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An extension of system F with subtyping
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Abstract
System F  is a well-known typed λ-calculus with polymorphic


types, which provides a basis for polymorphic programming
languages. We study an extension of F, called F<: (pronounced ef-sub)
that combines parametric polymorphism with subtyping.


The main focus of the paper is the equational theory of F<: , which
is related to PER models and the notion of parametricity. We study
some categorical properties of the theory when restricted to closed
terms, including interesting categorical isomorphisms. We also
investigate proof-theoretical properties, such as the conservativity of
typing judgments with respect to F.


We demonstrate by a set of examples how a range of constructs
may be encoded in F<: . These include record operations and
subtyping hierarchies that are related to features of object-oriented
languages.
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1. Introduction
System F [Gir 71] [Rey 74] is a well-known typed λ-calculus with polymorphic


types that provides a basis for polymorphic programming languages. We study an
extension of F that combines parametric polymorphism [Str 67] with subtyping. We
call this language F<: , where <: is our symbol for the subtype relation. F<: is closely
related to the language F≤  identified by Curien, and used by Curien and Ghelli
primarily as a test case for certain mathematical techniques [Ghe 90] [CG 91]. F≤ is, in
turn, a fragment of the language Fun [CW 85]. In spite of F<:'s apparent minimality, it
has become apparent that a range of constructs may be encoded in it (or in F≤); these
include many of the record operations and subtyping features of [Car 88], [CM 91] and
related work that are connected to operations used in object-oriented programming.
We illustrate some of the power of F<: in Section 3; see also [Car 91].


We have also found that the study of F<: raises semantic questions of independent
interest. A major concern in this paper is an equational theory for F<: terms. The
equational axioms for most systems of typed λ -calculi arise naturally as a
consequence of characterizing type connectives by adjoint situations (for example). In
addition, it is often the case that provable equality may be captured by a reduction
system obtained by orienting the equational axioms in a straightforward way.
However, both of these properties appear to fail for F<: . A simple example illustrates
some of the basic issues.


Consider the polymorphic type Ó(A)AîïñAîïñA. This type is commonly referred to
as Bool, since in system F and related systems there are two definable elements of this
type. These elements are written as the following normal forms:


true @   λ(A) λ(x:A) λ(y:A) x
false @   λ(A) λ(x:A) λ(y:A) y


In F<: , however, there are two additional normal forms of type Bool. These arise
because we have a maximal type Top, which has all other types as its subtypes. The
main idea behind the additional terms is that we can change the type of any argument
not used in the body of a term to Top, and still have a term of the same type (by
antimonotonicity of the left operand of îïñ with respect to <:). This gives us the
following two normal forms of type Bool.


true' @   λ(A) λ(x:A) λ(y:Top) x
false' @   λ(A) λ(x:Top) λ(y:A) y


However, true and true' are completely equivalent terms when considered at type
Bool. Specifically, for any type A, the terms true(A) and true'(A) define extensionally
equal functions of type AîïñAîïñA. Put proof-theoretically, if we take any term a
containing true with the property that when reducing a to normal form we apply each
occurrence of true to two arguments, then we may replace any or all occurrences of
true by true' and obtain a provably equal term. For this reason, it seems natural to
consider true = true', and similarly false = false', even though these terms have
different normal forms. When we add these two equations to our theory, we restore







Page 4


the pleasing property that Bool contains precisely two equivalence classes of normal
forms.


While our initial examination of the equational theory of F<: was motivated by a
vague intuition about observable properties of normal forms, our primary guide is the
PER semantics of polymorphic λ-calculus with subtyping [BL 88] [CL 90] [Ghe 90] [Sce


90]. One relevant characteristic of PER models is the parametric behavior of
polymorphic functions. Specifically, since polymorphic functions operate
independently of their type parameter, they may be considered equivalent at all their
type instances. In F<: we can state a consequence of this notion of parametricity,
namely that whenever the two type instances have a common supertype, they will be
equal when considered as elements of that supertype (see the rule (Eq appl2) in section
2.2). Hence the syntax of F<: can state, at least to some extent, the semantic notion of
parametricity investigated in [Rey 83], [Fre 91], and [MS 91]. A general principle we have
followed is to adopt axioms that express parametricity properties satisfied by PER
models, but not to capture explicitly the exact theory of PER models [Mit 90]. This
leads us to a new angle on parametricity which may prove useful in further study, and
also gives us a set of axioms that are sufficient to prove true = true', and other
expected equations, without appearing contrived to fit these particular examples.


While F<: differs from each of the λ-calculi mentioned above, several properties
of F<: transfer easily from related work; in particular, F<: differs from F≤ [CG 91]


only in the equational theory. For syntactic properties we have strong normalization
[Ghe 90]; canonical type derivations, coherence, minimum typing [CG 91]; and
confluence of the β-η-TopCollapse equational theory [CG 91a]. The PER semantics
follows easily from the work in [BL 88], [CL 90], [Ghe 90], and [Sce 90]. While an
alternative semantics could perhaps be developed in the style of [BFSS 90] and [Fre 91],
we do not explore that possibility here.


The main results of this paper are an equational theory for F<: , some proof-
theoretic properties developed in section 2 including conservativity of F<: typing over
F, a set of examples in section 3 demonstrating the expressiveness of F<: (some
reported earlier in [CL 90], and in [Ghe 90] with attribution), and in section 4 some
categorical properties of the theory when restricted to closed terms.


2. System F<:
F<: is obtained by extending F [Gir 71] [Rey 74] (see Appendix) with a notion of


subtyping (<:). This extension allows us to remain within a pure calculus. That is, we
introduce neither the basic types, nor the structured types, normally associated with
subtyping in programming languages. Instead, we show that these programming types
can be obtained via encodings within the pure calculus. In particular, we can encode
record types with their subtyping relations [Car 88].


2.1 Syntax
Subtyping is reflected in the syntax of types by a new type constant Top (the


supertype of all types), and by a subtype bound on second-order quantifiers:
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Ó(X<:A)A' (bounded quantifiers [CW 85]). Ordinary second-order quantifiers are
recovered by setting the quantifier bound to Top; we use Ó(X)A for Ó(X<:Top)A. The
syntax of values is extended by a constant top of type Top (mostly a convenience),
and by a subtype bound on polymorphic functions, λ(X<:A)a. We use λ (X)a for
λ(X<:Top)a.


Syntax


A,B ::= Types
X type variables
Top the supertype of all types
AîïñB function spaces
Ó(X<:A)B bounded quantifications


a,b ::= Values
x value variables
top the canonical value of type Top
λ(x:A)b functions
b(a) applications
λ(X<:A)b bounded type functions
b(A) type applications


The îïñ operator associates to the right. The scoping of λ and Ó extends to the right as
far as possible. Types and terms can be parenthesized.
 A subtyping judgment is added to F 's judgments. Moreover, the equality
judgment on values is made relative to a type; this is important since values in F<: can
have many types, and two values may or may not be equivalent depending on the type
that those values are considered as possessing (see, for example, the rule (Eq collapse)


in section 2.2).


Judgments


∫ E env E is a well-formed environment
E ∫ A type A is a type
E ∫ A <: B A is a subtype of B
E ∫ a : A a has type A
E ∫ a óïñ b : A a and b are equal members of type A


We use dom(E) for the set of variables defined by an environment E.
As usual, we identify terms up to renaming of bound variables; that is, using


B{XóïôC} for the substitution of C for X in B, and FV(-) for sets of free variables:


Ó(X<:A)B 7  Ó(Y<:A) B{XóïôY} where  Y Ì FV(B)
λ(x:A)b 7  λ(y:A) b{xóïôy} where  y Ì FV(b)
λ(X<:A)b 7  λ(Y<:A) b{XóïôY} where  Y Ì FV(b)


These identifications can be made directly on the syntax; that is, without knowing
whether the terms involved are the product of formal derivations in the system. By







Page 6


adopting these identifications, we avoid the need of a type equivalence judgment for
quantifier renaming.


Environments, however, are not identified up to renaming of variables in their
domains; environment variables are kept distinct by construction. A more formal
approach would use de Bruijn indices for free and bound variables [deB 72].


2.2 Rules
The inference rules of F<: are listed below; the only essential difference between


these and the ones of F≤ [Ghe 90] [CG 91] is in the more general (Eq appl2) rule. We now
comment on the most interesting aspects of the rules. (See also the discussion about
(Eq appl2) in section 2.4.)


The subtyping judgment, E ∫  A <: B, is, for any E, a reflexive and transitive
relation on types with a subsumption property; that is, a member of a type is also a
member of any supertype of that type. Every type is a subtype of Top. The function
space operator îïñ is antimonotonic in its first argument and monotonic in its second.
A bounded quantifier is antimonotonic in its bound and monotonic in its body under
an assumption about the free variable.


The rules for the typing judgment, E ∫ a : A, are the same as the corresponding
rules in F, except for the extension to bounded quantifiers. However, additional
typing power is hidden in the subsumption rule, which allows a function to take an
argument of a subtype of its input type.


Most of the equivalence rules, E ∫ a óïñ b : A, are unremarkable. They provide
symmetry, transitivity, congruence on the syntax, and β and η equivalences. Two
rules, however, stand out. The first, (Eq collapse) (also called the Top-collapse rule),
states that any two terms are equivalent when “seen” at type Top; since no operations
are available on members of Top, all values are indistinguishable at that type. The
second, (Eq appl2), is the congruence rule for polymorphic type application, giving
general conditions under which two expressions b'(A') and b"(A") are equivalent at a
type C. This rule has many intriguing consequences, which will be amply explored
throughout this work. (We occasionally write  E  ∫ A,B<:C  for  E  ∫ A<:C ∧  E  ∫
B<:C, and so on.)


 Environments


(Env ) (Env x) (Env X)


E ∫ A type    xÌdom(E) E ∫ A type    XÌdom(E)
  ————  —————————– —————————–


∫  env ∫ E,x:A env ∫ E,X<:A env


Types


(Type X) (Type Top)


∫ E,X<:A,E' env ∫ E env
———————–  —————


E,X<:A,E' ∫ X type E ∫ Top type


(Type îïñ) (Type Ó)
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E ∫ A type    E ∫ B type E,X<:A ∫ B type
—————————— ————————


E ∫ AîïñB type E ∫ Ó(X<:A)B type


Subtypes


(Sub refl) (Sub trans)


E ∫ A type E ∫ A<:B    E ∫ B<:C
  —————  —————————–


E ∫ A <: A E ∫ A <: C


(Sub X) (Sub Top)


∫ E,X<:A,E' env E ∫ A type
 ———————— —————


E,X<:A,E' ∫ X<:A E ∫ A <: Top


(Sub îïñ) (Sub Ó)


E ∫ A'<:A    E ∫ B<:B' E ∫ A'<:A    E,X<:A' ∫ B<:B'
 ——————————  —————————————


E ∫ AîïñB <: A'îïñB' E ∫ Ó(X<:A)B <: Ó(X<:A')B'


Values


(Subsumption) (Val x) (Val top)


E ∫ a:A    E ∫ A<:B ∫ E,x:A,E' env ∫ E env
———————— ——————–  —————


E ∫ a : B E,x:A,E' ∫ x:A E ∫ top : Top


(Val fun) (Val appl)


E,x:A ∫ b:B E ∫ b : AîïñB    E ∫ a:A
 ————————  ——————————


E ∫ λ(x:A)b : AîïñB E ∫ b(a) : B


(Val fun2) (Val appl2)


E,X<:A ∫ b:B E ∫ b : Ó(X<:A)B    E ∫ A'<:A
 ———————————  —————————————


E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A') : B{XóïôA'}


Equivalence


(Eq symm) (Eq trans)


E ∫ a óïñ b : A E ∫ a óïñ b : A    E ∫ b óïñ c : A
 —————–  —————————————


E ∫ b óïñ a : A E ∫ a óïñ c : A


(Eq x) (Eq collapse)


E ∫ x:A E ∫ a : Top    E ∫ b : Top
  ——————  ——————————


E ∫ x óïñ x : A E ∫ a óïñ b : Top


(Eq fun) (Eq appl)


E,x:A ∫ bóïñb' : B E ∫ bóïñb' : AîïñB    E ∫ aóïña' : A
——————————————  ——————————————


E ∫ λ(x:A)b óïñ λ(x:A)b' : AîïñB E ∫ b(a) óïñ b'(a') : B


(Eq appl2)


(Eq fun2) E ∫ b'óïñb" : Ó(X<:A)B    E ∫ A',A"<:A
E,X<:A ∫ bóïñb' : B E ∫ B{XóïôA'}, B{XóïôA"} <: C


—————————————————— —————————————————


E ∫ λ(X<:A)b óïñ λ(X<:A)b' : Ó(X<:A)B E ∫ b'(A') óïñ b"(A") : C
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(Eq eta) (Eq eta2)


E ∫ b óïñ b' : AîïñB    yÌdom(E) E ∫ b óïñ b' : Ó(X<:A)B    YÌdom(E)
——————————————  ————————————————


E ∫ λ(y:A)b(y) óïñ b' : AîïñB E ∫ λ(Y<:A)b(Y) óïñ b' : Ó(X<:A)B


(Eq beta) (Eq beta2)


E,x:A ∫ b óïñ b' : B    E ∫ a óïñ a' : A E,X<:A ∫ b óïñ b':B    E ∫ A' <: A
———————————————  ———————————————————


E ∫ (λ(x:A)b)(a) óïñ b'{xóïôa'} : B E ∫ (λ(X<:A)b)(A') óïñ b'{XóïôA'} : B{XóïôA'}


2.3 Basic properties
We now state some basic lemmas about F<: derivations. Most of these are proven


by (simultaneous) induction on the size of the derivations; the proofs are long, but
straightforward if carried out in the order indicated. We conclude the section with an
application of these lemmas, showing that typing is preserved under β-η-reductions.


Notation
Let ϑ  stand for either C type, C<:C', c:C, or cóïñc':C.


Lemma (Renaming)
Assume  YÌdom(E,X<:D,E')


∫ E,X<:D,E' env  öõú  ∫ E,Y<:D,E'{XóïôY} env (equal-size derivations)
E,X<:D,E' ∫ ϑ   öõú  E,Y<:D,E'{XóïôY} ∫ ϑ{XóïôY} (equal-size derivations)


Assume  yÌdom(E,x:D,E')
∫ E,x:D,E' env  öõú  ∫ E,y:D,E' env (equal-size derivations)
E,x:D,E' ∫ ϑ   öõú  E,y:D,E' ∫ ϑ{xóïôy} (equal-size derivations)


Lemma (Implied judgments)
(ϑ /env) ∫ E,F env    öõú    ∫ E env


E,F ∫ ϑ     öõú    ∫ E env
(env/type) ∫ E,X<:D,E' env    öõú    E ∫ D type


∫ E,x:D,E' env    öõú    E ∫ D type


Lemma (Bound change)
∫ E,X<:D',E' env,   E ∫ D type   öõú    ∫ E,X<:D,E' env
E,X<:D',E' ∫ C type,   E ∫ D type   öõú    E,X<:D,E' ∫ C type


Lemma (Weakening)
Let ß stand for either X<:D or x:D.
Assume ∫ E,ß env, and X,xÌdom(E')


∫ E,E' env  öõú  ∫ E,ß,E' env
E,E' ∫ ϑ   öõú  E,ß,E' ∫ ϑ


Lemma (Multiple weakening)
Assume  ∫ E,F env  and  dom(F)∩dom(E')=.


∫ E,E' env  öõú  ∫ E,F,E' env
E,E' ∫ ϑ   öõú  E,F,E' ∫ ϑ


Proof Induction on the length of F. M
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Lemma (Implied judgments, continued)
(sub/type) E ∫ C<:C'    öõú    E ∫ C type,   E ∫ C' type


Lemma (Bound weakening)
Let <ß,ß'> stand for either <X<:D,X<:D'> or <x:D,x:D'>.
Assume  E ∫ D'<:D.


∫ E,ß,E' env  öõú  ∫ E,ß',E' env
E,ß,E' ∫ ϑ   öõú  E,ß',E' ∫ ϑ


Lemma (Type substitution)
Assume E ∫ D'<:D; then


∫ E,X<:D,E' env  öõú  ∫ E,E'{XóïôD'} env
E,X<:D,E' ∫ ϑ   öõú  E,E'{XóïôD'} ∫ ϑ{XóïôD'}


Lemma (Value substitution)
Assume E ∫ d:D; then


∫ E,x:D,E' env  öõú  ∫ E,E' env
E,x:D,E' ∫ ϑ   öõú  E,E' ∫ ϑ{xóïôd}


Lemma (Value strengthening)
AssumexÌFV(ϑ); then, for ϑ ≠ cóïñc':C.


∫ E,x:D,E' env  öõú  ∫ E,E' env
E,x:D,E' ∫ ϑ   öõú  E,E' ∫ ϑ


Lemma (Implied judgments, continued)
(val/type) E ∫ c : C  öõú  E ∫ C type,
(eq/val) E ∫ cóïñc' : C  öõú  E ∫ c : C,   E ∫ c' : C,


Lemma (Eq subsumption)
E ∫ cóïñc' : C,   E ∫ C<:D    öõú    E ∫ cóïñc' : D


Proof
By sub/type lemma,  E ∫ C type. Take xÌdom(E).
Then ∫ E,x:C env  and  E,x:C ∫ x:C.
By weakening lemma E,x:C ∫ C<:D
By (Subsumption) E,x:C ∫ x:D, and by (Eq x), E,x:C ∫ xóïñx:D.
By (Eq fun), E ∫ λ(x:C)xóïñλ(x:C)x : CîïñD.
By hypothesis and (Eq appl), E ∫ (λ(x:C)x)(c)óïñ(λ(x:C)x)(c') : D
By (Eq beta), E ∫ (λ(x:C)x)(c)óïñc' : D.
By (Eq symm) (Eq beta), E ∫ (λ(x:C)x)(c')óïñc : D.
Hence by (Eq symm) (Eq trans), E ∫ cóïñc' : D. M


Lemma (Implied judgments, continued)
(val/eq) E ∫ c : C    öõú    E ∫ cóïñc : C


Lemma (Congruence)
E ∫ dóïñd' : D  ∧   E,x:D,E' ∫ c:C  öõú


E,E' ∫ c{xóïôd}óïñc{xóïôd'} : C


Lemma (Exchange)
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Let ß stand for either X<:D or x:D.
Let ß' stand for either X'<:D' or x':D'.
Assume ∫ E,ß' env.


∫ E,ß,ß',E' env  öõú  ∫ E,ß',ß,E' env
E,ß,ß',E' ∫ ϑ   öõú  E,ß',ß,E' ∫ ϑ


Lemma (Substitution exchange)
Let ß stand for either x':D' or X'<:D'.


∫ E,X<:D,ß,E' env  öõú  ∫ E,ß{XóïôD},X<:D,E' env
E,X<:D,ß,E' ∫ C type  öõú  E,ß{XóïôD},X<:D,E' ∫ C type


The following two lemmas draw conclusions about the shape of terms and
derivations from the fact that certain subtyping and typing judgments have been
derived.


Lemma (Subtyping decomposition)
¢¢¢¢ If E ∫ A<:X, then A7Y1 for some type variable Y1


and either Y17X, or for some n≥1,  Y1<:Y2ÏE ... Yn<:XÏE.
¢ If E,X<:B,E' ∫ X<:A, then either A7X or E,X<:B,E' ∫ B<:A.
¢ If E ∫ Top<:A, then A7Top.
¢ If E ∫ B'îïñB"<:A,  then either A7Top


or A7A'îïñA", E ∫ A'<:B' and E ∫ B"<:A".
¢ If E ∫ A<:B'îïñB",  then


either A7A'îïñA" for some A',A", with E ∫ B'<:A' and E ∫ A"<:B"
or A7X1 and for some A',A",n≥1:   X1<:X2 Ï E .. Xn<:A'îïñA" Ï E


with E ∫ B'<:A' and E ∫ A"<:B".
¢ If E ∫ Ó(X<:B')B"<:A, then either A7Top


or A7Ó(X<:A')A", E ∫ A'<:B' and E,X<:A' ∫ B"<:A".
¢ If E ∫ A<:Ó(X<:B')B",  then


either A7Ó(X<:A')A" for some A',A",
with E ∫ B'<:A' and E,X<:B' ∫ A"<:B"


or A7X1 and for some A',A",n≥1:   X1<:X2 Ï E .. Xn<:Ó(X<:A')A" Ï E
with E ∫ B'<:A' and E,X<:B' ∫ A"<:B".


Proof (sketch)
All cases are proven by induction on the size of the derivations, in order to


circumvent the (Sub refl) and (Sub trans) rules that do not follow the structure of terms.
Otherwise the proofs are straightforward. M


Lemma (Typing decomposition)
¢¢¢¢  If E,x:D,E' ∫ x:C, then  E ∫ D<:C.
¢  If E ∫ top:A, then  A7Top.
¢  If E ∫ λ(x:B')b : A, then either A7Top,


or,  for some A',A",B",   A7A'îïñA"
with  E ∫ A'<:B',  E ∫ B"<:A",  and E,x:B' ∫ b : B".


¢  If E ∫ b(c) : B" then for some B',
E ∫ b : B'îïñB" and E ∫ c : B'.
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¢  If E ∫ λ(X<:B')b : A, then either A7Top,
or,  for some A',A",B",  A7Ó(X<:A')A"
with  E ∫ A'<:B',  E,X<:A' ∫ B"<:A", and  E,X<:B' ∫ b : B".


¢  If E ∫ b(C) : D then for some B',B",X,
E ∫ C<:B',  E ∫ B"{XóïôC} <: D,  and  E ∫ b : Ó(X<:B')B".


Proof (sketch)
All cases are proven by induction on the size of the derivations, in order to


circumvent the (Subsumption) rule that does not follow the structure of terms.
Otherwise the proofs are straightforward. M


We conclude with a proposition about the preservation of typing under β and η
reduction. The second-order η case is by far the hardest, and it requires the following
lemma about the elimination of unused free variables (FV ).


Lemma (Non-occurring type variable)
If XÌFV(c,E') and  E,X<:D,E' ∫ c : C then for some C0 with XÌFV(C0)


E,X<:D,E' ∫ c : C0 and  E,X<:D,E' ∫ C0<:C
Proof


By induction on the derivation of E,X<:D,E' ∫ c : C. The interesting cases are (Val


appl) and (Val appl2), where we use the subtyping decomposition lemmas for îïñ and Ó.
We show the (Val appl2) case, where we have:


c7b(A'), C7B{YóïôA'} (forYÌdom(E,X<:D,E'))
E,X<:D,E' ∫ b : Ó(Y<:A)B,     E,X<:D,E' ∫ A'<:A.


Since XÌFV(b), by induction there is a type AB0 with XÌFV(AB0), and
E,X<:D,E' ∫ b : AB0,  E,X<:D,E' ∫ AB0<:Ó(Y<:A)B.


By the (subtyping decomposition lemma) AB07Ó(Y<:A0)B0 with:
either AB07Ó(Y<:A0)B0 for some A0,B0,


with E,X<:D,E' ∫ A<:A0 and E,X<:D,E',Y<:A0 ∫ B0<:B.
Hence, XÌFV(Ó(Y<:A0)B0), E,X<:D,E' ∫ b : Ó(Y<:A0)B0


or AB07X1 and for some A0,B0,n≥1:
X1<:X2 Ï E,X<:D,E'   ...   Xn<:Ó(Y<:A0)B0 Ï E,X<:D,E'


with E,X<:D,E' ∫ A<:A0 and E,X<:D,E',Y<:A0 ∫ B0<:B.
If Xn<:Ó(Y<:A0)B0 Ï E;   XÌFV(Ó(Y<:A0)B0) since X comes after E.
If Xn<:Ó(Y<:A0)B0 7 X<:D;   XÌFV(D7Ó(Y<:A0)B0).
If Xn<:Ó(Y<:A0)B0 Ï E';   XÌFV(Ó(Y<:A0)B0) by the hyp. XÌFV(E').
By n uses of (Sub X) and (Subsumption), E,X<:D,E' ∫ b : Ó(Y<:A0)B0.


Hence, in both cases, by (Sub Trans), E,X<:D,E' ∫ A' <: A0,
and E,X<:D,E' ∫ b(A') : B0{YóïôA'}, with  XÌFV(B0{YóïôA'}),
Moreover,  from E,X<:D,E',Y<:A0 ∫ B0<:B
by (bound weakening lemma) E,X<:D,E',Y<:A' ∫ B0<:B
and by (type substitution lemma) E,X<:D,E' ∫ B0{YóïôA'}<:B{YóïôA'}.
Hence we can take C0 7 B0{YóïôA'}.    M


Proposition (Preservation of typing under β-η-reductions)
(β1) E ∫ (λ(x:B)b)(c) : A  öõú  E ∫ b{xóïôc} : A
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(η1) E ∫ λ(x:B)c(x) : A, xÌFV(c)  öõú  E ∫ c : A
(β2) E ∫ (λ(X<:B)b)(C) : A  öõú  E ∫ b{XóïôC} : A
(η2) E ∫ λ(X<:B)c(X) : A, XÌFV(c)  öõú  E ∫ c : A


Proof
The first three cases are obtained easily by applying the appropriate


decomposition lemmas, along with weakening, bound weakening, value and type
substitution, and value strengthening.


The (η2) case goes as follows. From E  ∫ λ(X<:B)c(X) : A by the (typing
decomposition lemma) for fun2 and appl2, we obtain (omitting the easy case of
A7Top ), for some A',A",B",Y,C',C":


A7Ó(X<:A')A"  with   E ∫A'<:B',   E,X<:A' ∫B"<:A",  and   E,X<:B' ∫c(X) : B"
E,X<:B' ∫c : Ó(Y<:C')C"  with   E,X<:B' ∫X<:C'  and   E,X<:B' ∫C"{YóïôX} <:


B".
Since XÌFV(c), by the (non-occurring type variable) lemma there is a D with:


XÌFV(D) and  E,X<:B' ∫ c : D,   E,X<:B' ∫ D <: Ó(Y<:C')C"
Using the (subtyping decomposition lemma) on D we obtain two subcases that, for
some D',D", both lead to:


E,X<:B' ∫ c : Ó(Y<:D')D",     XÌFV(Ó(Y<:D')D")
with  E,X<:B' ∫ C'<:D'   and  E,X<:B',Y<:C' ∫ D"<:C"


By the (type strengthening lemma) from E,X<:B' ∫ c : Ó(Y<:D')D":
E ∫ c : Ó(Y<:D')D" i.e.   E ∫ c : Ó(X<:D')D"{YóïôX}


Now, to obtain the final goal E ∫ c : Ó(X<:A')A" via subsumption, we need to show
only that E ∫ Ó(X<:D')D"{YóïôX}<:Ó(X<:A')A", i.e. that:


(1) E ∫A'<:D'
(2) E,X<:A' ∫D"{YóïôX}<:A"


For (1) we use the (type substitution lemma) to get:
E ∫B'<:C'{XóïôB'}   (from E,X<:B' ∫X<:C')
E ∫C'{XóïôB'}<:D'{XóïôB'}7D' (from E,X<:B' ∫ C'<:D')


Hence E  ∫ A'<:B'<:C'{XóïôB'} <: D'.
For (2) we use the (bound weakening lemma) twice to get:


E,X<:A',Y<:X ∫ D" <: C"
(from  E,X<:B',Y<:C' ∫ D" <: C",    E,X<:B' ∫ X<:C',    E ∫ A'<:B')


from this by the (type substitution lemma)
E,X<:A' ∫ D"{YóïôX} <: C"{YóïôX}


We also have, by the (bound weakening lemma):
E,X<:A' ∫ C"{YóïôX} <: B" (from  E,X<:B' ∫ C"{YóïôX} <: B",   E ∫ A'<:B')


Finally:  E,X<:A' ∫ D"{YóïôX} <: C"{YóïôX} <: B" <: A".    M


Note that this proposition is nontrivial; for example, the (β1) case does not follow
simply from the (Eq beta) rule and the eq/val lemma. Moreover, the derivation of E ∫
b{xóïôc} : A will have, in general, quite a different shape than the derivation of E ∫
(λ(x:B)b)(c) : A.
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2.4 Derived rules
Most of the lemmas in the previous section can be written down as derived


inference rules. Here we discuss some derived rules of special significance.
First, the eq-subsumption lemma in the previous section gives us a very


interesting rule that lifts subsumption to the equality judgment. We remark that this is
proven via the (Eq beta) rule.


 (Eq subsumption)


E ∫ a óïñ a' : A    E ∫ A <: B
————————————


E ∫ a óïñ a' : B


Note that, in general, it is not true that  E ∫ a óïñ a' : B and E ∫ A <: B imply E ∫
a óïñ a' : A.


The following two lemmas concern the equivalence of functions modulo domain
restriction; the first one will find a useful application in section 3.1.


Lemma (Domain restriction)
If f: AîïñB, then f is equivalent to its restriction f |A' to a smaller domain A'<:A,


when they are both seen at type A'îïñB. That is:


(Eq fun')


E ∫ A'<:A    E ∫ B<:B'    E,x:A ∫ bóïñb' : B
——————————————————


E ∫ λ(x:A)b óïñ λ(x:A')b' : A'îïñB'


Proof (sketch)
First derive E ∫ λ(y:A')(λ(x:A)b)(y)óïñλ(x:A')b' : A'îïñB' via (Eq-subsumption)


and (Eq beta). Then pass from E ∫ λ(x:A)b óïñ λ(x:A)b : AîïñB  to
E ∫ λ(x:A)b óïñ λ(x:A)b : A'îïñB' by (Eq subsumption), and to
E ∫ λ(y:A')(λ(x:A)b)(y) óïñ λ(x:A)b : A'îïñB' by (Eq eta).
Conclude by transitivity. M


Lemma (Bound restriction)
If f: Ó(X<:A)B, then f is equivalent to its restriction f |A' to a smaller bound


A'<:A, when they are both seen at type Ó(X<:A')B. That is:


(Eq fun2')


E ∫ A'<:A    E,X<:A' ∫ B<:B'    E,X<:A ∫ bóïñb' : B
—————————————————————


E ∫ λ(X<:A)b óïñ λ(X<:A')b' : Ó(X<:A')B'


Proof
Similar to the previous lemma, using (Eq beta2) and (Eq eta2). M


We now turn to the (Eq appl2) rule. This rule asserts that if a polymorphic function
b : Ó(X<:A)B is instantiated at two types A'<:A and A"<:A, then both instantiations
evaluate to the same value with respect to any result type that is an upper bound of
B{XóïôA'} and B{XóïôA"}.


(Eq appl2)


E ∫ b'óïñb" : Ó(X<:A)B    E ∫ A'<:A    E ∫ A"<:A
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E ∫ B{XóïôA'}<:C    E ∫ B{XóïôA"}<:C
—————————————————————


E ∫ b'(A') óïñ b"(A") : C


Note that this rule asserts that the result of b(A) is independent of A, in the proper
result type.


A simpler derived rule (used in F≤ [CG 91]) is obtained by setting A'=A":


(Eq appl2 A'=A")


E ∫ b'óïñb" : Ó(X<:A)B    E ∫ A'<:A
——————————————


E ∫ b'(A') óïñ b"(A') : B{XóïôA'}


However, the (Eq appl2) rule is most useful when A'≠A" and we can find a
nontrivial upper bound to B{XóïôA'} and B{XóïôA"}. This fact motivates the following
derived rule, which is often used in practice.


Denote by B{X -óïôC,X +óïôD} the substitution of C for the negative occurrences of
X in B, and of D for the positive ones. Take A'<:A" (<: A), then we have:


  B{XóïôA'} 7 B{X -óïôA',X +óïôA'} <: B{X -óïôA',X +óïôA"}
  B{XóïôA"} 7 B{X -óïôA",X +óïôA"} <: B{X -óïôA',X +óïôA"}


(A proof of this may be found in [Ghe 90], section 14.3.) Hence, for A'<:A"<:A we have
a (nontrivial) common supertype for B{XóïôA'} and B{XóïôA"}. This fact then justifies
the rule:


(Eq appl2 -+)


E ∫ b'óïñb" : Ó(X<:A)B    E ∫ A'<:A"<:A
———————————————————


E ∫ b'(A') óïñ b"(A") : B{X -óïôA',X +óïôA"}


This rule is in fact a special case of dinaturality of type application [BFSS 90],
where the dinaturality is required only with respect to coercions  A'<:A" , for all A',
A" subtypes of A. We have the diagram:


B{XóïôA'}


Ó(X<:A)B         B{X -óïôA',X +óïôA"}


B{XóïôA"}


The two arrows on the left are the A' and A" instances of generic type application
x(X), where x is a variable of type Ó(X<:A)B, and B might have the type variable X
free. The two arrows on the right are coercions induced by  A'<:A".  Here Ó(X<:A)B
is constant in X, so the coercion A'<:A" has no effect on this type.  Hence the diagram
above is just a brief version of:
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Ó(X<:A)B    B{XóïôA'}
id


Ó(X<:A)B B{X -óïôA',X +óïôA"}


id
                  Ó(X<:A)B    B{XóïôA"}


where now the two horizontal arrows are the A' and A" instances of x(X). In the
terminology of [BFSS 90, p.42], the family given by {x(X)|X<:A} is dinatural in the
coercions.


We conclude this section with an application of (Eq appl2), which is used in
sections 3.3 and 4.


Proposition (Eq-substitution)
Assume E,X<:A,x: S ∫ b:B and X positive in S and B.
If E ∫ A1,A2 <: A, E ∫ s1:S{XóïôA1}, E ∫ s2:S{XóïôA2}, E ∫ s1óïñs2:S{XóïôA}
then  E ∫ b{XóïôA1,xóïôs1}óïñb{XóïôA2,xóïôs2}: B{XóïôA}


Proof
Let M @ λ(X<:A)λ(x:S)b. Then E ∫ M:Ó(X<:A)SîïñB. Now prove:
(1) E ∫ M(A1)(s1) óïñ M(A)(s1) : B{XóïôA},


by (Eq appl2) and (Eq appl), since X is positive in S and B.
(2) E ∫ M(A2)(s2) óïñ M(A)(s2) : B{XóïôA}


similarly to (1).
(3) E ∫ M(A)(s1) óïñ M(A)(s2) : B{XóïôA}


by (Eq appl2) and (Eq appl), since E ∫ s1óïñs2:S{XóïôA}.
Conclude by (Eq trans), (Beta2), and (Beta). M


The proposition can be easily generalized to the case where there are several variables
x1: S1,…, xn: Sn  (X  positive in all of them) and terms E  ∫ s1:-
S{XóïôA1},…, E ∫ sn:S{XóïôAn},  w i t h  E   ∫  A1 , … , A n   < :   A  and
E  ∫ s1óïñ…óïñsn:S{XóïôA}.


2.5 PER semantics
For the PER semantics, the reader can consult [BL 88], [CL 90], [Ghe 90], and [Sce


90]. The interpretation of F<: in PER is explained in those papers, except that the rule
(Eq appl2) must be shown sound. The proof rests on the fact that, given types
Ó(X<:A)B and A'<:A and denoting with [_] the interpretation function for types, we
have [Ó(X<:A)B] ⊆  [B{XóïôA'}]. From this, and the observation that the interpretation
for terms is given by erasing the type information, the conclusion is straightforward.


2.6 Conservativity of typing
Besides the presence of subtypes, the main new feature of F<: with respect to F


lies in its equational theory, which extends the standard β-η equality in two directions,
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by adding a terminal type Top and introducing the rule (Eq appl2). Besides nonessential
syntactic variants, the language of F is included in F<:’s language and thus it makes
sense to investigate whether F<: is conservative over F. We may, however, consider
also an “intermediate” system between F and F<: , with the property that the language
inclusion of F into F<: “splits”.


The system we are interested in is F1 , obtained by adding to F the type constant
Top, together with rule (Eq collapse) for making Top a terminal type. If we want to
compare F<: with its underlying subtype-free systems, we need a system such as F1 ,
and not F , since it is well known that the terminal type is not definable in F.
Moreover, the conservativity result we will prove with respect to F holds because F<:
proves only trivial subtype judgments between F types, while the situation for F1 is
more complex and its analysis sheds some more light on the structure of subtype
proofs.


First of all, the equational theory (óïñ) of F<: is not conservative over F, because
of the rule (Eq appl2). Consider, for example:


Proposition
E ∫ B type,   E ∫ c : Ó(X)XîïñB,   E ∫ a : A


öõú   E ∫ c(Top)(top) óïñ c(A)(a) : B
Proof


E ∫ c(Top)(top) óïñ c(Top)(a) : B val/eq lemma (Eq appl2) (Eq collapse) (Eq appl)


E ∫ c(Top)(a) óïñ c(A)(a) : B val/eq lemma (Eq appl2) (Eq appl)


E ∫ c(Top)(top) óïñ c(A)(a) : B (Eq trans). M


By applying this fact twice via (Eq trans) we can show:


y : Ó(X)XîïñBool ∫ y(Bool)(true) óïñ y(Bool)(false) : Bool


which is an F-judgment equating two different β-η-normal forms. It is well known
that no such judgment is derivable in F. A further application of (Eq fun) produces two
closed terms with the same property.
 As for the typing theory, however, F<:’s rules are designed to maintain and
carefully generalize those of its subsystems. Writing ∫F for derivations in F, ∫1  for
derivations in F1 , and ∫<: for derivations in F<: , we can prove the following result.


Theorem
(i) If E ∫<: a : A, where E, a, and A are in the language of F,


then E ∫F a : A.
(ii) If E ∫<: a : A, where E, a, and A are in the language of F1 , then there


exists an F1-term, a1, such that  E ∫1 a1 : A  and  E ∫<: aóïña1 : A.


The proof of these statements (inspired by some results in [Ghe 90]) requires a detour
on normal form proofs in F<: . These normal forms are studied in [CG 91] for a slightly
different system, but they share with F<: the same typing judgments. The reason for
the detour is that trivial proofs by induction on the derivation of E ∫<: a : A do not
work, since F<: has “cut rules” (e.g. (Subsumption), (Sub Trans), or (Val appl)) that may
introduce non-F (or non-F1) types.
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2.6.1 Normal and minimal proofs in F<:
In F<: a single typing judgment may have many proofs. The non-determinism of


the proof search arises from the freedom in the order in which the rules (Subsumption)


and (Sub trans) can be applied. However, as showed in [CG 91], this freedom does not
provide additional proving power. In subtype proofs we can do without (Sub trans)


except for the uses where the first (i.e., smallest) type is a variable appearing in the
environment. In type proofs, we can restrict the use of (Subsumption) so as to derive
only the least type for a given term, which may be then given a larger type with a
single, last application of (Subsumption). These ideas are the inspiration for the notions
of normal and minimal normal proofs.


Subtype proofs
A normal form proof of E ∫<: A<:B is a proof E ∫nf A<:B obtained in the formal


system ∫nf consisting of the rules (Sub Top), (Sub îïñ), (Sub Ó) (where ∫<: is replaced by
∫nf ), plus the following rules:


(Sub Refl-X) (Sub Trans-X)


E ∫nf X type E',X<:B,E" ∫nf B <: A A?Top
————— —————————


E ∫nf X <: X E',X<:B,E" ∫nf X <: A


Type proofs
Normal form proofs and minimal normal form proofs of E  ∫< :  a : A a r e


simultaneously defined as follows.
A normal form proof E ∫nf a : A is either (1) a minimal normal form proof E ∫mnf


a : A, or (2) a minimal normal form proof followed by a single nontrivial use of
subsumption; in this case the final step has the form:


E ∫mnf a : A'     E ∫nf A' <: A where A'?A.
————————————


E ∫nf a : A


A minimal normal form proof E ∫mnf a : A  is a proof using only the rules: (Val x),
(Val top), (Val fun), (Val fun2) (where ∫<: is replaced by ∫mnf), or one of the two rules
below, which use the following notation:


° E(X)7A  if  E7E1,X<:A,E2.
° E*(C)7C  if C is not a variable;


E*(X)7E(X)  if  E(X) is not a variable,
E*(X)7E1*(E(X))  if  E(X) is a variable and E7E1,X<:A,E2.


(Val appl-min)


E ∫mnf b : C     E ∫nf a : A E*(C)7AîïñB
———————————


E ∫mnf b(a) : B


(Val appl2-min)


E ∫mnf b : C     E ∫nf A' <: A E*(C)7Ó(X<:A)B
————————————


E ∫mnf b(A') : B{XóïôA'}
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Proposition
For any provable judgment E ∫<: a : A, there exists a unique derivation
of E ∫nf a : A.


Proof  [CG 91]  M


2.6.2 F<: typing is conservative over F typing
It is not difficult to see F as a subsystem of F<: . We can define a translation


function τ over the language of F so that:


τ  (ÓX.A) 7 Ó(X<:Top) τ  (A)
τ  (ΛX.M) 7 λ(X<:Top) τ  (M)


and which is trivially defined on all the other constructs. A well-formed environment
E in F consists of a collection E17X1,…,Xh of type variables and a list E27x1: S1, …,
xh: Sh of type assumptions, where at most the type variables in E1 can appear free.
Then:


τ  (E) 7 X1<:Top, …, Xh<:Top, x1:τ  (S1), …, xh:τ  (Sh).


From this, it is almost obvious that F-derivations E ∫F a:A and E ∫F  aóïña':A are
mapped to F<:-derivations τ  (E) ∫ τ  (a):τ  (A)  and τ  (E) ∫ τ  (a)óïñτ  (a'):τ  (A) with the
following properties. The resulting derivations never use (Subsumption) (and thus
subtyping rules) or Top rules, and (Eq appl2) is always applied in its special case when
A'7A" and C7B{XóïôA'}. In the following we will argue directly in the language of
F<: (thus dispensing with τ).


Lemma
Let E be an F-environment, and let A and B be F-types.
E ∫<: A<:B  iff  A7B.


Proof
The “if” direction is a routine induction. For the other direction, take the normal


form proof of E ∫<: A<:B. Then, (Sub îïñ) and (Sub Ó) proceed by induction, and (Sub


Refl-X) is trivial. For (Sub Trans-X), E  ∫nf X<:A must have been derived from
E',X<:Top,E" ∫nf Top <: A, but the latter implies A7T o p by the subtyping
decomposition lemma, which is absurd since A is an F-type. M


Lemma
Let E be an F-environment, a be an F-term, and let E ∫mnf a : A. Then A is an F-


type and E ∫F a : A.
Proof


By induction on the derivation E ∫mnf a : A.


(Val x) E',x:A,E" ∫mnf x : A.
Then A is an F-type, since E is an F-environment.


(Val fun) The last rule is:


E,x:A ∫mnf b : B
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——————————


E ∫mnf λ(x:A)b : AîïñB


By hypothesis, λ(x:A)b is an F-term and therefore A is an F-type.
By induction hypothesis, B is an F-type and E,x:A ∫F b : B.


(Val fun2) is analogous to (Val fun).


(Val appl-min) The last rule is:


E ∫mnf b : C     E ∫nf a : A E*(C)7AîïñB
———————————


E ∫mnf b(a) : B


Consider first the premise E ∫mnf b : C.
We show that C cannot be a variable. Indeed, if it were the case that
C7X, then E*(C)7E(X)7Top, since E is an F-environment, contrary to
the side-condition that E*(C) has to be a function type.
Therefore C is not a variable, and E*(C)7C7AîïñB.
By induction hypothesis, AîïñB is an F-type and E ∫F b : AîïñB.
Consider now the proof E ∫nf a : A. We claim it is actually
a minimal normal form proof. In fact, we already proved that AîïñB is
an F-type; hence A is an F-type. If it were the case that the last step of
the proof E ∫nf a : A is


E ∫mnf a : A'     E ∫nf A' <: A
—————————————


E ∫nf a : A


with A'?A, then, by induction hypothesis, A' would be an F-type
and A'7A by the previous lemma. Hence the proof E ∫nf a : A is a
minimal normal proof E ∫mnf a : A  and, by induction hypothesis,
E ∫F a : A.


(Val appl2-min) The last rule is:


E ∫mnf b : C     E ∫nf A' <: A E*(C)7Ó(X<:A)B
————————————


E ∫mnf b(A') : B{XóïôA'}


Note first that since b(A') is an F-term, A' is an F-type. As in the
previous case, C cannot be a variable, and C7Ó(X<:A)B.
By induction hypothesis, Ó(X<:A)B is an F-type (thus A7Top, making
trivial the other premise E ∫nf A' <: Top) and E ∫F b : Ó(X<:Top)B.
Then E ∫F b(A') : B{XóïôA'}. M


Theorem (Conservativity of typing over F)
Let E be an F-environment, a be an F-term and A be an F-type.


E ∫<: a : A   öõú   E ∫F a : A
Proof


Consider the unique normal form proof E ∫nf a : A.
If its last step is:


E ∫mnf a : A'     E ∫nf A' <: A
—————————————
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E ∫nf a : A
with A'?A, then, by the previous lemma, A' would be an F-type
and A'7A by the other lemma. The proof E ∫nf a : A is then a proof
E ∫mnf a : A; the previous lemma allows us to obtain the conclusion. M


2.6.3 F<: typing is conservative “modulo an equality” over F1 typing
As in the case of F, system F1 can be easily viewed as a subsystem of F<: .


Consider the subsystem of F<: obtained by: restricting (Env X) to the case where
A7Top, dropping all the subtyping rules but (Sub Top), removing (Subsumption), and
restricting (Eq appl2) to the case where A'7A" and C7B{Xóïô A'}. We will therefore
identify F1 with this subsystem and write ∫1 for F1-derivations.


The reason why the typing theory of F<: is conservative over that of F (expressed
in the first lemma of the previous subsection) is that only trivial subtype judgments E
∫<: A<:B with A7B can be proved when A and B are F-types. The situation for F1-
types is more interesting, since, due to (Sub Top), nontrivial inclusions can be proved.


A first remark is that the typing of F<: is not conservative over that of F1:


X<:Top,x:X ∫<: x:Top


but, of course,


¬  (X<:Top,x:X ∫1 x:Top)


This failure is, indeed, one of the pragmatic reasons (from the programming language
design viewpoint) for introducing (Subsumption), since this is the mechanism by which
a program (method, function, …) can be inherited in other types.


We can look, however, for conservativity modulo an F<:-equality. If E ∫<: a : A,
where E, a, and A are in the language of F1 , then there exists an F1-term, a1 say, such
that E  ∫1  a1 : A  and  E  ∫<: aóïña1 : A. In the example above, it is obvious that
X<:Top,x:X ∫1 top:Top and X<:Top,x:X ∫1 xóïñtop:Top, by (Eq Top).


We start with some preliminary lemmas. Let


id  7  λ(X<:Top)λ(x:X)x


Lemma (Identity coercions)
Let E be an F1-environment, A and B be F1-types, and E ∫<: A<:B. Then there


exists
an F1-term kA,B such that:


E ∫1 kA,B:AîïñB   and   E ∫<: kA,Bóïñid(A) : AîïñB.
Proof


By induction on the normal form proof E ∫nf A<:B.
Note first that (Sub Trans-X) cannot be the last rule of such a proof,
because its premise would be E',X<:Top,E" ∫nf Top <: A (since E is an
F1-environment), which would imply A7Top by subtyping decomposition
lemma, which is impossible because of the side condition requiring A?Top.
In the other cases, we take kA,B as the (inductively defined)
explicit coercion between A and B. Details are as follows.
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(Sub Refl-X) is trivial.


(Sub Top) E ∫<: A<:Top. Take then  kA,Top 7 λ(x:A)top.
Rules (Eq collapse) and (Eq fun) give E ∫<: kA,Topóïñid(A) : AîïñTop.


(Sub îîîîïïïïññññ) Define kAîïñB,A'îïñB' 7 λ(f:AîïñB) kB,B' • f • kA',A.
From E ∫nf AîïñB <: A'îïñB', by induction hypothesis
and an easy argument:


E, f:AîïñB ∫<: λ(x:A')kB,B' (f(kA',A(x))) óïñ λ(x:A')f(x) : A'îïñB'
by (Eq eta) and transitivity:


E, f:AîïñB ∫<: λ(x:A')kB,B'(f(kA',A(x)))óïñf  :  A'îïñB'
by (Eq fun):


E ∫<: λ(f:AîïñB)λ(x:A')kB,B'(f(kA',A(x)))
óïñ λ(f:AîïñB)f  :  (AîïñB)îïñ(A'îïñB')


(Sub ÓÓÓÓ) E ∫nf Ó(X<:A)B <: Ó(X<:A')B' where A7A'7Top because
both Ó(X<:A)B and Ó(X<:A')B' are F1-types. Let:


C7Ó(X<:Top)B  and  C'7Ó(X<:Top)B'
and define:


kC,C' 7 λ(x:C)λ(X<:Top)kB,B'(x(X))
From E ∫nf C <: C', by induction and an easy argument


E,x:C ∫<: λ(X<:Top)kB,B'(x(X)) óïñ λ(X<:Top)x(X) : C'
by (Eq eta2) and transitivity


E,x:C ∫<: λ(X<:Top)kB,B'(x(X)) óïñ x : C'
and hence the thesis, by (Eq fun). M


Lemma
Let E be an F1-environment, a an F1-term and E ∫mnf a : A. Then:
(i)  A is an F1-type
(ii)  there exists an F1-term a1 such that E ∫1 a1 : A  and  E ∫<: aóïña1 : A


Proof
By induction on E ∫mnf a : A.


(Val x) E',x:A,E" ∫mnf x : A. Then A is an F1-type, since  E is an
F1-environment and a17x; the conclusion (ii) follows by (Eq x).


(Val top) E ∫mnf top : Top. Then also E ∫1 top : Top and we can take a17top.


(Val fun) The last rule is:


E,x:A ∫mnf b : B
——————————


E ∫mnf λ(x:A)b : AîïñB


By hypothesis, λ(x:A)b is an F1-term and therefore A is an F1-type.
By induction hypothesis, B is an F1-type and there exists a term b1
such that E,x:A ∫1 b1 : B and E,x:A ∫<: bóïñb1 : B.
The thesis follows by (Eq fun).


(Val fun2) is analogous to (Val fun).
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(Val appl-min) The last rule is:


E ∫mnf b : C     E ∫nf a : A E*(C)7AîïñB
———————————


E ∫mnf b(a) : B


Consider first the left premise, E ∫mnf b : C.
We observe that C cannot be a variable X. If it were, since
E is an F1-environment, we would have E*(C)7E(X)7Top,
contradicting the assumption that E*(C)7AîïñB.
Thus, C7AîïñB, induction applies, AîïñB is an F1-type and
we obtain an F1-term b1 such that


E ∫1 b1 : AîïñB  and  E ∫<: bóïñb1 : AîïñB.
Consider now the other premise, E ∫nf a : A.
If it happens to be a minimal normal form proof E ∫mnf a : A
then by induction hypothesis we have a term a1 such that:


E ∫1 a1 : A  and  E ∫<: aóïña1 : A.
Otherwise, the last step of E ∫nf a : A is:


E ∫mnf a : A'     E ∫nf A' <: A
————————————


E ∫nf a : A


By induction hypothesis, A' is an F1-type and we get an F1-term a'
such that E ∫1 a':A' and E ∫<: aóïña':A'.
We already proved that AîïñB is an F1-type; hence A is an F1-type.
From E ∫nf A' <: A, the identity coercions lemma gives an F1
term kA',A such that E ∫1 kA',A:A'îïñA and E ∫<: kA',Aóïñid(A') : A'îïñA.
Take then a17kA',A(a'). Simple computations give:


E ∫1 a1 : A and E ∫<: aóïña1 : A.
Finally, by (Eq appl)


E ∫1 b1(a1) : B and E ∫<: b1(a1) óïñ b(a) : B.


(Val appl2-min) The last rule is


E ∫mnf b : C     E ∫nf A' <: A E*(C)7Ó(X<:A)B
————————————


E ∫mnf b(A') : B{XóïôA'}


Note, first, that since b(A') is an F1-term, A' is an F1-type.
As in the previous case, in E ∫mnf b : C, C cannot be a variable.
Therefore, the left premise is E ∫mnf b : Ó(X<:A)B.
By induction hypothesis, Ó(X<:A)B is an F1-type
(thus A7Top and the second premise is trivial)
and we have an F1-term b1 such that


E ∫1 b1 : Ó(X<:Top)B  and  E ∫<: bóïñb1 : Ó(X<:Top)B.
Then  E ∫1 b1(A') : B{XóïôA'}  and  E ∫<: b(A')óïñb1(A') : B{XóïôA'}. M


We can finally prove our conservativity result:
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Theorem (Conservativity of typing over F1 )
If E ∫<: a : A, where E, a, and A are in the language of F1 , then there
exists an F1-term, a1, such that E ∫1 a1 : A  and  E ∫<: aóïña1 : A.


Proof
Take the normal form proof E ∫nf a : A. If it is a minimal normal form
proof, then the thesis follows by the previous lemma. If, on the other
hand, it consists of a minimal normal form proof E ∫mnf a : A' followed by
subsumption with premise E ∫nf A' <: A, then, by the previous lemma,
A' is an F1-type and we have an F1-term, a', such that E ∫1 a' : A' and
E ∫<: aóïña' : A'. The thesis then follows by the identity coercions lemma
and (Eq appl). M


3. Expressiveness
Since F<: is an extension of F , one can already carry out all the standard


encodings of algebraic data types that are possible in F [BB 85]. However, it is not
clear that anything of further interest can be obtained from the subtyping rules of F<: ,
which involve only an apparently useless type Top and the simple rules for îïñ and Ó.
In this section we begin to show that we can in fact construct rich subtyping relations
on familiar data structures.


3.1 Booleans
In the rest of section 3 we concentrate on inclusion of structured types, but for this


to make sense we need to show that there are some nontrivial inclusions already at the
level of basic types. We investigate here the type of booleans, illustrating some
consequences of the F<: rules.
 Starting from the encoding of Church's booleans in F , we can define three
subtypes of Bool as follows (cf. [Fai 89]):


Bool @   Ó(A) AîïñAîïñA
True @   Ó(A) AîïñTopîïñA
False @   Ó(A) TopîïñAîïñA
None @   Ó(A) TopîïñTopîïñA


where:


None <: True,  None <: False,  True <: Bool,  False <: Bool


Looking at all the closed normal forms (that is, the elements) of these types, we have:


trueBool  : Bool @   λ(A) λ(x:A) λ(y:A) x
falseBool  : Bool @   λ(A) λ(x:A) λ(y:A) y
trueTrue  : True @   λ(A) λ(x:A) λ(y:Top) x
falseFalse  : False @   λ(A) λ(x:Top) λ(y:A) y
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We obtain four elements of type Bool; in addition to the usual two, trueBool and
falseBool, the extra trueTrue and falseFalse have type Bool by subsumption. This is
somewhat surprising because computationally there are only two booleans.
Intuitively, if two arguments of an arbitrary type are given, there are only two ways of
providing a result of that type. This coincides with the fact that by removing all the
type information in the terms above, we obtain only two distinct untyped terms.
Fortunately, we can show that trueBool and trueTrue are provably equivalent at type
Bool, by using the domain restriction lemma (Eq fun') from section 2.4.


E,A<:Top,x:A,y:Top ∫ x óïñ x : A    E ∫ A<:Top
 ———————————————————


E,A<:Top,x:A ∫ λ(y:Top) x óïñ λ(y:A) x : AîïñA (Eq fun')
 —————————————————————————


E,A<:Top ∫ λ(x:A) λ(y:Top) x óïñ λ(x:A) λ(y:A) x : AîïñAîïñA
 ————————————————————————————


E ∫ λ(A) λ(x:A) λ(y:Top) x óïñ λ(A) λ(x:A) λ(y:A) x : Ó(A) AîïñAîïñA
 ————————————————————————————


E ∫ trueTrue óïñ trueBool : Bool


Similarly, we can show that E ∫ falseFalse óïñ falseBool : Bool. Hence, there really are
only two different values in Bool; one value each in True and False , and none in
None.


3.2 Naturals
The encoding of booleans in the previous section does not seem to generalize to


other algebraic types. A different style of encoding (which can also be applied to
booleans) works better for naturals. In the following encoding, Nat stands for the type
of naturals, Natz for the type of zero naturals (the singleton zero), and Nats for the
type of non-zero naturals.


Nat @   Ó(N) Ó(Nz<:N) Ó(Ns<:N) Nzîïñ(NîïñNs )îïñN
Natz @   Ó(N) Ó(Nz<:N) Ó(Ns<:N) Nzîïñ(NîïñNs )îïñNz
Nats @   Ó(N) Ó(Nz<:N) Ó(Ns<:N) Nzîïñ(NîïñNs )îïñNs


The closed normal forms of minimal type for Nat are the usual Church numerals; for
Natz we have only the zero natural, and for Nats the non-zero naturals. We obtain:


Natz <: Nat,   Nats <: Nat


zero: Natz   @
λ(N) λ(Nz<:N) λ(Ns<:N) λ(z:Nz ) λ(s:NîïñNs ) z


succ: NatîïñNats   @
λ(n:Nat)


λ(N) λ(Nz<:N) λ(Ns<:N) λ(z:Nz ) λ(s:NîïñNs )
s(n(N)(Nz )(Ns )(z)(s))


3.3 Products
The standard encoding for pairs in F, shown below, already exhibits useful


subtyping properties.







Page 25


A×B   @   Ó(C)(AîïñBîïñC)îïñC


Both A and B occur in monotonic positions in A×B, being placed on the left of an îïñ
which is on the left of another îïñ. Hence we obtain the expected monotonic inclusion
of products as a derived rule:


E ∫ A <: A'    E ∫ B <: B'
 ———————————


E ∫ A×B <: A'×B'


The operations on pairs are defined, as usual, as:


pair: Ó(A) Ó(B) AîïñBîïñA×B
@   λ(A) λ(B) λ(a:A) λ(b:B) λ(C) λ(f:AîïñBîïñC) f(a)(b)


fst: Ó(A) Ó(B) A×BîïñA
@   λ(A) λ(B) λ(c:A×B) c(A)(λ(x:A)λ(y:B)x)


snd: Ó(A) Ó(B) A×BîïñB
@   λ(A) λ(B) λ(c:A×B) c(B)(λ(x:A)λ(y:B)y)


We often use the following abbreviations, disambiguated by context:


a,b  7   a,A×Bb 7   pair(A)(B)(a)(b)
fst(c)  7   fstA×B(c) 7   fst(A)(B)(c)
snd(c)  7   sndA×B(c) 7   snd(A)(B)(c)


3.4 Simple tuples
A tuple type is an iterated product type. When the last factor of this iterated


product is a type variable, we have an extensible tuple type. When it is Top, we have a
simple tuple type. In this paper we discuss only simple tuple types.


Tuple(Top)   @   Top
Tuple(A1,..,An,Top)   @   A1×(..×(An×Top)..) n≥1


With derived rule:


E ∫ A1 <: B1  ..  E ∫ An <: Bn    E ∫ An+1 type  ..  E ∫ Am type
 —————————————————————————


E ∫ Tuple(A1,..,An,..,Am,Top) <: Tuple(B1,..,Bn,Top)


For example:


Tuple(A, B, Top) <: Tuple(A, Top)
because A <: A, B×Top <: Top, and × is monotonic.


We note here that the type Top assumes a very useful role, in allowing a longer
tuple type to be a subtype of a shorter tuple type. The intuition is that a longer tuple
value can always be regarded as a shorter tuple value, by “forgetting” the additional
components, and this is possible since everything is forgotten in Top.


For tuple values we have:


tuple(top)   @   top
tuple(a1,..,an,top)   @   a1,(..,(an, top)..) n≥1
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with derived rules:


E ∫ a1 : A1  ..  E ∫ an : An
 —————————————————


E ∫ tuple(a1,..,an,top) : Tuple(A1,..,An,Top)


E ∫ a1óïñb1 : A1  ..  E ∫ anóïñbn : An
 ——————————————————————————


E ∫ tuple(a1,..,an,top) óïñ tuple(b1,..,bn,top) : Tuple(A1,..,An,Top)


The basic tuple operations are: a i, dropping the first i components of tuple a; and
a.i, selecting the i-th component of a. These are defined by iterating product
operations; again, we omit some typing information:


a i   7   sndi(a)


a.i   7   fst(a i)


We obtain the derived rules:


E ∫ a : Tuple(A0,..,An,Top)     n≥0,  iÏ0..n+1
 ———————————


E ∫ a i : Tuple(Ai,..,An,Top)


E ∫ a : Tuple(A0,..,An,Top)     n≥0,  iÏ0..n
 ———––———————


E ∫ a.i : Ai


E ∫ a0 : A0  ..  E ∫ an : An n≥0
 ——————————————————————————


E ∫ tuple(a0,..,an,top) i óïñ tuple(ai,..,an,top) : Tuple(Ai,..,An,Top)
iÏ0..n+1


E ∫ a0 : A0  ..  E ∫ an : An              n≥0,  iÏ0..n
 —————————————


E ∫ tuple(a0,..,an,top).i óïñ ai : Ai


3.5. Simple records
 We restrict ourselves to the encoding of simple records (the ones with a fixed
number of components [CL 90]); extensible records are treated in [Car 91].


Let L be a countable set of labels, enumerated by a bijection ιÏLîïñNat. We
indicate by li, with a superscript, the i-th label in this enumeration. Often we need to
refer to a list of n distinct labels out of this enumeration; we then use subscripts, as in
l1..ln. So we may have, for example, l1,l2,l3 = l5,l1,l17. More precisely, l1..ln stands for
lσ(1),..,lσ(n)


 for some injective σÏ1..nîïñNat.
A record type has the form Rcd(l1:A1,..,ln:An,C); in this presentation C will


always be Top. Once the enumeration of labels is fixed, a record type is encoded as a
tuple type where the record components are allocated to tuple slots as determined by
the index of their labels. The component of label li is allocated into the i-th tuple slot;
the remaining slots are filled with Top “padding”. For example:


Rcd(l2:C, l0:A, Top)   @   Tuple(A, Top, C, Top)
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Since record type components are canonically sorted under the encoding, two
record types that differ only in the order of their components will be equal under the
encoding. Hence we can consider record components as unordered.


From the encoding, we derive the familiar rule for simple records [Car 88]:


E ∫ A1 <: B1  ..  E ∫ An <: Bn    E ∫ An+1 type  ..  E ∫ Am type
 —————————————————————————


E ∫ Rcd(l1:A1,..,ln:An,..,lm:Am,Top) <: Rcd(l1:B1,..,ln:Bn,Top)


This holds because any additional field lk:Ak (n<k≤m) on the left is absorbed either by
the Top padding on the right, if ι (lk)<max(ι (l1)..ι (ln)), or by the final Top, otherwise.
For example:


Rcd(l0:A, l1:B, l2:C, Top) 7 Tuple(A, B, C, Top)
<: Tuple(Top, B, Top) 7 Rcd(l1:B, Top)


Record values are similarly encoded, for example:


rcd(l2=c, l0=a, top)   @   tuple(a, top, c, top)


from which we obtain the rules:


E ∫ a1 : A1  ..  E ∫ an : An
 —————————————————————


E ∫ rcd(l1=a1,..,ln=an,top) : Rcd(l1:A1,..,ln:An,Top)


E ∫ a1óïña'1 : A1  ..  E ∫ anóïña'n : An
 ————————————————————————————————


E ∫ rcd(l1=a1,..,ln=an,top) óïñ rcd(l1=a'1,..,ln=a'n,top) : Rcd(l1:A1,..,ln:An,Top)


Record selection is encoded as follows:


r.li   @   r.ι (li)


E ∫ r : Rcd(l:A,Top)
 ————————


E ∫ r.l : A


Note that, by subsumption, we have the following as (further) derived rules:


E ∫ a1 : A1  ..  E ∫ an : An  ..  E ∫ am : Am
 ————————————–————————————


E ∫ rcd(l1=a1,..,ln=an,..,lm=am,top) : Rcd(l1:A1,..,ln:An,Top)


E ∫ a1óïñb1 : A1  ..  E ∫ anóïñbn : An
E ∫ an+1 : Bn+1  ..  E ∫ ap : Bp    E ∫ bn+1 : Cn+1  ..  E ∫ bq : Cq


 ————————————————————————————


E ∫ rcd(l1=a1,..,ln=an,..,lp=ap,top) óïñ rcd(l1=b1,..,ln=bn,..,lq=bq,top)
: Rcd(l1:A1,..,ln:An,Top)


E ∫ r : Rcd(l1:A1,..,ln:An,Top) iÏ1..n
 ————————————


E ∫ r.li : Ai


The second rule above is particularly interesting. It expresses a form of observational
equivalence: two records are equivalent if they coincide on the components that are
observable at a given type. This holds ultimately because any two values are
equivalent at type Top.







Page 28


3.6. Lists
Following the pattern used in the encoding of Naturals, we can define the algebra


of parametric lists [BB 85]. List[A] stands for the homogeneous lists of type A.


List[A]   @   Ó(L) Lîïñ(AîïñLîïñL)îïñL


We have:


A <: B   öõú    List[A] <: List[B]


nil: Ó(A) List[A]   @
λ(A) λ(L) λ(n:L) λ(c:AîïñLîïñL) n


cons: Ó(A) AîïñList[A]îïñList[A]   @
λ(A) λ(hd:A) λ(tl:List[A])


λ(L) λ(n:L) λ(c:AîïñLîïñL)
c(hd)(tl(L)(n)(c))


length: Ó(A) List[A]îïñNat   @
λ(A) λ(l:List[A])


l(Nat)(zero)(λ(a:A)λ(n:Nat)succ(n))


As an application of (Eq appl2) we can now show some interesting facts. Namely,
any two null lists are equal in List[Top], and have the same length in Nat. Similarly
for two singleton lists, and so on. In the proof, we will use the Eq-substitution
proposition of Section 2.4.


Take b:B and c:C, then:


∫ nil(B) óïñ nil(C) : List[Top] (Eq appl2)


∫ length(Top)(nil(B)) óïñ length(Top)(nil(C)) : Nat (Eq appl2, Eq


appl)


∫ cons(B)(b)(nil(B)) óïñ cons(C)(c)(nil(C)) : List[Top]
by Eq-substitution, starting from
X<:Top, x:X,l:List[X] ∫ cons(X)(x)(l) : List[X]


∫ length(B)(cons(B)(b)(nil(B))) óïñ length(C)(cons(C)(c)(nil(C))) : Nat
by Eq-substitution, starting from
X<:Top, l:List[X] ∫ length (X)(l) : Nat


Note that we have proven an interesting property of the behavior of length
uniquely from its type; any function f: Ó(A) List[A]îïñNat has such a property. This
fact is related to the theorems proved in [Wad 89] using only the types of terms. A
difference is that our proof is carried out within F<: , whereas Wadler uses semantic
parametricity properties beyond the proof system of F.


4. The category of closed terms
It is well known that the usual second-order encodings for products and


coproducts, while logically sound, do not define under β-η-equality true categorical
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constructions. One can easily prove the existence of a term making a certain diagram
commute, but its uniqueness does not follow from the standard equational rules.


As an example of the expressive power of (Eq appl2), we show that those encodings
are really categorical constructions when the underlying equational theory is the one
of F<: . In the same vein, motivated by the semantic isomorphisms obtained in [BFSS


90] and [Fre 91] as consequences of parametricity, we investigate some provable
isomorphisms in a suitable setting. The framework for our discussion is a category
whose objects are the sets of closed terms of a closed type.


4.1 Definitions and basic properties
Recall that given a typed λ-calculus language and a λ-theory T, a category Cl(T)


is determined by taking as objects of Cl(T) the (closed) types of T [LS 86] [MS 89]. As
for morphisms, choose first one variable for each type and define the morphisms from
A to B to be equivalence classes of typing judgments x:A ∫ t:B, where x is the chosen
variable of type A, and the equivalence relation is given by the equality judgments x:A
∫ tóïñt':B of T. We will write [x:A ∫ t:B] for the morphism given by the judgment x:A
∫ t:B. Identity is given by [x:A ∫ x:A] and composition is defined by substitution:


[y:B ∫ s:C] • [x:A ∫ t:B] = [x:A∫ s{yóïôt}:C]


The category Cl(F<:), obtained by applying this construction to F<: , has a terminal
object, given by Top. For any object A, the  canonical morphism from A to Top is [x:A
∫ top:Top]; uniqueness is guaranteed by (Eq collapse).


Now, given an arbitrary (small) category C with a terminal object 1, consider the
canonical functor “_” : C îîîîïïïïññññ Sets given by:


For any object A:
“A” = C(1,A) (the set of all morphisms 1îïñA)


For any morphism fÏC(A,B):
“f ” is the mapping from “A” to “B” given by composing with f


(that is “f ”(p) = f•p for pÏC(1,A))


Note that “_” is not faithful if C is not well-pointed (as defined in 4.2.5). Given
f,gÏC(A,B), “f ” and “g” are set-theoretical mappings and therefore, in order to have
“f ”=“g”, it is sufficient that f•p=g•p for any pÏC(1,A). The values of the functor “_” : C
îîîîïïïïññññ Sets over all the objects and morphisms of C give a subcategory of Sets that can be
denoted with “C”.


The category we are interested in is “Cl(F<:)”. We will prove, as consequences of
(Eq appl2), that it has finite products and coproducts. For this, however, it is convenient
to introduce the category CL, equivalent to “Cl(F<:)”, for which we can give a more
explicit description.


Remark
∫ A type  reads “A is a closed type”
∫ a:A  reads “a is a closed term of closed type A”


Definition (cl-equality)
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For ∫ f,f ':AîïñB, we say  ∫ f óïñcl f ' : AîïñB   iff
for all a, ∫ a:A  öõú   ∫ f(a) óïñ f '(a) : B


The objects of “Cl(F<:)” are, for any ∫ A type, the sets of morphisms [z:Top ∫ t:A].
By (Eq collapse) and congruence, [z:Top ∫ t:A] = [z:Top ∫ t{zóïôtop}:A]. The term
t{zóïôtop} is closed and z:Top ∫ t{zóïôtop}:A iff ∫ t{zóïôtop}:A. Any object of “Cl(F<:)”
is therefore isomorphic to the set of equivalence classes [∫ a:A] of closed terms of a
closed type; the equivalence relation is given by the equality judgments ∫ aóïña':A.
(Write ∫ A type for such a set.) These sets are the objects of the category CL.


The morphisms of “Cl(F<:)” are, for any morphism f = [x:A ∫ t:B] of Cl(F<:), the
mappings from “A” to “B” given by “f ”([z:Top ∫ a:A]) = [z:Top ∫ t{xóïôa}:B] for any
[z:Top ∫ a:A]. By β- and η-conversion one obtains a category equivalent to “Cl(F<:)”
by stipulating that a morphism of CL from ∫ A type to ∫ B type is an equivalence
class of derivable term judgments:


∫ f:AîïñB


where the morphism equivalence is


(∫ f:AîïñB) = (∫ f ':AîïñB)    iff    ∫ f óïñcl f ':AîïñB.


The identity judgment is


idA @  ∫ λ(x:A)x : AîïñA


and the composition judgment is, for any  ∫ h:AîïñB  and  ∫ g:BîïñC:


g•h @  ∫ λ(x:A)g(h(x)) : AîïñC


(We also ambiguously use g•h @  λ(x:A)g(h(x)).)
We remark that morphism equivalence is not provable equality. For two


morphisms ∫ f:AîïñB and ∫ f ':AîïñB to be equal it is sufficient that f and f ' agree on
the closed terms of type A. Similarly, the following two definitions correspond to
isomorphism and uniqueness (for morphisms) in CL.


Definition (cl-isomorphism)
We say  ∫ A ~cl B  iff  there exist ∫ f:AîïñB, ∫ g:BîïñA such that


∫ g•f óïñcl idA : AîïñA
∫ f•g óïñcl idB : BîïñB


Definition (cl-uniqueness)
We say  ∫ f:AîïñB is the cl-unique f satisfying P(f) iff
for any other ∫ f ':AîïñB satisfying P(f ') we have ∫ f óïñcl f ' : AîïñB.


In order to prove that CL has finite products and coproducts, we need some more
lemmas in F<: , and especially the crucial consequence of (Eq appl2) expressed in the
eq-var-substitution lemma, below.


Lemma (Type monotonicity)
Let E,X<:B ∫ C <: D <: B and E,X<:B,E' ∫ S type. Then
(i) X positive in S     öõú   E,X<:B,E' ∫ S{XóïôC} <: S{XóïôD}
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(ii) X negative in S    öõú   E,X<:B,E' ∫ S{XóïôD} <: S{XóïôC}
Proof


By induction on the derivation E,X<:B,E' ∫ S type. The only less trivial
case is (Type Ó). Assume X positive in Ó(Y<:S1)S2. By induction hypothesis:


E,X<:B,E' ∫ S1{XóïôD} <: S1{XóïôC}
From E,X<:B,E',Y<:S1 ∫ S2 type, by bound change lemma:


E,X<:B,E',Y<:S1{XóïôD} ∫ S2 type
Now conclude by induction and (Sub Ó). M


Definition  (Pointed on X)
Given a type variable X, a type S is pointed on X iff X is positive in
S and S7Ó(Y1<:B1)…Ó(Yk<:Bk)T1îïñ(…îïñ(ThîïñX)…) for k≥0, h≥0.


Lemma (Generalized collapse)
Let E,X<:Top ∫ S type, with S pointed on X.
E ∫ D type  and  E ∫ s : S{XóïôD}      öõú      E,X<:Top,x:S ∫ xóïñs : S{XóïôTop}


Proof
Let S7Ó(Y1<:B1)…Ó(Yk<:Bk)T1îïñ(…îïñ(ThîïñX)…).
By type monotonicity lemma,


E,X<:Top ∫ S <: S{XóïôTop}  and  E,X<:Top ∫ S{XóïôD} <: S{XóïôTop}.
Let F7Y1<:B1{XóïôTop},…,Yk<:Bk{XóïôTop}, t1:T1{XóïôTop},…,th:Th{XóïôTop}.
By (Val x), weakening, and (Subsumption),


E,X<:Top,x:S,F ∫ x : S{XóïôTop}
by (Eq appl2) and (Eq appl),


E,X<:Top,x:S,F ∫ x(Y1)…(Yk)(t1)…(th) : Top
Analogously, from E ∫ s : S{XóïôD} we obtain:


E,X<:Top,x:S,F ∫ s: S{XóïôTop}
and then:


E,X<:Top,x:S,F ∫ s(Y1)…(Yk)(t1)…(th) : Top
By (Eq collapse),


E,X<:Top,x:S,F ∫ x(Y1)…(Yk)(t1)…(th) óïñ  s(Y1)…(Yk)(t1)…(th) : Top
By (Eq fun), (Eq fun2), (Eq eta) and (Eq eta2),


E,X<:Top,x:S ∫ x óïñ s : S{XóïôTop}. M


By generalized collapse and the eq-substitution property (section 2.4) we obtain
the following lemma, which expresses a parametricity property: a (possibly open)
term a of a closed type A is provably equal to any term obtained by substituting
specific types and terms for its free variables.


Lemma (Eq-var-substitution)
Assume, for  i=1..n, E',X<:Top ∫ Si type and Si pointed on X. Let:


E  7  E', X<:Top, x1: S1, …, xn: Sn.
If ∫ A type, E ∫ a:A, E' ∫ D type and E' ∫ ti: Si{XóïôD} for i=1..n,
then  E ∫ a óïñ a{XóïôD, x1óïôt1, …, xnóïôtn} : A.


Proof
By generalized collapse lemma, , for i=1..n:







Page 32


E',X<:Top,xi: Si ∫ xi óïñ ti : Si{XóïôTop}.
The eq-substitution proposition (Sect. 2.4) allows us to conclude. M


4.2 CL finite products and coproducts; well-pointedness
In this section we show that the equational theory of F<: is strong enough to entail


some basic categorical properties of  CL..


4.2.1 Terminal objects


Proposition
For any object ∫ C type, there is a unique morphism ∫ 1C : CîïñTop.


Proof
Take 1C @ λ(x:C) top.
Take any other morphism ∫ f : CîïñTop.


x:C ∫ f : CîïñTop (weaken)
x:C ∫ f(x) óïñ top : Top (Eq collapse)


∫ λ(x:C) f(x) óïñ λ(x:C) top : CîïñTop    (Eq fun)


∫ f óïñ 1C : CîïñTop    (Eq eta)


A fortiori, ∫ f óïñcl 1C : CîïñTop. M


4.2.2 Binary products


Definition
A × B   @   Ó(C) (AîïñBîïñC)îïñC


Proposition
For any pair of objects ∫ A type, ∫ B type, the object ∫ A×B
type is their categorical product. That is, there exist
∫ l:A×BîïñA, ∫ r:A×BîïñB such that for any ∫ C type, and for
any ∫ f:CîïñA, ∫ g:CîïñB, there exists a unique (i.e. cl-unique)
∫ h:CîïñA×B such that ∫ l•h óïñcl f : CîïñA and ∫ r•h óïñcl g :
CîïñB.


A B


C


l r


f g
h


A×B


Proof
Define:


px @ λ(x:A)λ(y:B)x
py @ λ(x:A)λ(y:B)y


l @ λ(p:A×B)p(A)(px) then ∫ l:A×BîïñA
r @ λ(p:A×B)p(B)(py) then ∫ r:A×BîïñB
pair @ λ(a:A)λ(b:B)λ(C)λ(q:AîïñBîïñC)q(a)(b)


then ∫ pair : AîïñBîïñA×B
couple @ λ(C)λ(f:CîïñA)λ(g:CîïñB)λ(c:C)pair(f(c))(g(c))


then ∫ couple : Ó(C) (CîïñA)îïñ(CîïñB)îïñCîïñ(A×B)


Fix an object ∫ C type and two morphisms ∫ f:CîïñA and ∫ g:CîïñB.
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1) Existence.
Take h @ couple(C)(f)(g) óïñ λ(c:C)pair(f(c))(g(c))


∫ l•h óïñ λ(z:C)l(h(z)) óïñ λ(z:C)f(z) óïñ f : CîïñA
∫ r•h óïñ λ(z:C)r(h(z)) óïñ λ(z:C)g(z) óïñ g : CîïñB


2) The morphism above is well defined. Just show that:
∫ f ' óïñcl f : CîïñA, ∫ g' óïñcl g : CîïñB  implies


∫ couple(C)(f)(g) óïñcl couple(C)(f ')(g') : CîïñA×B


3) Uniqueness.


3.1) Show, for ∫ c:A×B, that ∫ couple(A×B)(l)(r)(c) óïñ c : A×B
The normal form of c must have the shape:


c 7 λ(C)λ(q:D)q(a)(b)
for some C<:Top ∫ AîïñBîïñC<:D,  C<:Top,q:D ∫ a:A, and C<:Top,q:D ∫ b:B.
By the bound weakening lemma,


C<:Top,q:AîïñBîïñC ∫ a:A, and C<:Top,q:AîïñBîïñC ∫ b:B
and by (Eq fun'), for c' @ λ(C)λ(q:AîïñBîïñC)q(a)(b),


∫ cóïñc' : A×B.
By β-conversion


∫ l(c) óïñ c(A)(px) óïñ a{CóïôA,qóïôpx} : A Let a1 @ a{CóïôA,qóïôpx}
∫ r(c) óïñ c(B)(py) óïñ b{CóïôB,qóïôpy} : B Let b1 @ a{CóïôB,qóïôpy}.


By the eq-var-substitution lemma,
C<:Top,q:AîïñBîïñC ∫ a óïñ a1 : A
C<:Top,q:AîïñBîïñC ∫ b óïñ b1 : B
C<:Top,q:AîïñBîïñC ∫ q(a)(b) óïñ q(a1)(b1) : C (Eq-appl)


∫ λ(C)λ(q:AîïñBîïñC)q(a)(b) óïñ λ(C)λ(q:AîïñBîïñC)q(a1)(b1)
: A×B    (Eq fun, Eq fun2)


Hence:
∫ couple(A×B)(l)(r)(c) óïñ pair(l(c))(r(c))


óïñ λ(C)λ(q:AîïñBîïñC)q(a1)(b1) óïñ λ(C)λ(q:AîïñBîïñC)q(a)(b)
óïñ c' óïñ c : A×B


3.2) Show, by β-conversion, that for any ∫ D type, ∫ k:DîïñC, and ∫ d:D,
∫ couple(D)(f•k)(g•k)(d) óïñ (couple(C)(f)(g)•k)(d) : A×B


That h is cl-unique now follows by the usual argument. M


Corollary    ∫ A ~cl A',    ∫ B ~cl B'     öõú     ∫ A×B ~cl A'×B'
Proof


Standard diagram chasing, from the existence of products. M


4.2.3 Initial objects


Definition
Bot @ Ó(X)X


Proposition







Page 34


For any object ∫ C type, there is a unique morphism ∫ 0C : BotîïñC.
Proof


Take 0C @ λ(x:Bot) x(C).
Take any other morphism ∫ f : BotîïñC.
Since there are no terms c such that ∫ c : Bot, then it is vacuously
true that for all ∫ c : Bot,  ∫ f(c) óïñ 0C (c) : C,
that is, that ∫ f óïñcl 0C : BotîïñC. M


Remark
BoolîïñBot is also an initial object, by the same argument, since there are no terms


of type BoolîïñB o t . The unique map is the equivalence class of
λ(x: BoolîïñBot) x(true)(C), which includes λ (x: BoolîïñBot) x(false)(C). More
generally, any empty type V for which there exists a term ∫ f:VîïñBot is initial. The
canonical morphism is the equivalence class of λ(x:V) f(x)(C), which is cl-unique
since there are no closed terms ∫ c:V.


4.2.4 Binary coproducts


Definition
A + B @ Ó(C) (AîïñC)îïñ(BîïñC)îïñC


Proposition
For any pair of objects ∫ A type, ∫ B type, the object ∫ A+B
type is their categorical coproduct. That is, there exist
∫ i:AîïñA+B, ∫ j:BîïñA+B such that for any ∫ C type, and for
any ∫ f:AîïñC, ∫ g:BîïñC, there exists a unique (i.e. cl-unique)
∫ h:A+BîïñC such that ∫ h•i óïñcl f : AîïñC and ∫ h•j óïñcl g :
BîïñC.


A B


C


i j


f gh


A+B


Proof
Define:


i @ λ(x:A)λ(C)λ(f:AîïñC)λ(g:BîïñC)f(x) then  ∫ i : A îïñ A+B
j @ λ(y:B)λ(C)λ(f:AîïñC)λ(g:BîïñC)g(y) then  ∫ j : B îïñ A+B
case @ λ(C)λ(f:AîïñC)λ(g:BîïñC)λ(c:A+B)c(C)(f)(g)


then ∫ case : Ó(C) (AîïñC)îïñ(BîïñC)îïñ(A+B)îïñC


0) Let ∫ c:A+B; then the normal form of c must have one of the shapes:
c 7 λ(C')λ(f ':D)λ(g':G)f '(a)


for some C'<:Top ∫AîïñC <:D, C'<:Top ∫BîïñC'<:G, and
C'<:Top,f ':D,g':G ∫ a:A


c 7 λ(C')λ(f ':D)λ(g':G)g'(b)
for some C'<:Top ∫AîïñC <:D, C'<:Top ∫BîïñC'<:G, and
C'<:Top,f ':D,g':G ∫ b:B


By the bound weakening lemma,
C'<:Top,f ':AîïñC',g':BîïñC' ∫ a:A
C'<:Top,f ':AîïñC',g':BîïñC' ∫ b:B







Page 35


and, by (Eq fun'),
either ∫ c óïñ λ(C')λ(f ':AîïñC')λ(g':BîïñC')f '(a)  : A+B
or ∫ c óïñ λ(C')λ(f ':AîïñC')λ(g':BîïñC')g'(b) : A+B


Fix an object ∫ C type and two morphisms ∫ f:AîïñC and ∫ g:BîïñC.


1) Existence
Take h @ case(C)(f)(g).


∫ h•i óïñ λ(x:A)h(i(x)) óïñ λ(x:A)f(x) óïñ f : AîïñC
∫ h•j óïñ λ(x:A)h(j(x)) óïñ λ(x:A)g(x) óïñ g : BîïñC


2) The morphism above is well defined.
Show ∫ f " óïñcl f : AîïñC, ∫ g" óïñcl g : BîïñC  implies


∫ case(C)(f)(g) óïñcl case(C)(f ")(g") : A+BîïñC
That is, for ∫ c:A+B,


∫ case(C)(f)(g)(c) óïñ case(C)(f ")(g")(c) : C
By (0) and β-conversion, either


∫ case(C)(f)(g)(c) óïñ f(a{C'óïôC,f 'óïôf,g'óïôg}) : C     and
∫ case(C)(f ")(g")(c) óïñ f "(a{C'óïôC,f 'óïôf ",g'óïôg"}) : C


or
∫ case(C)(f)(g)(c) óïñ g(b{C'óïôC,f 'óïôf,g'óïôg}) : C     and
∫ case(C)(f ")(g")(c) óïñ g"(b{C'óïôC,f 'óïôf ",g'óïôg"}) : C


In the first case (the other one is similar), the eq-var-substitution lemma gives:
C'<:Top,f ':AîïñC',g':BîïñC' ∫ a óïñ a{C'óïôC,f 'óïôf,g'óïôg} : A    and also
C'<:Top,f ':AîïñC',g':BîïñC' ∫ a óïñ a{C'óïôC,f 'óïôf ",g'óïôg"} : A


from which we infer:
∫ a{C'óïôC,f 'óïôf ",g'óïôg"} óïñ a{C'óïôC,f 'óïôf,g'óïôg} : A


since both terms are closed. Now conclude by using ∫ f " óïñcl f : AîïñC.


3) Uniqueness.
3.1) Show, for ∫ c:A+B,  that  ∫ case(A+B)(i)(j)(c) óïñ c : A+B.
By cases on the normal form of c, according to (0).
In the first case,


∫ case(A+B)(i)(j)(c) óïñ c(A+B)(i)(j) óïñ i(a{C'óïôA+B,f 'óïôi,g'óïôj}) : A+B
Let a1 @ a{C'óïôA+B,f 'óïôi,g'óïôj}. By the eq-var-substitution lemma,


C'<:Top,f ':AîïñC',g':BîïñC' ∫ a1 óïñ a : A
C'<:Top,f ':AîïñC',g':BîïñC' ∫ f '(a1) óïñ f '(a) : C'  (Eq appl)


∫ λ(C')λ(f ':AîïñC')λ(g':BîïñC')f '(a1)
óïñ λ(C')λ(f ':AîïñC')λ(g':BîïñC')f '(a) : A+B  (Eq fun, Eq fun2)


∫ i(a1) óïñ c : A+B    (def)
∫ case(A+B)(i)(j)(c) óïñ c : A+B    (equation above)


The second case is similar.


3.2) Show, for any ∫ D type, ∫ k:CîïñD, and ∫ c:A+B,
∫ case(D)(k•f)(k•g)(c) óïñ (k•case(C)(f)(g))(c) : D.


By cases on the normal form of c, according to (0).
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In the first case we have:
∫ case(D)(k•f)(k•g)(c) óïñ c(D)(k•f)(k•g)


óïñ k(f(a{C'óïôD,f 'óïôk•f,g'óïôk•g})) : D
∫ (k•case(C)(f)(g))(c) óïñ k(f(a{C'óïôC,f 'óïôf,g'óïôg})) :  D


From the eq-var-substitution lemma,
C'<:Top,f ':AîïñC',g':BîïñC' ∫ a óïñ a{C'óïôD,f 'óïôk•f,g'óïôk•g} : A
C'<:Top,f ':AîïñC',g':BîïñC' ∫ a óïñ a{C'óïôC,f 'óïôf,g'óïôg} : A


Conclude by transitivity and (Eq appl).


The second case is similar.


(4) Uniqueness can now be shown by the standard argument. M


Corollary    ∫ A ~cl A',    ∫ B ~cl B'     öõú     ∫ A+B ~cl A'+B'
Proof


Standard diagram chasing, from the existence of coproducts. M


4.2.5 Well-pointedness
A category C with a terminal object 1 is well-pointed iff for any pair of objects A


and B and any f,gÏC(A,B) we have:
f = g    iff    for any hÏC(1,A),  f•h = g•h.


Proposition
CL is well-pointed.
That is, for any ∫ A type, ∫ B type, and any ∫ f,g : AîïñB, we have:


∫ f óïñcl g : AîïñB     ùõú     for any ∫ h : TopîïñA,  ∫ f•h óïñcl g•h : TopîïñB
Proof
  öõú)


x:Top ∫ f(h(x)) óïñ f(h(top)) : B (Eq collapse) and (Eq appl)


x:Top ∫ g(h(x)) óïñ g(h(top)) : B similarly
x:Top ∫ f(h(top)) óïñ g(h(top)) : B hypothesis, weaken
∫ λ(x:Top) f(h(x)) óïñ λ(x:Top) g(h(x)) : TopîïñB (Eq trans) and (Eq fun)


Hence ∫ f•h óïñ g•h : TopîïñB.
  ùõü)


Take ∫ a : A, consider h=λ(x:Top)a.
∫ (f•h)(top) óïñ (g•h)(top) : B hypothesis
∫ f(a) óïñ g(a) : B (Eq beta)


Hence ∫ f óïñcl g : AîïñB. M


4.3 CL isomorphisms
The following isomorphisms were inspired by [BFSS 90] and [Fre 91].
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4.3.1 Double negation
We prove that, for any ∫ A type we have A ~ Ó (C)(AîïñC)îïñC. This is an iso-


morphism holding in the models studied in [BFSS 90], but which has no known proof
in F. (See the remark at the end of this section.)


Proposition
∫ A type   öõú  ∫ A ~cl Ó(C)(AîïñC)îïñC


Proof
Define: f  @ λ(x:Ó(C)(AîïñC)îïñC) x(A)(id(A))


g  @ λ(y:A) λ(C) λ(z:AîïñC) z(y)
Then: ∫ f: (Ó(C)(AîïñC)îïñC) îïñ A,  and  ∫ g: A îïñ (Ó(C)(AîïñC)îïñC)
Take a such that ∫ a:A. Then, by β-conversion:


∫ f(g(a)) óïñ f(λ(C) λ(z:AîïñC) z(a))
óïñ (λ(C) λ(z:AîïñC) z(a))(A)(id(A))
óïñ id(A)(a) óïñ a : A


Take closed b such that ∫ b : Ó(C)(AîïñC)îïñC.
Then b has a normal form of the shape


b = λ(C) λ(z:D) z(a1)
for some C<:Top ∫ AîïñC<:D and C<:Top,z:D ∫ a1:A.
By the bound weakening lemma,


C<:Top,z:AîïñC ∫ a1:A
and hence


∫ b óïñ λ(C) λ(z:AîïñC) z(a1)
Then


∫ g(f(b)) óïñ λ(C) λ(z:AîïñC) z(a1{CóïôA, zóïôid(A)})
: Ó(C)(AîïñC)îïñC


By the eq-var-substitution lemma,
C<:Top, z:AîïñC ∫ a1 óïñ a1{CóïôA, zóïôid(A)} : A


Hence,
C<:Top, z:AîïñC ∫ z(a1) óïñ z(a1{CóïôA, zóïôid(A)}) : C


That is:
∫ λ(C) λ(z:AîïñC) z(a1) óïñ λ(C) λ(z:AîïñC)  z(a1{CóïôA, zóïôid(A)})


: Ó(C)(AîïñC)îïñC
Combining the two equations above:


∫ g(f(b)) óïñ λ(C) λ(z:AîïñC) z(a1) óïñ b  :  Ó(C)(AîïñC)îïñC.   M
 
Remark


Christine Paulin-Mohring has shown that, even for A closed, A ~ Ó(C)(AîïñC)îïñC
is not provable in F via the isomorphism we have used in the proof above. (It is not
known whether some other isomorphism would work). To see this, let T  be
Ó(R)RîïñR; the term:
 


λ(P) λ(x:(TîïñT)îïñP)
x (λ(y:T) y (PîïñT) (λ(u:P)y) (x(λ(v:T)v)))


: Ó(P)((TîïñT)îïñP)îïñP
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is not convertible to any term of the form:
 


λ(P) λ(x:(TîïñT)îïñP) x(c)
 
where c is a closed term of type TîïñT.


Moreover, Roberto Di Cosmo [DiC 91] has shown that A is not isomorphic to
Ó(C)(AîïñC)îïñC  in F  in the usual sense of F -isomorphisms, as opposed to cl-
isomorphisms.


4.3.2 Existentials
We prove in this section that the terminal type Top is isomorphic in CL to Ô(X)X.


From the programming point of view this is consistent with the intuition that,
although any value can be encapsulated as an object of type Ô(X)X, there is no way of
using an object of this type. We will prove, more generally, that Ô(X<:A)X ~ A (i.e.
∫ Ô(X<:A)X ~cl A)


Lemma 1
E ∫ B type, E ∫ y : Ó(X<:A)XîïñB,   E ∫ A' <: A,   E ∫ a' : A',   E ∫ a'óïña : A


   öõú     E ∫ y(A)(a) óïñ y(A')(a') : B
Proof


First,
E ∫ y óïñ y : Ó(X<:A)XîïñB hypothesis, (Eq x)


E ∫ y(A) óïñ y(A) : AîïñB (Eq appl2), since XÌFV(B), by E ∫ B type
E ∫ y(A)(a) óïñ y(A)(a') : B hypothesis, (Eq appl)


Then,
E ∫ y óïñ y : Ó(X<:A)XîïñB hypothesis, (Eq x)


E ∫ y(A) óïñ y(A') : A'îïñB (Eq appl2)


E ∫ y(A)(a') óïñ y(A')(a') : B hypothesis, (Eq appl)


Finally,
E ∫ y(A)(a) óïñ y(A')(a') : B. M


Definition
Let  id : Ó(A) Ó(W<:A) WîïñW   @   λ(A) λ(W<:A) λ(w:W) w


Definition
Ô(W<:A)B   @   Ó(V)(Ó(W<:A)BîïñV)îïñV


some : Ó(A) Ó(X<:A) XîïñÔ(W<:A)W
@   λ(A) λ(X<:A) λ(x:X)


λ(V) λ(z:Ó(W<:A)WîïñV) z(X)(x)


Proposition
∫ A type   öõú   ∫ A ~cl Ô(X<:A)X


Proof
Let ∫ f : (Ô(W<:A)W) îïñ A


where f = λ(p:Ô(W<:A)W)p(A)(id(A))
Let ∫ g : A îïñ (Ô(W<:A)W)
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where g = λ(x:A)some(A)(A)(x)
Take a such that ∫ a:A. Then


∫  f(g(a)) óïñ f(some(A)(A)(a))
óïñ f(λ(V)(λ(z:Ó(W<:A)WîïñV)z(A)(a))
óïñ (λ(V)λ(z:Ó(W<:A)WîïñV)z(A)(a)) (A) (id(A))
óïñ id(A)(A)(a)
óïñ a : A


Take closed b such that ∫ b : Ô(W<:A)W.
Then b has a normal form of the shape:


b = λ(V)λ(z:D)z(B1)(b1)
for some D, B1, b1 such that:


V<:Top ∫ Ó(W<:A)WîïñV <: D
V<:Top,z:D ∫ b1 : B1 <: A


By the bound weakening lemma, and (Eq fun')


∫ b óïñ λ(V)λ(z:Ó(W<:A)WîïñV)z(B1)(b1)
Then


∫ g(f(b)) óïñ g(b(A)(id(A)))
óïñ g(id(A)(B1{VóïôA})(b1{VóïôA,zóïôid(A)})
óïñ g(b1{VóïôA,zóïôid(A)})
óïñ some(A)(A)(b1{VóïôA,zóïôid(A)})
óïñ λ(V)λ(z:Ó(W<:A)WîïñV) z(A)(b1{VóïôA,zóïôid(A)})


: Ô(W<:A)W
By the eq-var-substitution lemma, since


∫ id(A) : Ó(W<:A)WîïñW <: Ó(W<:A)WîïñA,
V<:Top, z:Ó(W<:A)WîïñV ∫ b1 óïñ b1{VóïôA,zóïôid(A)} : A.


Hence by Lemma 1,
V<:Top, z:Ó(W<:A)WîïñV ∫ z(A)(b1{VóïôA,zóïôid(A)}) óïñ z(B1)(b1) : V


That is:
∫ λ(V)λ(z:Ó(W<:A)WîïñV) z(A)(b1{VóïôA,zóïôid(A)})


óïñ λ(V)λ(z:Ó(W<:A)WîïñV) z(B1)(b1)
: Ô(W<:A)W


Combining the two equations above:
∫ g(f(b))  óïñ


óïñ λ(V)λ(z:Ó(W<:A)WîïñV) z(B1)(b1)
óïñ b


: Ô(W<:A)W. M


Corollary
∫ Top ~cl Ô(X)X


4.3.3 Other cl-isomorphisms
Many other isomorphisms can be derived with the techniques developed in the


previous sections. Among them we have the following.
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Domain restriction
C  ~  Ó(X) XîïñC
AîïñC  ~  Ó(X<:A) XîïñC


Categorical
(A×B)×C  ~  A×(B×C)
A×Top  ~  Top×A  ~  A
(A+B)+C  ~  A+(B+C)
A+Bot  ~  Bot +A  ~  A


Various
TopîïñA  ~  A (by simple top collapse)
AîïñTop  ~  Top (by simple top collapse)
Top  ~  Ó(C) CîïñC (by analyzing the normal forms)
Bot îïñA  ~  Top (by analyzing the normal forms)
Aîïñ Bot  ~  Bot for A nonempty (by vacuous f•g óïñcl id conditions


 since both types are empty)
Ó(X) (AîïñX)    ~    AîïñÓ(X) X (β-η suffices)


Conclusions
We study an extension of system F with subtyping and its equational theory.


While the equational rules are not complete for PER models, the main inspirations for
the most novel rules come from PER models and categorical notions of parametricity.
Although our proof system is not a conservative extension of system F, we prove the
conservativity of typing judgments with respect to F. We study some categorical
properties of the theory when restricted to closed terms, including interesting
categorical isomorphisms. These isomorphisms provide some confidence in the
strength of the proof system. Additional evidence is given by a set of encodings; these
include record operations and subtyping hierarchies that are related to features of
object-oriented languages.


One important area we have not studied is an adequate computation system.
Ideally we would like to have a notion of reduction such that any two provably equal
terms reduce to a common term. If possible, we would like reductions to terminate as
well. A standard approach is to orient each equational axiom in one direction. The two
equational rules that lead to immediate problems are (Eq collapse) and (Eq appl2); for
these it is not obvious how to produce an oriented reduction rule. Furthermore, in
order to capture equivalence, a set of oriented rules would have to be proved
confluent. If we had a computational characterization of equality, we would have
decidability of the equational system; in its absence, decidability remains an open
problem.


The final form of the (Eq appl2) rule is still under investigation. Some recent
insights [ACC 93] seem to suggest that (Eq appl2-+) should be taken instead.
Specifically, formal systems considered in [BFSS 90] and [ACC 93] have the latter as
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a consequence, but not the former. The (Eq appl2) rule was adopted here because it is
valid in PER and has a simpler syntactic form.
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Appendix: System F


Environments


(Env ) (Env x) (Env X)


E ∫ A type    xÌdom(E) ∫ E env    XÌdom(E)
  ————  —————————– ————————–


∫  env ∫ E,x:A env ∫ E,X env


Types


(Type X) (Type îïñ) (Type Ó)


∫ E,X,E' env E ∫ A type    E ∫ B type E,X ∫ B type
——————–  —————————— ———————


E,X,E' ∫ X type E ∫ AîïñB type E ∫ Ó(X)B type


Values


(Val x) (Val fun) (Val appl)


∫ E,x:A,E' env E,x:A ∫ b:B E ∫ b : AîïñB    E ∫ a:A
——————–  ————————  ——————————


E,x:A,E' ∫ x:A E ∫ λ(x:A)b : AîïñB E ∫ b(a) : B


(Val fun2) (Val appl2)


E,X ∫ b:B E ∫ b : Ó(X)B    E ∫ A type
 ————————  ————————————


E ∫ λ(X)b : Ó(X)B E ∫ b(A) : B{XóïôA}


Equivalence


(Eq symm) (Eq trans)


E ∫ a óïñ b : A E ∫ a óïñ b : A    E ∫ b óïñ c : A
 —————–  —————————————


E ∫ b óïñ a : A E ∫ a óïñ c : A


(Eq x) (Eq fun) (Eq appl)


E ∫ x:A E,x:A ∫ bóïñb' : B E ∫ bóïñb' : AîïñB    E ∫ aóïña' : A
  —————— —————————————  ——————————————


E ∫ x óïñ x : A E ∫ λ(x:A)b óïñ λ(x:A)b' : AîïñB E ∫ b(a) óïñ b'(a') : B


(Eq fun2) (Eq appl2)


E,X ∫ bóïñb' : B E ∫ bóïñb' : Ó(X)B    E ∫ A type
———————————— —————————————


E ∫ λ(X)b óïñ λ(X)b' : Ó(X)B E ∫ b(A) óïñ b'(A) : B{XóïôA}


(Eq eta) (Eq eta2)


E ∫ b óïñ b' : AîïñB    yÌdom(E) E ∫ b óïñ b' : Ó(X)B    YÌdom(E)
—————————————  ——————————————


E ∫ λ(y:A)b(y) óïñ b' : AîïñB E ∫ λ(Y)b(Y) óïñ b' : Ó(X)B


(Eq beta) (Eq beta2)


E,x:A ∫ b óïñ b' : B    E ∫ a óïñ a' : A E,X ∫ b óïñ b':B    E ∫ A type
———————————————  ————————————————


E ∫ (λ(x:A)b)(a) óïñ b'{xóïôa'} : B E ∫ (λ(X)b)(A) óïñ b'{XóïôA} : B{XóïôA}
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