
Installing	MySQL
This	tutorial	is	going	to	guide	you	throughout	the	setup	of	your

workspace.	First,	we’re	going	to	see	how	to	install	the	MySQL	RDBMS

in	your	preferred	OS.	This	is	going	to	be	the	only	part	that	is	OS

dependent.

Mac	OS
For	this	tutorial	we’re	going	to	use	the	brew	package	manager.	The

reason	behind	this	is	that	we	want	to	deal	with	a	system	that	can	be

easily	updated	(we	do	not	want	to	have	different	versions	of	the	same

db).	So,	you	must	first	be	sure	that	brew	is	actually	installed	in	your

Mac.	Please	visit	the	website	brew.sh	and	follow	the	instructions.

Now	we’re	ready	to	kill	all	the	processes	and	to	completely	remove

MySQL	(some	traces	could	be	left	behind!).

#!/bin/bash

brew	services	stop	mysql

sudo	killall	mysql

sudo	killall	mysql

brew	remove	mysql

brew	cleanup

sudo	rm	/usr/local/mysql

sudo	rm	-rf	/usr/local/var/mysql

sudo	rm	-rf	/usr/local/mysql*

file:///brew.sh

sudo	rm	~/Library/LaunchAgents/homebrew.mxcl.mysql.plist

sudo	rm	-rf	/Library/StartupItems/MySQLCOM

sudo	rm	-rf	/Library/PreferencePanes/My*

launchctl	unload	-w	~/Library/LaunchAgents/homebrew.mxcl.

mysql.plist

sudo	rm	-rf	~/Library/PreferencePanes/My*

sudo	rm	-rf	/Library/Receipts/mysql*

sudo	rm	-rf	/Library/Receipts/MySQL*

sudo	rm	-rf	/private/var/db/receipts/*mysql*

Now	you	can	install	MySQL	by	just	running	the	following	command:

brew	install	mysql

First,	we	must	start	 mysql 	as	a	service.	This	is	done	by	the	following

brew 	command:

		brew	services	start	mysql

The	default	user	is	called	 root .	In	order	to	change	its	password	and

remove	unsafe	settings,	call	the	following	command:

mysql_secure_installation

If	the	root	user	already	has	a	password,	then	change	the

aforementioned	command	to	 mysql_secure_installation	-p 	and

then	type	the	password.	Now,	depending	on	your	OS	setup,	there	could

be	some	problems:

If	there	are	any	pw	problems,	then	probably	the	install	setted

automatically	setted	the	password	that	is	given	in

/Users/<yourusername>/.mysql_secret .	Use	that	password

If	mysql	cannot	read	the	tmp	lock	file,	this	probably	means	that

you	did	not	start	the	server.	Check	if	the	start-service	command

went	smoothly.

Now	MySQL	could	be	accessed	by	typing	the	following	command:

mysql	-u	root	-p

If	you	ignored	the	 mysql_secure_installation 	setup,	then	just	type

mysql	-u	root .	Please	remember	that	new	users	and	passwords

could	be	set	using	some	default	commands.

GNU/Linux
For	GNU/Linux	systems	you	have	to	install	both	the	mysql	server	(the

actual	database)	and	the	client	(the	client	where	to	send	the	SQL

queries	via	terminal).

sudo	apt-get	install	mysql-server	mysql-client

By	doing	so,	the	system	will	automatically	ask	you	the	password	of

choice.

Set	up	a	default	database
In	this	tutorial	we’re	going	to	use	the	mysql	test	database	provided	at

https://github.com/datacharmer/test_db.	Please	not	that,	since	now	you

setted	a	password,	the	default	command	is	changed	to:

mysql	-u	root	-p	<	employees_partitioned.sql

Now	we	have	to	check	if	the	procedure	went	smoothly.	In	order	to	do

so,	enter	the	MySql	client:

https://github.com/datacharmer/test_db

mysql	-u	root	-p	

then	we	can	see	all	the	databases	currently	listed:

>	show	DATABASES;

our	database	is	called	 employees .	So	now	you	have	to	type:

>	use	employees;

now	you	can	list	all	the	tables	inside	this	database	by	typing:

>	show	tables;

We	can	see	each	table	schema	with	the	command	 describe .

Accessing	RBDMSs	through	OO
Languages
JDBC
Each	DB	framework	uses	JDBC	as	a	common	interface	for	accessing	to

the	relational	database.	This	means	that	you	must	add	the	MySQL

driver	for	the	database	within	your	 pom.xml 	file,	alongside	with	the

jdbc 	driver.

{%	highlight	xml	%}

<dependency>

				<groupId>org.clojure</groupId>

				<artifactId>java.jdbc</artifactId>

				<version>0.6.1</version>

</dependency>

<dependency>

					<groupId>mysql</groupId>

					<artifactId>mysql-connector-java</artifactId>

					<version>6.0.5</version>

	</dependency>

	{%	endhighlight	%}

By	loading	the	MySQL	driver,	Maven	automatically	import	the	jar	in

your	project	and	hence	there	is	no	need	to	load	the	driver	by	class

name,	 com.mysql.jdbc.Driver .	This	means	that	we	can	directly

access	to	the	database	with	the	following	Syntax:

	{%	highlight	java	%}

	String	dburl	=	"jdbc:mysql://localhost/<dbname>";

	String	user	=	"username";

	String	pwd	=	"password";

	/*	The	transaction	starts	here.	t	is	an	AutoCloseable	ob

ject,	

	and	hence	the	close	semantics	automatically	closes	the	c

onnection	

	and	commits	*/

	try	(Connection	t	=	DriverManager.getConnection(dburl,us

er,pwd))	{

				/*	Put	some	code	in	here	*/

	}	catch	(SQLException	e)	{

				/*	The	transaction	aborts.	Do	something	in	your	code	

*/

	}

	{%	endhighlight	%}

Within	the	next	subsections	we’re	going	to	see	how	to	perform

SELECT 	and	 INSERT 	SQL	queries.

SELECT
A	SQL	statement	has	to	be	compiled	from	a	string.	The	result	set	is

scanned	through	a	pointer	which	hasn’t	the	standard	Iterator	java

Syntax.

	{%	highlight	java	%}

	try	(Connection	t	=	DriverManager.getConnection(dburl,us

er,pwd))	{

				Statement	stmt	=	t.createStatement();

				ResultSet	rs	=	stmt.executeQuery("select	first_name,	

last_name	from	employees;");

				while	(rs.next())	{

								String	first	=	rs.getString("first_name");

								String	last	=	rs.getString("last_name");

								/*	do	something	*/

				}

	}	/*	…	*/

	{%	endhighlight	%}

Moreover,	please	note	that	by	doing	so	you	have	to	remember	which

are	the	correct	types	for	each	attribute	and	the	JDBC	methods	do	not

reflect	the	actual	attributes’	names.	Moreover,	the	same	information

(the	attribute	name)	is	repeated	more	than	once.	All	these	aspects	are

quite	problematics	when	queries	are	the	result	of	join	operations

involving	more	than	one	table.	Moreover,	any	SQL	query	could	be

prone	to	SQL	injection.

INSERT
At	this	point,	if	we	want	to	insert	some	values	into	the	database,	we

have	to:

1.	 Create	a	POJO	class	in	order	to	store	the	values	in	an	ordered

way	(JDBCEmployee)

2.	 Define	a	SQL	query	in	order	to	avoid	the	SQL	Injection	(use

PrepareStatement 	instead	of	 ExecuteQuery)

3.	 Define	batch	insertions	(addBatch):	since	single	transactions

do	not	support	limitless	object	insertions,	from	time	to	time	you

must	push	all	the	values	to	the	database	(executeBatch).

4.	 We	have	to	unpack	the	data	information	in	order	to	populate

the	query	with	the	default	values.

	{%	highlight	java	%}

	try	(Connection	t	=	DriverManager.getConnection(db

url,user,pwd))	{

					//	Defining	the	SQL	Query

					String	sql	=	=	"insert	into	employees	(emp_no

,		birth_date,		"	+

													"first_name,		last_name,		gender,		hir

e_date)	values	"	+

													"(?,	?,	?,?,?,?)";

					//	Prepare	the	statement	to	insert	the	element

s

					PreparedStatement	ps	=	transaction.prepareStat

ement(sql);

					final	int	batchSize	=	1000;

					int	count	=	0;

					for	(JDBCEmployee	employee	:	employees)	{

									ps.setInt(1,employee.get_no);

									ps.setDate(2,Java2SQLData.toSQLData(employ

ee.birth_date));

									ps.setString(3,	employee.first_name);

									ps.setString(4,	employee.last_name);

									ps.setString(5,	employee.isFemale	?	"F"	:	

"M");

									ps.setDate(6,	Java2SQLData.toSQLData(emplo

yee.hire_date));

									ps.addBatch();

									//Sooner	or	later,	the	batch	has	to	be	emp

tied	when	too	data	

									//	is	sent.

									if(++count	%	batchSize	==	0)	{

													//Send	some	data	to	the	relational	dat

abase.

													count	=	0;

													ps.executeBatch();

									}

					}

					if	(count	!=	0)	ps.executeBatch();

					ps.close();	//close	the	statement

	}	/*	…	*/

	{%	endhighlight	%}

jOOQ
There	are	two	possible	ways	to	access	databases	from	an	OO	language.

We	could	either	define	an	ORM	mapping	(Object-Relational	Mapping),

or	extend	the	language’s	syntax	by	allowing	the	usage	of	specific	SQL

statements.	jOOQ	implements	both	those	paradigms.

Now	create	a	Maven	project	with	your	favourite	IDE,	and	add	the

following	dependencies	for	your	database.

{%	highlight	xml	%}

<dependency>

		<groupId>org.jooq</groupId>

		<artifactId>jooq</artifactId>

		<version>3.8.6</version>

</dependency>

<dependency>

		<groupId>org.jooq</groupId>

		<artifactId>jooq-meta</artifactId>

		<version>3.8.6</version>

</dependency>

<dependency>

		<groupId>org.jooq</groupId>

		<artifactId>jooq-codegen</artifactId>

		<version>3.8.6</version>

</dependency>

{%	endhighlight	%}

At	this	point,	we	want	to	automatically	generate	the	POJOs	and	the

DAOs	for	our	class	and	to	automate	the	SQL	query	formulation	in	Java.

By	doing	so,	we	have	to	integrate	the	 pom.xml 	file	with	the	 build

command	stating:

1.	 Which	database	driver	we’re	going	to	use,

com.mysql.jdbc.Driver

2.	 Which	is	the	datbase	URL,

jdbc:mysql://localhost/employees .

3.	 Set	the	database	username	and	password.

4.	 Choose	as	an	 inputSchema 	your	MySQL	database	of	choice,

employees .

5.	 Select	the	source	folder	within	your	project,	 src/main/java

6.	 Specify	the	destination	package,

it.giacomobergami.jOOQ.model

	{%	highlight	xml	%}

	<build>

				<plugins>

								<plugin>

												<groupId>org.jooq</groupId>

												<artifactId>jooq-codegen-maven</artifactId>

												<version>3.8.3</version>

												<!--	The	plugin	should	hook	into	the	generate

	goal	-->

												<executions>

																<execution>

																				<goals>

																								<goal>generate</goal>

																				</goals>

																</execution>

												</executions>

												<dependencies/>

												<configuration>

																<jdbc>

																				<driver>com.mysql.jdbc.Driver</driver

>

																				<url>jdbc:mysql://localhost/employees

</url>

																				<user>root</user>

																				<password>password</password>

																</jdbc>

																<generator>

																				<database>

																								<name>org.jooq.util.mysql.MySQLDa

tabase</name>

																								<includes>.*</includes>

																								<excludes></excludes>

																								<inputSchema>employees</inputSche

ma>

																				</database>

																				<target>

																								<packageName>it.giacomobergami.jO

OQ.model</packageName>

																								<directory>src/main/java</directo

ry>

																				</target>

																				<generate>

																								<relations>true</relations>

																								<deprecated>false</deprecated>

																								<instanceFields>true</instanceFie

lds>

																								<generatedAnnotation>true</genera

tedAnnotation>

																								<records>true</records>

																								<pojos>true</pojos>

																								<pojosEqualsAndHashCode>false</po

josEqualsAndHashCode>

																								<immutablePojos>false</immutableP

ojos>

																								<interfaces>false</interfaces>

																								<daos>true</daos>

																								<jpaAnnotations>false</jpaAnnotat

ions>

																								<validationAnnotations>false</val

idationAnnotations>

																								<globalObjectReferences>true</glo

balObjectReferences>

																								<fluentSetters>false</fluentSette

rs>

																				</generate>

																</generator>

												</configuration>

								</plugin>

				</plugins>

	</build>

	{%	endhighlight	%}

All	the	POJOs	and	DAOs	are	generated	by	the	 complile 	command.	As

an	example:

		mvn	clean	compile

At	this	point,	jOOQ	will	handle	automatically	the	transaction	for	you	by

using	the	DSL	factory:

	{%	highlight	java	%}

	DSLContext	create	=	DSL.using(t,	SQLDialect.MYSQL);

	{%	endhighlight	%}

“Language	Extension”	(SELECT)
Suppose	that	we	want	to	perform	the	following	SQL	query	as	before:

	{%	highlight	SQL	%}

	SELECT	first_name,	last_name	

	FROM	employees

	LIMIT	5;

	{%	endhighlight	%}

jOOQ	allows	a	1-1	mapping	with	methods	of	some	specific	objects

through	the	DSLContext	as	follows:

	{%	highlight	java	%}

	create.select(Tables.EMPLOYEES_.FIRST_NAME,	Tables.EMPLO

YEES_.LAST_NAME).

	from(Tables.EMPLOYEES_)

	.limit(5).	…

	{%	endhighlight	%}

At	this	point	we	can	specify	to	return	such	attributes	within	an

employees 	record	as	follows:

	{%	highlight	java	%}

	….fetchInto(tables.EMPLOYEES_).…

	{%	endhighlight	%}

Java	8	could	be	used	to	automatically	print	the	result

	{%	highlight	java	%}

	….forEach(er	->	System.out.println(er.getFirstName()+"	

"+er.getLastName()));

	{%	endhighlight	%}

We	could	even	decide	to	perform	join	queries.	If	the	tables	share	a

Primary	Key	and	a	Foreign	Key,	then	the	 onKey 	statement	could	be

used	to	carry	out	the	operation.

	{%	highlight	java	%}

	create.select(Tables.EMPLOYEES_.GENDER,Tables.EMPLOYEES_

.FIRST_NAME,

															Tables.EMPLOYEES_.LAST_NAME,Tables.TITLES.

TITLE)

																.from(Tables.EMPLOYEES_)

																.join(Tables.TITLES)

																.onKey()

																.fetchInto(ResultClass.class)

																.forEach(System.out::print);	

	{%	endhighlight	%}

This	solution	requires	that	a	specific	POJO	class,	ResultClass,	must	be

defined:

	{%	highlight	java	%}

	public	static	class	ResultClass		{

				public	final	String	MrMrs;

				public	final	String	name;

				public	final	String	surname;

				public	final	String	title;

				public	ResultClass(EmployeesGender	mrMrs,	String	name

,	String	surname,	String	title)	{

								MrMrs	=	mrMrs.getLiteral().equals("M")	?	"Mr."	:	

"Mrs.";

								this.name	=	name;

								this.surname	=	surname;

								this.title	=	title;

				}

				//	Serialization	method

				@Override

				public	String	toString()	{

								return	MrMrs	+"	"+name+"	"+	surname+","+title+".\

n";

				}

	}

	{%	endhighlight	%}

More	simply,	we	could	even	use	the	 fetch() 	method	without

specifying	a	specific	POJO	class.

ORM	Mapping	through	DAOs:	one-
table	operations	(SELECT,	INSERT,
UPDATE)
DAO	(Data	Access	Objects)	is	an	architectural	pattern	for	handling

“persistency”	in	OO	languages.	By	doing	so	we	separate	the	 Model

Java	object	layer	from	the	actual	operations	required	to	access	the

database.	This	technique	allows	to	map	each	Database	tuple	as	one

object	in	the	OO	model.	In	order	to	do	so,	we	must	first	initialize	our

DAO	with	our	current	DSLContext	configuration:

	{%	highlight	java	%}

	EmployeesDao	dao	=	new	EmployeesDao(create.configuration

());

	{%	endhighlight	%}

At	this	point	we	can	use	the	POJOs	generated	by	jOOQ	to	create	new

rows	within	the	database	as	follows:

	{%	highlight	java	%}

	Employees	e	=	new	Employees();

	e.setBirthDate(Java2SQLData.sqlData("02/10/1990"));

	e.setEmpNo(555555);

	e.setFirstName("Giacomo");

	e.setLastName("Bergami");

	e.setGender(EmployeesGender.M);

	e.setHireDate(Java2SQLData.sqlData("01/11/2014"));

	dao.insert(e);

	{%	endhighlight	%}

Later	on	we	could	even	fetch	a	specific	row	(e.g.)	by	ID	and	then

perform	some	updates:

	{%	highlight	java	%}

	e	=	dao.findById(555555);

	e.setHireDate(Java2SQLData.sqlData("02/11/2014"));

	dao.update(e);

	e	=	dao.findById(555555);

	//jOOQ	POJOs	are	equipped	with	default	serialization	met

hods

	System.out.println(e.toString());

	{%	endhighlight	%}

Using	a	Persitency	Framework	in	Java.
1.	 Tutorial

2.	 Madhusudhan	Konda:	Just	Hibernate	O’Reilly	Media.	Online

book

https://github.com/jackbergus/javahibernateexample/tree/master/hibernate_tutorial_2015
https://www.safaribooksonline.com/library/view/just-hibernate/9781449334369/

