Laboratorio di Sstemi Operativi
Anno Accademico 2005-2006

uM PS Introduction

Mauro Morsiani

Copyright © 2006 Mauro Morsi ani

Perm ssion is granted to copy, distribute and/or nmodify this document under the terns of the GNU Free

Docunentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
I nvari ant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at:

A simulator, why?

. Modern hardware architectures:
> may be too complex to understand
- may be not useful for teaching and demonstration purposes

> may require additional costs for effective development (software
development kit, test boards, etc.)

- may add unnecessary complexities to the development cycle

© 2006 Mauro Morsiani z C 2

A simulator, why?

> A simulated hardware architecture:

- may be tailored to provide exactly the “right” features for teaching
and demonstration purposes

> may be provided with an integrated development kit, graphical user
interface and debug tools

- may be deployed on available CS lab equipment

> will probably be a lot slower than the real one (not always a bad
feature)

© 2006 Mauro Morsiani z C 3

?

?

?

MIPS, MPS and uMPS

MIPS: Microprocessor (without) Interlocking Pipe Stages

> one of the original RISC processor architectures from the '80s
- with a lot of interesting features
- still widely used (on embedded systems, but also ...)

MPS:

. acomplete (simulated) computer system integrating an (emulated)
MIPS R3000 CPU

uMPS:

. a complete (simulated) computer system integrating an (emulated)
MIPS R3000 CPU with physical and virtual memory addressing

© 2006 Mauro Morsiani Z 4

A MIPS processor, why?

> MIPS R3000 processor with MIPS | instruction set:

» IS reasonably easy to understand

- provides useful features and insights for instructional purposes
> documentation is widely available

» 1S supported by the GNU gcc compiler and development kit

. does not impose a fixed devices interface

> More info (and manuals too):

http://en.wikipedia.org/wiki/MIPS_architecture

© 2006 Mauro Morsiani z C 5

MPS and uM PS

?

MPS simulator provides:

?

a complete emulation of MIPS R3000 main processor and CPO
(MIPS I instruction set)

RAM
ROM (for bootstrap and basic functions)

a basic set of devices:
> TOD clock

disks

tapes

printers

tty-like terminals

-~ -~ -~ -~

an integrated development kit, with a graphical user interface, a
cross-compiler (gcc) and debug tools

© 2006 Mauro Morsiani z C 6

MPS and uM PS

> UMPS:

> (almost) “all of the above”
» ethernet-like network interfaces

- physical and virtual memory addressing
. a Streamlined user interface

> Why use uMPS and not MPS?

. Because having virtual memory “right from the beginning” adds
unnecessary complexities when writing an OS from scratch...

MPS and uMPS may be compiled on:
- FreeBSD, GNU/Linux distributions (x86 and PPC)

> Sun Solaris
© 2006 Mauro Morsiani 7

UM PS processor architecture

. The uMPS architecture

HFS Maln Frocesasor
+ BAM
Coprocessor O

EOR

Contbroller

© 2006 Mauro Morsiani

Controllser

Dewrlce

Devilce

Systam

uM PS processor architecture

- The MIPS processor architecture

MIFS RZ2/,3000 Architecture

T
.

| HMaster Plpsline/Bus Control |

1 J

Liocal
ZTache Control Centrol
Liogrdic
IIIIIIIIIIIIII
T
c

P =]
RFaeglstars=

PO

UM PS processor architecture

- The MIPS processor architecture (cont’d)
MIPS R2/3000 Pipeline

© 2006 Mauro Morsiani

CPU Cyela

IF RD ALT MEM): I
Ip RD ALU MEM WE
[
IF RD ALU MEM WE
T
IP RD ALD MEM :
| IP RD ALD MEM):

LU

UM PS processor architecture

- MIPS delayed load:

MIPS R2/3000 Delayed Load

ED ALTI
Load Delay Slot IF ED
IF

© 2006 Mauro Morsiani

WE

CPT Cyeala

e

UM PS processor architecture
- MIPS delayed branch:

MIPS R2/3000 Delayed Branch

I |
iBranch
Instruction) IF R 4] MEM WEB
Eranch Delay 8lot IF- RD\ ALTT MEM WE

iBranch Target IF BED ALTT HMEM WE
Instruction)

CPU Cyecle

© 2006 Mauro Morsiani z C 12

UM PS processor architecture

> UMPS processor features:

> RISC-type integer instruction set on a load-store architecture

- 32-bit word for registers/instructions/addressing (4 GB physical
address space)

> Pipelined execution, delayed loads and branches

. 32 general purpose registers (GPR) denoted $0. . .$31
- Register $0 is hardwired to zero (0)

> Registers $1. . .$31 (also with mnemonic designation)

© 2006 Mauro Morsiani z C 13

uM PS processor architecture

- UMPS processor features (cont’d):

. all of $1. . .$31 registers may be used, but some conventions exist,

for example:
> $26 and $27 ($k0 and $k1) are reserved to kernel use

- Hl and LO, special registers for holding the results from
multiplication and division operations

- PC, the program counter

© 2006 Mauro Morsiani

uM PS processor architecture

- UMPS processor features (cont’d):
> CPO (CoProcessor 0) is incorporated into the main CPU and
provides:
» twO processor operation modes:
> kernel-mode
» user-mode
» exception handling

» virtual memory addressing

© 2006 Mauro Morsiani

uM PS processor architecture

- UMPS processor features (cont’d):

- CPO has 8 registers:

. Status register

» used for exception handling:
» Cause
. EPC

» used for virtual memory addressing:
> Index
» Random
> EntryHi
» EntryLo

. BadVAddr
© 2006 Mauro Morsiani 16

uM PS processor architecture

. Miscellaneous uMPS processor features:

> Endianness:

- the UMPS processor may operate in big-endian and little-endian
mode (the emulator uses the endianness of the host
architecture)

» a different cross-compiler set is required

- CP1: optional coprocessor for floating point support
» unimplemented

» processor traps if floating point instructions are executed or CP1
access is attempted

© 2006 Mauro Morsiani Z 17

UM PS processor architecture

. Big endianness:

BEIG ENDIAN
High Addresses Word address
TN g g |10 | 11 e
4 5 5 7 4
0 1 2 3 0
3l S a
Low Addresses Bita

© 2006 Mauro Morsiani z C 18

UM PS processor architecture

> Little endianness:

LITTLE ENDIAN

High Addresses

/TN 11 [10| 9
7 & 5
3 2 1
31
Low Addresses Bita

© 2006 Mauro Morsiani

Word address

UM PS processor architecture

> UMPS physical memory address format:

- Physical Frame Number and Offset

= L 121

© 2006 Mauro Morsiani

UM PS processor architecture

> UMPS virtual memory address format:

. Segment Number, Virtual Page Number and Offset

> ASID (Address Space IDentifier): 0..63 (0 for Kernel)

SE G WP
gle’

£ o Y - R Cs s 1211

© 2006 Mauro Morsiani

UM PS processor architecture

. Status register structure:

GLEE

R Y
=40

L
P

M

¢ |

AN Senia At
R N :
P g
saf g [Ennnnsnin
: Simbisinlibiisiak

ke be b
i O o

E
P

Il
C

E
C

TTE857

© 2006 Mauro Morsiani

563804

24 3210

=

UM PS processor architecture

. Status register structure:

> |E: Interrupt Enable

- KU: Kernel/User mode (kernel = 0)
> IM: Interrupt Mask

- VM: Virtual Memory

- BEV: Bootstrap Exception Vector

- CU: Coprocessor Usable

© 2006 Mauro Morsiani z C 23

uM PS processor architecture

» UMPS processor status at bootstrap:

?

?

?

CPO is enabled

Virtual Memory is off

Bootstrap Exception Vector bit is on
Processor is in Kernel mode

PC = 0x1FC0.0000 (in boot ROM)

© 2006 Mauro Morsiani

UM PS processor architecture

. Exception handling:

» Cause:

- EPC (Exception PC): is automatically corrected by the CPU if BD bit
IS set, to allow re-execution of the branch

B

CEfiiiia

P - FxcCode

© 2006 Mauro Morsiani

-

E :Ea EE Mttt s st st e tipmt gt gt it apet s ey

12

: 5 h

L~

UM PS processor architecture
» Exception handling (cont’d):

. Cause explained:
> IP: Interrupt Pending
- BD: Branch Delay
» CE: Coprocessor Error
» ExcCode

© 2006 Mauro Morsiani z C 26

UM PS processor architecture

» ExcCode:

Number | Code | Description
o Frat External Device Interrupt
1 Mod | TLB-Modification Exception
2 iR | TLB Invalid Exception: on a Load instr. or instruction fetch
3 RS | TLB Invalid Exception: on a Store instr.
4 AdEL | Address Error Exception: on a Load or instruction fetch
] AdES | Address Error Exception: on a Store instr.
(& IRE Bus Error Exception: on an instruction fetch
7 DR Bus Error Exception: on a Load/Store data access
= S Syscall Exception
9 Bp Breakpoint Exception
8] R Reserved Instruction Exception
11 Cpl Coprocessor Unusable Exception
12 (]! Arithmetic Overflow Exception
13 BdPT | Bad Page Table
14 PTMs | Page Table Miss

© 2006 Mauro Morsiani

27

uM PS processor architecture

» Exception handling (cont’d):

. Exception types:
- Program Traps (PgmTrap)
- SYSCALL/Breakpoint (SYS/Bp)
» TLB Management (TLB)
- Interrupts (Ints)

© 2006 Mauro Morsiani z C 28

uM PS processor architecture
» Exception handling (cont’d):

- Program Traps (PgmTrap)

- Address Error (AdEL & AJES)
Bus Error (IBE & DBE)
Reserved Instruction (RI)

-~

-~

Coprocessor Unusable (CpU)
Arithmetic Overflow (Ov)

-~

-~

> SYSCALL/Breakpoint (SYS/Bp)
» SYSCALL instruction
» BREAK instruction

© 2006 Mauro Morsiani z C 29

uM PS processor architecture

» Exception handling (cont’d):

. TLB Management (TLB)
» TLB-Modification (Mod)
» TLB-Invalid (TLBL & TLBS)
. Bad-PgTbl (BdPT)
» PTE-MISS (PTMSs)

- Interrupts (Ints)

> remember Status.IM mask and Status.lEc bit

- hardware and software interrupts

© 2006 Mauro Morsiani

UM PS processor architecture

- UMPS processor actions on exception:

. Basic operations:

» EPC stores the current PC
- BD bit is set if required
» Cause.ExcCode is set

» Status.VM, KU and IE stacks are pushed:

Before e bl [t bt HUlE kKUliE kKULIE
exoeplion o|ple olo|p|r|c]c
Frocessor

exception S o I:IU IEI? ulEl gl
response i F.2

© 2006 Mauro Morsiani

uM PS processor architecture

> UMPS processor actions on exception (cont’d):

- Exception-specific operations:
> Address Error (AdEL & AJES): set BadVAddr

» Coprocessor Unusable (CpU): set Cause.CE
- Interrupts (Ints): set Cause.IP

. TLB Management (TLB):
> set BadVAddr
> load EntryHi.SEGNO and EntryHi.VPN

© 2006 Mauro Morsiani z C 32

uM PS processor architecture

> UMPS processor actions on exception (cont’d):

> At the end:
» load PC with a fixed address in ROM:
» OX1FCO0.0180 if Status.BEV is set
» 0x0000.0080 if Status.BEV is not set

- All this in one atomic operation

- ROM exception handlers will perform specific actions and set some
exception types:
. Bad-PgTbl (BdPT)

. PTE-MISS (PTMs)

© 2006 Mauro Morsiani z C 33

uM PS processor architecture

> ROM exception handler first task:

» to save the current processor state (the “old” one) and to load a
new state (the “new” one)

. A processor state contains:

- 1 word for the EntryHi CPO register (contains the current ASID,
EntryHi.ASID)

1 word for the Cause CPO register

-~

1 word for the Status CPO register
1 word for the PC (New) or EPC (Old)

29 words for the GPR registers (GPR registers $0, $k0, and $k1
are excluded)

© 2006 Mauro Morsiani Z 34

-~

-~

-~

UM PS processor architecture
. But where is the ROM?

> UMPS physical memory map (Kernel and User modes)

] OXFFFF FFFF

7] OXFFFF FFFF

£ RAMTOPR

RAMTOP
05-35GB 05-35GE
of of
installed installed
HAM HAM

0%2000.0000 0%2000.0000

0.5 GB for ROM
and
Device Repisters

R =1 Ox0000.0000 ! : 35
© 2006 Mauro Morsiani

0x0000.0000

UM PS processor architecture

. How It Is mapped?

> ROM and dewce reglsters area.

- Q2000 0000
EOQTTAQF
—{ 0x1FC00000

Bﬂﬂtatrap R

DEWTOR
Device Registers

0= 1000 0000

ROMTOP

Execution ROM

O=0000 0000

© 2006 Mauro Morsiani

UM PS processor architecture

. But where is the processor state stored?

> In the ROM reserved frame:

Stack spacs
for the
RO
Routines

D=20000FFF

—— Ox20000FFOC

2 ox2000 0800

54 Segment
Tables

Exception
and
Interrupt
Vectors

© 2006 Mauro Morsiani

Ox2000 0500
O=2000.0480

0=2000 0000

UM PS processor architecture

. But where?

> In the bottom part of the ROM reserved frame:

[SYSCALLBREAK |
New Area 0x2000 0304
Old Area OX2000 0348
Program Trap New Area
0x2000 028G
Program Trap Old Area
TLB Management IHERRE e
New Area
TLBE Management 0x2000 0144
Old Area 0x2000.0118
Interrupt New Area
0x2000 008G
Interrupt Old Area
0%2000.0000

© 2006 Mauro Morsiani

UM PS processor architecture

 Ending the exception handling:

ROM handler (hopefully) will load a processor state and:
jump to some address

RFE (Return From Exception): pop the KU, IE and VM stacks

Before ehibend i
E:-:ecutil’lg RFE olpl|e

After [fi e
executing RFE olpje

© 2006 Mauro Morsiani z C 39

UM PS processor architecture

» Beware...

?

?

look at Cause in Old area for knowing exactly what happened

remember that KU, IE and VM stacks in Status were pushed

before being stored, and will be popped when returning from the

exception

remember that EPC will point to the correct address to jump to

after having serviced the exception (the BD bit tells if it was the
instruction at EPC or the instruction in a branch delay slot to cause

the exception)

© 2006 Mauro Morsiani

L=

