'affidabilità non può essere garantita
- La SOA può essere istanziata ottenendo diverse architetture
- Le principali applicazioni di SOA riguardano
 - e-business (Web Service Architecture)

Service Oriented Architecture

Una Service Oriented Architecture (SOA) è
 "...a set of components which can be invoked, and whose interface descriptions can be published and discovered..." [W3C]

- SOA è un tipo di sistema distribuito
- agenti = servizi network addressable
- o ciò che importa agli utenti è l'interfaccia
- o formato dei dati e protocolli standard
- connessione stateless

E-business e outsourcing


- Outsourcing: contract workers from outside of a company to perform specific tasks instead of using company employees.
- Lo scopo è risparmiare denaro
- L'infrastruttura IT di un'azienda può coinvolgere
 - Reti esterne
 - Risorse esterne
 - Servizi esterni
- Sfruttare tecnologie già esistenti e diffuse

<u>http://ist-</u>socrates.berkeley.edu/~fmb/articles/outsourcingtrends.ht

Scenario...

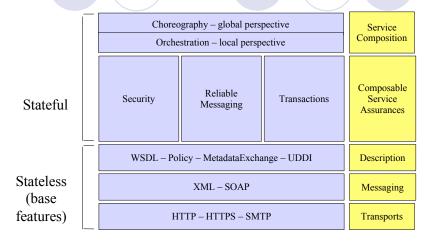
- Decentramento IT ← outsourcing
- Diffusione Internet
- Permettere interoperabilità tra diverse piattaforme: la piattaforma è Internet
- Internet per le macchine (principalmente b2b)
- → Modello client-server stateless tra applicazioni con interazioni sincrone o asincrone non correlate

Client-Server → P2P

Sistemi distribuiti

- Agenti software discreti (entità computazionali) che collaborano per implementare qualche funzionalità
 - operano in ambienti differenti
 - comunicano attraverso stack di protocolli intrinsecamente meno affidabili rispetto p.es. alla memoria condivisa
 - latenza non predicibile nell'accesso remoto
 - problemi di concorrenza
 - partial failure (p.es.)
 - perdita di messaggi: x(y)→0
 - crash di un nodo: $[P]^S \rightarrow [*]^S e [*]^S \rightarrow [S]^S$

Web Service


- La Web Service Architecture è un'istanza di SOA basata su un particolare stack di protocolli
- Realizzazione del concetto di dynamic e-business


D. Ferguson, "IBM Web Services: Technical and Product Architecture Roadmap," IBM Corporation (2001)

http://www-

- Una o più operazioni accessibili tramite URL
- Descritti con linguaggio standardizzato
- Componibili in Web Service più complessi

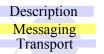
Web Service: Protocol Architecture

Description

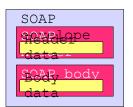
Messaging

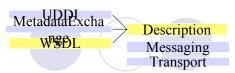
Transport

- Problema: comunicazione tra componenti remote
- SOAP
 - o comunicazione tra programmi attraverso Internet
 - Remote Procedure Calls (RPC) attraverso HTTP (o SMTP...)
 - HTTP è il protocollo più utilizzato per scambiare informazioni su Internet
 - Permette la comunicazione tra differenti OS, linguaggi, tecnologie




```
WS-Addressing
SOAP
XML
Description
Messaging
Transport
```


```
<?xml version="1.0"?>
<soap:Envelope
  xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
  soap:encodingStyle="http://www.w3.org/2001/12/soapencoding">
<soap:Header>
  <m:Trans
  xmlns:m="http://www.add.com/trans/"soap:mustUnderstand="1">
  </m:Trans>
</soap:Header>
<soap:Body>
  <m:GetPrice xmlns:m="http://add.com/prices">
  <m:Item>Apples</m:Item>
  </m:GetPrice>
  <soap:Fault> ... </soap:Fault>
</soap:Body>
</soap:Envelope>
```

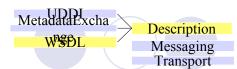



- Un messaggio è un documento XML che contiene:
 - Envelope: identifica il documento XML come un messaggio SOAP
 - Header (opzionale): informazioni su come elaborare il documento
 - Body (necessario): contiene il messaggio vero e proprio
 - Fault (opzionale): contiene informazioni sugli eventuali errori riscontrati durante la computazione

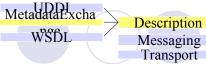
- Web Service Description Language
- Documento XML
- Cosa descrive:
 - L'interfaccia di un Web Service come insieme di possibili operazioni
 - Un insieme di: port type (WSDL 1), interface (WSDL 2.0),
 - Un insieme di binding per ogni port type/interface.
 - Un insieme di: porte (WSDL 1), endpoint (WSDL 2.0) per ogni binding
- Cosa non descrive:
 - Informazioni sul comportamento
 - Semantica
 - Ordine delle operazioni
- Riassumendo:
 - Web Service come insieme di endpoint che scambiano messaggi
 - Connessioni stateless dove tutti i dati per una richiesta devono essere nella richiesta stessa

Gli elementi di base per descrivere un WS:

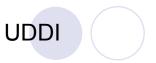
- <types> definisce i tipi di dato usati per descrivere i messaggi scambiati
- <message> definisce i messaggi usati dal Web Service
 - o definizione astratta dei dati trasmessi (data element delle operazioni)
 - messaggio composto da una o più parti logiche ciascuna associata ad una definizione in un qualche type system

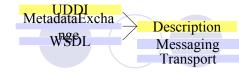

- <binding> descrive i protocolli e il formato dei dati per le operazioni e i messaggi definiti di un portType particolare
- <port> implementazione di una portType che identifica dove effettivamente è localizzata l'implementazione del servizio (indirizzo del binding)
- <service> aggrega insiemi di porte correlate

- <portType> definizione astratta di un insieme di operazioni
 - Ogni portType è descritto come un insieme di possibili operazioni (ed i messaggi coinvolti in tali operazioni)
 - Le azioni possono essere:
 - One-Way: ricezione di un messaggio
 - Request-Response: ricezione di un messaggio seguita dall'invio di un messaggio correlato
 - Solicit-Response: invio di un messaggio e attesa di un messaggio correlato
 - Notification: invio di un messaggio

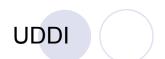


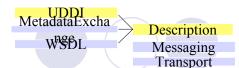

```
<wsdl:binding name="HelloWorldBinding"</pre>
               type="tns:HelloWorldInterface">
     <soap:binding style="rpc"
           transport=http://schemas.xmlsoap.org/soap/http/>
       <wsdl:operation name="sayHello">
            <soap:operation soapaction="urn:Hello" />
                <wsdl:input>
                    <soap:body use="encoded"
                               namespace=" " encodingStyle=" " />
                </wsdl:input>
                <wsdl:output>
                    <soap:body use="encoded"</pre>
                               namespace=" " encodingStyle=" " />
                </wsdl:output>
      </wsdl:operation>
</wsdl:binding>
```

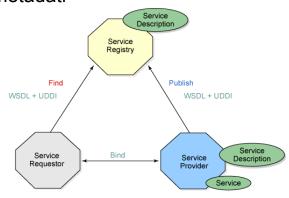

```
WS-MetadataExchange ws
```



- Dato il riferimento ad un Web Service voglio capire cosa fa
- L'interfaccia di un Web Service contiene operazioni che permettono ad altri servizi di accedere ai suoi metadati





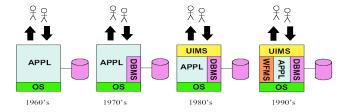

Scoprire Web Services

- Tramite direct publish: il Service Provider invia il Service Description direttamente al Service Requestor attraverso meccanismi diretti (e-mail, CD-ROM,...)
- Tramite dynamic publish: il Service Requestor recupera il Service Description attraverso un URL conosciuto
- Tramite service registry: si interroga un database UDDI che fornisce il Service Description più idoneo

 UDDI specification definisce un servizio di raccolta di metadati

WS e presenza di stato

- La presenza di stato può essere introdotta a due livelli
 - Nei messaggi (come i cookie nella Web Architecture)
 - Nel business process


Lo stato nei messaggi
Service assurance

Lo stato nel business processe

Orchestration - Choreography

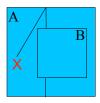
Oltre WSDL: la composizione di WS

- WSDL descrive le operazioni...ma cosa c'è dietro?
 stateless service, subservient object, agente-instanza con proprio ciclo di vita...
- In molti contesti business-to-business è cruciale
 - descrivere le possibili sequenze di operazioni e così il loro ordine
 - supportare interazioni stateful e long-running tra Web service
- La presenza di stato si può gestire
 - a livello di application code
 - in modo ortogonale (Gelenter: applicazione = computazione + coordinazione)

Composable Service Assurances

- Security:
 - WS-Security
 - Solitamente affidata al livello di trasporto (HTTPS)
 - Funzionalità più complesse p.es. encrypted security token A→B→C
 - WS-Trust
 - STS (Security Token Service) è un WS che scambia e valida Securty Token
 - Meccanismo per accordarsi sui server fidati
 - WS-SecureConversation
 - HTTPS usa chiavi pubbliche per stabilire chiavi specifiche per la conversazione
 - WS-Security per iniziare una sessione o "conversazione"
 - WS-SecureConversation per accordarsi sulle chiavi specifiche per la sessione
 - WS-Federation
 - Più organizzazioni con un dominio di sicurezza
 - Definire proprietà comuni
- Reliable Messaging
 - WS-ReliableMessaging (NB le comunicazioni sono inaffidabili → numerazione msg...)
- Transactions
 - WS-Coordination
 - WS-AtomicTransaction
 - WS-BusinessActivity
 - BTP

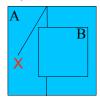
Transazioni


- Composition Assurances
- Più messaggi scambiati tra i partecipanti costituiscono un unico "task" logico
- Le parti devono
 - Iniziare un task coordinato
 - Associare le operazioni con i loro task logici
 - Accordarsi sull'outcome della computazione

Transazioni Long Running

Composition Assurances

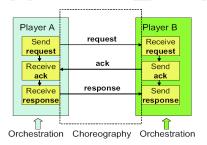
Loosely coupled environments:


- Interazioni long running
- Possiamo non avere il controllo delle risorse coinvolte
- Long running transaction e compensazione Atomicity e isolation vengono rilassate

Transazioni ACID

Composition Assurances

- Transazioni ACID: le proprietà
 - _ Atomicity: tutto o niente
 - Consistency: il sistema passa ad un altro stato consistente
 - Isolation: due transazioni hanno lo stesso effetto se eseguite in serie o in parallelo
 - _ Durability: una volta stabilito un outcome, la decisione è immutabile
- Le proprietà vengono garantite bloccando risorse


WS-Coordination

Composition
Assurances

- Meccanismo generale per iniziare ed accordarsi sull'outcome di un Web Service task con più participanti
- Esiste un servizio detto coordinator service che permette di iniziare, terminare, associarsi ad un determinato task...
- In tutti i messaggi è presente un coordination context
- 2 principali estensioni
 - WS-AtomicTransaction
 - WS-BusinessActivity
- Altre proposte
 - Business Trensaction Protocol

Composition Assurances

Orchestrazione e Coreografia

- L'orchestrazione caratterizza business process che possono essere eseguiti presso un particolare servizio e che rappresentano la prospettiva di una parte
- La coreografia descrive il pattern di interazioni tra più business process distribuiti

BPEL4WS

- Da dove proviene:
 - Forti radici nei tradizionali flow models
 - Si basa su WSDL
 - Unisce WSFL e XLANG
- Definisce sia il comportamento astratto che eseguibile dei processi (aspetti implementativi vengono nascosti con il non determinismo)
 - Abstract processes per specifiche di e-commerce
 - Executable processes forniscono un modello per integrare applicazioni
- Business Processes e composizione: tre aspetti
 - Struttura
 - Informazione
 - Comportamento

Orchestrazione/Coreografia - Riferimenti

BPEL4WS

Business Process Execution Language for Web Services

arv/ws-l

Composition

Assurances

WS-Choreography Description Language 1.0

://www.w3.org/TR/2004/WD-ws-cdl-10-20041012/

Struttura di un processo BPEL

Composition Assurances

Composition Assurances

BPEL4WS - struttura

- Struttura
 - WSDL
 - Si stabiliscono dei ruoli per I partecipanti: associazione con nome tra il servizio composto e un partecipante

Creare istanze

Composition Assurances

- Creare istanze di un servizio che ha il proprio ciclo di vita e il proprio stato.
- Possiamo definire delle start activities in un Business Process che creano una nuova istanza:

```
<action operation="actionName" createinstance="yes">
...
</action>
```

BPEL4WS

- Informazione
 - Il web service composto definisce un insieme di variabili, lo stato del servizio dipende dal valore delle variabili
- Comportamento p.es.

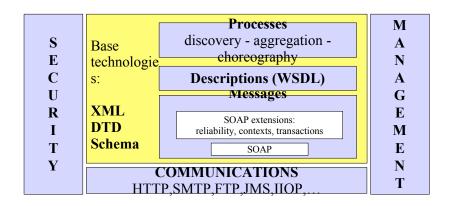
<sequence>

<!- execute activities sequentially-->

<flow>

<!- execute activities in parallel-->

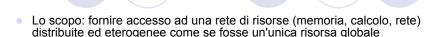
<while>


<!- iterate execution of activities until condition is violated-->

Correlation set

Composition Assurances

- Quando comunichiamo con un Business
 Process dobbiamo comunicare non solo con un dato port number ma anche con la corretta istanza del servizio
- Specifcare gruppi correlati di operazioni in una istanza.
- I correlation group sono definiti con correlation set di token condivisi da tutte le operazioni nel gruppo


Web Service – il quadro completo

Grid Service

- Un Grid Service è un Web service che presenta caratteristiche aggiunte
- Interfaces
 - Discovery (risposta a domande sullo stato interno)
 - Dynamic service creation (service Factory → Transient Web Service)
 - Lifetime management
 - Notification
- Conventions:
 - Address naming
 - Upgradeability
- Future:
 - Authorization
 - Concurrency
- External to core Grid
 - Authentication
 - Reliable invocation → transaction protocols

Grid

- 2002 il Global Grid Forum propone la Open Grid Service Architecture
- OGSA è un'istanza di SOA basata sulle tecnologie dei Web Service
- Convergenza tra Grid e Web Service
- OGSA è basata su Web Service Resource Framework (WS-RF)
- WS-RF estende le funzionalità di base dei Web service
- Le funzionalità aggiunte sono incorporate nel concetto di Grid Service

Limiti e speranze...

Web Services Architecture: http://www.w3.org/TR/ws-arch

- **OWL-S**
- Automatizzare in parte questo processo permetterebbe
 - Composizione dinamica
 - Controllo di proprietà (i.e. assenza di deadlock, liveness...)
- Alcune possibili aree di ricerca:
 - Semantic Web
 - Behavioral Types
 - "Description based on behavioural types can form the basis of a new kind of discovery mechanism, specifically one based on partial behavioural descriptions".
 - L. Bocchi, P. Ciancarini, R. Moretti, V. Presutti, and D. Rossi. An OWL-S Based Approach to Express Grid Services Coordination. To appear in SAC 2005

L.G. Meredith and S. Bjorg, *Contracts and Types*. Communication of the ACM, October 2003/Vol. 46. No. 10

Limiti e speranze...

- Estensioni ad OWL-S
 - Grid
 - Transazioni

Service Discovery

Distributed protocols

Internal Choice

Service Description

- Mapping da BPEL ad OWL-S
- Algoritmi di matchmaking
- Transazioni (e protocolli di negoziazione)
 - Descrizione
 - implementazione

Riferimenti – cont.

- Collaxa 2.0 release candidate 1 (October 17th 2003)
- BP Wizard 1.0 (by Eclipse)

http://www.bpwizard.com/products/#top

- H.Foster, S. Uchitel, J.Magee and J.Kramer, Model based verification of Web Service Composition
- Web Services Architecture
 http://www.w3.org/TR/ws-arch
- L.G. Meredith and S. Bjorg, Contracts and Types. Communication of the ACM, October 2003/Vol. 46. No. 10
- OGSA http://www.globus.org/ogsa/
- OGSI http://www.gridforum.org/ogsi-wg/
- DAML-S http://www.daml.org/services/daml-s/0.9/

Riferimenti

Outsourcing

://ist-socrates.berkeley.edu/~fmb/articles/outsourcingtrends.htm

 D. Ferguson, "IBM Web Services: Technical and Product Architecture Roadmap," IBM Corporation (2001)

http://www-4.ibm.com/sortware/solutions/webservices/pai/roadmap.pai

WSDL

://www.w3.org/2002/ws/desc/

 Reliable message delivery in a Web services world: A proposed architecture and roadmap (A joint white paper from IBM Corporation and Microsoft Corporation)

http://www-106.ibm.com/developerworks/webservices/library/ws-rmdev/

BPEL4WS

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

WS-Choreography

http://www.w3.org/TR/ws-chor-reqs

UDDI

http://www.uddi.org