Moving in the Dark:
Progress through Uncertainty in Kriegspiel

Andrea Bolognesi and Paolo Ciancarini

Dipartimento di Scienze dell’Informazione
University of Bologna, Italy

Abstract. Kriegspiel is a wargame based on the rules of Chess. A player
only knows the position of his own pieces, while his opponent’s pieces
are “in the dark”, ie. they are invisible. A Kriegspiel player has to guess
the state of the game and progress to checkmate being in the dark about
the history of moves (but he can exploit the messages of a referee).
Thus, computer playing of Kriegspiel is difficult, because a program has
to progress in the game even with scarce or no information on its op-
ponent’s position. It is especially interesting to study the progress of
computer play of simple Kriegspiel endings. We show how we tested a
program able to play simple Kriegspiel endings to see how it progresses
through uncertainty.

1 Introduction

Kriegspiel is a Chess variant similar to wargames. Each player uses a normal
chessboard with normal pieces and normal rules, except that he cannot see his
opponent’s pieces. Both players are not informed of their opponent’s moves. Each
move is tried “in the dark”, ie. knowing nothing about the position and strategy
of the opponent.

Since Kriegspiel is based on Chess, a normal Chess program can be easily
adapted to play Kriegspiel, for instance trying random moves until the referee
accepts one. If we want to have a playing quality better than random, however, a
special problem has to be addressed. Most computer chess evaluation functions
compute a score evaluating both armies, whose position is well known, and then
the search procedure progresses maximizing or minimizing the difference of score
assigned to each army. In Kriegspiel this optimization is not possible, so progress
(namely improving the program’s army position with respect to the position of
the adversary) becomes a problem. A player has to choose a ”good” move being
in the dark about the position of the enemy army.

In order to build a complete program able to play a good Kriegspiel game, the
study of simple endings is useful because these endings are quite common in the
practice of the game between humans. There is also a game-theoretic interest:
in fact, a number of papers discuss abstract, rule based procedures suitable to
solve the simplest endings from any initial position. A first study on the & /1 %
ending was published by Boyce, who proposed a complete procedure to solve it
[3]. Also two Italian researchers studied this ending, more or less at the same
time than Boyce’s [8]. Then Ferguson analysed the endings & &) v [6] and

o'l

: £ % [7]. A rule-based program to play the © /* ¥ ending according to the
prmmple of Bound Rationality was discussed in [4]

In this article we study and evaluate instead a search-based algorithm first
exposed in [1] and generalized in [2] . It explores a game tree made of nodes which
are metapositions [9], and uses an evaluation function in order to implement a
progress heuristic.

We will deal with the basic endgames, i.e. those where Black has left the
King only. This paper completes the work described in our papers [1,2]: there we
discussed some partial results on the most common Kriegspiel endings, that we
here consolidate and generalize. More precisely, in [1] we developed a basic pro-

gram for the classic ending 7 " % in [2] we extended our approach, developing
a more general evaluation function useful also for other endings.

The goal of this paper is to study how our approach is effective, namely we
aim at showing that our algorithm progresses even if it "moves in the dark”.
We initially compare our algorithm with an abstract algorithm proposed by
Boyce [3]. The Boyce algorithm is rule-based and in our knowledge has been
never implemented before. Our algorithm instead is search-based: our goal is to
compare the two different algorithms from a practical, agonistic viewpoint. In
fact, we have recently developed a complete playing program named Darkboard
[5]): when we let it to play on the Internet Chess Club (ICC), human Kriegspiel
players are very clever in exploiting its weaknesses in dealing with simple endings.

This paper has the following structure. In section 2 we evaluate our approach
comparing it with the algorithm proposed by Boyce. In Section 3 we discuss the
completeness of our algorithm. In Section 4 we draw our conclusions.

2 Tests and comparisons

In order to evaluate the quality of the algorithm described in [2], we have im-
plemented another, different, rule based program which plays the procedure
proposed in [3] to win the rook ending.

2.1 The Boyce Algorithm

Boyce showed a way to force checkmate by considering positions where both
Kings are in the same quadrant of the board as seen from the Rook, or where
the black King is restricted to one or two quadrants of the board.

The procedure applies when

1. both Kings are in the same quadrant as designed by the Rook; see Fig. 1;
2. the black King cannot exit from the quadrant;
3. the white Rook is safe.

Basically, the algorithm first ensures that the rook is safe from capture. Next
White plays to a position where all the possible squares for the black King are
in a rectangle where one corner is at the rook. White will put its King in that

e sie sia sie e
8 /@ 2 %/g %/g "2
|l e e oo gle e

¢

4,// L g %%

/ //7/ //7
3/% %% /%% >,
2 // // .

1////

b ¢ d e f g h

Fig. 1. Initial position of the Boyce’s procedure.

rectangle to keep the black King away from its Rook. White then forces the
black King back until it can occupy only those squares on a single edge. The
final phase to checkmate is then fairly simple.

We have implemented a program which uses a search algorithm and a special
evaluation function with the aim to obtain an initial position similar to that
shown in Fig. 1. Then we apply the Boyce rules, and count how many moves are
necessary in order to give mate.

2.2 Owur Algorithm

Our search-based algorithm has been presented in [2]. Here we summarize only
the main ideas in its evaluation function. The function includes six different
heuristics.

. it avoids jeopardizing the Rook;

. it brings the two Kings closer to each other;

. it reduces the size of the quadrant where the black King should be found;

. it avoids the black King going between the white Rook and the white King;
. it keeps the white pieces close to each other;

. it pushes the black King toward the corner of the board.

DT W N

These features are evaluated numerically and added to obtain the value for
a given metaposition; a search program then exploits the evaluation function to
visit and minimax a tree of metapositions [2].

2.3 Comparing the Two Programs

Figure 2 shows a graph which depicts the result of all the 28000 matches which
can occur considering all the possible initial metapositions for the rook ending
from the White’s point of view, starting with greatest uncertainty, that is starting
from metapositions where each square not controlled by White may contain a
black King. The number of matches won is on the ordinate and the number

matches won
350 F <

KRuvsk tree search

300 F / N
- / — — KRuvsk rule based
250 f]

- !
200 | | \
150 | | \

100 / \

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
number of moves

Fig. 2. Comparison of the rule-based program with the search-based program.

of moves needed to win each match is on the abscissa. The graphic shows the
distribution of the matches won normalized to 1000.

The rule based program spends the first 25 moves looking for one of the
initial positions; when it reaches one of these positions the checkmate procedure
is used and the program wins very quickly. However, the average of moves needed
is around 35. Our program based entirely on the search of game tree wins with
a better average, around 25 moves.

This is due to the fact that the program analyzes from the beginning each
position trying to progress to checkmate. On the other hand, the rule-based pro-
gram is faster in deciding the move to choose, with respect to the tree-searching
program. In fact, the rule-based program has a constant running time, whereas
the second one has a running time exponential on the game tree depth.

We remark, however, that from a practical viewpoint the Boyce approach is
useless because on the ICC Kriegspiel is played with the normal 50-moves draw
rules derived from chess.

2.4 Evaluating the Search Algorithm with Other Endings

Figure 3 shows the results obtained with our search-based algorithm when ana-
lyzing some different basic endings. We performed a test choosmg random meta-
positions with greatest uncertainty for < % ¥ & & ¢
then we normalized the results to 1000 and we merged them to produce the
L fioure.

In figure 3 we see that the program wins the <7 */ % ending quicker than the
& ¥ onding. This result was expected, because the Queen is more powerful

matches won

300
—— KRuvsk tree search
250 KQvsk
200 , KBB vsk
KBN vsk
150 F
100 |
50 b < —
o L " M L e e e e o

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
number of moves

Fig. 3. Comparing the behavior of the search-based algorithm on different endings.

than the Rook: the Queen controls more space so metapositions have a lesser
degree of uncertainty.

The case & 2 2 ¥ ig instead more difficult with respect to 7 £ ¥ In fact, the
former is won on average in a larger number of moves: sometimes our program
needs more than 100 moves.

Finally, we see that the behavior of our program in the * £ 2 % ending is
not good at all. The program often spends more than 100 moves to win and the
distribution of victories does not converge to zero, meaning that sometimes it
takes an unbound number of moves to win. We conclude that in this ending our
program is not really able to progress.

2.5 Progress through Uncertainty

An effective way to analyze the progress toward victory consists in considering
how the value of White’s reference board changes after playing each pseudomove.
The reference board is the metaposition which describes all positions were the
opponent King can be, compatibly with the past history of the game.

Figure 4 shows the trend of evaluations assigned to each reference board
reached during a whole match for the "/ ¥ ending. The number of attempts
needed during the game is shown on the abscissa, while the grades assigned by
the evaluation function are on the ordinate.

We see that, at each step, the value of metapositions increases. From White’s
point of view, this means that the state of the game is progressing and this is
actually a good approximation for the real situation.

We have performed the same test for the case of ¥ £ %) % ending, whose
result is depicted in Figure 5. Here the progress is not satisfactory for White, in

pseudomoves
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

s+ -

100 - e

480 - e

200 A /N mmmme

-250
values

Fig. 4. Trend of evaluations assigned to metapositions crossed during U ole ending.

fact he does not improve the state of the game at each step. The graph shows
how the evaluations of the reference board change during a match which ends
with the win of White: the value of metapositions does not increase at each
pseudomove, but at some lucky situation for White. Thus the program basically
wins this game by chance, that is by exploiting either some lucky metapositions
or its opponent’s errors.

We conclude that our program is able to progress to victory when we deal
with pieces able to divide the board in separate areas, which can then be reduced
to trap the black King; whereas when we have a piece which does not offer this
feature, like the Knight, the behavior of the program is not fully satisfactory.

3 Optimality

In this section we deal with the issue of the optimality of our approach. We will
show that our program is not able to win against an opponent using an oracle. If
it won against an omniscient opponent it would be able to give optimal solutions,
due to the search algorithm properties. We will point out that problems arise
when the possibility of an illegal answer is considered into the tree of moves.

We remark that, according to its author, the algorithm given in [3] (or the
(different) one given in [8]) can win against an omniscient opponent. However,
these abstract algorithms do not always chose the optimal ' move for each posi-
tion the player may be in. Alas, these solutions follow a strategy fixed in advance
that let the player to win even against an opponent using an oracle.

We showed in [2] that with a search on the tree of moves our program can
guarantee the optimality if a checkmate position is among the visited nodes. In

! i.e. the move which leads to victory with the minimum number of moves

pseudomoves

8 15 22 29 36 43 50 57 64 71 78 8 92 99 106

1

) e ending.

Fig. 5. Trend of evaluations assigned to metapositions crossed during &

all the other cases what we can say is that the move chosen by the program

depends on the evaluation function which judges the positions. In these cases we

cannot claim optimality.

o
///@JZ/ .
/////

-

/ /
//////

o / / © 3
/
///// s

W N~ © W T MmN o~

Fig. 6. Difficult positions against an omniscient opponent.

We will see in this section that the program with the evaluation function

proposed in [2] does not always win against an omniscient opponent.

If the program ends up in the position a) depicted in figure 6 no checkmate

state is found during the search on the tree of moves, so the program entrusts

the evaluation function with the task to judge for sub-optimal positions. Since

the evaluation function for the /L % ending tries to reduce the uncertainty

about the black King by decreasing the number of black Kings on his reference

board, it tries to push the white King inside the quadrant controlled by the
Rook. #d5 and “7d4 are illegal moves, so the program plays “7c3: the program
plays subsequently 7d2, then ““e3, trying to pass through the row controlled

by the Rook.

If “e3 is a legal move, then the referee remains silent and White can proceed,
but if the referee says ’illegal’, then the game reaches the position ¢) depicted in
Figure 6. In such a case the program acts as if it would play for time: it chooses
e2 or “¢3. This behavior depends on a random choice among the moves with
same value. So if it plays ““c3 then the game comes up again as in the initial
position where we started, otherwise if it plays /€2, then at the subsequent turn
it will try “e3 again.

We note that the program’s behavior is not optimal: it entrusts its choices to
the chance of having a silent referee after its move. In other words, if White plays
“e3 and the referee is silent then the program progresses; actually it decreases
the uncertainty about the black King’s position. If it plays ““e3 and the referee’s
answer is ”illegal”, then it does not progress.

If Black has no hint about White’s moves, then a good strategy consists in
centralizing his King to the middle of the chessboard. For instance, the black
King could move from e5 onto e4 and viceversa, as highlighted in miniature d)
in figure 7 on the left. In this case, the program with the evaluation function
given in [2] progresses and its choices lead him to win the game.

On the contrary, if Black gets an oracle to help him, it can halt White’s
progress. In this case, White faces an omniscient opponent and the program
fails by going forwards and backwards from position b) in Figure 6 to position
¢) in Figure 6.

= N W A OO N D
= N W A OO N D
= N W A OO N D

Fig. 7. Difficult positions against an omniscient opponent

From [3] we know that a good move for White consists in playing *'d1, when
the King is in e2 square (position e) in Figure 7). In fact this move allows White
having his King inside the quadrant controlled by his Rook. With this move
White reaches a position from which he can progress.

Writing an evaluation function which considers the position f) of figure 7
better then the position b) in figure 6 is quite a complex matter.

This problem can be expressed observing that from position a) in Figure 6,
moving ““c3 White reaches the position g) in Figure 8, then the move /d4 may
receive two different answers from the referee: silent which leads to position h)
in Figure 8, or illegal which leads to position ¢) in Figure 8. The worst answer

is the silent one?, so the value for ¥d4 will be considered as the value of the

position reached with a ’silent’ answer.

= N W A OO N D
= N W s N
= N W A OO N D

i) = %4 Tllegal

= N WA U O N O
= N W A U1 N

a b cde f gh
1) “ed Tllegal

Fig. 8. Difficult positions against an omniscient opponent.

Again, starting from position h) in Figure 8 if White plays “ed he may
receive two kind of answer: silent or illegal. Also in this case the illegal answer
is better because offers more information.

As a result, during the search each time the program analyzes moves of the
King in situations similar to the position g) or the position h) of Figure 8, the
illegal answer is not taken into account.

In Figure 9 is proposed an example of game tree. Starting from the position
depicted on the root of the tree we have only represented three moves that White
can choose.

We want to focus on the reasons that lead the program to prefer %“c3 rather
than ““e2. Each time that a move can be illegal, this kind of answer leads to a
node in the tree that is better valued with respect to the node resulting from a
silent referee. Since the program considers the value of a move equal to the value
of the worst position reached considering all the possible referee’s answers, if a
move may be illegal or silent then the worst one is the silent one.

Figure 9 shows that the leaf of the leftmost branch represents a better po-
sition than the leaf of the rightmost branch. In the middle there is a branch

2 In order to progress, the number of black Kings in the reference board computed
after each try should decrease: the best answer from the referee is ’illegal’, because
we can infer that the opponent King must be close to our King.

s
"

N
///// %/
. A

/%m/

T "
.
" n

W M~ © 0 F n N~

le

%gM

W I~ © 1w N A

/ *@ g_,/
///

an

W N~ © 0 F MmN o~

W M~ © 0 F MmN o~

abcdefgh

abcdefgh

“f4

gle

%gfﬁ

“ \
/,
%

f_%
// / / A

/////M/
// n

W N~ © 0 F n N o~

Fig. 9. Example of tree of metapositions.

concerning the “7e2;%e3 moves which lead to bad positions. The problem is due
to a program blindness: it acts as if it was not distinguishing a potentially illegal
branch from a certainly legal one.

An attempt to solve this problem consists in decreasing the value of illegal
moves. If we do it too heavily we run the risk of letting the program to play only
moves that are legal. In order to overcome this problem, we can try to discard
from the search on the tree of moves the positions previously reached during the
game. This is a trick that can avoid infinite loops, but it does not lead us to
formulate an optimal solution to the problem.

4 Conclusions

The work done so far on a program which plays Kriegspiel endings exploiting the
search on a tree of moves lets us to obtain optimal result for endings in which
the checkmate is technically achievable in few moves. In all the other cases we
delegate the judgement on moves to an evaluation function, that we proposed in
[1] and we have generalized in [2].

The approximation due to this kind of evaluation lets the program to play
reasonably against a fair opponent, which does not use an oracle. However the
program plays not optimally in positions with larger uncertainty or against an
omniscient opponent.

References

1. A. Bolognesi and P. Ciancarini. Computer Programming of Kriegspiel Endings: the
case of KR vs K. In J. van den Herik, H. lida, and E. Heinz, editors, Advances in
Computer Games 10, pages 325-342. Kluwer, 2003.

2. A. Bolognesi and P. Ciancarini. Searching over Metapositions in Kriegspiel. In
J. van den Herik, Y. Bjornsson, and N. Netanyahu, editors, Revised papers from
4th Int. Conf. on Computer and Games, number 3846 in LNCS, pages 246-261.
Springer, 2006.

3. J. Boyce. A Kriegspiel Endgame. In D. Klarner, editor, The Mathematical Gardner,
pages 28-36. Prindle, Weber & Smith, 1981.

4. P. Ciancarini, F. DallaLibera, and F. Maran. Decision Making under Uncertainty:
A Rational Approach to Kriegspiel. In J. van den Herik and J. Uiterwijk, editors,
Advances in Computer Chess 8, pages 277-298. Univ. of Rulimburg, 1997.

5. P. Ciancarini and G. Favini. Representing Kriegspiel States with Metapositions. In
Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI 07), pages 24502455, India,
January 2007.

6. T. Ferguson. Mate with Bishop and Knight in Kriegspiel. Theoretical Computer

Science, 96:389-403, 1992.

T. Ferguson. Mate with two Bishops in Kriegspiel. Technical report, UCLA, 1995.

8. M. Leoncini and R. Magari. Manuale di Scacchi Eterodossi. Tipografia Senese,
Siena, 1980.

9. M. Sakuta and H. lida. Solving Kriegspiel-like Problems: Exploiting a Transposition
Table. ICCA Journal, 23(4):218-229, 2000.

~

