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Abstract We present a type inference algorithm for λ-terms in Elemen-
tary Affine Logic using linear constraints. We prove that the algorithm
is correct and complete.

Introduction

The optimal reduction of λ-terms ([9]; see [3] for a comprehensive account and
references) is a graph-based technique for normalization in which a redex is never
duplicated. To achieve this goal, the syntax tree of the term is transformed into
a graph, with an explicit node (a fan) expressing the sharing of two common
subterms (these subterms are always variables in the initial translation). Giving
correct reduction rules for these graphs is a surprisingly difficult problem, first
solved in [8,7]. One of the main issues is to decide how to reduce two meeting
fans, for which a complex machinery and new nodes have to be added (the
oracle). There is large class of (typed) terms, however, for which this decision
is very simple, namely the terms typeable in Elementary Logic, both in the
Linear [6] (ELL) and the Affine [1] (EAL) flavor. Indeed, any proof-net for ELL
or EAL may be (optimally) reduced with a simple check for the matching of fans.
This fact was first observed in [1] and then exploited in [2] to obtain a certain
complexity result on optimal reduction, where (following [10]) we also showed
that EAL-typed λ-terms are powerful enough to encode arbitrary computations
of elementary bounded Turing machines. We did not know, however, of any
systematic way to derive EAL-types for λ-terms, a crucial issue if we want to
exploit in an optimal reducer the added benefits of this class of terms. This is
what we present in this paper.

Main contribution of the paper is a type inference algorithm (Section 2
and Appendix), assigning EAL-types (formulas) to type-free λ-terms. A typing
derivation of a λ-term M in EAL consists of a skeleton – given by the derivation
of a type for M in the simple type discipline – together with a box assignment ,
essential because EAL allows contraction only on boxed terms. The algorithm
tries to introduce all possible boxes by collecting integer linear constraints dur-
ing the exploration of the syntax tree of M . At the end, the integer solutions (if
any) to the constraints give specific box assignments (i.e., EAL-derivations) for



M (for other approaches to the boxing of intuitionistic derivations, see [5,13]).
Correctness and completeness of the algorithm are proved with respect to a nat-
ural deduction system for EAL, introduced in Section 2.1 together with terms
annotating the derivations. For such term calculus we prove the main standard
properties, including subject reduction.

1 Elementary Affine Logic

Elementary Affine Logic [1] (Figure 1) is a system with unrestricted weakening,
where contraction is allowed only for modal formulas. There is only one exponen-
tial rule for the modality ! (of-course, or bang), which is introduced at once on
both sides of the turnstile. Cut-elimination may be proved for EAL in a standard
way.

A `EAL A
ax

Γ `EAL A A,∆ `EAL B

Γ, ∆ `EAL B
cut

Γ `EAL B

Γ, A `EAL B
weak

Γ, !A, !A `EAL B

Γ, !A `EAL B
contr

Γ, A `EAL B

Γ `EAL A � B
� R

Γ `EAL A B, ∆ `EAL C

Γ, A � B, ∆ `EAL C
� L

A1, . . . , An `EAL B

!A1, . . . , !An `EAL!B
!

Figure 1. (Implicational) Elementary Affine Logic

A simple inspection of the rules of EAL shows that any λ-term with an EAL
type has also a simple type1. Indeed, the simple type (and the corresponding
derivation) is obtained by forgetting the exponentials, which must be present in
an EAL derivation because of contraction.

The idea underlying our type inference algorithm is simple:

1. finding all “maximal decorations”;

2. solving sets of linear constraints.

We informally present the main point with an example on the term two ≡
λxy.(x(x y)). One (sequent) simple type derivation for two is:

1 However there are simply typed terms not typeable in EAL, see [2].



w:α`w:α y:α`y:α

x:α→α,y:α`(x y):α z:α`z:α

x:α→α,x:α→α,y:α`(x(x y)):α

x:α→α,x:α→α`λy.(x(x y)):α→α

x:α→α`λy.(x(x y)):α→α

`λxy.(x(x y)):(α→α)→α→α

If we change every → in (, the previous derivation can be viewed as the
skeleton of an EAL derivation. To obtain a full EAL derivation (provided it
exists), we need to decorate this skeleton with exponentials, and to check that
the contraction is performed only on exponential formulas.

Let’s produce first a maximal decoration of the skeleton, interleaving n !
introduction rules after each logical rule. For example

w:α`w:α y:α`y:α

x:α(α,y:α`(x y):α

becomes
w:α`w:α

!n1w:α`!n1w:α
!n1

y:α`y:α

!n2y:α`!n2y:α
!n2

x:!n2α(!n1α,y:!n2α`(x y):!n1α

where n1 and n2 are fresh variables. We obtain in this way a meta-derivation
representing all EAL derivations with n1, n2 ∈ IN.

Continuing to decorate the skeleton of two (i.e. to interleave ni ! rules) we
obtain

w:α`w:α

w:!n1α`w:!n1α
!n1

y:α`y:α

y:!n2α`y:!n2α
!n2

x:!n2α(!n1α,y:!n2α`(x y):!n1α

x:!n3 (!n2α(!n1α),y:!n2+n3α`(x y):!n1+n3α
!n3

z:α`z:α

z:!n4α`z:!n4α
!n4

x:!n1+n3α(!n4α,x:!n3(!n2α(!n1α),y:!n2+n3α`(x(x y)):!n4α

x:!n5 (!n1+n3α(!n4α),x:!n3+n5 (!n2α(!n1α),y:!n2+n3+n5α`(x(x y)):!n4+n5α
!n5

x:!n5 (!n1+n3α(!n4α),x:!n3+n5 (!n2α(!n1α)`λy.(x(x y)):!n2+n3+n5α(!n4+n5α

x:!n5+n6 (!n1+n3α(!n4α),x:!n3+n5+n6 (!n2α(!n1α)`λy.(x(x y)):!n6 (!n2+n3+n5α(!n4+n5α)
!n6

x:!n5+n6 (!n1+n3α(!n4α)`λy.(x(x y)):!n6(!n2+n3+n5α(!n4+n5α)

The last rule – contraction – is correct in EAL iff the types of x are unifiable
and banged. In other words iff the following constraints are satisfied:

n1,n2,n3,n4,n5,n6∈IN ∧ n5=n3+n5 ∧ n1+n3=n2 ∧ n4=n1 ∧ n5+n6≥1.

The second, third and fourth of these constraints come from unification; the
last one from the fact that contraction is allowed only on exponential formulas.
These constraints are equivalent to

n1,n5,n6∈IN ∧ n3=0 ∧ n1=n2=n4 ∧ n5+n6≥1.



Since clearly these constraints admit solutions, we conclude the decoration pro-
cedure obtaining

...
x:!n5+n6 (!n1α(!n1α)`λy.(x(x y)):!n6 (!n1+n5α(!n1+n5α)

`λxy.(x(x y)):!n5+n6(!n1α(!n1α)(!n6 (!n1+n5α(!n1+n5α)

Thus two has EAL types !n5+n6(!n1α(!n1α)(!n6(!n1+n5α(!n1+n5α), for any
n1, n5, n6 solutions of

n1,n5,n6∈IN ∧ n5+n6≥1.

We may display the full derivation in a more manageable way, representing
the skeleton with the syntax tree of the lambda term with edges labelled with
types and adding boxes representing the ! introduction rules, as in Figure 2.

@

@

!n2+n3+n5

!n1

!n1+n3
!n1+n3 (!n4

!n4+n5

!n4

!n2+n3+n5 (!n4+n5

!n6(!n2+n3+n5 (!n4+n5 )

!n5+n6 (!n1+n3 (!n4 ) (!n6 (!n2+n3+n5 (!n4+n5 )

!n2 (!n1 !n2

!n3 (!n2 (!n1 ) !n2+n3

!n3+n5+n6 (!n2 (!n1 )

!n5 (!n1+n3(!n4)

!n5+n6 (!n1+n3(!n4)

!n3+n5(!n2(!n1)

λy

y

xx

λx

Figure 2. Meta EAL type derivation of two.

Finally notice that at the beginning of this section, we started with “one
(sequent) derivation” for two (there are other derivations, building in a different
way the application x(xy))). If that derivation had produced an unsolvable set of
constraint, the procedure should restart with another derivation. To avoid this
problem, our search for maximal decorations (i.e., the collection of constraints) is
not performed on sequent derivations, but on the syntax tree of the term. How-
ever, the fact that multiple derivations for a term and principal type scheme are
possible, will surface again. It may happen that a solution to a set of constraints
corresponds to more than one derivation (a superposition of derivations), with
non compatible box-assignments. In this case, Lemma 6 ensures that compatible
box assignments may be found.

2 Type Inference

A class of types for an EAL-typeable term can be seen as a decoration of a simple
type with a suitable number of boxes. The main contribution of the paper is an



algorithm collecting integer constraints whose solutions corresponds to proper
box assignments.

Definition 1. A general EAL-type Θ is generated from the following grammar:

Θ ::= o|Θ( Θ|!n1+···+nkΘ,

where n1, . . . , nk are variables ranging on integers ZZ.

Definition 2 (Type Synthesis Algorithm). Given a simply typeable lambda
term and its principal type scheme M : σ, the type synthesis algorithm

�
(M : σ)

returns a triple 〈Θ, B, A〉, where Θ is a general EAL-type, B is a base (i.e. a
multi-set of pairs variable, general EAL-type) and A is a set of linear constraints.

The algorithm
�

(M : σ) is defined in the Appendix. One of the crucial issues
is the localization of the points where derivations may differ for the presence
or absence of boxes around some subterms. This is the role of critical points,
managed by the boxing procedure, � (see A.5).

Proposition 1 (Termination). Let M be a simply typed term and let σ be its
most general type.

�
(M : σ) always terminates with a triple 〈Θ, B, A〉.

The algorithm is exponential in the size of the λ-term, because to investigate
all possible derivations we need to (try to) box all possible combinations of
critical points (see the clauses for the product union, d, in A.6).

Correctness and completeness of
�

are much simpler if, instead of EAL, we
formulate proofs and results with reference to an equivalent natural deduction
formulation.

2.1 NEAL

The natural deduction calculus (NEAL) for EAL in given in Figure 3, after [4,1,12].

Lemma 1 (Weakening). If Γ `NEAL A then B, Γ `NEAL A.

To annotate NEAL derivations, we use terms generated by the following
grammar (elementary terms):

M ::= x | λx.M | (M M) | ! (M) [M/x, . . . , M/x] | ‖M‖M
x,x

Observe that in ! (M) [M/x, . . . , M/x], the [M/x] is a kind of explicit substi-
tution. To define ordinary substitution, define first the set of free variables of a
term M , FV(M), inductively as follows:

– FV(x) = {x}
– FV(λx.M) = FV(M) r {x}
– FV(M1 M2) = FV(M1) ∪ FV(M2)
– FV(! (M) [M1/x1, . . . , Mn/xn]) =

⋃n
i=1 FV(Mi)

– FV(‖M‖N
x1,x2

) = (FV(M) r {x1, x2}) ∪ FV(N)



Γ, A `NEAL A
ax

Γ `NEAL!A ∆, !A, !A `NEAL B

Γ, ∆ `NEAL B
contr

Γ, A `NEAL B

Γ `NEAL A � B
( � I)

Γ `NEAL A � B ∆ `NEAL A

Γ, ∆ `NEAL B
( � E)

∆1 `NEAL!A1 · · ·∆n `NEAL!An A1, . . . , An `NEAL B

Γ, ∆1, . . . , ∆n `NEAL!B
!

Figure 3. Natural Elementary Affine Logic in sequent style notation

Ordinary substitution N{M/x} of a term M for the free occurrences of x in
N , is defined in the obvious way. The (pedantic) exponential cases are as follows:

1. ! (N) [P1/x1, . . . , Pn/xn] {M/x} =
! (N{y1/x1} · · · {yn/xn}{M/x}) [P1{M/x}/y1, . . . , Pn{M/x}/yn]
if x /∈ {x1, . . . , xn}, where y1, . . . , yn are all fresh variables;

2. ! (N) [P1/x1, . . . , Pn/xn] {M/x} =! (N) [P1{M/x}/x1, . . . , Pn{M/x}/xn]
if ∃i s.t. xi = x;

3. ‖N‖P
y,z {M/x} = ‖N{y′/y}{z′/z}{M/x}‖

P{M/x}
y′,z′ if x /∈ {y, z}, where y′, z′

are fresh variables;

4. ‖N‖P
y,z {M/x} = ‖N‖P{M/x}

y,z if x ∈ {y, z}.

Elementary terms may be mapped to λ-terms, by forgetting the exponential
structure:

– x∗ = x
– (λx.M)∗ = λx.M∗

– (M1 M2)
∗ = (M∗

1 M∗
2 )

– (! (M) [M1/x1, . . . , Mn/xn])∗ = M∗{M∗
1 /x1, . . . , M

∗
n/xn}

– (‖M‖N
x1,x2

)∗ = M∗{N∗/x1, N
∗/x2}

Definition 3 (Legal elementary terms). The elementary terms are legal
under the following conditions:

1. x is legal;
2. λx.M is legal iff M is legal;
3. (M1 M2) is legal iff M1 and M2 are both legal and FV(M1) ∩ FV(M2) = ∅;
4. ! (M) [M1/x1, . . . , Mn/xn] is legal iff M and Mi are legal for any i 1 ≤ i ≤

n and FV(M) = {x1, . . . , xn} and (i 6= j ⇒ FV(Mi) ∩ FV(Mj) = ∅);

5. ‖M‖N
x,y is legal iff M and N are both legal and FV(M) ∩ FV(N) = ∅.

Proposition 2. If M is a legal term, then every free variable x ∈ FV(M) is
linear in M .

Note 1. From now on we will consider only legal terms.



Notation. Let Γ = {x1 : A1, . . . , xn : An} be a basis. dom(Γ ) = {x1, . . . , xn};
Γ (xi) = Ai; Γ � V = {x : A|x ∈ V ∧A = Γ (x)}.

Legal terms are the ones induced by the Curry-Howard isomorphism applied
to NEAL-derivations (see [11,12] for different approaches to Curry-Howard iso-
morphism for Linear and Light Linear Logic). The term assignment system is
shown in Figure 4, where all bases in the premises of the contraction,( elimi-
nation and !-rule, have domains with empty intersection.

Γ, x : A ` x : A
ax

Γ ` M :!A ∆, x :!A, y :!A ` N : B

Γ, ∆ ` ‖N‖M

x,y
: B

contr

Γ, x : A ` M : B

Γ ` λx.M : A � B
( � I)

Γ ` M : A � B ∆ ` N : A
Γ, ∆ ` (M N) : B

( � E)

∆1 ` M1 :!A1 · · ·∆n ` Mn :!An x1 : A1, . . . , xn : An ` N : B

Γ, ∆1, . . . , ∆n `! (N) [M1/x1, . . . , Mn/xn] :!B
!

Figure 4. Term Assignment System for Natural Elementary Affine Logic

Lemma 2. 1. If Γ `NEAL M : A then FV(M) ⊆ dom(Γ );

2. if Γ `NEAL M : A then Γ � FV(M) `NEAL M : A.

Lemma 3 (Substitution). If Γ, x : A `NEAL M : B and ∆ `NEAL N : A and
dom(Γ ) ∩ dom(∆) = ∅ then Γ, ∆ `NEAL M{N/x} : B.

Theorem 1 (Equivalence). Γ `EAL A if and only if Γ `NEAL A.

Lemma 4 (Unique Derivation). For any legal term M and formula A, if
there is a valid derivation of the form Γ `NEAL M : A, then such derivation is
unique (up to weakening).

Although we are not interested in this paper in the dynamics (i.e., normal-
ization) of NEAL, a notion of reduction is needed to state and obtain our main
result. We have first two logical reductions (→β and →dup) corresponding to the
elimination of principal cuts in EAL. The other five reductions are permutation



rules, allowing contraction to be moved out of a term.

(λx.M N) →β M{N/x}

‖N‖!(M)[M1/x1,...,Mn/xn]
x,y →dup
∥

∥

∥

∥

∥

∥

∥N{!(M)[x′1/x1,...,x′n/xn]/x}{!(M ′)[y′1/y1,...,y′n/yn]/y}
∥

∥

∥

M1

x′1,y′1

· · ·

∥

∥

∥

∥

Mn

x′n,y′n

!(M)[M1/x1, · · · ,
!(N)[P1/y1,...,Pm/ym] /xi, · · · ,

Mn /xn] →!−!

!(M{N/xi})[M1/x1, · · · ,P1 /y1, · · · ,Pm /ym, · · ·Mn /xn]

(‖M‖M1

x1,x2
N) →@−c ‖(M{x′1/x1, x

′
2/x2} N)‖M1

x′1,x′2

!(M)[M1/x1, · · · ,
‖Mi‖

N
y,z /xi, · · · ,Mn /xn] →!−c

∥

∥

∥!(M)[M1/x1, · · · ,
Mi{y

′/y,z′/z} /xi, · · · ,
Mn /xn]

∥

∥

∥

N

y′,z′

‖M‖
‖N‖P

y1,y2
x1,x2 →c−c

∥

∥

∥‖M‖N{y′1/y1,y′2/y2}
x1,x2

∥

∥

∥

P

y′1,y′2

λx. ‖M‖N
y,z →λ−c ‖λx.M‖N

y,z where x /∈ FV(N)

where M ′ in the →dup-rule is obtained from M replacing all its free variables
with fresh ones (xi is replaced with yi); x′1 and x′2 in the →@−c-rule, y′ and z′

in the →!−c-rule and y′1, y
′
2 in the →c−c-rule are fresh variables.

Definition 4. The reduction relation on legal terms is defined as the reflexive
and transitive closure of the union of →β ,→dup,→!−!,→@−c,→!−c,→c−c,→λ−c.

Proposition 3. Let M  N and M be a legal term, then N is a legal term.

Proposition 4. Let M→r N where r is not →β, then M∗ = N∗.

Lemma 5. Let M be a well typed term in {dup, !−!, @− c, !− c, c− c, λ− c}-
normal form, then

1. if R = ‖N‖P
x,y is a subterm of M , then either P = (P1 P2) or P is a variable;

2. if R =! (N) [P1/x1, . . . , Pk/xk] is a subterm of M , then for any i ∈ {1, . . . , k}
either Pi = (Qi Si) or Pi is a variable.

Theorem 2 (Subject Reduction). Let Γ `NEAL M : A and M  N , then
Γ `NEAL N : A.

2.2 Properties of the Type Syntesis Algorithm

Lemma 6 (Superimposing of derivations). Let
�

(M : σ) = 〈Θ, B, A〉 and
let A be solvable. If there is a solution X1 of A that instantiates two boxes



belonging to two superimposed derivations that are not compatible, then there
exists another solution X2 where all the instantiated boxes belong to the same
derivation.

Moreover the instantiations Θ′, B′ of Θ, B using X1 and the instantiations
Θ′′, B′′ of Θ, B using X2 are identical.

Proof. (sketch) We may think of boxes as levels; boxing a subterm can then be
seen as raising that subterm, as in Figure 5, where also some types label the
edges of the syntax tree of a simple term. In particular, the edge starting from
the @-node and ending in x0 has label !n2(α(!n1(β( γ)) at level 0 (nearest to
x0) and has label (α(!n1(β ( γ)) at level n2. This is the graphical counterpart
of the !-rule

. . . , x0 : T, . . . ` . . .

. . . , x0 :!n2T, . . . ` . . .
!n2

The complete decoration of Figure 5 can be produced in NEAL in two ways: by

@

@ @

@

@

@

@

n1

n2

n1 + n2

x0 x1 x2 x3 x4 x5 x6 x7

!n2 (α(!n1 (β( γ))

α

β

γ1γ = γ1(
γ2

α(

!
n1 (β

(

γ)
!
n1 (β

(

γ)

!n1+n2γ2

Figure 5. Boxes can be viewed as levels.

the instantiation of

!n2 ((((x0 x1)y)((x4 x5)w))) [(x2 x3)/y, (x6 x7)/w]

and2

!n1 (((z(x2 x3))((x4 x5)w))) [(x0 x1)/z, (x6 x7)/w],

which are boxes belonging to two different derivations. Graphically such an in-
stantiation can be represented as in the first row of Figure 6, where incompat-
ibility is evident by the fact that the boxes are not well stacked, in particular
the rectangular one covers a hole. To have a correct EAL-derivation it is neces-
sary to find the equivalent, well stacked configuration (that corresponds to the
subsequent application of boxes from the topmost to the bottommost).
2 The correct legal terms should have all free variable inside the square brack-

ets. We omit to write variables when they are just renamed, for readabil-
ity reasons (compare the first elementary term above with the correct one
!n2 ((((x0 x1)y)((x4 x5)w))) [x′

0/x0, x
′

1/x1, (x2 x3)/y, x′

4/x4, x
′

5/x5, (x6 x7)/w]).



+ =

=

=

=

=

+ +

+ +

=

=

=

=

Figure 6. Equivalences of boxes.

The procedure by which we find the well stacked box configuration is visu-
alized in Figure 6. The reader may imagine the boxes subject to gravity (the
passage from the first to the second row of Figure 6) and able to fuse each other
when they are at the same level (the little square in the third row fuse with the
solid at its left in the passage from the third to the fourth row).

The “gravity operator” corresponds to finding the minimal common subterm
of all the superimposed derivations and it is useful for finding the correct order
of application of the ! rule. The “fusion operator” corresponds to the elimination
of a cut between two exponential formulas. Moreover, the final configuration of
Figure 6 corresponds to a particular solution of the set of constraints produced
by the type synthesis algorithm, that instantiates the following boxes:

!n1
(

!n2−n1 (!n1 (((z w)((x4 x5)t))) [(x0 x1)/z]) [(x2 x3)/w]
)

(x6 x7)/t]

Finally, notice that during the procedure all types labelling the boundary
edges of the lambda-term never changes, i.e. the instantiations of the term type
(the label of the topmost edge) and the base types (the labels of the edges at
the bottom) remain unchanged.

Theorem 3 (Soundness). Let
�

(M : σ) = 〈Θ, B, A〉. For every X integer
solution of A, and B′, Θ′ instantiations of B and Θ using X, there exists P
elementary term such that P ∗ = M and B′ ` P : Θ′ is derivable in NEAL.

Proof. By induction on the structure of M , using the superimposing lemma.

Theorem 4 (Completeness). Let Γ `NEAL P : Ψ and let P be in {!−!, @ −

c, !− c, c− c, λ− c, dup}-normal form with contraction only on variables (‖R‖Q
x,y



is a subterm of P only if Q is a variable). Let
�

(P ∗ : Ψ) = 〈Θ, B, A〉, where Ψ is
the erasure of Ψ , i.e. the simple type obtained from Ψ erasing all ! and converting
( in →, then there exist X integer solution of A such that the instantiation B ′

of B using X is a subset of Γ and Ψ is the instantiation of Θ using X and
B′ `NEAL P : Ψ .

The request on the {!−!, @−c, !−c, c−c, λ−c, dup}-normal form is not a loss
of generality, for the subject reduction lemma and Proposition 4. By Lemma 5,
the only restriction is the exclusion of elementary terms with subterms of the

form ‖R‖(Q1 Q2)
x,y . In a sense, these terms “contract too much”. Indeed, it could be

the case that a term P is elementary thanks to the sharing of a β-redex (inside
(Q1 Q2)). However, the corresponding λ-term P ∗, cannot share any redex –
there is no sufficient syntax for this in the λ-calculus – hence P ∗ could be not
elementary. As we discussed in the Introduction, our aim is to identify λ-terms
that are reducible using optimal reduction without the oracle needed for the
correct matching of fans. The NEAL terms excluded in the completeness theorem
corresponds to EAL proof-nets which are not (the initial encoding of) λ-terms,
since they contract an application.

Conclusions

We presented a complete algorithm to derive EAL-types for λ-terms. One of
our main goals is the characterization of those terms that can be optimally
reduced without the oracle, for which EAL-typeability is a sufficient condition.
One should not see (N)EAL as a programming language; instead, it is a kind of
intermediate language: if a λ-term is typeable in EAL, then we can compile it
in a special manner with excellent performances during reduction, otherwise we
compile it in the usual way, using the oracle. To get a more powerful (and, to
a certain extent, flexible) language, a major development of this work would be
the extension of our algorithm to second order EAL.

The same technique of this paper may be applied to Multiplicative Exponen-
tial Linear Logic. However, to treat dereliction, the number of constraints grows
in an exponential way.

We believe techniques similar to those we used in this paper may be applied to
type-inference for Light Linear (or Affine) Logic (LLL), a system characterizing
polytime. A type-inference for LLL would be a uniform proof-technique to prove
polynomiality of certain algorithms.

A puzzling open problem is whether there exist terms yielding constraints
with only non integer solutions. Of course they have to be non EAL-typeable
terms, in view of our completeness theorem. Our estensive experiments never
produced such a scenario, yet we could not prove that the constraints have
always integral solutions. Would there be any logical meaning for a term with a
non integral number of boxes?

Acknowledgments Harry Mairson provided useful criticism and comments
on the form and the substance of the paper.
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9. Jean-Jacques Lévy. Optimal reductions in the lambda-calculus. In Jonathan P.
Seldin and J. Roger Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 159–191. Academic Press, London,
1980.

10. Harry G. Mairson. A simple proof of a theorem of Statman. Theoretical Computer
Science, 103(2):387–394, September 1992.

11. Alberto Pravato and Luca Roversi. Λ! considered both as a paradigmatic language
and a meta-language. In Fifth Italian Conference on Theoretical Computer Science,
Salerno (Italy), 1995.

12. Luca Roversi. A Polymorphic Language which Is Typable and Poly-step. In Proc.
of the Asian Computing Science Conference (ASIAN’98), volume 1538 of Lecture
Notes in Computer Science, pages 43 – 60, Manila (The Philippines), 1998.

13. Harold Schellinx. The Noble Art of Linear Decorating. PhD thesis, Institute for
Logic, Language and Computation, University of Amsterdam, 1994.

A Appendix

In the following n, n1, n2 are always fresh variables, o is the base type. Moreover,
we consider !n1(!n2Θ) syntactically equivalent to !n1+n2Θ.

A.1 Free variable occurrences: FVO

Definition 5. The list of free variable occurrences of a lambda term M is de-
fined in the obvious way:

1. FVO(x) = [x];
2. FVO(λx.M) = FVO(M)− x;
3. FVO((M1 M2)) = FVO(M1) + FVO(M2) (the concatenation of lists).



A.2 Unification:
�

The unification of h ≥ 2 general EAL-types produces a set of equations. Notice
that in our algorithm, the erasure of general EAL-types in the unification clauses
always gives structurally identical types. This is possible because we start our
type synthesis procedure from a lambda term already simply typed.

�











! � ni1 o,
! � ni2 o,

...

! � nih o











=

∑

ni1 −
∑

ni2 = 0
∑

ni2 −
∑

ni3 = 0
...

∑

nih−1
−

∑

nih
= 0

uo

(1)

�
(Θ11 , . . . , Θ1h

) = A1
�

(Θ21 , . . . , Θ2h
) = A2

�











! � ni1 (Θ11 ( Θ21),

! � ni2 (Θ12 ( Θ22),
...

! � nih (Θ1h
( Θ2h

)











=

∑

ni1 −
∑

ni2 = 0
∑

ni2 −
∑

ni3 = 0
...

∑

nih−1
−

∑

nih
= 0

A1

A2

u(

(2)

A.3 Contraction: C

The contraction of k general EAL-types produces a set of equations.
The first rule of contraction is just a trick allowing a common treatment

of two cases in the type synthesis algorithm. In particular it states that the
contraction of a single general EAL-type produces no constraint.

C(Θ) = ∅
c∅

(3)

Two formulas may be contracted in EAL only if they are equal and both
are banged (exponential). Hence the contraction rule produces the same set of
equations of unification (A) plus the constraint imposing that the outer number
of bangs must be at least one (n1 + · · ·+ nh ≥ 1).

�
(!n1+···+nhΘ1, Θ2, . . . , Θk) = A

C(!n1+···+nhΘ1, . . . , Θk) =
n1 + · · ·+ nh ≥ 1

A

c

(4)

Where Θ1 is either Γ ( ∆ or o.

A.4 Type processing: �
The type processing rule produces a pair 〈Θ, A〉 where Θ is a general EAL-
type and A is a set of constraints ni ≥ 0. This pair can be seen as the “most
general EAL-type” from a simple type. The set of constraints resulting from this
procedure states that every time � adds n bangs, n should be positive or zero.



Notice that a processed type is always banged, hence it is ready to be con-
tracted.

� (o) = 〈!no, n ≥ 0〉
po

(5)

� (σ) = 〈Θ, A1〉 � (τ) = 〈Γ, A2〉

� (σ → τ) =

〈

!n(Θ( Γ ),
n ≥ 0
A1

A2

〉

p →

(6)

A.5 Boxing: �

The boxing procedure superimposes all boxes due to the existence of critical
points. Every time there are two possible EAL-derivations for the unique simple
type, there is a critical point. For example during the type synthesis of

...
x : α → α, x : α → α, y : α ` (x(x y)) : α

we need to try all possible decorations of

...
x : α → α, y : α ` (x y) : α z : α ` z : α

x : α → α, x : α → α, y : α ` (x(x y)) : α

but also of

y : α ` y : α

...
z : α, x : α → α ` (xz) : α

x : α → α, x : α → α, y : α ` (x(x y)) : α

In our graphical notation, the two decorations appear as follows (the one cor-
responding to the first derivation is at the left; the star indicates the critical
point):

@

@

x x y

@

@

x x y

When � is called during the synthesis of (x(x y)), the base B is something
like {x :!n1α (!n2α, x :!n6(!n3α (!n4α), y :!n5+n6α}, where the first x is the
leftmost in the figure, the type Γ of (x(x y)) is !n2α, the set of critical points
cpts is {(n4 +n6−n1 = 0, [x, y])} and the set of constraints A is {n4 +n6−n1 =
0; n5 − n3 = 0}(see inference rules in A.7).



At that stage of the type synthesis procedure, the decoration corresponds
to the first one (the two constraints are needed for the correct type matching
between the two occurrences of x and the respective arguments). � superimposes
the second derivation, adding n7 boxes as in the second figure, obtaining the
superimposed decoration

@

@

x x y

and modifying the base B in {x :!n7(!n1α (!n2α), x :!n6(!n3α (!n4α), y :
!n5+n6α} and the set of constraints A in {n4 + n6 − n1 − n7 = 0; n5 − n3 = 0}.

Definition 6. A slice is a set of critical points, i.e. pairs (constraint, list of free
variable occurrences) as in the following:

sl =
{

(Aj1 , [y11 , . . . , y1h
]), . . . , (Ajk , [yk1 , . . . , ykh

])
}

A slice corresponds to a combination of critical points.

Notation. – sl(x) means that x is an element of every list of variables in
sl(x).

– x ∈ sl if and only if there exists one element of sl whose list of variables
contains x.

– Aj ∈ sl if and only if there exists one element of sl whose constraint is Aj .
– Being Aj the constraint ±nj1 ± · · · ± njk

= 0, Aj − n corresponds to the
constraint ±nj1 ± · · · ± njk

− n = 0.

� without critical points produces no effect:

� (B, Γ, ∅, A) = 〈B, Γ, A〉
b∅

(7)

For every slice sl, � adds n boxes around all the term but the set of subterms
under the critical points of sl, hence modifies all types of variables in the base
but not in sl. Moreover � modifies all constraints of sl, the final type Γ and
then goes on with the other slices.

�
(

B1, !
nΓ, cpts,

A2

n ≥ 0

)

= 〈B, ∆, A1〉

B1 =

{

xi :

{

!nΘi xi /∈ sl
Θi xi ∈ sl

}

i

A2 =

({

Aj Aj /∈ sl
Aj − n Aj ∈ sl

)

j

� ({xi : Θi}i, Γ, {sl} ∪ cpts, A) = 〈B, ∆, A1〉
bsl

(8)



A.6 Product union: d

Here resides the exponential complexity of the algorithm. In order to investigate
all possible derivations we need to box all possible combinations of critical points.

∅ dX = X
∅d

X d ∅ = X
d∅

(9)

{sl21 , . . . , sln1} d {sl12 , . . . , sln2} = X










sl11

...
sln1











d











sl12

...
sln2











= {sl11 , sl11 ∪ sl12 , . . . , sl11 ∪ sln2} ∪X

d

(10)

A.7 Type synthesis: S

The type synthesis of x : σ returns the processed type Θ, no critical points and
constraints of the kind nj ≥ 0 for every nj introduced during the processing of
σ.

Notice that, for the property of � , Θ is always of type !nΘ′.

� (σ) = 〈Θ, A〉

S(x : σ) = 〈Θ, x : Θ, A, ∅〉
sx

(11)

For the type synthesis of the abstraction, we need to examine four different
cases according to whether the body of the abstraction is an application (if it is
not we need to add a box all around the body, whilst in the other case the box
is already added by the rule of the application) or the the abstracted variable
appears in the body (if it does, we eventually need to contract all the different
types of the variable, while if it does not, we need to process the type).

If the body of the abstraction is an application and the bound variable occurs
at least one time in the body, the algorithm erases all the occurrences of the
bound variable from the base, eventually contracts all types of x introducing A2

new constraints (notice that by definition of C, if h = 1 then A2 is empty) and
finally erases all slices that contain x (after the abstraction of x they do not
represent any more possible derivations).

S((M1 M2) : τ) =

〈

Γ, B ]











x : Θ1

...
x : Θh











, A1, cpts ∪











sl1(x)
...

slk(x)











〉

C(Θ1, . . . , Θh) = A2

S(λx.(M1 M2) : σ → τ) =

〈

Θ1 ( Γ, B,
A1

A2
, cpts

〉 sλx@

(12)

Where h ≥ 1.
If the body is an application and the bound variable doesn’t appear in it, we

just need to process the type of x and add a critical point between the lambda
and the application.



@

M1 M2

λx

The added critical point represents derivations of the form:

...
` M : α

...
y : β ` λx.y : γ → β

z : α → β ` λx.(z M) : γ → β

where the application is introduced after the abstraction of x.

cpts = cpts1 ∪ {(
∑

ni − n = 0, FVO(M1 M2))}
� (σ) = 〈Θ, A2〉
S((M1 M2) : τ) = 〈! � niΓ, B, A1, cpts1〉

S(λx.(M1 M2) : σ → τ) =

〈

Θ(!nΓ, B,

A1

A2

n ≥ 0
∑

ni − n = 0

, cpts

〉

sλ@

(13)

Where Γ is not exponential.

If the body of the abstraction is not an application and the bound variable
occurs in the body, we need to add all the boxes for the critical points with � ,
after then eventually contract all types of x and finally add n boxes all around
the body of the term.

C(!nΘ1, . . . , !
nΘh) = A2

� (B1, Γ1, {sli(x)}i ∪ cpts, A) = 〈B ]











x : Θ1

...
x : Θh











, Γ, A1〉

S(M : τ) = 〈Γ1, B1, A, {sli(x)}i ∪ cpts〉

S(λx.M : σ → τ) =

〈

Θ1 (!nΓ, !nB,
A1

A2

n ≥ 0
, cpts

〉

sλx

(14)

Where h ≥ 1. In the case of h = 1, A2 = ∅.

Finally, if the body of the abstraction is not an application and the bound
variable does not occur in it, as in the previous case we need to box the body
with � and finally with n boxes, but now there are no types to contract but a
type (σ) to process. In this case, as there are no occurrences of x, the base and
the set of critical points are left unchanged.



� (σ) = 〈Θ, A3〉
� (B1, Γ1, cpts, A1) = 〈B, Γ, A2〉
S(M : τ) = 〈Γ1, B1, A1, cpts〉

S(λx.M : σ → τ) =

〈

Θ(!nΓ, !nB,
A2

A3

n ≥ 0
, cpts

〉

sλ

(15)

For the type synthesis of the application we need to examine six different
cases, according to whether the argument is an application itself (as in the rules
of the abstraction, if it is not an application we need to call � and add n boxes all
around of it and moreover we need to add a new critical point) and the functional
part is a variable (in this case we need to process its type), or an application
(and we need to add a critical point and impose the outermost number of bangs
of the type to be equals to 0 otherwise we can’t perform the application) or an
abstraction.

If the functional part is an abstraction and the argument is not an application,
we need to add boxes around the argument ( � (B2, Θ2, cpts2, A2) plus n1), unify
the types for a correct application (

�
(!n1Θ3, Θ1)), and finally add boxes around

the whole application. The final set of critical points is the product union d of
the set of critical point of function and argument.

�









B1]!n1B3, Γ1, cpts1 d cpts2,

A1

A3

A4

n1 ≥ 0









= 〈B, Γ, A〉

�
(!n1Θ3, Θ1) = A4

� (B2, Θ2, cpts2, A2) = 〈B3, Θ3, A3〉
S(N : σ) = 〈Θ2, B2, A2, cpts2〉
S(λx.M : σ → τ) = 〈Θ1 ( Γ1, B1, A1, cpts1〉

S((λx.M N) : τ) =

〈

!nΓ, !nB,
A

n ≥ 0
, cpts1 d cpts2

〉 s@λ

(16)

If the argument is an application itself, we don’t need to add boxes around
it, instead we need to add a new critical point ((A1

3, FVO((N1 N2)))).

�









B1]!n1B2, Γ1, cpts1 d cpts3,

A1

A2

A3

n1 ≥ 0









= 〈B, Γ, A〉

cpts3 = cpts2 ∪ {(A1
3, FVO((N1 N2)))}�

(!n1Θ2, Θ1) = A3

S((N1 N2) : σ) = 〈Θ2, B2, A2, cpts2〉
S(λx.M : σ → τ) = 〈Θ1 ( Γ1, B1, A1, cpts1〉

S((λx.M (N1 N2)) : τ) =

〈

!nΓ, !nB,
A

n ≥ 0
, cpts1 d cpts3

〉 s@λ@

(17)



If the function is a variable and the argument is not an application, we need
to add boxes around the argument and also to impose the type of x to be without
external bangs (

∑

nij
= 0) in order to perform the application.

�













B1]!n1B3, Γ1, cpts1 d cpts2,

∑

nij
= 0

A1

A3

A4

n1 ≥ 0













= 〈B, Γ, A〉

�
(!n1Θ3, Θ1) = A4

� (B2, Θ2, cpts2, A2) = 〈B3, Θ3, A3〉
S(N : σ) = 〈Θ2, B2, A2, cpts2〉

S(x : σ → τ) = 〈! � nij (Θ1 ( Γ1), B1, A1, cpts1〉

S((x N) : τ) =

〈

!nΓ, !nB,
A

n ≥ 0
, cpts1 d cpts2

〉 s@x

(18)

If the function is a variable and the argument is an application, similar to
the previous cases, we need to add a new critical point ((A1

3, FVO((N1 N2)))) and
the constraint stating that the type of x is not exponential (

∑

nij
= 0).

�













B1]!n1B2, Γ1, cpts1 d cpts3,

∑

nij
= 0

A1

A2

A3

n1 ≥ 0













= 〈B, Γ, A〉

cpts3 = cpts2 ∪ {(A1
3, FVO((N1 N2)))}�

(!n1Θ2, Θ1) = A3

S((N1 N2) : σ) = 〈Θ2, B2, A2, cpts2〉

S(x : σ → τ) = 〈! � nij (Θ1 ( Γ1), B1, A1, cpts1〉

S((x (N1 N2)) : τ) =

〈

!nΓ, !nB,
A

n ≥ 0
, cpts1 d cpts3

〉 s@x@

(19)

If the function is an application, we need to impose its type to be not ex-
ponential (

∑

nij
= 0) and to add a critical point ((

∑

ni = 0, FVO((M1 M2)))).
If the argument is not an application we need to add boxes as in the previous
cases.



�













B1]!n1B3, Γ1, cpts3 d cpts2,

∑

nij
= 0

A1

A3

A4

n1 ≥ 0













= 〈B, Γ, A〉

�
(!n1Θ3, Θ1) = A4

cpts3 = cpts1 ∪ {(
∑

ni = 0, FVO((M1 M2)))}
� (B2, Θ2, cpts2, A2) = 〈B3, Θ3, A3〉
S(N : σ) = 〈Θ2, B2, A2, cpts2〉

S((M1 M2) : σ → τ) = 〈! � nij (Θ1 ( Γ1), B1, A1, cpts1〉

S((M1 M2) N) : τ) =

〈

!nΓ, !nB,
A

n ≥ 0
, cpts3 d cpts2

〉 s@@

(20)

Finally, if both function and argument are applications, we need to add
two new critical points ((A1

3, FVO((N1 N2))) for the argument and (
∑

ni =
0, FVO((M1 M2))) for the function) and impose the function’s type not to be
exponential.

�













B1]!n1B2, Γ1, cpts3 d cpts4,

∑

nij
= 0

A1

A2

A3

n1 ≥ 0













= 〈B, Γ, A〉

cpts4 = cpts2 ∪ {(A1
3, FVO((N1 N2)))}�

(!n1Θ2, Θ1) = A3

cpts3 = cpts1 ∪ {(
∑

ni = 0, FVO((M1 M2)))}
S((N1 N2) : σ) = 〈Θ2, B2, A2, cpts2〉

S((M1 M2) : σ → τ) = 〈! � nij (Θ1 ( Γ1), B1, A1, cpts1〉

S((M1 M2) (N1 N2)) : τ) =

〈

!nΓ, !nB,
A

n ≥ 0
, cpts3 d cpts4

〉 s@@@

(21)

A.8 Type synthesis algorithm:
�

�
simply adds n boxes, eventually contracts types (remember that contraction

produces an empty set of constraints if there is only one argument) and finally



forgets the list of critical points cpts that are of no interest at this stage.

C(!nΘ1h
, . . . , !nΘkh

) = Ah

...
C(!nΘ11 , . . . , !

nΘk1) = A1

S(M : σ) =

〈

Θ,











x1 : Θ11 , . . . , x1 : Θk1 ,
...

xh : Θ1h
, . . . xh : Θkh











, A, cpts

〉

�
(M : σ) =

〈

!nΘ,











x1 :!nΘ11

...
xh :!nΘ1h











,

A
A1

...
Ah

n ≥ 0

〉

(22)


