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Abstract

We apply the 2-sequents approach to the analysis of several calculi derived from linear logic. We
present a uniform formal system for Linear Logic, Elementary Linear Logic and Light Linear Logic.

In particular, the 2-sequent approach simplifies the syntax of Light and Elementary Linear Logic.
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1 Introduction

The rationale for extending Gentzen’s format for sequents is not unidimensional. It
is often a blend of several issues that inspires the design of a particular system

[11, 2, 3, 16, 1]. The 2-sequent approach [12, 13, 14, 15] is not an exception. Its
original goal was notational: providing symmetric and local (i.e., context-free) rules
for the minimal deontic logic KD. However, we discovered soon that 2-sequents could
be used as a uniform tool for several logical systems. In particular, starting from a
common core—the logical rules—we could shift from one system to another (e.g., from
KD to S4) just changing the way in which syntactical objects are manipulated—say,
the structural rules. In [15], we applied this scalar approach to the modal logics in
the K-S4 range. Here, we shall apply the same methodology to Girard’s Linear Logic
(LL).

This study started in [14], where we gave a natural deduction style presentation
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for certain LL fragments. As a result, we discovered some unsuspected connections
with proof-nets and—in view of the correspondence between λ-calculus and the mul-
tiplicative exponential fragment of LL (MELL)—with the so-called optimal or sharing
implementation of lambda-terms (see [7, 9]). Here, we focus on full LL (i.e., with
additives, second order quantifiers and constants) and on some subsystems with an
intrinsic bound on the complexity of the representable functions. In particular we
shall give a 2-sequent presentation of Light Linear Logic (LLL), see [6].

LLL is a “polynomial” logic: all the polynomial functions are representable by a
(second order) LLL proof; moreover there is a suitable cut-elimination procedure that
can be performed in polynomial time. The main drawback of LLL is its awkward
syntax. The reduction bound of LLL is achieved by means of a tight control on
the structure of the proof-nets associated to deductions, and on the way in which
those nets grow along reduction. More precisely, the structural constraints on LLL
proof-nets allow to reduce them by stages (i.e., pursuing an outermost-innermost
strategy according to the nesting of exponential boxes), controlling at the same time
the number of stages required to complete the task and the number of duplications
performed at each stage. Unfortunately, mainly because of the presence of additives,
the translation of that constraints on nets into logical rules leads to a system with an
heavy ad hoc syntax, whose generalized sequents share very few structure with the
standard ones of LL.

Because of the already mentioned tight relations between 2-sequents and proof-
nets, it should not be particularly surprising that the structural constraints of LLL
find instead a very simple formulation in the 2-sequent framework: the 2-sequent
formulation of LLL (or 2LLL) is just the restriction of the 2-sequent formulation of LL
(or 2LL) to the case in which only two levels are used, plus the new modality of LLL
and the other structural restrictions on the auxiliary doors of boxes. In particular, the
interaction between additives and exponentials requires no longer the introduction of
a contrived syntax and two distinct formula separators in sequents (we will return on
this point in section 5.4).

It is also remarkable that the same approach scales in a natural way to Elemen-
tary Linear Logic (ELL), an intermediate system between LLL and LL with (Kalmar)
elementary cut-elimination.

Since the main focus of the paper is on the use of 2-sequents we will omit the
dynamics of the proposed logical systems, that is indeed the relevant issue of LLL.
At the same time, we omit for lack of space the definition and study of the indexed
proof-nets corresponding to LLL and ELL.

2 2-sequents for linear logic

We refer to [4, 5] for notation and preliminaries on Linear Logic. We will write many
times (even in formal sequents) the linear implication A( B instead of A⊥

OB.

Definition 2.1 (2-sequents) A 2-sequence is an expression

α0

α1

...
αn
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in which each αi is an ordinary (possibly empty) sequence of linear formulas. The
formulas of αi are at level i. A 2-sequent is an expression ` Γ, where Γ is a 2-sequence
in which at least one of the αi is not empty.

Informally, levels express a form of modal (exponential) dependency.

Definition 2.2 (interpretation of 2-sequences) The interpretation [Γ]] of the 2-
sequence Γ is defined as


α0

α1

...
αn




]

= OαjO!(Oαj+1O!(. . .!(Oαn) . . .))

where j is the minimum level s.t. αj is not empty; Oαk denotes the par of all the
formulas in αk (in particular, the term Oαk is missing when αk is empty).

According to this interpretation, (modality related) structural rules naturally cor-
respond to vertical rearrangement of formulas. Anyhow, since towers of sequences of
formulas are not handy to write and manipulate, in the following we shall prefer an
equivalent indexed representation. Namely, we will index any formula occurrence A in
some αi by its level i—say that Ai is the correspondent indexed formula. Any tower of
αi can then be merged into an ordinary linear sequence of indexed formulas. We will
resort again to two-dimensional sequents for the relevant case of LLL (Section 5.1).

3 2LL: a 2-sequent calculus for Linear Logic

3.1 The calculus

The axioms and rules in Figure 1 define 2LL, whose provability relation will be denoted
by 2̀LL. In the following sections, we shall prove its equivalence (with respect to
provability) to the standard presentation of LL.

For the 2-sequence Γ, max(Γ) = max{i : Ai ∈ Γ}; moreover, we write Γ=i to mean
that all the formulas in Γ are at level i. The ∀ rule has the usual proviso on the
second order variable it binds: X must not occur free in any formula in Γ.

3.2 Correctness

In order to relate provability in 2LL to provability in standard LL ( L̀L), it is useful to
isolate a class of formulas behaving as ?-modal formulas.

Definition 3.1 (essentially exponential formulas) The class Exp is inductively
defined as follows:

1. ⊥ ∈ Exp;
2. for any formula A, ?A ∈ Exp;
3. if A, B ∈ Exp, then AOB, A NB ∈ Exp.

The following is the main property of Exp (its proof is just an easy induction on
the definition of Exp).
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Identity/Negation

` Ai, A⊥i ` Γ, Ai ` ∆, A⊥i

cut` Γ, ∆ i≥max(Γ),max(∆)

Structure
` Γ

W` Γ, ?Ai
i≤max(Γ)

` Γ, ?Ai, ?Ai

C` Γ, ?Ai

Logic

` Γ, Ai

?` Γ, ?Ai−j
i≥j≥0

` Γ, Ai

!` Γ, !Ai−1
i>max(Γ)

` Γ, Ci ` Γ, Di

N` Γ, C NDi

` Γ, Ci

�L` Γ, C �Di
i≥max(Γ)

` Γ, Di

�R` Γ, C �Di
i≥max(Γ)

` Γ, Ci ` ∆, Di

�` Γ, ∆, C �Di
i≥max(Γ),max(∆)

` Γ, Ci, Di

O` Γ, C ODi

` Γ, Ai

∀` Γ, ∀X.Ai
i≥max(Γ)

` Γ, Ai[B/X] ∃` Γ, ∃X.Ai
i≥max(Γ)

` Γ ⊥` Γ,⊥i
i≤max(Γ)

` 1i ` Γ=i,>i

Fig. 1. 2LL: 2-sequent presentation of LL

Lemma 3.2 For any A ∈ Exp, L̀L A, !A⊥.

Therefore, weakening and contraction are admissible on formulas in Exp, and, more-
over, the promotion rule with Exp-contexts (i.e., contexts in which all the formulas
are in Exp) is derivable.

Lemma 3.3 Let Γ = A1, . . . , An be a (standard) sequent such that any Ai ∈ Exp.
Then

L̀L Γ, A ⇒ L̀L Γ, !A

We may use 2LL to show that many formulas are in Exp.

Lemma 3.4 Let 2̀LL Γ. For any Ai ∈ Γ such that i < max(Γ), A ∈ Exp.

Proof. By induction on the derivation, exploiting the side-conditions.

Indeed, we could constrain the rules O, N and ⊥ to be applied only at maximal
levels (like ∀, ∃, �, � and cut) without losing in provability. In this more restrained
system, all the non-maximal formulas of a provable 2-sequent are of the shape ?A.
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Correctness of 2LL with respect to LL is now an easy corollary, since any 2LL rule
may be “flattened” to its corresponding LL rule. Let us define the following new
interpretation of 2-sequences, simpler than the one presented in Definition 2.2:


α0

α1

...
αn




[

= α0, . . . , αn

Theorem 3.5 (correctness)

2̀LL Γ ⇒ L̀L [Γ][

Proof. Any 2LL rule but promotion (!) becomes the corresponding LL rule via the
[-translation. Promotion is instead handled by Lemma 3.3, since by the side condition
and Lemma 3.4, [Γ][ is an Exp-context.

The reader might wonder why we gave Definition 2.2 if we rather used the [-
translation when proving correctness. The reason is that the [-translation, though
correct, hides the level “semantics.” Moreover, expressing LL in terms of proof-nets,
the levels have a very intuitive notion, they are the box nesting depth of each formula.
It is clear, however, that the two translations are related, as shown by the following
proposition.

Proposition 3.6 Let Γ be a 2-sequence such that, for any Ai ∈ Γ with i < max(Γ),
A ∈ Exp. Then

L̀L [Γ]] ( O [Γ][ and L̀L O [Γ][ ( [Γ]]

Proof. The implication [Γ]] ( O [Γ][ follows from the comonad law L̀L!A( A. For
the other direction, we use repeatedly Lemmas 3.4 and 3.3.

Observe that, in view of Lemma 3.4, the hypotheses of the previous proposition
hold for any provable 2-sequence.

3.3 Completeness

Lemma 3.7 The following rule is admissible in 2LL:

`?Γ=0, A0

`?Γ=0, !A0

Proof. Observe first that, whenever 2̀LL?Γ=0, A0, we also have 2̀LL?Γ=1, A1 (simply
add one to each level in the proof). Now, with several ? rules we obtain `??Γ=0, A1,
and then `??Γ=0, !A0. Finally, we cut this sequent against the provable sequent
`!!Γ⊥=0, ?Γ=0.

Theorem 3.8 (completeness)

L̀L α ⇒ 2̀LL α=0
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Proof. By induction on the length of the proof of L̀L α and by cases on the last rule.
Most cases are trivial. For instance, the ? rule is handled directly taking j = 0; for
the ! rule, we apply Lemma 3.7; and so on.

A careful inspection of the proof above shows that all the non-modal rules are
applied with the principal formulas at maximal levels. Therefore, the addition of this
restriction would not have any impact on completeness.

Corollary 3.9 (equivalence)

L̀L α ⇔ 2̀LL α=0

4 Taming the complexity of LL

Following the ideas in [14], several subsystems of LL can be obtained by constraining
the range of variation of the j parameter in the ? rule. In fact:

1. setting i ≥ j > 0, we avoid the principle !A( A;
2. setting j ∈ {0, 1}, we avoid the principle !A(!!A;
3. with j = 1, we get rid of both the previous principles.

Remark 4.1 Let 2ELL be the system in which the ? rule is applied always with j =
1. The fact that 2ELL does not prove !A (!!A and !A ( A is established by a
simple translation of linear formulas into classical modal ones: linear propositional
connectives are replaced with classical conjunction and disjunction, ! with necessity
and ? with possibility (see also section 4.1). The system 2ELL is translated in this
way into a sub-calculus of the 2-sequent calculus for KD (see [12]). Obviously, if 2ELL
proved !A (!!A or !A ( A, the 2-sequent calculus for KD would do the same for
�A → ��A and �A → A, which is instead impossible.

The interest of these subsystems stems from the fact that they avoid the rules that
are the main culprits for the super-exponential cost of cut-elimination for LL. In fact,
questing for a logical system with an intrinsic polynomial complexity (i.e., with a
polynomial cut-elimination ensuring at the same time that all polynomial functions
are representable) Girard proposed in [6] the Light Linear Logic (LLL) system, drop-
ping, among others, the laws mentioned above (see the appendix for the rules of LLL).
The purpose of this section is to reconstruct LLL in a 2-sequent notation.

In the same paper, Girard briefly sketched ELL (Elementary Linear Logic), a super-
system of LLL with a (Kalmar) elementary cut-elimination (see the appendix for the
rules of ELL). Also ELL is easily formulated in our notation: it is simply 2ELL,
once Girard’s syntax (especially what he calls “blocks”) is expressed in the 2-sequent
language. The equivalence between ELL and 2ELL will be stated after the section
devoted to LLL, since ELL shares most of the syntax with these systems. Before getting
through LLL, however, let us pause for a moment, discussing why (presumably) ELL
was presented with a complicated syntax. A complication that disappears in 2ELL.

4.1 ELL and the deontic logic KD

From the modal point of view, ELL is akin to KD (see Remark 4.1). Sequent rules for
KD are well known; the standard ones are the following, where both modalities are
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introduced at once: ` Γ, A

` �Γ,�A

` Γ

` �Γ
It is this “one-shot” formulation of modalities that eliminates the laws �A → ��A
and �A → A.

In linear logic, the same target cannot be reached so trivially because of the inter-
action between the exponential and the propositional connectives (actually, mainly
because of the additives). It is to avoid the modification of the usual formulation of
linear logic propositional rules that Girard introduced two distinct formula separa-
tors in ELL and LLL sequents: the “;” with the usual multiplicative intended meaning
(i.e., it can be internalized by the O connective) and the “,” with an additive intended
meaning (i.e., it can be internalized by the � connective). As we shall see in more
detail in section 5.4, the use of 2-sequents allows to avoid all these kind of problems
and to formulate ELL and LLL in a “more traditional” way.

5 Light Linear Logic

ELL is still too powerful. Many of its rules must be restricted to capture polynomial
time. From an axiomatic point of view, many laws valid in ELL have to be abandoned;
among these, the generalization rule:

` A
gen`!A

the law !(A( B)( (!A(!B) and the law !A�!B (!(A�B). Moreover, in order to
restore some of the lost power in a harnessed way, a new auto-dual modality § must
be added to the system.

In the 2-sequent framework, many constraints have to be added to 2ELL. First, the
rule for the ! must be formulated in order to avoid generalization as a special case:

` Γ, Ai

!` Γ, !Ai−1
i>max(Γ),Γ 6=?

Second, we must avoid the two laws mentioned above, amounting to a drastic restric-
tion of cut and �. Namely, all the premises (and conclusions) must be at the same
level. For the same reason, also the ? rule has to be strongly harnessed, asking the
context to consist of exactly one formula:

` Bi, Ai

?` Bi, ?Ai−1

Third, weakening must be restricted:

` Γ
W` Γ, ?Ai

i≤max(Γ),Γ≤i 6=?

Finally, the new auto-dual modality ((§A)⊥ = §A⊥) is regulated by the single rule:

` Γ=i+1 , ∆=i+1

?§`?Γ=i, §∆=i
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which makes clear that § stays midway between ! and ?. In fact, L̀LL!A ( §A and
L̀LL §A(?A.

All these restrictions make (essentially) useless the abundance of levels of the cal-
culus. In fact, in the following section we present an equivalent (and we believe more
elegant) calculus with only two levels, to which we reserve the official name 2LLL.
The equivalence of 2LLL to the sketched formulation with many levels is left to the
interested reader and may be proved along the lines of Theorem 5.3.

5.1 2LLL

The formulation of 2LLL resorting to the two-dimensional notation for 2-sequents is
given in Figure 2. All the sequences have at most two levels; recall that α, β range
over ordinary sequences of formulas.

We prove next that 2LLL is equivalent to the standard formulation of Girard. In the
following, A, B, Ai, . . . range over formulas; A, B, Ai . . . range over blocks. Moreover,
the block A1, . . . , An stands for (or to put it as in [6] “is hypocrisy for”) A1� . . .�An;
while, if A1, . . . ,An stands for the formulas A1, . . . , An, the sequence A1; . . . ; An

stands for A1 O . . .OAn.

5.2 Soundness

We slightly modify the interpretation of Definition 2.2 to take into account the block
notion.

Definition 5.1 (interpretation of LLL 2-sequences)

1. A1, . . . , An = A1; . . . ; An;

2. O(A1, . . . , An) = A1 O . . .OAn;

3. [Γ]} =




[α]} = α when Γ = α[
α
β

]}
= α; !O β when Γ = α

β

In the following, we will use several times and without explicit reference the follow-
ing facts:

1. L̀LL A OB and L̀LL B ( C implies L̀LL AO C;

2. L̀LL!B whenever L̀LL A( B and L̀LL!A.

In particular, we recall that the second fact replaces !(A ( B) ( (!A (!B), which
is false in LLL.

Lemma 5.2 L̀LL!(B O C)�!(B OD)(!(B O (C ND)).
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Identity/Negation

` A, A⊥ ` α, A ` β, A⊥
cut` α, α

Structure

` α
β

W1
` α

β, ?A
β 6=?

` α
β

W2
` α, ?A

β
α 6=?

` α
β, ?A, ?A

C1
` α

β, ?A

` α, ?A, ?A
β

C2
` α, ?A

β

Logic

` α, β
?§` ?α, §β

` A, B
?

` ?A
B

` α
A

!` α, !A
α 6=?

` α
β, C

` α
β, D

N

` α
β, C ND

` α
β, C

�L

` α
β, C �D

` α
β, D

�R

` α
β, C �D

` α, C ` β, D
�` α, β, C �D

` α
β, C, D

O1

` α
β, C OD

` α, C, D
β

O2

` α, C OD
β

` α, A ∀` α, ∀X.A

` α, A ∃` α, ∃X.A

` α ⊥` α,⊥ ` 1 ` α,>

Fig. 2. 2LLL: 2-sequent presentation of LLL.

Proof.
` B⊥; B ` C⊥ ; C

` B⊥
� C⊥; B; C

` B⊥
� C⊥ ,B⊥

�D⊥; B; D

` B⊥; B ` D⊥; D

` B⊥
�D⊥; B; D

` B⊥
� C⊥ ,B⊥

� D⊥; B; D

` B⊥
� C⊥, B⊥

�D⊥; B; C ND

` B⊥
� C⊥ ,B⊥

� D⊥; B O C ND

` [B⊥
� C⊥ ]; [B⊥

�D⊥]; !(B O (C N D))

`?(B⊥
� C⊥); [B⊥

�D⊥]; !(B O (C ND))

`?(B⊥
� C⊥); ?(B⊥

�D⊥); !(B O (C ND))

`?(B⊥
� C⊥)O ?(B⊥

� D⊥); !(B O (C ND))

`!(B O C)�!(B OD)(!(B O (C ND))
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Theorem 5.3 (soundness of 2LLL)

2̀LLL Γ ⇒ L̀LL [Γ]}

Proof. By induction on the proof of 2̀LLL Γ and by cases on the last rule. The case
of axiom, cut, �, ∀, ∃, ⊥, 1, and > are obvious, since they are interpreted into the
corresponding LLL rules. The cases of ! and O are also trivial, since their premises
and conclusions have the same interpretation. For the other rules we have instead:
Rules �: Easy, since 2̀LLL C ( C �D and 2̀LLL C ( D �C.
Rule §: We apply the neutral rule first and then the why-not rule many times.
Rule ?: We apply the of-course rule first and then the why-not rule once.
Rule N: If α is empty, we use the with rule of LLL. Otherwise, the premises of the

rule are interpreted as α; !(Oβ O C) and α; !(Oβ O D). Thus, by induction
hypothesis, L̀L α; α; !(Oβ O C)�!(Oβ OD). By a cut, using Lemma 5.2, we
obtain L̀L α; α; !(Oβ O (C ND)). We observe now that, for α = A1; . . . ; An,
any Ai is (in the class Exp and in particular is) of the form ?B1 O . . .O?Bki .
Therefore, using L̀L?BO?B (?B, by several successive cuts we obtain the thesis.

Rule W1: By L̀L B ( BO?A.
Rule W2: We use first mult-W, and then the why-not rule of LLL.
Rules C1 and C2: We use again L̀L?BO?B (?B.

5.3 Completeness

Definition 5.4 (Translation of LLL sequents) Let A, A1, . . .An be formulas and
A, A1, . . .Am be blocks:

1. (A)~ = A if A is a formula;
2. ([A])~ =?A;
3. (A1, . . . , An)~ = A1 � . . .�An;
4. (A1; . . . ; An)~ = (A1)~, . . . , (An)~.

Lemma 5.5
2̀LLL ?B1, . . . , ?Bn, !(B⊥

1 N · · ·NB⊥
n )

Proof.

` B1, B⊥
1

?

` ?B1

B⊥
1 W2

.

.

.
W2

` ?B1, . . . , ?Bn

B⊥
1

` B2, B⊥
2···

` ?B1, . . . , ?Bn

B⊥
2

` B3, B⊥
3 · · · ` Bn, B⊥

n···
` ?B1, . . . , ?Bn

B⊥
3 N · · · N B⊥

n N

` ?B1, . . . , ?Bn

B⊥
2 N B⊥

3 N · · · N B⊥
n N

` ?B1, . . . , ?Bn

B⊥
1 N B⊥

2 N · · · N B⊥
n !

` ?B1, . . . , ?Bn, !(B⊥
1 N B⊥

2 N · · · N B⊥
n )
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Theorem 5.6 (completeness of 2LLL)

L̀LL A1; . . . ; Am ⇒ 2̀LLL (A1)~, . . . , (Am)~

Proof. By induction on the proof of L̀LL A1; . . . ; Am and by cases on the last rule. All
the non-modal rules of LLL (plus why-not) are handled trivially. The only interesting
cases are those of of-course and neutral.
In the original formulation of LLL the of-course rule is:

` B1, . . . , Bn; A
of-course` [B1], . . . , [Bn]; !A

By definition, (B1 , . . . , Bn; A)~ = B�, A, where B� = B1 � · · ·� Bn. By induction
hypothesis, 2̀LLL B�, A. Thus, since by definition we have that ([B1], . . . , [Bn]; !A)~ =
?B1, . . . , ?Bn, !A, the required 2LLL proof is:

Lemma 5.5

` ?B1, . . . , ?Bn, !B⊥
�

` B�, A
?

` ?B�
A !

` ?B�, !A
cut

` ?B1, . . . , ?Bn, !A

In the original formulation of LLL the neutral rule is:

` C1
1 , . . . , C1

p1
; . . . ; Cn

1 , . . . , Cn
pn

; A1; . . . ; Am
neutral` [C1

1 ]; . . . ; [C1
p1

]; . . . ; [Cn
1 ]; . . . ; [Cn

pn
]; §A1; . . . ; §Am

Let Ck
�

= Ck
1 � · · ·� Ck

pk
and C̃k

N
= (Ck

1 )⊥ N · · ·N (Ck
pk

)⊥ = (Ck
�
)⊥ . The premise

becomes (C1
1 , . . . , C1

p1
; . . . ; Cn

1 , . . . , Cn
pn

; A1; . . . ; Am)~ = C1
�, . . . , Cn

�, A1, . . . , Am. By
induction hypothesis, 2̀LLL C1

�, . . . , Cn
�, A1, . . . , Am. Therefore, since the conclusion

becomes ([C1
1 ]; . . . ; [Cn

pn
]; §A1; . . . ; §Am)~ =?C1

1 , . . . , ?Cn
pn

, §A1, . . . , §Am, the required
2LLL proof is:

` C1
�

, . . . , Cn
�

, A1 . . . , Am

§
` ?C1

�
, . . . , ?Cn

�
, §A1, . . . , §Am

Lemma 5.5

` ?C1
1 , . . . , ?C1

p1
, ! eC1

N

cut
` ?C1

1 , . . . , ?C1
p1

, ?C2
�

. . . , ?Cn
�

, §A1, . . . , §Am

.

.

.
cut

..

.
..
.

cut
` ?C1

1 , . . . , ?Cn
pn

, §A1, . . . , §Am

Corollary 5.7 (equivalence)

2̀LLL A1; . . . ; Am ⇐⇒ 2̀LLL (A1; . . . ; Am)~.
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5.4 Intermezzo: Proofs in 2LLL

Performing a proof in 2LLL is “more natural” than constructing a proof of the same
conclusion in LLL. The argument is best exemplified by comparing the formula

?AO (?BO!(A⊥
N B⊥)),

which is provable in LLL. Its LL proof is:

` A, A⊥
?

`?A, A⊥
W

`?A, ?B,A⊥

` B,B⊥
?

`?B,B⊥
W

`?A, ?B,B⊥
N

`?A, ?B,A⊥
N B⊥

!
`?A, ?B, !(A⊥

N B⊥)
O

`?A, ?BO!(A⊥
N B⊥)

O

`?AO (?BO!(A⊥
N B⊥))

We see that it is essential to have separate rules for the two exponential connectives
(i.e., we cannot merge their rules as in the deontic logic KD, see Section 4.1), for the
introduction of ! is subordinated to a ? context built by two distinct ? rules (and,
moreover, these two ? rules are on two distinct branches).

It is to take into account the need for two separate rules for ! and ?, that Girard
was forced to adopt a rather contrived syntax for LLL. In particular, he chose to have
a “liberal” rule for the introduction of !

` B1, . . . , Bn; A
of-course` [B1]; . . . ; [Bn]; !A

where no side-condition on the context of the premise is issued. But the context is
modified after the introduction. Commas are replaced by semicolons and formulas
by discharged formulas. The liberal rule for ! introduction is not constrained by
the syntactical structure of the context. On the contrary, it changes the context.
Therefore, the proof of our formula in Girard’s LLL is the following:

` A; A⊥
add-W

` A, B;A⊥

` B;B⊥
add-W

` A, B;B⊥
with

` A, B;A⊥
N B⊥

of-course
` [A]; [B]; !(A⊥

N B⊥)
why-not

` [A]; ?B; !(A⊥
N B⊥)

why-not
`?A; ?B; !(A⊥

N B⊥)
par

`?A; ?BO!(A⊥
N B⊥)

par
`?AO (?BO!(A⊥

N B⊥))

where:

1. There are two additive weakenings (add-W).
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2. Before the introduction of ! the intended meaning of the context is A�B; after,
it is ?AO?B. In a sense, there is an implicit use of the fact A�B (?AO?B.

3. Only after the introduction of ! we may change the discharged formulas [A] and
[B] into why-not formulas.

In our 2ELL, exponentials are handled as first/second order quantifiers. There are
two separate rules for ! and ?; and, moreover, the introduction of an exponential
connective does not change the context. Finally, the introduction of ! is not free: its
constraint is similar to the one of a universal quantifier (for a detailed discussion of
this analogy see [8]).

By these properties, the skeleton of the proof of ?AO (?BO!(A⊥
NB⊥)) in 2LLL is

the same as that of LL:

` A, A⊥
?

` ?A

A⊥
W2

` ?A, ?B
A⊥

` B,B⊥
?

` ?B

B⊥
W2

` ?A, ?B
B⊥

N1

` ?A, ?B

A⊥
N B⊥

!
` ?A, ?B, !(A⊥ N B⊥)

O1
` ?A, ?BO!(A⊥

N B⊥)
O1

` ?AO (?BO!(A⊥ N B⊥))

Next section will prove this in a more general setting (see Theorem 6.3).

6 Elementary Linear Logic

In Remark 4.1, we defined the system 2ELL as the restriction of 2LL obtained forcing
j = 1 in the ? rule. As in the case of 2LLL, this amounts to a system with only two
levels: the two-dimensional formulation of 2ELL is obtained from the one of 2LLL by
removing the constraints on the rules for ? and !. In more detail, the rules of 2ELL are
the ones in Figure 2 with the exception of the ?§ rule—§ does not exist in ELL—and
of the ? and ! rules, which are replaced by:

` α
A, β

?

` α, ?A
β

` α
A

!` α, !A

The translation of 2ELL sequents into ELL sequents is the same as the one given
for 2LLL. Moreover, completeness is proved in the same way.

Theorem 6.1 (completeness of 2ELL)

ÈLL A1; . . . ; Am ⇒ 2̀ELL (A1)~, . . . , (Am)~
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6.1 Relating ELL and LL proofs

ELL is a subsystem of LL, in the sense that L̀L A whenever ÈLL A. However, because
of the ad hoc syntax of ELL, there is no direct correspondence between ELL proofs of
a given formula and LL proofs of the same formula.

In the case of 2ELL (and even of the subsystem of 2LLL without the § modality)
there is instead a straightforward way in which any 2ELL can be seen as a LL proof
(in which the sequents have been split into an upper and a lower part).

Formally, consider again the “flattening” function [·][:

[α][ = α

[
α
β

][

= α, β

For the sake of clarity, we take a restricted version of 2ELL where the rule O2 is
omitted. In the rest of this section, we will use 2ELL to the denote such a system
(summarizing, in this section 2ELL is 2LLL minus the ?§ and O2 rules, and without
restrictions on the ? and ! rules). It is straigthforward to chech that even with this
restriction the system remains complete for ELL (just observe that rule O2 is never
used in the proof of the completeness theorem 6.1).

As 2ELL is trivially a subsystem of 2LL, the following proposition is still valid:

Theorem 6.2
2̀ELL Γ ⇒ L̀L [Γ][

Extend now the [-translation to proofs: for a 2ELL proof Π, let [Π][ the tree obtained
by replacing each 2-sequent ` Γ in Π with the classical sequent ` [Γ][. This translation
clearly maps 2ELL proofs into LL proofs.

Theorem 6.3 For any 2ELL proof Π, the tree [Π][ is an LL proof.

Proof. It is almost immediate to note that, after the application of the [-translation,
all the rules of 2ELL become rules of LL. The only case that deserves some consider-
ation is the ! rule:

` α
A

!` α, !A

Since Π does not contain O2 rules, no formula in α is of the shape A1 O A2. By
inspection of the rules we see that α is a sequence of ?-formulas. Hence,

` α, A

` α, !A

is a valid application of the promotion rule of LL.

Summing up, when proving in 2ELL/2LLL, we use classical principles only, without
annoying ourselves with complicated syntactical constraints. Moreover, there is a
trivial characterization of the LL proofs corresponding to proofs of ELL facts. They
correspond to the set:

LL[ELL] = {Π′ | Π′ = [Π][, for some 2ELL proof Π}
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7 Why 2-sequents

We discuss in this section some additional features of 2-sequents for linear logic. First,
we show a cut-free 2ELL-proof of a formula non cut-free provable in ELL; then, we
discuss how extensions of Linear Logic may be formulated in this framework.

7.1 An ELL example

System ELL was only sketched in [6]; the complex syntax of the system, however,
hides some poison in its tail. Consider indeed the following proof in 2ELL:

` A⊥ 1, A1

?
` A⊥ 1, ?A0

` 11

W
` 11, ?A0

N

` A⊥
N 11, ?A0

!
`!(A⊥

N 1)0, ?A0

The ending sequent, though derivable in ELL, is not provable in ELL by a cut-free
proof, as was observed first by Kanovich, Okada and Scedrov [10]. By inspection of
the previous proof, we see that, in order to obtain a cut-free proof of `!(A⊥

N 1), ?A,
we should be able to weaken ` 1 by the formula A, adding the ? in front of A only
while closing the box of the !.

We have not proved yet a complete cut-elimination theorem for the systems pre-
sented in this paper (note that in the proof of the correspondence between LL and
2LL we use cut).

7.2 Questing for more freedom

So far, we showed how the 2-sequent approach scales to subsystems of LL obtained
constraining the nesting of the corresponding proof-net boxes. In particular, we have
seen that these constraints find an immediate translation in 2LL as suitable restric-
tions of the side-conditions already present in its rules. We also hinted that more
drastic restrictions can be made to 2LL, still maintaining completeness for LL (for
instance, even restricting all the non-exponential rules to formulas at maximal levels,
Corollary 3.9 holds).

On the other hand, rather to strengthen the restrictions already present in 2LL,
another possible direction is relaxing or removing the side-conditions. Let us see in
details the cases in which this makes sense and which consequences on provability
this may have. In particular, we will see that the proposed rules are the most liberal
ones for representing LL.

In the rules of 2LL, we have several kinds of constraints: (i) in the promotion rule
for !; (ii) in the weakening rule; (iii) in the rules for ∀ and ∃; (iv) in the rules for cut,
�, and �. Let us analyze these cases in order.

7.2.1 Promotion
In 2LL, dropping the constraint of the rule for the ! introduction would kill the expo-
nential structure. The sequent `?A (!A would become provable (while it is not in
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LL). Hence, from `!A( A (valid in LL), we might conclude A '?A '!A.
The previous relaxation has a less drastic effect on the fragments 2LLL and 2ELL.

For instance, let us take 2ELL. The law `!A ( A is not derivable in 2ELL and,
moreover, we does not obtain it relaxing the constraint on the promotion rule of
2ELL. Therefore, in this case the exponential formulas would not collapse to simple
ones, but ! and ? would be self-dual, i.e., !A '?A. From a semantical point of view
(and from a modal perspective), this would mean that ! is a sort of non-branching
next operator; while, from a syntactical point of view, Ai would just become syntactic
sugar for !iA (i.e., A preceded by i occurrences of !).

7.2.2 Weakening
Removing the constraint on weakening would lead to a calculus midway to a linear
and affine system (i.e., with unrestricted weakening). In fact, this would correspond
to extend the weakening rule of LL to the case of formulas like !k?A, for any k ≥ 0.

7.2.3 Quantifiers

This seems the least interesting case, since the level constraints are forced by the
usual variable constraint on ∀. Take, for instace, the following proof:

` X⊥ 1, X1

?
`?X⊥0, X1

∃
` ∃X.?X⊥0,X1

∀
` ∃X.?X⊥0, ∀X.X1

!
` ∃X.?X⊥0, !∀X.X0

where the side-condition of ∃ is violated. According to the interpretation of levels as
boxes, the ∃ rule in the proof is outside the box of the !, while the ∀ is inside the
box. Moreover, the axiom ` X⊥ 1, X1 is the only rule inside that box. Therefore,
applying ∀ we would violate the side-condition on the occurrences of X. In other
words, the extension of 2LL corresponding to a free application of ∃ is not a logically
sound extension of LL.

7.2.4 Multiplicatives and additives
We write 2̀SLL for the provability relation obtained allowing an unrestricted use of cut,
� and �. We have:

2̀SLL?(A⊥)�?(B⊥), !(ANB)

2̀SLL?(A⊥)�?(B⊥), !(AOB)

These are essentially the only new sequents introduced by the relaxation. In fact, let
S be the the set of axioms (schemas) derived from the pair of sequents above. We
have that:

2̀SLL Ai ⇐⇒ L̀L+S A

and in particular, when A is exponential free, we have:

2̀SLL Ai ⇐⇒ L̀L A
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The interesting point is that the axioms in S fits our interpretation of exponentials
as a sort of quantifiers. In fact, it is well known that the corresponding sequents in
which ∀ and ∃ replace ! and ? are provable in LL. Namely:

L̀L ∃X.(A⊥)� ∃X.(B⊥), ∀X.(ANB)

L̀L ∃X.(A⊥)� ∃X.(B⊥), ∀X.(AOB)

Unfortunately, the previous extension of LL is not cut-free. From the second sequent
in S and from L̀L?(A⊥

O B⊥)0, (AO b)� (A O B)0, we can derive:

`?A⊥
�?B⊥ 0, !(AO B)0 `?(A⊥

OB⊥)0, (AO B)� (A OB)0
cut`?A⊥

O?B⊥ 0, (AO B)� (AO B)0

whose ending sequent is not cut-free derivable.

8 Conclusions and further work

In this paper, our main aim has been showing how the 2-sequent approach may
improve the presentation of calculi whose rules encode involved structural constraints
on the corresponding proofs. Because of this, we omitted to study the dynamics of
the systems that we proposed and we focused on examples and observations made
possible by the use of our generalized notion of sequent.

The most relevant point of this approach to Linear Logic is the tight correspondence
between the indexes assigned to formulas and the box nesting depth of links in the
corresponding proof-nets. Therefore, the further step is the analysis of the indexed
proof-nets induced by our systems and, in particular, a detailed study of their reduc-
tion. As we showed in [7, 9], the dynamics of the indexed proof-nets corresponding
to 2-sequents of LL can be implemented via a set of local an distributed rules (i.e.,
no more global rules for duplication of boxes). We believe that this approach might
scale in a smooth way to the systems presented here. Moreover, we hope that this
reduction technique might preserve the complexity bound that motivated Girard, and
we think that sharing-reduction will give a clearer explanation of these bounds.

A Light and Elementary Linear Logic

The rules of LLL are given in Figure 3. Remind that A stands for a block of formulas A1, . . . ,An.
Moreover, A1, . . . , An “is hypocrisy for” A1 � . . . � An, while if A1, . . . , An stand for the formulas

A1, . . . ,An, the sequence A1; . . . ;An “is hypocrisy for” for A1 O . . . O An.
For a complete treatment, including the relevant issues of the dynamics of LLL, see [6] (for a

semantical approach, see [10]).
ELL is obtained from LLL replacing the following of-course

` C1
1 , . . . , C1

p1
; . . . ;Cn

1 , . . . , Cn
pn

; A
of-course

` [C1
1 ]; . . . ; [C1

p1
]; . . . ; [Cn

1 ]; . . . ; [Cn
pn

]; !A

for the one of LLL. At the same time the modality § becomes superfluous and is removed from the

calculus.
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Identity/Negation

axiom` A; A⊥
` Γ; A ` ∆; A⊥

cut` Γ; ∆

Structure

` Γ
mult-W` Γ; [A]

` Γ; A
add-W` Γ; A, B

` Γ; [A]; [A]
mult-C` Γ; [A]

` Γ; A, B, B
add-C` Γ; A, B

Logic

` B1, . . . , Bn; A
of-course` [B1]; . . . ; [Bn]; !A n>0

` Γ; A
why-not` Γ; ?A

` C1
1 , . . . , C1

p1
; . . . ; Cn

1 , . . . , Cn
pn

; A1; . . . ; Am
neutral` [C1

1 ]; . . . ; [C1
p1

]; . . . ; [Cn
1 ]; . . . ; [Cn

pn
]; §A1; . . . ; §Am

` Γ; C ` Γ; D
with` Γ; C ND

` Γ; C
L-plus` Γ; C �D

` Γ; D
R-plus` Γ; C �D

` Γ; C ` ∆; D
tensor` Γ; ∆; C �D

` Γ; C; D
par` Γ; C OD

` Γ; A
forall` Γ; ∀X.A

` Γ; A[B/X]
exists` Γ; ∃X.A

` Γ
false` Γ; ⊥

one` 1
true` Γ; >

Fig. 3. Girard’s LLL
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