
1© 2007 Mauro Morsiani

Laboratorio di Sistemi Operativi
Anno Accademico 2006-2007

Software Development with uMPS
Part 3

Mauro Morsiani

Copyright © 2007 Mauro Morsiani
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at:
http://www.gnu.org/licenses/fdl.html#TOC1

2© 2007 Mauro Morsiani

uMPS software development
� Developing software with uMPS requires:

� basic knowledge of UNIX environment and
commands

� knowledge of the uMPS architecture, GUI, and
software development conventions

� setup of an effective debugging environment

3© 2007 Mauro Morsiani

uMPS software development
� uMPS simulator main commands:

� umps: the simulator itself

� umps-elf2umps: to convert the output of the compiler to files the
simulator will understand

� umps-objdump: to analyze these files

� umps-mkdev: to build disks and tapes for the simulator

4© 2007 Mauro Morsiani

uMPS software development
� uMPS simulator-related files:

� In the support/ and example*/ directory:

� *.rom.umps: the ROM files

� *.core.umps: the kernel to be loaded

� *.stab.umps: the kernel symbol table

� *.aout.umps: for programs other than kernel

� other *.umps files (term0.umps, printer0.umps…): files
associated to devices

� /etc/umpsrc and .umpsrc (ls –a to see it): the simulator
configuration file

� elf32*.x files: configuration files for the cross-compiler

5© 2007 Mauro Morsiani

uMPS software development
� uMPS other essential components:

� some libraries (XForms, libelf) for building the simulator

� libumps.e (and libumps.o) under support/: uMPS library for
interfacing with ROM services, CP0 registers and issue TLB-related
and SYSCALL instructions

� crtso.o and crti.o: kernel and program startup functions

� const.h and types.h under support/h: some useful types
and constants (eg. processor state definition)

� a cross-compiler based on GNU gcc:

� mipsel-linux-gcc for little-endian uMPS (on x86)

� mips-linux-gcc for big-endian uMPS (on PPC)

� the make utility

6© 2007 Mauro Morsiani

uMPS software development
� libumps: uMPS support library

� libumps acts as a wrapper, allowing to:

� access ROM routines
� access special CP0 registers
� issue TLB-related and SYSCALL instructions

� libumps is composed by two parts:
� libumps.e: to be included in C programs source

(see it for library description and details)
� libumps.o: to be linked with other object files to

make an executable file

7© 2007 Mauro Morsiani

uMPS software development
� Common issues in uMPS development:

� setup of critical registers (esp. $gp, $sp, PC, CP0.Status):
check values and bit masks

� data structure corruption: it’s easy to make coding mistakes
or forget to (re-)initialize data structures

� overlapping of stack spaces among different processes

� unwanted compiler optimizations:
� use volatile (esp. when accessing device registers)
� use subroutines
� do not optimize (no –O flags)

� no printf()!

8© 2007 Mauro Morsiani

uMPS software development
� Breakpoint, Suspect and Trace: the debugger’s

tools of trade
� Breakpoint: a position (an address) in the code; simulation stops

when reaches it (may be referred to with a symbol + offset)

� Suspect area: a memory range (a set of addresses) containing data
(array, variables…) under exam; may be a Read suspect and/or a
Write suspect (may be referred with a symbol)

� Suspect: simulation stops when an access of the appropriate type
(R, W) is made to the suspect area

� Traced range: a range of memory addresses selected for showing

� addresses may be physical or virtual ones

� only physical addresses may be traced in uMPS

9© 2007 Mauro Morsiani

uMPS software development
� Advanced uMPS debugging strategies

� how to replace printf():
� initialize a global character array and provide some basic access

function able to write contents (copy chars) into it
� trace the array (= show it in the GUI)
� set a write suspect on the array (or a breakpoint on the access

function)
� see p1test.c for an example

� how to check internal variables and execution flow: use debugging
functions

� define debugging functions and insert them into the code
� set breakpoints on debugging functions
� variables to be shown can be passed as parameters

10© 2007 Mauro Morsiani

uMPS software development
� Debugging functions: an example
void debug(int where, int var1)

{

return;

}

…

var_to_check = some_complex_calculation;

debug(10,(int)var_to_check);

…

then check $a0-$a1 for values when breakpoint is reached

11© 2007 Mauro Morsiani

uMPS software development
� Debugging functions: an example (cont’d)

if (some_condition) {

debug(14,TRUE);

…

} else {

debug(15,FALSE);

…

}

12© 2007 Mauro Morsiani

uMPS software development
� General software development strategies:

� define your goals (make a top-down analysis)

� share opinions with other group members

� keep a log; printing helps

� take your time: practice makes perfect

� backup, backup, backup

� know your tools (or know how to know…)

� do not “fear the machine”

� read the manual! (and the documentation, and the newsgroup, and…)

� look at examples (and Google…)

� be creative and curious

� (when all else fails) ask for help: don’t panic! ☺

13© 2007 Mauro Morsiani

uMPS software development
� How to set up an effective debugging environment:

� Basic UNIX tools:
� command reference: man and info
� show and search: more/less, diff and grep
� editor: vi, emacs, joe, …
� compilation: make and makefile
� compiler flags: -v –E –S -c –o -ansi –pedantic
–Wall

� backup: cp and tar (plus mv and rm)

� log: >&, script and history

� Advanced code development tools:
� source control: rcs, cvs, subversion, …

