
1

1© 2006 Mauro Morsiani

Laboratorio di Sistemi Operativi
Anno Accademico 2005-2006

uMPS Introduction

Mauro Morsiani

Copyright © 2006 Mauro Morsiani
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be found at:
http://www.gnu.org/licenses/fdl.html#TOC1

2

2© 2006 Mauro Morsiani

A simulator, why?

? Modern hardware architectures:

? may be too complex to understand

? may be not useful for teaching and demonstration purposes

? may require additional costs for effective development (software
development kit, test boards, etc.)

? may add unnecessary complexities to the development cycle

3

3© 2006 Mauro Morsiani

A simulator, why?

? A simulated hardware architecture:

? may be tailored to provide exactly the “right” features for teaching
and demonstration purposes

? may be provided with an integrated development kit, graphical user
interface and debug tools

? may be deployed on available CS lab equipment

? will probably be a lot slower than the real one (not always a bad
feature)

4

4© 2006 Mauro Morsiani

? MIPS: Microprocessor (without) Interlocking Pipe Stages

? one of the original RISC processor architectures from the ’80s

? with a lot of interesting features

? still widely used (on embedded systems, but also …)

? MPS:

? a complete (simulated) computer system integrating an (emulated)
MIPS R3000 CPU

? uMPS:

? a complete (simulated) computer system integrating an (emulated)
MIPS R3000 CPU with physical and virtual memory addressing

MIPS, MPS and uMPS

5

5© 2006 Mauro Morsiani

A MIPS processor, why?
? MIPS R3000 processor with MIPS I instruction set:

? is reasonably easy to understand

? provides useful features and insights for instructional purposes

? documentation is widely available

? is supported by the GNU gcc compiler and development kit

? does not impose a fixed devices interface

? More info (and manuals too):

http://en.wikipedia.org/wiki/MIPS_architecture

6

6© 2006 Mauro Morsiani

? MPS simulator provides:

? a complete emulation of MIPS R3000 main processor and CP0
(MIPS I instruction set)

? RAM

? ROM (for bootstrap and basic functions)

? a basic set of devices:
? TOD clock
? disks
? tapes
? printers
? tty-like terminals

? an integrated development kit, with a graphical user interface, a
cross-compiler (gcc) and debug tools

MPS and uMPS

7

7© 2006 Mauro Morsiani

MPS and uMPS
? uMPS:

? (almost) “all of the above”
? ethernet-like network interfaces

? physical and virtual memory addressing

? a streamlined user interface

? Why use uMPS and not MPS?

? Because having virtual memory “right from the beginning” adds
unnecessary complexities when writing an OS from scratch…

MPS and uMPS may be compiled on:

? FreeBSD, GNU/Linux distributions (x86 and PPC)

? Sun Solaris

8

8© 2006 Mauro Morsiani

uMPS processor architecture
? The uMPS architecture

9

9© 2006 Mauro Morsiani

uMPS processor architecture
? The MIPS processor architecture

10

10© 2006 Mauro Morsiani

uMPS processor architecture
? The MIPS processor architecture (cont’d)

11

11© 2006 Mauro Morsiani

uMPS processor architecture
? MIPS delayed load:

12

12© 2006 Mauro Morsiani

uMPS processor architecture
? MIPS delayed branch:

13

13© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS processor features:

? RISC-type integer instruction set on a load-store architecture

? 32-bit word for registers/instructions/addressing (4 GB physical
address space)

? Pipelined execution, delayed loads and branches

? 32 general purpose registers (GPR) denoted $0. . .$31

? Register $0 is hardwired to zero (0)

? Registers $1. . .$31 (also with mnemonic designation)

14

14© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS processor features (cont’d):

? all of $1. . .$31 registers may be used, but some conventions exist,
for example:

? $26 and $27 ($k0 and $k1) are reserved to kernel use

? HI and LO, special registers for holding the results from
multiplication and division operations

? PC, the program counter

15

15© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS processor features (cont’d):

? CP0 (CoProcessor 0) is incorporated into the main CPU and
provides:

? two processor operation modes:

? kernel-mode

? user-mode

? exception handling

? virtual memory addressing

16

16© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS processor features (cont’d):

? CP0 has 8 registers:

? Status register

? used for exception handling:

? Cause

? EPC

? used for virtual memory addressing:

? Index

? Random

? EntryHi

? EntryLo

? BadVAddr

17

17© 2006 Mauro Morsiani

uMPS processor architecture
? Miscellaneous uMPS processor features:

? Endianness:

? the uMPS processor may operate in big-endian and little-endian
mode (the emulator uses the endianness of the host
architecture)

? a different cross-compiler set is required

? CP1: optional coprocessor for floating point support

? unimplemented

? processor traps if floating point instructions are executed or CP1
access is attempted

18

18© 2006 Mauro Morsiani

uMPS processor architecture
? Big endianness:

19

19© 2006 Mauro Morsiani

uMPS processor architecture
? Little endianness:

20

20© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS physical memory address format:

? Physical Frame Number and Offset

21

21© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS virtual memory address format:

? Segment Number, Virtual Page Number and Offset

? ASID (Address Space IDentifier): 0..63 (0 for Kernel)

22

22© 2006 Mauro Morsiani

uMPS processor architecture
? Status register structure:

23

23© 2006 Mauro Morsiani

uMPS processor architecture
? Status register structure:

? IE: Interrupt Enable

? KU: Kernel/User mode (kernel = 0)

? IM: Interrupt Mask

? VM: Virtual Memory

? BEV: Bootstrap Exception Vector

? CU: Coprocessor Usable

24

24© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS processor status at bootstrap:

? CP0 is enabled

? Virtual Memory is off

? Bootstrap Exception Vector bit is on

? Processor is in Kernel mode

? PC = 0x1FC0.0000 (in boot ROM)

25

25© 2006 Mauro Morsiani

uMPS processor architecture
? Exception handling:

? EPC (Exception PC): is automatically corrected by the CPU if BD bit
is set, to allow re-execution of the branch

? Cause:

26

26© 2006 Mauro Morsiani

uMPS processor architecture
? Exception handling (cont’d):

? Cause explained:

? IP: Interrupt Pending

? BD: Branch Delay

? CE: Coprocessor Error

? ExcCode

27

27© 2006 Mauro Morsiani

uMPS processor architecture
? ExcCode:

28

28© 2006 Mauro Morsiani

uMPS processor architecture
? Exception handling (cont’d):

? Exception types:

? Program Traps (PgmTrap)

? SYSCALL/Breakpoint (SYS/Bp)

? TLB Management (TLB)

? Interrupts (Ints)

29

29© 2006 Mauro Morsiani

uMPS processor architecture
? Exception handling (cont’d):

? Program Traps (PgmTrap)

? Address Error (AdEL & AdES)

? Bus Error (IBE & DBE)

? Reserved Instruction (RI)

? Coprocessor Unusable (CpU)

? Arithmetic Overflow (Ov)

? SYSCALL/Breakpoint (SYS/Bp)

? SYSCALL instruction

? BREAK instruction

30

30© 2006 Mauro Morsiani

uMPS processor architecture
? Exception handling (cont’d):

? TLB Management (TLB)

? TLB-Modification (Mod)

? TLB-Invalid (TLBL & TLBS)

? Bad-PgTbl (BdPT)

? PTE-MISS (PTMs)

? Interrupts (Ints)

? remember Status.IM mask and Status.IEc bit

? hardware and software interrupts

31

31© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS processor actions on exception:

? Basic operations:

? EPC stores the current PC

? BD bit is set if required

? Cause.ExcCode is set

? Status.VM, KU and IE stacks are pushed:

32

32© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS processor actions on exception (cont’d):

? Exception-specific operations:

? Address Error (AdEL & AdES): set BadVAddr

? Coprocessor Unusable (CpU): set Cause.CE

? Interrupts (Ints): set Cause.IP

? TLB Management (TLB):

? set BadVAddr

? load EntryHi.SEGNO and EntryHi.VPN

33

33© 2006 Mauro Morsiani

uMPS processor architecture
? uMPS processor actions on exception (cont’d):

? At the end:

? load PC with a fixed address in ROM:

? 0x1FC0.0180 if Status.BEV is set

? 0x0000.0080 if Status.BEV is not set

? All this in one atomic operation

? ROM exception handlers will perform specific actions and set some
exception types:

? Bad-PgTbl (BdPT)

? PTE-MISS (PTMs)

34

34© 2006 Mauro Morsiani

uMPS processor architecture
? ROM exception handler first task:

? to save the current processor state (the “old” one) and to load a
new state (the “new” one)

? A processor state contains:

? 1 word for the EntryHi CP0 register (contains the current ASID,
EntryHi.ASID)

? 1 word for the Cause CP0 register

? 1 word for the Status CP0 register

? 1 word for the PC (New) or EPC (Old)

? 29 words for the GPR registers (GPR registers $0, $k0, and $k1
are excluded)

35

35© 2006 Mauro Morsiani

uMPS processor architecture
? But where is the ROM?

? uMPS physical memory map (Kernel and User modes)

36

36© 2006 Mauro Morsiani

uMPS processor architecture
? How it is mapped?

? ROM and device registers area:

37

37© 2006 Mauro Morsiani

uMPS processor architecture
? But where is the processor state stored?

? in the ROM reserved frame:

38

38© 2006 Mauro Morsiani

uMPS processor architecture
? But where?

? in the bottom part of the ROM reserved frame:

39

39© 2006 Mauro Morsiani

uMPS processor architecture
• Ending the exception handling:

ROM handler (hopefully) will load a processor state and:

jump to some address

RFE (Return From Exception): pop the KU, IE and VM stacks

40

40© 2006 Mauro Morsiani

uMPS processor architecture
? Beware…

? look at Cause in Old area for knowing exactly what happened

? remember that KU, IE and VM stacks in Status were pushed
before being stored, and will be popped when returning from the
exception

? remember that EPC will point to the correct address to jump to
after having serviced the exception (the BD bit tells if it was the
instruction at EPC or the instruction in a branch delay slot to cause
the exception)

