
The VLDB Journal (2012) 21:359–384
DOI 10.1007/s00778-011-0246-6

REGULAR PAPER

A survey of skyline processing in highly distributed environments

Katja Hose · Akrivi Vlachou

Received: 14 December 2010 / Revised: 20 May 2011 / Accepted: 14 July 2011 / Published online: 11 August 2011
© Springer-Verlag 2011

Abstract During the last decades, data management and
storage have become increasingly distributed. Advanced
query operators, such as skyline queries, are necessary in
order to help users to handle the huge amount of available data
by identifying a set of interesting data objects. Skyline query
processing in highly distributed environments poses inherent
challenges and demands and requires non-traditional tech-
niques due to the distribution of content and the lack of
global knowledge. This paper surveys this interesting and
still evolving research area, so that readers can easily obtain
an overview of the state-of-the-art. We outline the objectives
and the main principles that any distributed skyline approach
has to fulfill, leading to useful guidelines for developing algo-
rithms for distributed skyline processing. We review in detail
existing approaches that are applicable for highly distrib-
uted environments, clarify the assumptions of each approach,
and provide a comparative performance analysis. Moreover,
we study the skyline variants each approach supports. Our
analysis leads to a taxonomy of existing approaches. Finally,
we present interesting research topics on distributed skyline
computation that have not yet been explored.

Keywords Skyline processing · Distributed systems · P2P

K. Hose (B)
Max-Planck Institute for Informatics,
Saarbrücken, Germany
e-mail: hose@mpi-inf.mpg.de

A. Vlachou
Department of Computer Science,
NTNU, Trondheim, Norway
e-mail: vlachou@idi.ntnu.no

1 Introduction

Already before the introduction of skyline queries into
database research, the problem was known as the maximum
vector problem or the Pareto optimum [24,32]. In recent
years, skyline query processing has become an important
issue in database research. The popularity of the skyline oper-
ator is mainly due to its applicability for decision making
applications. In such applications, the database tuples are
represented as a set of multidimensional data points, and the
skyline set contains those points that are the best trade-offs
between the different dimensions.

For example, consider a database that contains informa-
tion about hotels. Each tuple of the database is represented as
a point in a data space consisting of numerous dimensions.
Assume a user is looking for hotels in Miami that are as cheap
as possible and as close as possible to the beach. In this case,
it is not obvious whether the user would prefer (i) a hotel
that is very close to the beach but more expensive than others
or (ii) a hotel that is very cheap but farther away from the
beach. Furthermore, it is difficult to answer the question of
how much cheaper a hotel should be, if it is a little bit farther
away from the beach. The skyline query retrieves all hotels
for which no other hotel exists that is cheaper and closer to
the beach. A skyline query does not require a scoring function
defining the relative importance of all criteria. Figure 1 shows
an example, where each point represents a hotel with price
per night and distance to the beach as coordinates; hotels
a, i, m, and k are in the skyline set.

In addition to a hotel booking scenario, further skyline
applications have been identified; one of them is apply-
ing skyline queries in the context of electronic marketing
places, for instance for buying cars, where users usually
have multiple criteria to rank the offers, e.g., minimum price,
minimum age, and maximum high speed. Similarly, skyline

123

360 K. Hose, A. Vlachou

a c

1

50

2 3 4 5 6 7 8 9 10

100
150
200
250
300
350
400
450
500 b

i

m k

h

g

d

e

f

n
l

x

y

distance

price

Fig. 1 Skyline example

Fig. 2 Distributed hotel reservation system

queries can also be useful for users browsing through a real
estate database for houses, where users may want to minimize
the price and maximize the quality of neighboring schools.

Skyline processing was first studied in a single-database
environment, i.e., in a centralized setup. As nowadays data
are increasingly stored and processed in a distributed way,
skyline processing over distributed data has attracted much
attention recently. Consider a global-scale web-based hotel
reservation system, consisting of a large set of independent
servers geographically dispersed around the world (Fig. 2).
Servers accept subscriptions from travel agencies, in order
to advertise their hotels. Each server may provide offers
for hotels all over the world, e.g., servers in Paris, Sydney,
and Los Angeles might provide different offers for hotels
in Miami. Such a system could potentially provide booking
services over the universal hotel database, without requiring
from each travel agency to register with each server. This
need becomes even more important, due to the fact that the
number of providers (and therefore data) increases at tremen-
dous rates. The challenge is to enable users to pose interesting
queries, such as skyline queries, over a network of servers
and retrieve only those tuples that match the user-defined
query.

In this paper, we give an overview of the existing
approaches for skyline query processing in highly distributed

environments, where each server stores a fraction of the
available data. For example, the peer-to-peer (P2P) par-
adigm emerges as a powerful model for organizing and
searching large data repositories distributed over indepen-
dent sources. It should be noted that even though the major-
ity of the papers have been proposed for P2P architectures,
several principles are applicable in other distributed sys-
tems where the data are distributed over autonomous serv-
ers such as grid systems, large-scale data centers, or cloud
computing infrastructures. For example, [50] exploits the
applicability of distributed indexing techniques proposed for
P2P systems for cloud infrastructures. In fact, some of the
approaches [8,13,35,36,56] described in this survey were
proposed for a more general distributed architecture than P2P
and therefore they can easily be adapted to other distributed
systems. Moreover, although this paper focuses on highly dis-
tributed environments, we also present briefly skyline query
processing in other distributed systems (web information sys-
tems and wireless sensor networks) as well as different data
types (stream data and uncertain data).

While Sect. 2 gives an introduction to the basics of skyline
processing and skyline variants, Sect. 3 introduces the main
concepts of P2P systems. Readers with background knowl-
edge in skyline queries and P2P systems can simply skip
these two sections. Section 4 presents the main concepts of
distributed skyline processing, whereas Sect. 5 gives an over-
view of existing approaches for skyline processing in highly
distributed environments. Section 6 provides a comparative
performance analysis. In Sect. 7 we elaborate on the sky-
line variant each approach was proposed for and classify
the existing approaches based on the skyline variant they
support. Then, Sect. 8 proposes a taxonomy based on the
main principles employed by each approach. In Sect. 9, we
briefly present approaches for other distributed architectures
and explain why their techniques differ from those that are
applicable for skyline processing in highly distributed sys-
tems. Finally, Sect. 10 comments on open issues, and Sect. 11
concludes the paper.

2 Skyline query processing

Before going into details on distributed skyline processing,
this section first provides some fundamental definitions and
then presents an overview of the evolution of skyline queries.

2.1 Skyline queries and their variants

The skyline operator was first introduced in [3], where the
authors extended SQL’s SELECT statement by an optional
SKYLINE OF, such that the user can specify the dimensions
as well as the function (MIN, MAX, DIFF) used for the
skyline query. For example (Fig. 1), a user who is looking

123

A survey of skyline processing in highly distributed environments 361

for a cheap hotel that is close to the beach would express the
skyline query in SQL as: SELECT * FROM Hotels SKYLINE
OF distance MIN, price MIN.

More formally, given a data space D defined by a set of d
dimensions {d1, . . . , dd} and a dataset S on D with cardinal-
ity n, a point p ∈ S can be represented as p = {p1, . . . , pd}
where pi is a value on dimension di . Without loss of gener-
ality, let us assume that the value pi in any dimension di is
greater or equal to zero (pi ≥ 0) and that for all dimensions,
the minimum values are more preferable.

Definition 1 (Skyline) A point p ∈ S is said to dominate
another point q ∈ S, denoted as p ≺ q, if (1) on every dimen-
sion di ∈ D, pi ≤ qi and (2) on at least one dimension d j ∈
D, p j < q j . The skyline is a set of points SK Y (S) ⊆ S that
are not dominated by any other point. The points in SK Y (S)

are called skyline points.

The notion of skyline queries can be extended to subspaces,
where a subspace skyline query only refers to a user-defined
subset of attributes. In our running example, the hotel data-
base may contain various other attributes, such as the number
of rooms, the size of the room, and the star rating. Each non-
empty subset U of D (U ⊆ D) is referred to as a subspace
of D. The data space D is also referred to as the full space
of dataset S. Then, the subspace skyline of U is a set of
points SK YU (S) ⊆ S that are not dominated by any other
point on subspace U . Consider for example the two-dimen-
sional dataset S depicted in Fig. 1. The skyline points are
SK Y (S) = {a, i, m, k}, which are the best possible trade-
offs between price and distance from the beach. On the other
hand, for the subspace U = {x}, the subspace skyline set is
SK YU (S) = {a}.

Skyline queries have also been studied for the case where
constraints exist. Typically, each constraint is expressed as
a range along a dimension, and the conjunction of all con-
straints forms a hyper-rectangle in the d-dimensional attri-
bute space. A constrained skyline query returns the skyline
set of the subset of the points S′ that satisfy the given con-
straints. For example, for a user, a hotel may be interesting
only if the price of the room is in the range of $100–$200.
Given this constraint, the skyline set is retrieved from a sub-
set of S that contains all points that satisfy the constraint.
In the example of Fig. 1, the constrained skyline points are
{m, i} with respect to the above-mentioned constraint on the
price.

Finally, literature also proposes dynamic skyline queries.

Definition 2 (Dynamic skyline) Given a data space D and
a dataset S and m dimension functions f1, f2, . . . , fm such
that each function fi (1 ≤ i ≤ m) takes as parameters a frac-
tion of the coordinates of the data points, the dynamic skyline
query returns the skyline set of S according to the new data
space with dimensions defined by f1, f2, . . . , fm .

 0

 5

 10

 15

 20

 25

 30

 35

 2000 2002 2004 2006 2008 2010 2012

N
um

be
r

of
 P

ub
lic

at
io

ns

Year of Publication

distributed
centralized

Fig. 3 Publication of skyline papers

For example, consider that each hotel in the database is
described by its x and y coordinates, and its price. A user may
be interested in minimizing the distance to her/his current
location (q1, q2) in terms of Euclidean distance and the price
of the hotel. Thus, each hotel is described in a two-dimen-
sional space defined by the functions f1 and f2 : f1(p) =√

(p1 − q1)2 + (p2 − q2)2 and f2(p) = p3.

2.2 Evolution of skyline queries over time

Since the introduction of skyline queries [3] in 2001, more
than a hundred papers have been published. Figure 3 depicts
the number of papers per year that are related to skyline com-
putation in centralized and distributed environments pub-
lished in well-known database conferences or journals. These
papers have not only studied efficient skyline computation in
centralized or distributed systems but also proposed varia-
tions of the traditional skyline operator and studied different
premises. Table 1 summarizes the evolution of the skyline
queries in database research, while in the following, we
describe shortly the related work.

Skyline computation. Börzsönyi et al. [3] first introduced
the skyline operator and presented two basic main memory
algorithms: BNL (block nested loop) and D&C (Divide &
Conquer). The BNL algorithm uses a block nested loop to
compare each tuple of the database with every other tuple.
A tuple is reported as a result only if it is not dominated
by any other tuple. The D&C algorithm recursively divides
the set of input tuples into smaller sets (regions), computes
the individual skyline for each region separately, and merges
them into the final skyline. SFS (Sort-First-Algorithm) [10]
and LESS [17] improve the performance of BNL by first
sorting tuples according to a monotone function. The main
principle of sort-based approaches is that if the tuples are
ordered based on a monotone scoring function, then no tuple
can be dominated by subsequent tuples.

Skyline query processing with the use of index structures
was first proposed by Börzsönyi et al. [3] but elaborated on
in later works [23,29,39]. The key idea is to use an index

123

362 K. Hose, A. Vlachou

Table 1 Evolution of skyline queries in database research

2001 2002 2003 2004 2005 2006 2007 2008

2001 2003 2005 2007

skyline skyline subspace skyline reverse

<2001 operator [3] 2002 variants [29] 2004 queries [31,54] 2006 skyline [14] 2008

maximum skyline skylines in skylines in parallel skyline

vector processing web information P2P systems computation [45]

problem with R-tree [23] systems [2] [18,51]

2001 2003 2005 2007

skyline skyline processing skylines 2006 probabilistic

processing with sorting [10] over streams [26] k-dominant skyline [30]

with B-tree [39] skylines [5]

to determine dominance between tuples and to prune tuples
from further consideration at an early stage. Algorithms using
an R-tree were also proposed, namely NN-search (nearest
neighbor) [23] and BBS (branch and bound skyline) [29].
These algorithms first compute the nearest neighbor to the
origin, which is guaranteed to be part of the skyline result
set. Obviously, the region dominated by the nearest neighbor
can safely be pruned from consideration. By looking repet-
itively for the next nearest neighbors in the non-dominated
regions, the complete skyline is determined. It was shown
that BBS [29] guarantees minimum I/O costs on a dataset
indexed by an R-Tree.

Skyline variants and different domains. Papadias et al.
[29] first introduced different variants of the skyline operator,
such as constrained, subspace, and dynamic skyline queries.
Constrained skyline queries were also discussed in [13,51].
Subspace skyline queries were discussed primarily from the
view of query semantics in [31]. Then, SKYCUBE [54] was
defined as the union of all skyline points of all possible non-
empty subspaces. Subspace skyline retrieval was also studied
in [42], which proposed the SUBSKY algorithm. Aiming to
restrict the skyline cardinality, Chan et al. [5] proposed the
k-dominant skyline query. The authors relaxed the idea of
dominance to k-dominance, in order to increase the proba-
bility of one point dominating another point. Reverse skyline
queries have been studied in [14]. Given a query point q, the
reverse skyline set contains all points p whose dynamic sky-
line set contains q. For data point p, the dynamic skyline
query employed by the definition of the reverse skyline set
uses d dimension functions defined as the absolute differ-
ence between the attribute values on each dimension. This
corresponds to the skyline set of a transformed data space
where p becomes the origin and all other data points are rep-
resented by their coordinate-wise distances to point p. Thus,
the reverse skyline query retrieves the data objects that are
at least in one dimension more similar (in terms of abso-

lute difference of attribute values) to q than all other data
objects.

Apart from the efficient computation of the skyline oper-
ator and its variants, skyline queries have been studied in
different domains, such as probabilistic skyline queries over
uncertain data [30], skyline queries on incomplete data [22]
and partially ordered domains [4]. Furthermore, efficient sky-
line computation over streams has first been studied in [26].
Moreover, in [47], bandwidth-constrained skyline queries
over mobile devices were studied.

Distributed environments. The main focus of this survey
is skyline computation in highly distributed systems, such
as P2P systems, where each server stores a fraction of the
available data. In the following, we provide a thorough sur-
vey of approaches that are applicable for skyline queries
in highly distributed systems and summarize their common
principles and objectives leading to a generic distributed
model. However, skyline queries have also been studied in
other distributed environments, such as web information sys-
tems [2,28] or parallel shared-nothing architectures [43,45],
and with respect to different data types, such as streamed [38]
or uncertain data [30]. For completeness, we briefly present
other distributed approaches in Sect. 9, we explain why their
underlying assumptions are hardly applicable to large-scale
distributed systems, and we highlight their differences to our
generic model.

3 Peer-to-peer systems

A P2P system corresponds to a distributed computer
architecture designed for sharing resources, by direct
exchange, rather than requiring a central coordinating server.
In P2P systems, the interconnected computers, called peers,
are organized in a network in a distributed and self-organizing
way and share resources, while respecting the autonomy of

123

A survey of skyline processing in highly distributed environments 363

peers. This means peers are independent with respect to deci-
sions, such as which fragment of the local data to expose to
neighbors, whether to update their local data, or when to leave
or join the network. The main characteristic of a P2P system
is the ability to adapt to peer failures (fault tolerance) and
accommodate a large number of participating peers (scala-
bility), while keeping the performance of the network at an
acceptable level and maintaining the peer connectivity.

In general, all peers are equivalent in terms of tasks and
functionality they perform. Each peer has a collection of files
or data to share. Two peers that maintain an open connection
between them are called neighbors. The number of neigh-
bors of a node defines its outdegree or degree. Any peer can
issue a query in order to retrieve interesting content; this peer
is called querying peer or query initiator. Query messages
are forwarded only between open connections, i.e., between
neighboring peers. By issuing a query and sending it to its
neighbors, each peer can transparently access in principle all
the data in the system. This is achieved by having each peer
that receives a query from one of its neighbors forward it
again to some of its neighbors to which the query initiator
does not have a direct connection. Hence, even data resid-
ing on peers located in a distance of several hops (number
of times a query is forwarded in order to reach its destina-
tion) can be queried, without the necessity of deliberate query
planning and optimization at the initiator’s side. However, the
higher the distance (or the number of hops) a query has to
travel in order to reach peers with relevant data, the higher
are query execution costs in terms of the number of messages
and the amount of transferred data between peers.

3.1 Classification of P2P networks

Despite all these common features, P2P systems can be
classified into different categories, based on the structure of
the P2P system and the degree of centralization.

3.1.1 Structure of P2P systems

P2P systems can be classified into two categories, based on
the way the content is located in the network: structured and
unstructured P2P systems.

Structured P2P systems. Structured P2P systems are built
in a controlled manner and impose a relation between peer
content and network topology. A peer that joins the network
connects to a well-defined set of peers specified by the struc-
ture of the overlay network, e.g., a hypercube (CAN [33]) or
a ring (CHORD [37]). The data provided by each peer are
redistributed according to a commonly known rule. The rule
maps data on peers and also determines which peer is respon-
sible for which fragment of the data. In several well-known
structured P2P systems [33,37], the mapping is realized as

a distributed hash table (DHT). The main advantage of this
approach is that queries can be routed efficiently to peers,
by applying the rule according to which the data have been
distributed in the first place.

Unstructured P2P systems. In contrast to structured P2P
systems, peers in unstructured P2P systems retain a higher
degree of autonomy. So they keep data sovereignty, i.e., the
data a peer provides remain with the peer and are in general
not redistributed to other peers in the system. Furthermore,
the network structure solely depends on a peer’s choice of
neighbors and peers select neighbors arbitrarily. Due to the
absence of any relation between the network topology and the
stored data objects, peers have only limited information about
data objects stored at other peers. Thus, searching may cause
peers to query all their neighbors for data objects that match
the query—this approach is referred to as flooding. To avoid
the expensive flooding of the network, peers in unstructured
P2P systems often build and maintain routing indexes [11,18]
that provide approximate knowledge about what data objects
can be accessed by forwarding queries to a specific neighbor
(query routing). It should be noted that due to the absence of
global knowledge, each peer in unstructured P2P systems has
to optimize query routing with respect to the locally available
information.

3.1.2 Degree of centralization

In principle, the P2P paradigm refers to a completely
decentralized system architecture. However, in practice, P2P
systems with different degrees of centralization have been
developed. Thus, P2P systems can be classified into two cat-
egories [1,34] based on the degree of centralization: purely
decentralized architectures and hybrid P2P systems. Hybrid
systems can further be divided into two main classes: central-
ized indexing systems and decentralized indexing systems.

In purely decentralized architectures, all computers in the
network perform exactly the same tasks, and there is no cen-
tral coordination of their activities. The main shortcoming of
purely decentralized architectures is that the costs of query
processing increase with the number of peers.

Hybrid centralized indexing systems use a central server
to facilitate interaction between peers and to maintain a cen-
tralized index. Napster, for example, uses a centralized index,
which is built in cooperation with all participating peers. The
centralized index keeps information about the data stored
at each peer, together with the peer identifier. Therefore, a
single message is required to determine which peer stores
relevant information. It should be noted that the actual data
exchange between peers is established by direct communi-
cation between peers, without interaction with the central
server. Despite the efficiency of query processing, central-
ized indexes have a major drawback, namely they constitute

123

364 K. Hose, A. Vlachou

a “single point of failure”. Moreover, the centralized index
may become a bottleneck for the system, especially for large
networks and during periods with high query rates.

Hybrid decentralized indexing systems, also called super-
peer networks [53], harness the merits of both purely
decentralized systems and hybrid centralized systems by
combining aspects from both approaches. A single point of
failure is avoided by introducing more than one peer with
special roles (super-peers). Each super-peer has several asso-
ciated peers and facilitates interaction between peers. If only
super-peers are considered, then they form a purely distrib-
uted P2P system.

4 Objectives and principles of distributed skyline
processing

In this section, we first outline the objectives of a distributed
skyline processing approach. Then, we present the main prin-
ciples of distributed skyline processing, point out the major
phases of any distributed skyline algorithm, and therefore
provide useful guidelines for the design of efficient distrib-
uted skyline algorithms.

4.1 Objectives

The main objective of distributed skyline processing is mini-
mizing query execution time. We refer to the time that passes
between the moment the query is issued and the moment until
all results have been reported to the user as execution time.
There are several factors that affect the execution time:

– Total processing time: The total processing time is defined
as the fraction of the execution time caused by peers eval-
uating the query locally. Therefore, minimizing the exe-
cution time requires minimizing the total processing time.
The latter is partially achieved by minimizing the individ-
ual processing time at each peer. This is accomplished by
utilizing efficient local indexing at each peer and adopt-
ing state-of-the-art indexing techniques from centralized
settings. Moreover, it is important to exploit parallelism
in order to minimize the total processing time. When the
query is processed locally in parallel on different peers,
the impact of the total processing time on execution time
is reduced.

– Number of queried peers: The objective is to minimize
the number of queried peers by avoiding contacting peers
(in vain) that do not contribute to the skyline result set. A
peer is said to contribute to the result if either the peer’s
local data belong to the result set or the peer is part of a
path leading to relevant data. The number of queried peers
relates indirectly to the number of messages exchanged
to process the query. Consequently, it is important for the
scalability of the system to have a reduced number of

queried peers. Since most of the approaches aim to find
the exact and complete result set (the skyline set of all
data stored locally at any peer), peers cannot be avoided
to be queried unless they do not contribute to the query.

– Network traffic: The aim is to minimize the number of
data objects transferred, thus reducing the network trans-
fer time, which in turn reduces the execution time. For
this purpose, it is preferable to evaluate as many parts of
the query as possible locally, rather than transferring the
entire dataset to the querying peer.

The main goal of minimizing the execution time comes
as a consequence when the aforementioned factors are sat-
isfied. However, as will be shown at the end of this section,
the factors are often contradictory and there exists a trade-off
between them.

4.2 Main principles

In the following, we identify three main principles that are
used in almost every existing approach for distributed sky-
line processing: (1) the additivity of the skyline operator, (2)
pruning of local data objects via filtering, and (3) peer prun-
ing based on local information.

The key property of the skyline operator that is used in
distributed skyline processing is the additivity of the skyline
operator. Given n datasets Si (1 ≤ i ≤ n) corresponding to n
peers, the skyline points are the same if the skyline operator
is evaluated on (i) the union of the n datasets or (ii) first on
each set in separate and then once more on the union of the
result sets.

Definition 3 (Additivity of the skyline operator) Given a
dataset S and n datasets Si such that S = S1 ∪ · · · ∪ Sn ,
the following equation holds: SK Y (S1 ∪ · · · ∪ Sn) =
SK Y (SK Y (S1) ∪ · · · ∪ SK Y (Sn))

Let us consider the example illustrated in Fig. 4. We have
two datasets S1 and S2 (local data) stored at peers P1 and
P2. The aim of distributed skyline processing is to retrieve
the skyline points of the dataset S = S1 ∪ S2. The additiv-
ity of the skyline operator ensures that it is sufficient to take
into account only the skyline points of S1 (points a, h, m,
and k) and S2 (points b, i , and n), also referred to as the
local skyline points of peers P1 and P2. No other point can
be part of the skyline set because it is dominated by at least
one point of the peer’s local data and because the dominance
relation is transitive. In order to determine the overall skyline
set (points a, i, m, and k), the skyline points of the union of
the local skyline sets are computed, so that dominated points
are pruned.

Due to the additivity of the skyline operator, the skyline
query can be processed in a distributed fashion, where each
peer processes a skyline query based on the data that are

123

A survey of skyline processing in highly distributed environments 365

Fig. 4 Skyline additivity

stored locally. Thus, the computational cost of skyline pro-
cessing on all data points is shared among multiple peers.
Furthermore, the additivity also reduces the network traf-
fic because only local skyline points SK Y (Si) have to be
transferred instead of the entire local dataset Si , and because
|SK Y (Si)| ≤ |Si |. In fact, a peer that receives local result
sets from its neighbors may first process a skyline query on
the received data and its local result set and create a partial
result set. Then, it forwards the partial result set back to the
peer the query has been received from. It should be noted that
the partial result set is not a subset of the overall skyline set
(as it may contain false positives), but it is the result set that
corresponds to the data stored in a subset of the network.

The second principle used for efficient distributed skyline
processing is pruning of data points through filtering (or filter
points). The main idea is that peers also forward additional
information (filtering information) along with the query, that
concisely describes the already retrieved local result sets.
Commonly, this information is a subset of the local skyline
points, called filter points. Filter points are used by the neigh-
boring peer to discard local skyline points that are dominated
by them. If the filtering information is selected carefully so
that there exists a high probability that local skyline points
are discarded, then the transferred data can effectively be
reduced through filtering. Also, local processing at a peer
can be more efficient through filtering since in some cases a
peer can immediately detect that all local points are domi-
nated by the filter points.

Finally, the third principle used for efficient skyline com-
putation in distributed environments is to exploit the domi-
nance relation to exclude peers from further consideration,
also called peer pruning. In most approaches, each peer uses
the local skyline points in order to determine whether a neigh-
boring peer can store data points that are not dominated.
In case all the data a neighbor provides are dominated by
the local result set, there is no need to query the neighbor,
and it can be safely pruned from further consideration. The

information about the data stored at each neighbor peer is
called routing information, which is used for peer pruning.
In unstructured P2P networks, a peer can detect whether a
neighbor can be pruned by collecting and storing locally
some summary information about the data accessible through
each neighbor. Then, this routing information is tested for
dominance based on the local skyline points. In structured
P2P systems, the routing information is essentially the rule
according to which the data have been distributed in the first
place. The rule together with the network structure yields
information that can be used in conjunction with the local
result set to prune peers. Furthermore, the local skyline points
can be combined with filtering information, so that there
exists a higher chance of pruning neighboring peers.

4.3 Phases of distributed skyline processing

In general, query processing in distributed environments
adheres to the following phases that are utilized by almost
all existing approaches:

Each peer that poses a query or receives a
query from a neighbor:

1. [LOCAL PROCESSING] computes the
skyline set based on local data and (option-
ally) the filtering information received
along with the query,

2. [QUERY ROUTING] decides which
neighbors can contribute to the skyline set,
tries to eliminate neighbors by peer prun-
ing, and forwards the query to the remain-
ing neighbors,

3. [RESULT MERGING] receives the local
result sets from queried neighbors and
merges all partial results by checking for
dominated points. Then, the peer outputs
the result to the user or forwards it to the
peer the query has been received from.

Almost all distributed skyline processing algorithms
contain these three phases. It should be noted that the query
routing approach could be executed before the local process-
ing phase. This leads to a non-blocking approach with higher
parallelism since the query is propagated to the neighbors
without waiting for the local processing to finish. Neverthe-
less, it is common for distributed skyline processing algo-
rithms to first conduct the local processing, so that filtering
and more efficient query routing (peer pruning) are possible.
This is because the gain in execution time resulting from the
reduction of transferred data and peer pruning is higher than
the delay caused by local query processing.

In the query routing phase, the query is forwarded to
some of the neighboring peers in order to retrieve their
partial results. Thus, the peer decides whether a neighbor can

123

366 K. Hose, A. Vlachou

Table 2 Categorization of the
distributed approaches based on
the P2P overlay

Approach Overlay

DSL [51] Structured DHT (CAN)

SSP/Skyframe [48,49] Structured Tree-based (BATON) and DHT (CAN)

iSky [9,12] Structured Tree-based (BATON)

SSW [25] Structured Semantic small world networks (SSW)

SFP [20] Unstructured Pure P2P

DDS [18,19] Unstructured Pure P2P

SKYPEER/SKYPEER + [44,46] Unstructured Hybrid (super-peer)

BITPEER [16] Unstructured Hybrid (super-peer)

PaDSkyline [8,13] Unstructured Fully-connected network topology

AGiDS [35] Unstructured Fully-connected network topology

FDS [56] Unstructured Fully-connected network topology

SkyPlan [36] Unstructured Fully-connected network topology

contribute to the skyline set (relevant peer) based on avail-
able routing information. After having identified neighbors
relevant to the query, the peer can either forward the query
to all these neighbors in parallel or query them in a sequen-
tial manner by waiting for the partial result set of a neighbor
before contacting the next. In most cases, query routing to
relevant peers is performed in parallel. However, in some sce-
narios, contacting relevant peers sequentially may be more
efficient since each time a partial result set is received, the fil-
tering information can be updated before querying the next
relevant peer. Furthermore, based on the partial result set,
some of the previously relevant peers can be pruned. Hence,
when relevant peers are contacted in a sequential manner,
the aim is to contact those peers first that most likely return
data points having a high probability to dominate many other
points and peers.

In the merging phase, the local and the partial result sets
have to be collected and a skyline query has to be processed
on the union of those sets to discard dominated points. We
refer to this process as merging of result sets. During the
merging process, only data points that are stored or accessed
through different peers have to be tested for dominance. By
using this property, result merging is actually more efficient in
terms of computational costs than executing a skyline query
on the union of the result sets. Furthermore, for the result
merging phase, there are two options. Either each peer col-
lects the local result sets of its queried neighbors and merges
them by discarding dominated points, or it immediately for-
wards the received local result sets to the peer the query has
been received from without merging. Obviously, merging of
the local result set may lead to reducing the transferred data
since some dominated points are discarded. On the other
hand, merging may increase execution time since each peer
has to wait until it collects the local result sets from all queried
neighbor peers. It should be noted that in any case, the que-
rying peer has to merge the local and partial result sets before
returning the skyline points to the user.

5 Approaches for skyline processing in P2P
environments

In this section, we describe all existing approaches dealing
with the problem of processing skyline queries in highly dis-
tributed environments. We divided the approaches into two
groups. The first group consists of approaches designed for
structured P2P systems, whereas the second group consists
of approaches suitable for unstructured P2P systems. Table 2
summarizes this categorization and provides more specific
details on the underlying P2P networks. Recall that in our
descriptions, unless mentioned otherwise, we assume that
minimum values are preferable.

5.1 Structured P2P

We have already introduced the main characteristics of struc-
tured P2P networks in Sect. 3. During distributed skyline
computation in structured P2P networks, the existing over-
lay network is exploited for query routing, while filter points
are used for improving the overall query processing perfor-
mance. In the following, we present the existing approaches
in detail and elaborate on characteristics of each overlay net-
work that are used for skyline computation in these networks.
Therefore, this section covers all details necessary to under-
stand how skyline computation exploiting overlay-specific
details works.

5.1.1 DSL [51]

Wu et al. [51] propose DSL (Distributed Skyline) to compute
constrained skyline queries in CAN networks [33]. DSL uses
the CAN overlay to map data to regions and assign these
regions to peers (content-based data partitioning). Given a
constrained skyline query, peers that do not contribute data

123

A survey of skyline processing in highly distributed environments 367

Fig. 5 DSL [51]: the queried range is ((0.3,0.3),(0.9,0.9)); the peer
guaranteed to hold data that are part of the global skyline set is peer
3, which therefore serves as the root of the multicast hierarchy that
connects peers responsible for neighboring regions in the CAN overlay

complying with the constraints can be immediately pruned,
and an ad hoc multicast tree that connects all remaining peers
is built. By organizing the peers in a multi-level hierarchy and
using it to propagate queries and local result sets, each que-
ried peer computes the skyline set on its local data, and inter-
mediate peers merge result sets from their children. Figure 5
shows an example of a hierarchy built at runtime. The query
is propagated along the edges of the hierarchy; peers perform
local computation and propagate the results back on the same
paths—on the way back, results are aggregated exploiting
skyline additivity.

During query processing, DSL builds a multicast hierar-
chy in which the peer that is responsible for the region con-
taining the lower left corner of the constraint is the root. The
data points stored at this peer are guaranteed to belong to the
global skyline set as these data points cannot be dominated
by points stored at any other peer. Furthermore, the hierarchy
is built in such a way that only peers whose data points cannot
dominate each other are queried in parallel. In general, any
peer in the CAN overlay can decide whether its local skyline
points are in the global skyline set by only consulting a subset
of other peers. Therefore, a partial order between the peers
is defined which captures these computational dependencies
between the local result sets. In DSL, the hierarchy is built
dynamically and each queried peer decides which neighbor-
ing peers should be queried next by using dynamic region
partitioning and encoding. Thus, a peer that receives a query
along with the local result set first waits to receive the local
skyline sets from all neighboring peers that precede it in the
hierarchy. Then, it computes the skyline set based on its local
data and the received data points. Thereafter, the local skyline
points are forwarded to the peers responsible for neighboring
regions, in such a way that only peers whose data points can-

Fig. 6 Skyframe example [49]: a peers and their assigned regions,
b routing in BATON overlays—peer 3 retrieves data assigned to peer 8

not dominate each other are queried in parallel. In addition,
neighboring peers that are dominated by the local skyline
points are not queried because they cannot contribute to the
global skyline set. Finally, all local result sets are collected
at a peer that cannot forward the query any further, and the
global skyline set is reported back to the query initiator.

5.1.2 SSP and skyframe [48,49]

Wang et al. [48] present an approach (Skyline Space Parti-
tioning, SSP in short) for distributed processing of skyline
queries in BATON [21] networks. Peers in BATON are orga-
nized in a balanced binary tree structured overlay network,
where each peer is responsible for a region in data space.
Techniques for splitting and merging allow for load balanc-
ing among peers. By dynamically sampling load from ran-
dom peers, load imbalance can be detected and data may be
migrated to other peers in order to counteract the imbalance.

As BATON networks have originally been designed for
one-dimensional data, Wang et al. map the multidimensional
data space to one-dimensional keys using a Z -curve. Figure 6
shows an example of the mapping of the data regions to the
peers in the BATON network. Regions in BATON are cre-
ated by successively splitting existing regions into two parts
with respect to a specific dimension, and each region is rep-
resented by a binary string that identifies the region and is
consistent with the Z -order of the region. Each peer knows
the split history (i.e., dimension, split value) that its region
originates from. Based on this information, for a given region,
the identifier is determined. In addition, the routing table of
each peer contains links to other peers (parents, children,
adjacent peers, and other peers on the same level), so that the
query is efficiently routed to a particular peer.

Figure 6b illustrates the principle of routing in BATON
overlays. Assume peer 3 needs to retrieve data contained in
the region assigned to peer 8. The identifier of the responsi-
ble region starts with 0 because it is contained in the lower
part of the first split (at 0.45 in the x dimension). Thus, peer

123

368 K. Hose, A. Vlachou

3 forwards the query to a known peer (peer 2) with a leading
0 in its assigned region. Using the same strategy, peer 2 for-
wards the query to peer 4, which again forwards the query to
the peer holding the queried data, namely peer 8.

Skyline processing in BATON networks relies on identi-
fying relevant regions and routing the query to peers respon-
sible for those regions. More precisely, skyline computation
starts at the peer pstart, which is the peer responsible for the
region containing the origin of the data space. Peer pstart

computes the local skyline points that are guaranteed to be in
the global skyline set. Then, pstart selects the most dominat-
ing point pmd (i.e., the point dominating the largest region
[20]), which is used to refine the search space and to prune
dominated regions and therefore also the responsible peers
from consideration. A peer can safely be pruned if the best
point (i.e., the lower left corner) of its region is dominated
by pmd. Then, the querying peer forwards the query to the
peers that are not pruned and gathers their local skyline sets.
Finally, the query initiator computes the global skyline set
by discarding dominated local skyline points.

In [49], Wang et al. generalize SSP by proposing Sky-
frame. In more detail, Wang et al. [49] propose an alternative
algorithm for skyline processing without the need to deter-
mine a peer pstart before query processing starts. Instead,
the querying peer forwards the query to a set of peers called
border peers. A peer that is responsible for a region with min-
imum value in at least one dimension is called border peer. In
our example, peers 1, 2, 4, 5, 8, and 10 are the border peers.
Once the initiator receives the local skyline results, it com-
putes pmd and determines whether additional peers need to
be queried. Then, the querying peer queries additional peers,
if necessary, and gathers the local skyline results. When no
further peers need to be queried, the query initiator computes
the global skyline set. Wang et al. show in [49] that Skyframe
is also applicable for CAN networks.

5.1.3 iSky [9,12]

Chen et al. [9] propose the iSky algorithm for skyline com-
putation on structured peer-to-peer networks. Similar to Sky-
frame [48,49], iSky relies on the BATON [21] overlay but
employs a different transformation, namely iMinMax, to
assign data to BATON peers. Each multidimensional tuple
is mapped to a one-dimensional value (iMinMax value) by
first determining the maximum value for this tuple among all
dimensions. Assuming that the range of each dimension is
normalized into [0,1), the iMinMax value is defined as the
sum of (i) this maximum value and (ii) the number of the
dimension it originates from. Each peer is responsible for a
specific non-overlapping range of iMinMax values, so that
each data point is assigned to a specific peer. Figure 7 shows
an example of a BATON network and also for each peer the
range of iMinMax values which each peer is responsible for.

Fig. 7 iSky example [9]: BATON network and iMinMax ranges
assigned to peers

It should be noted that iSky assumes for each dimension,
larger values are preferable.

Given a skyline query, iSky first determines a set of ini-
tial skyline peers, which consists of these peers storing data
points with maximum value in any dimension. These peers
are chosen because points with maximum value in some
dimension are guaranteed to be part of the global skyline
set. Because of the iMinMax transformation, which has been
used to distribute the data in the network, the initial skyline
peers are responsible for a data range close to an integer, e.g.,
a peer responsible for the range [1.75,2.125). Thereafter, the
initial skyline peers are queried, and their local skyline results
are merged into an initial set of skyline points by discard-
ing dominated local skyline points. Then, the querying peer
determines a threshold and a filter point. In order to define
the threshold, the minimum value of all dimensions for each
initial skyline point is computed. Then, the maximum value
of all minimum values of all initial skyline points is selected
as a threshold by using its range of iMinMax values. Any
data point can be pruned if its maximum attribute value in
all dimensions is smaller or equal to the received threshold.
In addition, the most dominating point (i.e., the point dom-
inating the largest region [20]) is chosen as filter point. The
threshold and the filter point are attached to the query, which
is forwarded to any neighboring peer that stores interval val-
ues larger than the threshold. When a peer receives a query,
then it first uses the threshold to check whether all its data
are pruned. In this case, the peer just forwards the query to
its neighboring peers that have interval values larger than
the threshold. Otherwise, the peer processes the query on
its local data and uses the filter point to discard dominated
tuples. Finally, each peer refines the threshold and the fil-
ter point before forwarding the query and immediately sends
the local result set to the query initiator, which then merges
the local results and obtains the global skyline set after all
queried peers have processed the query.

5.1.4 SSW [25]

Li et al. [25] use a space partitioning method that is based
on an underlying semantic overlay network (Semantic Small

123

A survey of skyline processing in highly distributed environments 369

World—SSW). In such a network, the multidimensional data
space is partitioned into non-overlapping regions, which are
mentioned also as clusters. Assuming that each peer stores
data that form one or more clusters, peers are assigned to
the non-overlapping regions based on semantic labels. The
semantic label of a peer corresponds to the region, which
contains the centroid of its largest data cluster. For the data
not contained in the region corresponding to the semantic
label of a peer, foreign indexes are created at peers whose
semantic label covers the data. A peer’s foreign index holds
information about data contained in its region that is stored at
remote peers assigned to other regions. Each peer maintains
links to other peers assigned to the same cluster and links to
at least one peer in each neighboring cluster.

The computation of a skyline starts from the region that is
guaranteed to contain skyline points, i.e., the region contain-
ing the origin. Then, the skyline query is evaluated over the
data provided by peers in this cluster. The local skyline point
that corresponds to the nearest neighbor of the origin is used
as a filter point. In more detail, all regions that are entirely
dominated by the filter point are not considered for further
processing. After querying the remaining regions, reporting
back all local result sets to the query initiator, and checking
for mutual dominance, the global skyline set is returned to
the user.

Apart from this algorithm, Li et al. [25] also propose an
approximate algorithm, which does not require a semantic
overlay network. Still, peers have semantic labels that are
used to process the skyline query. As a peer is assumed to
know the semantic labels of its neighbors, it forwards the
query to the neighbor with the best semantic label, which is
defined as the semantic label closer to the origin. Once a peer
cannot find a neighbor with a better semantic label than its
own semantic label, skyline computation ends and the result
is returned to the user. Another variant of this strategy (multi-
path) forwards the query for each dimension to the peer that
provides the best data, if only this dimension is considered.
The peer that initiates the query coordinates the computation
and might optionally issue a stop command when a certain
number of peers have been queried.

5.2 Unstructured P2P

In contrast to skyline query processing in structured P2P net-
works, where the overlay is used to locate peers that store rel-
evant data, in unstructured P2P networks all peers have to be
queried or routing indexes have to be constructed. It should
be noted that some approaches assume the query originator
has a direct connection to all other peers (fully connected
network topology). In fact, these approaches assume a more
general distributed architecture than P2P and therefore they
can easily be adapted to other distributed systems.

Fig. 8 SFP example [20]: dominating region of point i

5.2.1 Single filtering point (SFP) [20]

Huang et al. [20] assume a setting with mobile devices
communicating via an ad hoc network (MANETs) and study
skyline queries that involve spatial constraints. Even though
Huang et al. focus on a mobile environment, there are several
similarities between ad hoc networks and unstructured P2P
networks. The technique (single filtering point—SFP) used
to reduce the transferred data is directly applicable to P2P net-
works. Thus, we analyze this technique and omit any details
related to spatial constraints and optimizations of query pro-
cessing on mobile devices presented in [20].

The main feature of SFP is the usage of a point that belongs
to the local skyline set as a filter to discard local skyline points
of other peers. The selection of the filter point is based on the
volume of the dominating region (Fig. 8). The dominating
region is defined as the area in data space that is dominated
by a skyline point. Assuming a uniform distribution, a larger
dominating region means a higher probability to dominate
other points. When a peer receives a query request, it pro-
cesses the query first locally and then propagates the query to
its neighboring peers by attaching a filter point to the query.
The filter point is used to discard local skyline points before
sending back the local result to the query initiator. Each peer
updates the filter point if a local skyline point has a larger
dominating region.

5.2.2 DDS [18,19]

Hose et al. [18,19] propose an approach for skyline process-
ing in unstructured P2P networks that uses routing indexes to
identify relevant peers. Routing indexes, or distributed data
summaries (DDS) respectively, are summaries of the data
accessible via a peer’s neighbors. Thus, there is one sum-
mary for each neighbor, summarizing not only its local data
but also the data of peers that are located several hops away
but reachable via the neighbor. Each peer in the network
is assumed to hold such summaries for its neighbors. Hose
et al. consider two variants of data summaries, one based
on multidimensional histograms and the other one based on
the QTree, a combination of R-trees and multidimensional
histograms.

123

370 K. Hose, A. Vlachou

Processing skyline queries based on DDS in this scenario
works as follows: First, the query initiator computes the sky-
line set based on its local data. Then, it decides, based on its
data summaries, on the relevance of its neighbors. The main
idea is to prune all neighbors that provide only data that are
dominated by local skyline points. A data summary based on
histograms can be regarded as a set of regions (corresponding
to buckets) represented by rectangles. Given a skyline query
and a rectangular region, then the best point that might be
contained with respect to domination is the rectangle’s lower
left corner. The best point dominates all data points possi-
bly contained in the region. If the best point is dominated
by a local skyline point, then the region can be pruned. If all
regions that summarize data of a specific neighbor are pruned,
then the query is not forwarded to this neighbor. Otherwise,
the query is forwarded and the local skyline points are also
forwarded to the neighboring peer in order to prune its neigh-
bors. To minimize load at the initiator, local skyline points
are routed on the same path the query was propagated on; a
peer merges the local result sets received from its neighbors
with its own local skyline set, checks for mutual dominance,
and sends the obtained result to the peer that it received the
query from.

DDS also supports approximate skyline queries men-
tioned as relaxed skylines. A relaxed skyline query aims at
reducing the computational costs of skyline processing by
representing regions of a peer’s data by a single local skyline
point. A region describing the data of a neighboring peer is
represented by only one local skyline point if any point of
the region has a distance to the representative point less than
a given threshold, so a neighbor is pruned if all the regions
describing its data are either dominated or represented by rep-
resentatives, i.e., local skyline points. Thus, the query result
set does not contain all skyline points, but a subset of skyline
points and additionally representative data points that rep-
resent regions that are nearby and possibly contain further
skyline points.

5.2.3 SKYPEER [44] and SKYPEER+ [46]

Vlachou et al. [44] proposed SKYPEER, a distributed frame-
work for efficient computation of subspace skyline process-
ing over a super-peer architecture. To this end, the notion of
domination is extended by defining the extended skyline set,
which contains all data points that are sufficient to answer
a skyline query in any arbitrary subspace. In a preprocess-
ing phase, each super-peer computes and stores the extended
skyline set of its associated peers. Then, when a super-peer
receives a subspace skyline query, SKYPEER propagates
the query to all super-peers and gathers the local skyline
sets. Moreover, SKYPEER utilizes an efficient thresholding
scheme that facilitates pruning of dominated data across the
peers. In order to support threshold-based query processing,

Fig. 9 SKYPEER+ example [46]:Indexing of extended skyline points
with one-dimensional mapping

data are transformed into one-dimensional values. Then,
during query processing, a threshold value is defined based
on already computed subspace skyline points. The thresh-
old is attached to the query before it is propagated in the
network. Vlachou et al. explore different strategies for (i)
threshold propagation and (ii) result merging over the P2P
network aiming to reduce both computational time and vol-
ume of transmitted data. As far as threshold propagation is
concerned, two strategies are examined, namely fixed thresh-
old (the query initiator sets the threshold) and refined thresh-
old (each super-peer updates the threshold based on its local
result). Similarly, for result merging, two strategies are exam-
ined, namely merging the local result sets by the query initi-
ator or progressive merging by intermediate super-peers.

SKYPEER was extended in [46] leading to SKYPEER+,
which focuses on efficient routing of skyline queries over
a super-peer network with the aim of reducing the number
of contacted super-peers. Instead of flooding the network,
a routing mechanism is established in order to contact only
those super-peers that may contribute to the global skyline
set. More precisely, in the preprocessing phase, each super-
peer additionally applies a clustering algorithm on its locally
stored extended skyline set. Then, the extended skyline set
is stored based on the one-dimensional mapping, as depicted
in Fig. 9. The clusters are represented by MBRs and each
point is mapped to a one-dimensional value, while all points
that belong to the same dashed line have the same one-
dimensional value. Then, based on the threshold employed
by SKYPEER+, point p prunes the shadowed area. The
cluster descriptions are broadcast over the super-peer net-
work. Each super-peer collects the cluster information of all
super-peers and builds routing indexes based on them. The
one-dimensional mapping is combined with the clustering
information, and a novel indexing technique is proposed for
building the routing indexes, which support efficiently the
thresholding scheme of SKYPEER. During query process-
ing, the routing indexes are used to propagate the query only
to network paths with super-peers storing data points that

123

A survey of skyline processing in highly distributed environments 371

may contribute to the skyline set. In addition, the routing
information is used to refine the threshold. Therefore, SKY-
PEER+ further improves the thresholding scheme and dras-
tically reduces the amount of transferred data.

5.2.4 BITPEER [16]

Fotiadou et al. [16] proposed BITPEER for subspace sky-
line queries over a super-peer architecture. Similar to SKY-
PEER, each super-peer stores the extended skyline of its
peers. Differently to SKYPEER that was proposed indepen-
dently of the skyline algorithm at each (super-)peer, Fotiadou
et al. [16] focus on distributed skyline computation based on
BITMAP [39]. Therefore, BITPEER uses a bitmap represen-
tation that summarizes all extended skyline points. Given a
subspace skyline query, the query is flooded in the super-peer
network, and local results are sent back to the querying super-
peer by using progressive merging at intermediate super-
peers. The authors also discuss caching of subspace skyline
points and continuous skyline queries. In order to enable the
reusability of subspace skyline results, during query process-
ing, the querying super-peer gathers the extended subspace
skyline [44] instead of the subspace skyline. Therefore, BIT-
PEER is able to use a cached skyline set also for subspace
skyline queries that refer to a subspace of the query in the
cache.

5.2.5 PaDSkyline [8,13]

Cui et al. [13] study skyline query processing in a distributed
environment, where the querying peer can directly commu-
nicate with all peers. The proposed algorithm is called PaD-
Skyline (Parallel Distributed Skyline query processing), and
the main principle is to determine which peers can process
the query in parallel under the assumption that the data points
of each peer lie only in a part of the data space.

The querying peer first gathers a set of minimum bound-
ing regions (MBRs) from each peer that summarizes the data
stored at each peer. Subsequently, the querying peer pro-
cesses the collected MBRs and groups them into one or more
incomparable groups such that any data point summarized by
an MBR of one group cannot be dominated or dominate any
data point captured by an MBR of another group. Figure 10a
depicts a set of MBRs gathered by the querying peer. These
MBRs form two incomparable groups, namely MBRs m1

and m2 form the first group, while the second group consists
of the remaining MBRs. Incomparable groups can be que-
ried in parallel without requiring merging of local results.
For each incomparable group, a specific plan is constructed
which aims at maximizing the gain achieved by the filter
points and defines a beneficial order to query the peers. An
example of an execution order is depicted in Fig. 10b. In
general, dominated MBRs are discarded, while MBRs (for

(a) (b)

Fig. 10 PaDSkyline example [13]: a incomparable groups of MBRs
b order of executing the query on different peers

example m6) that are partially dominated (for example by
m5) are executed after the partially dominating MBR. For
each group, the plan is sent to the peer (head group) respon-
sible for the head MBR of the plan. The peer that receives a
plan processes the query locally. Once a peer has processed
the query, it removes itself from the query plan and forwards
the query to the next peer indicated by the plan. In order to
reduce network traffic, each peer attaches a set of K filter
points to the query for discarding local skyline points of the
peers that belong to the same group. The goal is to select
as filter points the local skyline points that are more likely
to dominate many other points. Two different strategies are
studied. The first strategy is to select the K points with the
largest volume of their dominating region [20]. The proposed
alternative is to pick the K points with the maximal distance
between them. The aim of this strategy is to minimize the
overlap between the dominating regions of different points.
After the peer has processed the query locally, the results are
sent back directly to the head group, and after discarding all
dominated points, the results are sent back to the querying
peer.

5.2.6 AGiDS [35]

Rocha-Junior et al. [35] propose a grid-based approach
for distributed skyline processing (AGiDS), which shares
assumptions similar to [13]. Differently, AGiDS assumes that
each peer maintains a grid-based data summary structure for
describing its data distribution.

AGiDS assumes that all peers share common cell bound-
aries for the grid structure that leads to non-overlapping cells,
which increases the probability of domination between cells
and enables efficient merging of local skyline set. The set of
cells of a peer that contain at least one data point and that are
not dominated by other cells is called region-skyline set of
the peer. Only these cells of the grid contain data that belong
to the local skyline set. At query time, the query initiator
first contacts all peers and gathers the region-skyline sets of
all peers. Then, the query initiator merges the collected cells
into a new region-skyline set by discarding dominated cells.

123

372 K. Hose, A. Vlachou

Fig. 11 AGiDS example [35]: finding the non-dominating regions of
different peers

An example of this process is depicted in Fig. 11. Finally,
queries are forwarded only to peers that correspond to at
least one cell in the region-skyline set. The query initiator
requests only a subset of local skyline points, namely those
that belong to the cells of the region-skyline set. After having
gathered all relevant points, the querying peer computes the
global skyline set by testing only the necessary regions for
dominance.

5.2.7 FDS [56]

Zhu et al. [56] propose a feedback-based distributed sky-
line (FDS) algorithm, which assumes no particular overlay
network. FDS aims at minimizing the network bandwidth
consumption, measured in the number of tuples transmitted
over the network. FDS requires a scoring function that is
used by all peers, and each query is processed in multiple
round trips. In each round trip, all peers send to the querying
peer the k local skyline points with the lowest score based on
the scoring function. Then, the querying peer computes the
maximum score of all transferred local skyline points and
requests from all peers the remaining local skyline points
that have scores smaller than the maximum score. Finally,
the querying peer merges the local result sets and selects a
subset of the current skyline points as a feedback that is sent
to all peers. Peers receiving the feedback remove from their
local data points all points that are dominated by the points
of the feedback.

In the feedback phase, FDS selects filter points for each
peer; these are skyline points that are guaranteed to dominate
at least � local data points. To this end, for each local skyline
point, the distance of the �-nearest neighbor is computed and
attached to it before sending it to the querying peer. The dis-
tance is combined with the score of the scoring function in
such a way that FDS can decide whether a skyline point sat-
isfies the condition. An example of the feedback algorithm is

Fig. 12 FDS example [56]: example of the feedback algorithm

depicted in Fig. 12. The depicted rectangle is defined by the
distance of the �-nearest neighbor based on L∞. The score of
the scoring function used for sorting the data points defines
the region that encloses the points that have not been trans-
ferred to the querying peer. Then, if the dominating region
of a skyline point covers this region, it will dominate at least
� points. FDS is efficient in terms of bandwidth consump-
tion. However, several round trips are required to compute
the skyline set. Thus, it may incur high response time.

5.2.8 SkyPlan [36]

SkyPlan was proposed in [36] for improving the performance
of PaDSkyline [13]. Similar to PaDSkyline, during query pro-
cessing, each peer reports a set of minimum bounding rect-
angles (MBRs) to the querying peer as a summarization of
its data. SkyPlan addresses the problem of generating execu-
tion plans, which define the order the query is executed. The
query plan has a direct impact on the performance of skyline
query processing. By querying the peers consecutively, some
peers may not have to be contacted at all, if all points of a
peer are dominated by a point stored locally at another peer.
Furthermore, the amount of transferred data can be drasti-
cally reduced. However, if the filter points fail to prune any
point of a peer, then no gain can be obtained from querying
the peers consecutively. In this case, the parallelism should
be preserved, in order to minimize the latency and therefore
also the response time.

In SkyPlan, the query originator creates a weighted
directed graph (SD-graph) that captures the dominance rela-
tionships between the collected MBRs. Each vertex of the
graph represents a non-dominated MBR, while an edge
between two vertices means that one MBR dominates par-
tially the other MBR. The weights on the graph edges are
defined by the pruning power, which is used to quantify the
potential gain through filtering. For example, consider the
MBRs and the graph depicted in Fig. 13. MBR m1 partially
dominates m2 because the lower left corner of m1 domi-
nates the upper right corner of m2. Thus, a directed edge
from m1 to m2 is added to the graph. Before executing the
query, SkyPlan transforms the SD-graph into an execution
plan (one or more directed trees) that maximizes the total

123

A survey of skyline processing in highly distributed environments 373

m1 m2

m3 m4

x

y

(a) (b)

Fig. 13 SkyPlan example [36]: example of the MBRs and the con-
structed graph

pruning power while preserving the parallelism when no sig-
nificant gain can be obtained from processing the queries on
different peers consecutively. It has been shown that Sky-
Plan supports also multi-objective executions plans, in case
that additional objectives need to be fulfilled simultaneously,
such as additionally restricting the number of hops that the
query is forwarded.

Finally, the distributed skyline query is processed based
on the execution plan. The querying peer sends the query to
the root of every directed tree in the execution plan. Each
queried peer processes the skyline query locally, refines the
execution plan, and selects a set of filter points. The refine-
ment of the execution plan produces a new execution plan
that does not contain the MBRs that are dominated by the
local skyline points. The filter points are selected based on
the dominating region [20]. Since the volume of the dominat-
ing region does not necessarily relate to the area within the
MBR that is dominated by a filter point, SkyPlan takes into
account the MBRs of the execution plan while selecting the
filter points. Eventually, each peer gathers the local result sets
of the peers that had received the query through and merges
them by discarding dominated points. Local processing on
peers terminates by returning the merged skyline points to
the previous peer based on the execution plan.

6 Performance analysis

Most approaches described in Sect. 5 have been designed for
efficient processing of skyline queries over different types of
distributed systems with different assumptions. Thus, they
are not directly comparable. Table 2 provides a categoriza-
tion of approaches in two main groups depending on the
overlay network: structured and unstructured P2P systems.

Qualitative comparison. Whereas structured P2P networks
can only be applied when having full control over all partici-
pating peers, unstructured P2P systems allow peers to retain
a higher degree of autonomy. As a natural consequence of
assigning data to peers according to a globally known rule,
structured P2P networks achieve more efficient query routing

by applying the same rule at query time. On the other hand,
in unstructured P2P networks, each peer routes the query
based on the locally stored routing information. In worst case,
the query is flooded in the entire network. However, struc-
tured P2P systems also require a higher construction cost.
The reason is that each peer’s data point needs to be indexed
by an appropriate peer, which leads to a construction cost of
O(|S| · NP · log Np) in terms of network traffic, where |S| is
the cardinality of the dataset S, and Np the number of peers.

Based on these considerations, it is not necessarily mean-
ingful to perform a direct comparison of both groups of
approaches under the same conditions. Consequently, in the
following, we will discuss each group in separate. Our objec-
tive was to provide a comparative performance analysis that
highlights the differences and similarities of the approaches,
their advantages and disadvantages, and their effect on the
performance of the algorithms.

Metrics. One important factor that influences the perfor-
mance of a distributed skyline algorithm in a P2P network is
the length of the longest path the query is propagated on. A
longer path implies a higher response time, since the query
originator has to wait until the last peer receives the query,
processes it, and finally forwards its results through the net-
work. In addition, it also affects the amount of transferred
data. The length of the path is measured in the number of
hops, and the length of the longest path is referred to as max-
imum number of hops or cost. In our analysis, we mainly
focus on this metric due to its important effect on other met-
rics. However, we also provide useful information on other
related metrics, such as response time, amount of transferred
data, and number of contacted peers. In the following, we
denote the number of peers and super-peers as Np and Nsp.

6.1 Structured P2P systems

The performance of approaches that rely on structured P2P
networks mainly depend on (1) the underlying overlay net-
work, (2) the rule for locating data, and (3) the individual
features of the algorithm, such as filtering, pruning of dom-
inated regions, and result propagation. The overlay network
is the most important factor as it influences the efficiency
of locating relevant regions as well as the ability of pruning
irrelevant regions of the multidimensional space. Two main
overlay networks are employed in the related work: CAN and
BATON (Table 3).

The CAN overlay represents a grid-based partitioning
of the d-dimensional Cartesian coordinate space among Np

peers. Therefore, approaches that rely on space partitioning,
such as DSL and SSP/Skyframe, can be directly applied on
CAN. On the other hand, BATON is a tree-based structured
network that handles one-dimensional values. Hence, a one-
dimensional mapping is required.

123

374 K. Hose, A. Vlachou

Table 3 Performance analysis
for structured P2P approaches Approach Number of hops (CAN) Number of hops (BATON)

DSL [51] O

(
d · N

1
d

p

)
+ O(Np) –

SSP/Skyframe [48,49] O

(
2 · d · N

1
d

p

)
O

((
1 + 2 · d ·

(
1 − 1

d
√

Np

))
· log Np

)

iSky [9,12] – O
(
d · log Np

) + O
(

Np
d

)

Comparison. DSL and SSP initiate query processing by
locating the peer that is responsible for the region near the ori-
gin of the data space. Assuming a CAN overlay, this requires

O(d · N
1
d

p) hops. Thereafter, DSL dynamically constructs a
multicast hierarchy, which in worst case will have a max-
imum length of Np. Since all peers in the multicast hier-
archy represent adjacent partitions, the cost of traversal is
O(Np). On the other hand, SSP contacts all non-dominated

regions in parallel, which leads to a cost of O(2 · d · N
1
d

p)

hops [49]. Skyframe first queries all border regions in paral-
lel and then the remaining non-dominated regions. Thus, it
incurs the same cost as SSP. In terms of transferred data, DSL
transfers all local skyline points through the multicast hierar-
chy (i.e., multiple hops), whereas SSP/Skyframe routes only
the filter point and gather the local results by direct transfer
(i.e., single hop). Thus, DSL incurs higher bandwidth con-
sumption than SSP/Skyframe.

The experimental evaluation in [48,49] shows that Sky-
frame performs better than DSL in all considered aspects,
i.e., in the number of nodes involved in the search process,
the number of skyline search messages, the number of search
hops, the amount of bandwidth consumption, and the query
load distribution, for varying network size, data dimension-
ality, and cardinality. DSL outperforms Skyframe only with
respect to load balancing with a relatively small number of
nodes (up to about 120).

SSP/Skyframe employs the Z -curve method for one-
dimensional mapping to BATON. Even though the algorithm
is the same as in the case of SSP/Skyframe on the CAN net-
work, the cost of locating the regions changes. As stated
in [49], the cost of a skyline query is O((1 + 2 · d · (1 −

1
d
√

Np
)) · log Np) hops for the uniform distribution. On the

other hand, iSky employs data transformation to one-dimen-
sional values (using the maximum value in all dimensions)
rather than space partitioning. As stated in [12], iSky exploits
the BATON protocol better than SSP/Skyframe since it dis-
tributes data portions across peers more deliberately. With
respect to query processing, iSky detects the peers storing
boundary partitions with cost O(d · log Np). The skyline
query is first processed by these peers, and some of the
remaining peers are pruned based on a threshold value. To
further reduce the amount of transferred data, a filter point is
used, similar to SSP/Skyframe. Then, the query is propagated
to peers that have not been pruned based on the threshold until

all peers have been queried or pruned. Thus, in contrast to
SSP/Skyframe, only some peers are processed in parallel, and
the query is propagated to neighboring peers. In each step,
both the threshold and the filter point are refined. The adap-
tive filtering technique of iSky enhances its pruning capa-
bility, which probably leads to fewer transferred data than
SSP/Skyframe. Still, in the worst case iSky needs to contact
all peers. Since the query is forwarded to neighboring peers
by starting at d peers, we estimate this cost as O(

Np
d).

The experiments provided in [9,12] compare SSP to iSky
with respect to dimensionality, network size, and cardinality.
The results show that iSky outperforms SSP in consideration
of communication costs and the number of involved nodes.
Due to the fact that only iSky is progressive, iSky returns first
results much earlier than SSP. In addition, the experiments
show that iSky also outperforms SSP with respect to the total
execution time. It should be noted that in [48,49], it has been
shown that Skyframe/SSP outperforms DSL when applied
on BATON.

Summary. We conclude that SSP/Skyframe seems to be
more appropriate if the underlying network is CAN, while
iSky outperforms Skyframe in the case where the underly-
ing network is BATON. It should be noted that we omitted
SSW from the discussion. The reason is that it is completely
different from CAN and BATON because the data in SSW
are not assigned to peers based on a globally known rule.
Instead, each peer is associated with a semantic label that is
used for routing.

6.2 Unstructured P2P systems

Almost all algorithms proposed for unstructured P2P sys-
tems ultimately aim at minimizing the response time. The
only exception is FDS that focuses on minimizing the amount
of transferred data. To achieve this goal, FDS requires sev-
eral round trips to compute the skyline set, leading to high
response times. Therefore, FDS is excluded from the follow-
ing discussion as it is only applicable when the bandwidth is
restricted or costly, as in the case of mobile environments.

In an unstructured P2P network, the maximum number of
contacted peers and super-peers is Np and Nsp respectively
because in the worst case scenario, all peers locally store at
least one of the global skyline points. This depends on the

123

A survey of skyline processing in highly distributed environments 375

Table 4 Performance analysis
for unstructured P2P approaches Approach Number of hops

(Construction)
Number of
hops (Query)

Routing paths

SFP [20] O(Np) Network topology

DDS [18,19] O(Np) O(Np) Network topology

SKYPEER/SKYPEER + [44,46] O(1)/O(1) + O(Nsp) O(Nsp) Network topology

BITPEER [16] O(1) O(Nsp) Network topology

PaDSkyline [8,13] O(1) + O(Np) Domination relationships

AGiDS [35] O(1) + O(1) Direct

SkyPlan [36] O(1) + O(Np) Domination relationships

distribution of data points with respect to the peers, which
cannot be improved if the peers’ autonomy is preserved.

Comparison. PaDSkyline, SkyPlan, and AGiDS assume a
fully connected network topology and processing consists of
two round trips. In the first round trip, the querying peer gath-
ers a summary of the data stored at each peer. In the second
round trip, the query is propagated only to those peers that
store relevant data. Thus, in the first round trip, Np messages
are required, but the maximum number of hops is equal to
1. For the second round trip, AGiDS directly communicates
with the relevant peers, while PaDSkyline and SkyPlan cre-
ate a query plan that in the worst case leads to Np hops. Thus,
the number of maximum hops for AGiDS is O(1) + O(1),
while for PaDSkyline and SkyPlan it is O(1) + O(Np).

All approaches based on super-peers require a preprocess-
ing phase, in which the extended skyline points of the peers
are transferred to the associated super-peer with cost O(1).
In addition, SKYPEER+ constructs routing indexes, which
requires propagating the MBRs in the super-peer network,
leading to an additional cost of O(Nsp). During query pro-
cessing, the maximum number of hops for all approaches is
O(Nsp) since in the worst case all super-peers have to be
contacted sequentially.

SFP and DDS assume a pure P2P network. SFP uses flood-
ing for query propagation. Thus, the maximum number of
hops is O(Np). DDS constructs routing indexes that lead to
a construction cost of O(Np). During query processing, the
maximum number of hops for DDS is O(Np) because in the
worst case all peers have to be contacted sequentially.

Beyond the longest path, the amount of transferred data
influences the response time. In the worst case, all approaches
need to transfer all local skyline points (SK Yi). The opti-
mal case is to transfer only those local skyline points that
belong to the global skyline, i.e., SK Y points, but this is
not feasible in a distributed environment. In general, it holds
that

∑
i=1...Np

SK Yi ≈ Np ∗ SK Y >> SK Y because the
cardinality of the skyline set mainly depends on the data
distribution and dimensionality, and much less on the data
cardinality. All approaches try to reduce the amount of trans-
ferred data by filtering or query plans. The amount of pruned

data is difficult to estimate because it depends on the data
distribution, the data dimensionality, the given network topol-
ogy, and the way that data are distributed to the peers. AGiDS,
SkyPlan, and PaDSkyline discard dominated regions, there-
fore, also dominated local skyline points. AGiDS summa-
rizes the data using non-overlapping regions that probably
lead to more regions being discarded. In contrast, PaDSky-
line and SkyPlan use MBR as a summarization, which leads
to overlapping regions that may result in contacting all peers
sequentially. In this case, the longest path is Np peers, but
this enables more effective filtering and thus less transferred
data. PaDSkyline creates routing paths based on domination
relationships and uses filtering to discard dominated local
skyline points. On the other hand, SKYPEER, SKYPEER+,
BITPEER, DDS, and SFP use filtering (or thresholding) to
discard dominated points, but the routing paths belong to the
given network topology. Furthermore, it has been shown [46]
that SKYPEER+ leads to fewer transferred data than SKY-
PEER because the threshold is refined based on the routing
information.

Summary. Table 4 summarizes our findings. When a fully
connected network topology can be supported, it is prefera-
ble as it is expected to work better in practice. The reason is
that the routing paths are based on the domination relation
between data, thereby pruning a significant number of local
data. The experiments provided in [35] show that AGiDS out-
performs PaDSkyline in all tested setups. On the other hand,
AGiDS requires global knowledge of a grid structure with
identical boundaries for all peers, which may not be feasible
in some applications. Furthermore, in [36] it has been shown
that SkyPlan outperforms PaDSkyline due to a more effi-
cient execution plan. In case multiple hops are required for
contacting each peer, the cost of these approaches increases
since at most Np hops are required for gathering the summa-
ries or querying the peers at each step leading to a cost of
O(Np)+O(Np) (for AGiDS) or O(Np)+O(2·Np) (for PaD-
Skyline, SkyPlan). Therefore, in this case, AGiDS, SkyPlan,
and PaDSkyline are not suitable.

Since Nsp < Np, approaches based on super-peers are
more efficient than pure P2P approaches, if the opportunity

123

376 K. Hose, A. Vlachou

of having dedicated servers exists. It has been shown
experimentally [46] that SKYPEER+ outperforms SKY-
PEER. Finally, if no dedicated servers exist and peer failures
are common, the construction of the routing information at
the super-peers will be too costly. In such a case, DDS or SFP
is more appropriate. DDS has a smaller cost and is expected
to lead to a better performance than SFP.

However, some of the approaches require a prepro-
cessing phase for constructing routing information. These
approaches are not applicable when data are highly dynamic
since the overhead of updating the routing information will
outweigh the performance gains. In this case, it is more effi-
cient to apply SFP, AGiDS, SkyPlan, or PaDSkyline, which
gather summary information only during query time.

7 Skyline variants in P2P systems

Several of the aforementioned distributed approaches were
proposed for efficient processing of skyline query variants,
such as subspace, constrained, or dynamic skyline queries.
Independently from the variant the approach was originally
proposed for, they all support skyline queries efficiently
because the skyline query in its original sense is a special
case of any skyline variant. Whether an approach addition-
ally supports a skyline variant (other than the one it was
proposed for) mainly depends on its routing mechanism and
filtering method.

In this section, we elaborate on the skyline variant each
approach was proposed for and discuss whether an approach
can easily be adapted to support other skyline variants effi-
ciently. Therefore, we identify the underlying factors that
may alter the correctness or the efficiency of an approach
when a skyline query variant is processed.

Before delving into details, let us point out two approaches,
SFP [20] and FDS [56], that support all skyline variants con-
sidered in this survey. SFP [20] forwards the query to all
peers. Hence, SFP can be adapted in a straightforward man-
ner to support any skyline query variant. The only necessary
adaptation is that the filter point has to be selected properly
based on the given query variant. This is straightforward for
any skyline query variant. FDS [56] also forwards the query
to all peers and supports all skyline query variants, but in
order to be efficient in terms of bandwidth consumption, the
data points should be sorted appropriately depending on the
given query variant. The monotone function that is used for
sorting should be applicable in the given subspace or dynamic
space.

7.1 Subspace skyline queries

Subspace skyline queries are supported by most of the dis-
tributed skyline approaches. SKYPEER [44,46] and BIT-

PEER [16] were originally proposed for supporting subspace
skyline queries efficiently. For the remaining approaches, the
question that arises is whether they can perform efficient
query routing to relevant peers when only a subset of the
dimensions is considered.

Approaches that use MBRs for query routing, such as
PaDSkyline [13], SkyPlan [36], and DDS [18,19], can eas-
ily be adapted to support subspace skyline queries since the
MBRs can be projected into the given subspace before being
processed. Then, peers can be pruned based on the pro-
jected MBRs, and the correctness of the approaches is still
guaranteed. AGiDS [35] can also be extended for processing
subspace skyline queries, even though AGiDS adopts a grid-
based data summary for query routing, instead of MBRs.
Subspace skyline queries can be supported by using the pro-
jection of the data partitions in the requested subspace before
query routing. If the grid-based data summary was created by
dividing each coordinate into si intervals, then the projected
cells form a grid-based data structure, which enables query
routing and peer pruning without influencing the correctness
of the algorithm.

DSL [51], Skyframe [48,49], and SSW [25] assume a sim-
ilar space partitioning and map each partition to a particu-
lar peer through the structured overlay. These approaches
cannot support subspace skyline queries efficiently, and the
reason is threefold. First, these approaches assume that the
local skyline points of the peer that indexes the origin of the
data space can immediately be returned to the user without
merging. This does not hold when subspace skyline que-
ries are processed since more than one data partition over-
lap in the projected space. Furthermore, the efficiency of
these approaches relies on the fact that adjacent data par-
titions are indexed by neighboring or nearby peers, which
in turn enables efficient query routing. In the case of sub-
space skyline queries, data partitions that are indexed by non-
neighboring peers may be projected into the same region
in the subspace. Finally, another property that is required
by these approaches is that the data partitions are non-over-
lapping, which allows these approaches to route the query
efficiently and to avoid contacting the same peer twice. If
the data partitions are projected into a subspace, it is pos-
sible that the projected data partitions are overlapping. It is
not straightforward how peers that store adjacent data parti-
tions in subspaces can be detected efficiently and how these
approaches would handle overlapping data partitions. None
of the proposed approaches has handled these issues effec-
tively. iSky [9] assigns data points to peers based on the
dimension each data point has the maximum value of its
coordinates. Although this improves the efficiency of sky-
line query computation, it makes iSky inapplicable for sub-
space skyline queries. The mapping of data points to peers
does not allow to process only a subset of dimensions as some
data points would be falsely discarded. The alternative would

123

A survey of skyline processing in highly distributed environments 377

Table 5 Different skyline query
variants supported by
distributed approaches
(×: proposed for, : also
supports)

Approach Skyline Subspace Constrained Dynamic

DSL [51] ×
SSP/Skyframe [48,49] ×
iSky [9,12] ×
SSW [25] ×
SFP [20] ×
DDS [18,19] × ×
SKYPEER/SKYPEER+ [44,46] ×
BITPEER [16] ×
PaDSkyline [8,13] ×
AGiDS [35] ×
FDS [56] ×
SkyPlan [36] ×

be to consider all dimensions and process a subspace skyline
query in a similar way as a skyline query. Although this alter-
native would lead to the correct result, it is inefficient since
the dimensionality of the data space may be much higher
than the subspace dimensionality and therefore processing
a subspace skyline query should also be more efficient than
exploiting the entire data space (Table 5).

7.2 Constrained skyline queries

DSL [51], DDS [18,19], and PaDSkyline [13] were origi-
nally proposed not only for skyline queries but also for con-
strained skyline queries. Therefore, these approaches support
constrained skyline queries efficiently. The main challenge
that distributed approaches must handle in order to efficiently
support constrained skyline queries is that the routing mech-
anism and filtering method must be applicable in case only a
region of the entire data space is considered.

Similar to DSL [51], Skyframe [48,49] and SSW [25] sup-
port constrained skyline queries as they all assume a similar
space partitioning that is mapped to peers through different
structured overlays. The constrained skyline query process-
ing starts from the peer that indexes the lower left corner of the
given constraint (instead of the peer that indexes the data ori-
gin), and peers that do not overlap with the query are pruned.
The main challenge that Skyframe and SSW must address is
to detect the starting peer efficiently, which is feasible with no
significant additional cost. AGiDS [35] can easily be adapted
for constrained skyline queries, even though it was proposed
and evaluated only for skyline queries. Constrained skyline
queries can be supported by taking into account only the
cells of the grid that overlap with the query. In this case, the
proposed approach has to be modified slightly since some
cells may partially overlap with constraints. Therefore, it is
not guaranteed that they contain at least one skyline point.
SkyPlan [36], similar to PaDSkyline, can efficiently support

constrained skyline queries by discarding MBRs that do not
overlap with the given constraints.

On the other hand, iSky [9] is inefficient for constrained
skyline queries. Even though query processing could start
from the peers that in each dimension store the highest value
that is smaller than the upper bound of the constraint, the
efficiency of iSky relies on the fact that the peers that index
the maximum values are known a priori. This is not fea-
sible when each query is associated with a different con-
straint, and it is not straightforward how to detect these peers
efficiently during query processing. SKYPEER [44,46] and
BITPEER [16] cannot be extended for constrained skyline
queries easily because the thresholding scheme used for fil-
tering relies on a one-dimensional mapping that is computed
based on the data space, making the adaptation of the thresh-
old for a given constraint non-trivial.

7.3 Dynamic skyline queries

Dynamic skyline queries comprise the most challenging var-
iant of skyline queries for distributed computation. The main
challenge is that the query is not executed in the original data
space but in a dynamic space that is query dependent, i.e.,
it differs for different queries. None of the distributed sky-
line approaches has originally been proposed for efficient
processing of dynamic skyline queries.

Approaches relying on an MBR-based routing mechanism,
such as DDS [18,19], SkyPlan [36], and PaDSkyline [13],
can support dynamic skyline queries under the condition
that the functions of the dynamic skyline query allow to
map every MBR to a transformed MBR that encloses all
data points in the transformed data space. Then, the domi-
nance relationship between MBRs in the dynamic space for
query routing and peer pruning leads to the correct result set.
DSL [51], Skyframe [48,49], and SSW [25] do not support
dynamic skyline queries because peers do not necessarily
index disjoint data partitions in the dynamic space, and neigh-

123

378 K. Hose, A. Vlachou

Fig. 14 Taxonomy of skyline query processing approaches

boring data partitions are not indexed by neighboring peers.
Dynamic skyline queries cannot be supported by AGiDS as
there is no guarantee that the cells of the grid remain non-
overlapping in the dynamic space. iSky [9] cannot support
dynamic skyline queries because the properties of the one-
dimensional mapping that are used for query processing do
not hold in the dynamic space. Similarly, SKYPEER [44,46]
and BITPEER [16] cannot easily be extended for dynamic
skyline queries because the thresholding scheme used for
filtering is not extensible for the dynamic space.

8 Taxonomy

In this section, we provide a categorization of the distrib-
uted skyline approaches in a taxonomy that summarizes and
highlights differences and similarities. The categorization is
based on the different techniques employed in the phases
discussed in Sect. 4 and on the main principles used by each
approach. Figure 14 shows the resulting taxonomy, which
categorizes the approaches discussed in this paper. Further-
more, in Table 6, we also state the objectives of each distrib-
uted skyline approach.

An important phase that influences the performance of a
distributed skyline approach is query routing. During query
routing, a peer tries to eliminate as many neighbors as pos-
sible and forwards the query only to the remaining neigh-
bors. Most approaches for distributed skyline processing
cause queries to travel along paths in the network. In gen-
eral, these paths are not determined in advance but influenced
by the local skyline points retrieved at each peer, which are
used to decide on the subset of neighboring peers that can
contribute to the skyline set. In case of structured P2P sys-
tems, a peer exploits the information about data distribution
in the underlying overlay to route queries efficiently to rel-
evant neighboring peers [9,12,25,48,49,51]. On the other
hand, in unstructured P2P networks due to the absence of
any information about the data distribution, a straightfor-
ward alternative is to forward the query to all available peers

(or super-peers) using flooding [16,44]. Then, each peer that
receives the query forwards it to all of its neighbors. A more
efficient alternative used in unstructured P2P networks is
to build routing indexes that store sufficient information to
decide on the relevance of neighbors [18,19,46]. Routing
indexes store summaries of the data that are available through
each neighboring peer. Based on these summaries, it is possi-
ble to detect irrelevant neighbors and prune them from further
consideration without querying them. Finally, in approaches
[8,13,35,56] assuming a fully connected network topology
that enables direct communication between peers, the query-
ing peer contacts all peers to gather some information about
their data. Then, based on this information, the querying peer
decides which peers have to be queried in a subsequent round
in order to compute the skyline set.

Result propagation is another important factor that influ-
ences the performance of the merging phase. There are two
ways of propagating local result sets through the P2P network
to the query initiator. Some approaches use direct communi-
cation [8,9,12,13,25,35,48,49,56], i.e., each peer sends its
local result set directly to the query initiator. The advantage
is that local skyline points have to be sent only once. How-
ever, the computational load at the initiator is relatively high
since all incoming points need to be checked for mutual dom-
inance to obtain the global skyline set. We notice that most of
the approaches [8,13,35,56] that assume a fully connected
network topology use direct result propagation because it is
feasible for every peer to contact the querying peer directly.
Furthermore, approaches [9,12,25,48,49] that rely on a
structured overlay also use direct result propagation. As an
alternative to direct result propagation, local result sets can
be propagated back using the same path that the query has
been forwarded along [16,18–20,36,44,46,51]. Each peer
receives the results from the neighbors it has sent the query
to, discards dominated local skyline points, and sends the
merged result sets to the peer it has received the query from.
In this case, the processing load of result merging is shared
among all peers. Every existing approach [16,18,19,44,46]
that assumes an unstructured (pure or hybrid) P2P network

123

A survey of skyline processing in highly distributed environments 379

Table 6 Overview of the features and objectives of the different distributed approaches

Filter points Routing Result propagation Optimization goal

DSL [51] All local skyline points Overlay Same path Response time

(network communication cost and load balancing)

SSP/Skyframe [48,49] Most dominating point Overlay Direct Network communication cost/response time

iSky [9,12] Most dominating point Overlay Direct Response time and network communication cost

and threshold

SSW [25] Nearest neighbor Overlay Direct Scalability

(network communication cost and contacted peers)

SFP [20] Most dominating point Exhaustive Direct Network communication cost

DDS [18,19] All local skyline points Routing index Same path scalability

(network communication cost and contacted peers)

SKYPEER [44] Threshold Flooding Same path Response time

(computational time and transferred data)

SKYPEER+ [46] Threshold Routing index Same path Response time

(computational time, transferred data and contacted
super-peers)

BITPEER [16] No filter points Flooding Same path Response time

PaDSkyline [8,13] Multiple filter points Exhaustive Direct Response time

(parallelism and network communication cost)

AGiDS [35] No filter points Exhaustive Direct Response time

FDS [56] Multiple filter points Exhaustive Direct Network communication cost

SkyPlan [36] Multiple filter points Exhaustive Same path Response time
(parallelism and network communication cost)

uses the same path for result propagation that was used for
forwarding the query to the relevant peers.

Almost all approaches use the principle of filtering for
efficient query processing. The filter points are attached
to the query that is forwarded to neighboring peers, so
that dominated local data points can be discarded imme-
diately. Furthermore, filter points are also used to elimi-
nate those neighboring peers that store only dominated data
points. Usually, some information about the already com-
puted local skyline set is forwarded along with the query.
This information may consist of one, multiple, or all local
skyline points. In the most common case, only a single
point is used as a filter point [9,12,20,25,48,49]. This is
because the filter points that are attached to the query also
increase the amount of transferred data, especially if the filter
points fail to prune any local skyline points or neighboring
peers. Also, we notice that the approaches [9,12,20,48,49]
that use a single filter point pick the most dominating
point [20] as filter point. On the other hand, some approaches
select multiple filter points [8,13,36,56] or even use the
entire local skyline set for filtering [18,19,51]. Furthermore,
other approaches [9,12,44,46] facilitate filtering by means
of a one-dimensional threshold value. Even though filter
points usually improve the performance of distributed sky-
line computation, in some cases [16,35], no filter points are
used.

Table 6 states the objectives of each distributed skyline
approach. Most of the existing approaches [8,9,12,13,16,
35,36,44,46,48,49,51] aim to minimize the overall response
time. In order to achieve low response time, most approaches
aim to minimize different factors that influence the response
time, which are also stated in the last column of Table 6. On
the other hand, some approaches focus only on the network
communication cost [20,56] or on the scalability [18,19,25]
of the proposed method.

9 Other distributed environments

In the following, we review in detail approaches tailored for
distributed environments other than highly distributed sys-
tems (such as P2P systems). The fundamental differences of
these approaches are due to (some of) the following reasons:
(1) each server does not necessarily store a fraction of the
available data, (2) the goals of skyline processing are differ-
ent, and (3) several round trips are required to retrieve the
result set.

9.1 Web information systems

Skyline processing over distributed web information systems
was studied in [2,28]. In such systems, each source stores the

123

380 K. Hose, A. Vlachou

object identifier and a different attribute from the remaining
attributes of the data objects. With respect to our hotel exam-
ple, the price can be provided by a travel agency website,
whereas the distance to the beach by an online server provid-
ing geographical information. Approaches for web informa-
tion systems have different objectives than those discussed
before since the attributes of each data object are provided
by different sources, while in a highly distributed system,
we assume that the data objects are distributed in a way that
guarantees that all attribute values of a data object are stored
at the same server. This leads to a fundamentally different
setup since the number of sources in web information sys-
tems, which are equal to the number of attributes of the sky-
line query, is very small in comparison with the total number
of servers in a highly distributed system. Moreover, skyline
processing in web information systems aims to minimize the
response time, without the restriction of having a fixed num-
ber of round trips.

During skyline query processing, all sources need to be
contacted. In more detail, each time a source is accessed,
one object is transferred to the querying server. There are
two basic kinds of accesses that are provided: retrieving the
next object with the best value from one source with respect
to a single attribute called a sorted access or retrieving the
score value with respect to one source for a certain given
object called a random access.

Three algorithms have been proposed for web informa-
tion systems, namely the basic distributed skyline (BDS)
algorithm [2], the improved distributed skyline (IDS) algo-
rithm [2], and the progressive distributed skyline (PDS) algo-
rithm [28]. All algorithms consist of two phases. In the first
phase, a subset of objects is retrieved which includes at least
all skyline objects. More specifically, data are retrieved by
sorted access from the different sources until all attribute
values of at least one data object (referred to as the terminat-
ing object) have been retrieved from all sources. The second
phase discards all the non-skyline objects in the subset by
pruning dominated points. Missing attribute values that are
required for the domination tests are retrieved through ran-
dom access during the second phase. The main observation
[2] that is used to reduce the number of domination tests is
that an object o can be dominated only by other objects that
have been retrieved from the same sources as o.

An important differentiating feature of the three algo-
rithms is the order in which the sources are accessed during
the first phase. This order influences the number of sorted
accesses and therefore the efficiency of the algorithm. Apply-
ing BDS, each data source is accessed in a round-robin fash-
ion, while IDS uses a heuristic to detect the most promising
source, i.e., the source that leads to a terminating object with
fewer accesses. A score is assigned to each retrieved object
to estimate the remaining number of sorted accesses required
to retrieve all missing attributes. The score is calculated as

the difference between the attribute values and the last val-
ues retrieved through sorted access from each source. The
object with the best score is considered to be the most proba-
ble terminating object. In contrast to BDS that performs only
sorted access in the first phase, IDS requires that the miss-
ing attribute values of the most probable terminating object
are retrieved through random access in order to compute the
score. In each iteration, IDS accesses a source from which the
most probable terminating object has not yet been retrieved.
PDS improves IDS by using a linear regression method to
estimate the ranks of the object and determine a better order
to access the sources. Furthermore, PDS is progressive and
returns each skyline point to the user as soon as it is guaran-
teed that no other point can dominate it.

9.2 Parallel shared-nothing architecture

In a parallel shared-nothing architecture, there exists one cen-
tral server, called coordinator, which is responsible for a set
of servers. As the skyline computation is CPU-intensive, the
coordinator distributes the processing task to all available
servers. This is achieved by first partitioning the input data
and then assigning each partition to one server. Then, each
server computes the skyline over its local data and returns its
local skyline result set to the coordinator, which merges the
result sets and computes the global skyline result.

In this setting, the goal was to minimize response time by
sharing the workload as evenly as possible among all partic-
ipating servers. To achieve this objective, three fundamental
issues need to be considered. First, each server should be allo-
cated approximately the same number of data points. Second,
the skyline algorithm should have similar performance on the
data points in every partition. Finally, the local skyline points
returned to the coordinator for the merging phase should be
minimized in order to avoid overburdening the coordinator
and wasting resources at the final step. Obviously, given a set
of servers, the overall skyline query performance depends on
the efficiency of the local skyline computation and the per-
formance of the merging phase. Thus, the efficiency of the
parallel skyline computation for a shared-nothing architec-
ture mainly depends on the space partitioning method used
for distributing the dataset among the servers.

Typical partitioning schemes include grid partitioning and
random partitioning to servers. In [45], the advantages of
an angle-based partitioning scheme are demonstrated for
efficiently parallelizing skyline computation. The proposed
technique first maps the Cartesian coordinate space into a
hyperspherical space and then partitions the data space based
on the angular coordinates into N partitions, as many as the
available servers. This partitioning scheme alleviates most
of the problems of traditional grid partitioning and hence
manages to reduce the response time and to share the com-
putational workload more fairly.

123

A survey of skyline processing in highly distributed environments 381

9.3 Distributed data streams

Skyline queries have also been defined over data streams
under the assumption of sliding windows, where each data
object is associated with a timestamp indicating its time of
arrival. Furthermore, the width of the sliding window defines
the lifespan of any object. Given a timestamp, the skyline set
contains the data objects that are valid at this timestamp and
not dominated by any other valid data object at that time-
stamp. Centralized algorithms [26,40] for skyline queries
over streams focus on efficiently detecting data objects that
become skyline points after a skyline point expires.

Relying on a distributed data stream model, Sun et al. [38]
propose an algorithm (BOCS) for skyline queries over data
streams. In such a system, there exists a set of servers, each
of them producing some of the data objects of the stream. In
addition, there exists a central server that communicates with
the remote servers and is responsible for evaluating the que-
ries. This setup is similar to highly distributed systems and
more particularly to the fully connected network topology.
The main difference is that in the case of streams, the chal-
lenge is to efficiently monitor the skyline over time, rather
than computing the skyline at a given timestamp. In BOCS,
each server monitors the local skyline set by using a central-
ized algorithm. Then, at each timestamp, only data objects
that are added to the skyline set are sent to the central server.
Based on the additivity of the skyline operator, points that are
not contained in the local skyline set are not sent to the central
server, thus reducing the communication overhead. Finally,
the central server applies a centralized skyline algorithm over
the received streamed data and efficiently computes the sky-
line set at each timestamp.

9.4 Wireless sensor networks

Supporting skyline query processing in wireless sensor net-
works (WSNs) has been studied in [7,52]. A wireless sensor
network consists of n stationary sensors randomly deployed
in a region of interest, and each sensor measures d attribute
values. In addition, there exists a base station that communi-
cates with all sensors through a single hop or multiple hops.
Each sensor can communicate with the sensors located within
its transmission range. A routing tree rooted at the base sta-
tion that spans all sensors is employed for query processing
in sensor networks. Initially, the query is pushed down to
each sensor along the paths of the tree. Then, the results are
collected from children to parent sensors and eventually to
the base station through multiple hops.

In such an environment, the baseline skyline algorithm is
in principle similar to those applied in the context of highly
distributed data. Each sensor computes the skyline set of its
local points and the points received from its children. Then,
this skyline set is transmitted to its parent sensor. Finally,

the base station calculates the skyline of the received points
resulting in the skyline set of all data available in the WSN.
Nevertheless, there are two main differences compared to
highly distributed systems. First, the sensors only have lim-
ited storage and processing capabilities in comparison with
powerful computers, such as those encountered in P2P sys-
tems. Second, the optimization goal is different since the
main goal in WSN was to minimize the energy consumption
of the battery-powered sensors. In turn, this means mini-
mizing wireless communication, which is the dominant fac-
tor of energy consumption in WSN. Besides minimizing the
total energy consumption, the maximum energy consump-
tion among the sensors should also be minimized since the
sensors near the base station are expected to exhaust their
batteries first. Consequently, the remaining sensors would
become disconnected from the base station as they would
neither be able to receive queries nor send data to the base
station.

In [52], Xin et al. propose an energy-efficient algo-
rithm, called Sliding Window Skyline Monitoring Algo-
rithm (SWSMA), that employs two types of filters within
each sensor to restrict the amount of data transferred to
reduce energy consumption. The tuple filter approach uses
a single tuple as a filter, which is selected to be the tuple
that dominates the most other tuples. This tuple is detected
based on the probability density function that is approxi-
mated by a polynomial function. The alternative approach
is the grid filter approach, where a grid is used to parti-
tion the data space. Given a skyline point, the dominated
cells are set to zero, meaning that the tuples in those cells
do not belong to the skyline. Then, the grid is transmit-
ted to the sensors and used as a filter to discard dominated
points.

In order to improve SWSMA, Chen et al. [7] propose an
algorithm that proceeds in k iterations. In each iteration, the
skyline set of a partition of the data space is computed. The
distance of the data points from the origin of the data space
is used to define the partitions. In each iteration, only the
local skyline points whose distance belongs to a given range
are transmitted to the parent sensor. More precisely, the local
skyline points are merged by discarding dominated points
with the skyline points of the children sensors and the filter
points received from the parent sensor. After each iteration,
the base station merges all local skyline points and computes
a set of filter points that are transmitted to all the sensors. At
most d filter points are selected based on a modified domi-
nance area that takes into account which regions of the data
space have already been examined.

9.5 Uncertain data

Query processing over uncertain data has received consider-
able attention from the database community recently. Skyline

123

382 K. Hose, A. Vlachou

queries over uncertain data have been studied in central-
ized [30] but also in distributed [15] domains. The distributed
system employed in [15] is similar to the fully connected net-
work topology. Nevertheless, the probabilistic skyline query
differs substantially from the skyline query and different
challenges arise for efficient processing of distributed prob-
abilistic skyline queries.

The probability that a data object belongs to the prob-
abilistic skyline set is equal to the probability that this
data object exists, while at the same time, all data objects
that dominate it do not exist. Essentially, all data points
belong to the probabilistic skyline set with some probabil-
ity. Therefore, a probabilistic skyline query is associated
with a given threshold, and all data objects with a prob-
ability at least equal to the threshold belong to the result
set.

The main principles for processing a distributed skyline
query over uncertain data are similar to those discussed in
Sect. 4. Each server computes its local probabilistic skyline
set and sends it to the coordinator. These sets are merged by
the coordinator, and for each local skyline point, the prob-
ability is refined based on all collected data points. Local
skyline points with probabilities (of belonging to the sky-
line set) smaller than the threshold are discarded. This is
different than traditional skyline queries, where dominated
points are discarded. Moreover, after merging, the probabi-
listic skyline set is not guaranteed to be the correct result
set since the property of additivity does not hold for the
probabilistic skyline query. Therefore, an additional chal-
lenge is to compute the exact probabilities of the candi-
date skyline points based on all data points stored at any
server. To this end, an additional round trip is required,
where the candidate skyline points are sent to all servers
in order to compute their exact probabilities. The correct-
ness of this approach relies on two facts: (1) the local prob-
ability of a point is an upper bound of its actual probabil-
ity and (2) the probabilities can be computed accumula-
tively.

In [15], the DSUD algorithm aims to reduce the num-
ber of transmitted data objects by using multiple com-
munication round trips. Initially, only the most promising
point (in terms of local probability) is transferred from
each server to the coordinator. After merging the candi-
date skyline points, the coordinator sends back as a feed-
back only the most promising candidate skyline point.
The servers not only compute the accurate probability of
the candidate skyline point but also refine the probabili-
ties of the local data points based on the feedback. This
is similar to filtering used in distributed skyline computa-
tion. But instead of filtering out points that are dominated,
the aim here is to compute more accurate bounds for the
probabilities, leading to pruning a higher number of data
objects.

10 Open research directions

Even though several approaches have been proposed for effi-
cient skyline computation in distributed environments, there
are still interesting and challenging issues about distributed
skyline computations that have not been studied so far in
the related literature. First, as we concluded in Sect. 7, none
of the existing approaches has studied dynamic skyline que-
ries. Processing dynamic skyline queries is more challenging
than traditional skyline computation as the skyline compu-
tation is based on a set of user-specified functions. Consider
the travel agency application scenario, then it is reasonable
that each hotel is associated with its geographical coordi-
nates, while the user tries to minimize the distance to a loca-
tion of interest, such as the conference venue. In this case, a
dynamic skyline query has to be processed based on the con-
ference location. Most of the existing distributed approaches
cannot support such queries efficiently. Furthermore, when
reviewing the related work, we noticed that only [56] tackles
the interesting topic of continuous skyline maintenance. In a
highly distributed setting, it is reasonable to try to keep the
already computed skyline set up-to-date in the presence of
data insertion or deletions, rather than processing the entire
skyline query from scratch.

A current trend in data management research is manage-
ment of data with uncertainty. Probabilistic skyline queries
over uncertain data have been studied mainly in centralized
settings [30] so far. In distributed environments, the uncer-
tainty of the data occurs more naturally as it is caused by
several different reasons related to the distributed setting.
First, the data itself can be uncertain, similar to the case of
the centralized setting. For example, in sensor networks, the
uncertainty can be the result of noisy readings from sensors.
Second, in a P2P network, peers themselves may not always
be trusted by other peers, and some of them might act as
cheaters deliberately. Each participating peer may be associ-
ated with a value of trustworthiness that indicates the valid-
ity of its data, thus rendering its query results uncertain. This
value of trustworthiness may be dynamic and vary depending
on the querying peer and its opinion about neighboring peers.
In this case, the data points are associated with uncertainty
based on which peer stores them or through which peer they
are accessible and probabilistic skyline query processing is
required. In our opinion, the uncertainty in data is inherent in
distributed applications due to the lack of central control that
verifies the quality of the data. Thus, distributed query pro-
cessing on uncertain data is very important and challenging
for deploying real-world widely distributed applications.

Finally, it has been shown that the cardinality of the
skyline set can be high [55], especially in the case of high-
dimensional or anti-correlated datasets. In a distributed envi-
ronment, the high cardinality of the skyline set does not only
incur high processing cost but also leads to high bandwidth

123

A survey of skyline processing in highly distributed environments 383

consumption due to the non-negligible amount of transferred
data since in the best case scenario, at least the skyline points
have to be transferred to the querying peer. Moreover, the total
number of local skyline points is substantially higher than
the number of global skyline points. In addition, in several
distributed environments, such as mobile networks or cloud
computing, the users may be charged based on the amount of
transferred data. Therefore, cardinality estimation of the sky-
line set is very important in distributed environments. Even
though several approaches have been proposed for estimating
the cardinality of the skyline set in centralized settings, the
applicability of these methods for distributed environments
has not yet been studied. If the cardinality of the skyline set
is estimated to be high, then it is more cost-efficient to com-
pute an approximation of the skyline set by selecting only a
subset of the local skyline sets and propagating them to the
querying peer [47]. Thus, it becomes very important to study
different selection techniques for local skyline points in order
to retrieve an approximation of the skyline set with quality
guarantees. Moreover, to address the problem of the high
cardinality of the skyline set, recent trends in centralized set-
tings include finding representative skyline points [27,41] or
ranking the skyline points [6]. Finding representative skyline
points in a distributed manner that fulfill properties similar
to those proposed in [27,41] is still an open and challenging
problem.

11 Conclusion

Less than a decade ago, the database research community
began to pay rising attention to the problem of processing
skyline queries. The popularity of the skyline operator is
mainly due to its ability to identify a set of interesting objects
in a large database. During the last decades, the vast number
of independent data sources and the high rate of data genera-
tion have made a centralized assembly of data at one location
infeasible. As a consequence, data are increasingly stored in
a distributed way, therefore distributed query processing has
become an important and challenging problem.

This paper provides a survey of existing approaches for
skyline computation in highly distributed environments. We
outlined the objectives and the main principles of distrib-
uted skyline processing. Most of the existing approaches have
been proposed for P2P systems. Therefore, we categorized
the existing approaches based on the underlying P2P sys-
tem and clarified the assumptions of each approach. Further-
more, a comparative performance analysis was provided. We
also elaborated on the skyline variants each approach was
proposed for and classified the existing approaches based on
the skyline variants they can support. We also proposed a
taxonomy based on the main principles employed by each
approach. Finally, we presented open issues related to dis-
tributed skyline computation that have not yet been explored.

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer
content distribution technologies. ACM Comput. Surv. 36(4), 335–
371 (2004)

2. Balke, W., Güntzer, U., Zheng, J.X.: Efficient distributed skylining
for web information systems. In: Proceedings of International Con-
ference on Extending Database Technology (EDBT), pp. 256–273
(2004)

3. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator.
In: Proceedings of International Conference on Data Engineering
(ICDE), pp. 421–432 (2001)

4. Chan, C., Eng, P., Tan, K.: Stratified computation of skylines
with partially-ordered domains. In: Proceedings of International
Conference on Management of Data (SIGMOD), pp. 203–214
(2005)

5. Chan, C., Jagadish, H., Tan, K., Tung, A., Zhang, Z.: Finding
k-dominant skylines in high dimensional space. In: Proceedings
of International Conference on Management of Data (SIGMOD),
pp. 503–514 (2006a)

6. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: On
high dimensional skylines. In: Proceedings of International Con-
ference on Extending Database Technology (EDBT), pp. 478–495
(2006b)

7. Chen, B., Liang, W.: Progressive skyline query processing in
wireless sensor networks. In: International Conference on Mobile
Ad-hoc and Sensor Networks(MSN), pp. 17–24 (2009)

8. Chen, L., Cui, B., Lu, H.: Constrained skyline query process-
ing against distributed data sites. IEEE Trans. Knowl. Data Eng.
(TKDE) 23(2), 204–217 (2011)

9. Chen, L., Cui, B., Lu, H., Xu, L., Xu, Q.: iSky: efficient and pro-
gressive skyline computing in a structured P2P network. In: Pro-
ceedings of the International Conference on Distributed Computing
Systems (ICDCS), pp. 160–167 (2008)

10. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with pre-
sorting. In: Proceedings of International Conference on Data Engi-
neering (ICDE), pp. 717–816 (2003)

11. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer
systems. In: Proceedings of the International Conference on
Distributed Computing Systems (ICDCS), pp. 23–30 (2002)

12. Cui, B., Chen, L., Xu, L., Lu, H., Song, G., Xu, Q.: Efficient sky-
line computation in structured peer-to-peer systems. IEEE Trans.
Knowl. Data Eng. (TKDE) 21(7), 1059–1072 (2009)

13. Cui, B., Lu, H., Xu, Q., Chen, L., Dai, Y., Zhou, Y.: Parallel dis-
tributed processing of constrained skyline queries by filtering. In:
Proceedings of International Conference on Data Engineering
(ICDE), pp. 546–555 (2008)

14. Dellis, E., Seeger, B.: Efficient computation of reverse skyline que-
ries. In: Proceedings of International Conference on Very Large
Data Bases (VLDB), pp. 291–302 (2007)

15. Ding, X., Jin, H.: Efficient and progressive algorithms for distrib-
uted skyline queries over uncertain data. IEEE Trans. Knowl. Data
Eng. (TKDE) 99 (PrePrints) (2011). (To appear)

16. Fotiadou, K., Pitoura, E.: BITPEER: continuous subspace sky-
line computation with distributed bitmap indexes. In: Proceedings
of International Workshop on Data Management in Peer-to-Peer
Systems (DaMaP), pp. 35–42 (2008)

17. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in
large data sets. In: Proceedings of International Conference on Very
Large Data Bases (VLDB), pp. 229–240 (2005)

18. Hose, K., Lemke, C., Sattler, K.: Processing relaxed skylines in
PDMS using distributed data summaries. In: Proceedings of Inter-
national Conference on Information and Knowledge Management
(CIKM), pp. 425–434 (2006)

19. Hose, K., Lemke, C., Sattler, K., Zinn, D.: A relaxed but not nec-
essarily constrained way from the top to the sky. In: Proceedings

123

384 K. Hose, A. Vlachou

of International Conference on Cooperative Information Systems
(CoopIS), pp. 339–407 (2007)

20. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against
mobile lightweight devices in manets. In: Proceedings of Interna-
tional Conference on Data Engineering (ICDE), p. 66 (2006)

21. Jagadish, H., Ooi, B., Vu, Q.: BATON: a balanced tree structure for
peer-to-peer networks. In: Proceedings of International Conference
on Very Large Data Bases (VLDB), pp. 661–672 (2005)

22. Khalefa, M., Mokbel, M., Levandoski, J.: Skyline query processing
for incomplete data. In: Proceedings of International Conference
on Data Engineering (ICDE), pp. 556–565 (2008)

23. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky:
an online algorithm for skyline queries. In: Proceedings of Interna-
tional Conference on Very Large Data Bases (VLDB), pp. 275–286
(2002)

24. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of
a set of vectors. J. ACM 22(4), 469–476 (1975)

25. Li, H., Tan, Q., Lee, W.: Efficient progressive processing of sky-
line queries in peer-to-peer systems. In: Proceedings of the Inter-
national Conference on Scalable Information Systems (Infoscale),
p. 26 (2006)

26. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: efficient sky-
line computation over sliding windows. In: Proceedings of Inter-
national Conference on Data Engineering (ICDE), pp. 502–513
(2005)

27. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most
representative skyline operator. In: Proceedings of International
Conference on Data Engineering (ICDE), pp. 86–95 (2007)

28. Lo, E., Yip, K.Y., Lin, K.I., Cheung, D.W.: Progressive
skylining over web-accessible databases. Data Knowl. Eng.
(DKE) 57(2), 122–147 (2006)

29. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and pro-
gressive algorithm for skyline queries. In: Proceedings of Interna-
tional Conference on Management of Data (SIGMOD), pp. 467–
478 (2003)

30. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncer-
tain data. In: Proceedings of International Conference on Very
Large Data Bases (VLDB), pp. 15–26 (2007)

31. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline:
a semantic approach based on decisive subspaces. In: Proceedings
of International Conference on Very Large Data Bases (VLDB),
pp. 253–264 (2005)

32. Preparata, F.P., Shamos, M.I.: Computational Geometry—An
Introduction. Springer, Berlin (1985)

33. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.:
A scalable content-addressable network. In: Proceedings of Con-
ference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications (SIGCOMM), pp. 161–172
(2001)

34. Risson, J., Moors, T.: Survey of research towards robust peer-
to-peer networks: search methods. Comput. Netw. 50(17), 3485–
3521 (2006)

35. Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Nørvåg, K.:
AGiDS: a grid-based strategy for distributed skyline query pro-
cessing. In: Proceedings of International Conference on Data Man-
agement in Grid and Peer-to-Peer Systems (Globe), pp. 12–23
(2009)

36. Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Nørvåg, K.: Effi-
cient execution plans for distributed skyline query processing. In:
Proceedings of International Conference on Extending Database
Technology (EDBT), pp. 271–282 (2011)

37. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan,
H.: Chord: a scalable peer-to-peer lookup service for internet appli-
cations. In: Proceedings of Conference on Applications, technol-
ogies, architectures, and protocols for computer communications
(SIGCOMM), pp. 149–160 (2001)

38. Sun, S., Huang, Z., Zhong, H., Dai, D., Liu, H., Li, J.: Efficient mon-
itoring of skyline queries over distributed data streams. Knowl. Inf.
Syst. 25, 575–606 (2010)

39. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline com-
putation. In: Proceedings of International Conference on Very
Large Data Bases (VLDB), pp. 301–310 (2001)

40. Tao, Y., Papadias, D.: Maintaining sliding window skylines on
data streams. IEEE Trans. Knowl. Data Eng. (TKDE) 18(3), 377–
391 (2006)

41. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative
skyline. In: Proceedings of International Conference on Data Engi-
neering (ICDE), pp. 892–903 (2009)

42. Tao, Y., Xiao, X., Pei, J.: Subsky: efficient computation of skylines
in subspaces. In: Proceedings of International Conference on Data
Engineering (ICDE), p. 65 (2006)

43. Valkanas, G., Papadopoulos, A.: Efficient and adaptive distributed
skyline computation. In: International Conference on Scientific and
Statistical Database Management (SSDBM), pp. 24–41 (2010)

44. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: SKY-
PEER: efficient subspace skyline computation over distributed
data. In: Proceedings of International Conference on Data Engi-
neering (ICDE), pp. 416–425 (2007)

45. Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space parti-
tioning for efficient parallel skyline computation. In: Proceedings
of International Conference on Management of Data (SIGMOD),
pp. 227–238 (2008)

46. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: Effi-
cient routing of subspace skyline queries over highly distrib-
uted data. IEEE Trans. Knowl. Data Eng. (TKDE) 22(12), 1694–
1708 (2010)

47. Vlachou, A., Nørvåg, K.: Bandwidth-constrained distributed sky-
line computation. In: Proceedings of the International Workshop
on Data Engineering for Wireless and Mobile Access (MobiDE),
pp. 17–24 (2009)

48. Wang, S., Ooi, B., Tung, A., Xu, L.: Efficient skyline query pro-
cessing on peer-to-peer networks. In: Proceedings of International
Conference on Data Engineering (ICDE), pp. 1126–1135 (2007)

49. Wang, S., Vu, Q.H., Ooi, B.C., Tung, A.K., Xu, L.: Skyframe:
a framework for skyline query processing in peer-to-peer sys-
tems. VLDB J. 18(1), 345–362 (2009)

50. Wang, J., Wu, S., Gao, H., Li, J., Ooi, B.C.: Indexing multi-dimen-
sional data in a cloud system. In: Proceedings of International
Conference on Management of Data (SIGMOD), pp. 591–602
(2010)

51. Wu, P., Zhang, C., Feng, Y., Zhao, B., Agrawal, D., Abbadi, A.:
Parallelizing skyline queries for scalable distribution. In: Proceed-
ings of International Conference on Extending Database Technol-
ogy (EDBT), pp. 112–130 (2006)

52. Xin, J., Wang, G., Chen, L., Zhang, X., Wang, Z.: Continu-
ously maintaining sliding window skylines in a sensor network.
In: Advances in Databases: Concepts, Systems and Applications
(DASFAA), pp. 509–521 (2007)

53. Yang, B., Garcia-Molina, H.: Designing a super-peer network.
In: Proceedings of International Conference on Data Engineering
(ICDE), pp. 49–60 (2003)

54. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient
computation of the skyline cube. In: Proceedings of International
Conference on Very Large Data Bases (VLDB), pp. 241–252
(2005)

55. Zhang, Z., Yang, Y., Cai, R., Papadias, D., Tung, A.: Kernel-
based skyline cardinality estimation. In: Proceedings of Interna-
tional Conference on Management of Data (SIGMOD), pp. 509–
522 (2009)

56. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with
low bandwidth consumption. IEEE Trans. Knowl. Data Eng.
(TKDE) 21(3), 384–400 (2009)

123

	A survey of skyline processing in highly distributed environments
	Abstract
	1 Introduction
	2 Skyline query processing
	2.1 Skyline queries and their variants
	2.2 Evolution of skyline queries over time

	3 Peer-to-peer systems
	3.1 Classification of P2P networks
	3.1.1 Structure of P2P systems
	3.1.2 Degree of centralization

	4 Objectives and principles of distributed skyline processing
	4.1 Objectives
	4.2 Main principles
	4.3 Phases of distributed skyline processing

	5 Approaches for skyline processing in P2P environments
	5.1 Structured P2P
	5.1.1 DSL
	5.1.2 SSP and skyframe
	5.1.3 iSky
	5.1.4 SSW

	5.2 Unstructured P2P
	5.2.1 Single filtering point (SFP)
	5.2.2 DDS
	5.2.3 SKYPEER and SKYPEER+
	5.2.4 BITPEER
	5.2.5 PaDSkyline
	5.2.6 AGiDS
	5.2.7 FDS
	5.2.8 SkyPlan

	6 Performance analysis
	6.1 Structured P2P systems
	6.2 Unstructured P2P systems

	7 Skyline variants in P2P systems
	7.1 Subspace skyline queries
	7.2 Constrained skyline queries
	7.3 Dynamic skyline queries

	8 Taxonomy
	9 Other distributed environments
	9.1 Web information systems
	9.2 Parallel shared-nothing architecture
	9.3 Distributed data streams
	9.4 Wireless sensor networks
	9.5 Uncertain data

	10 Open research directions
	11 Conclusion
	References

