
A Mathematical Theory of Computation?

Simone Martini

Dipartimento di Informatica – Scienza e Ingegneria
Alma mater studiorum • Università di Bologna

and
INRIA FoCUS – Sophia / Bologna

Lille, February 1, 2017

1 / 57

Reflect and trace the interaction of mathematical logic
and programming (languages),

identifying some of the driving forces of this process.

Previous episodes: Types
HaPOC 2015, Pisa: from 1955 to 1970 (circa)
Cie 2016, Paris: from 1965 to 1975 (circa)

2 / 57

Why types?

Modern programming languages:

control flow specification: small fraction

abstraction mechanisms to model application domains.

• Types are a crucial building block of these abstractions

• And they are a mathematical logic concept, aren’t they?

3 / 57

Why types?

Modern programming languages:

control flow specification: small fraction

abstraction mechanisms to model application domains.

• Types are a crucial building block of these abstractions

• And they are a mathematical logic concept, aren’t they?

4 / 57

We today conflate:

Types as an implementation (representation) issue

Types as an abstraction mechanism

Types as a classification mechanism (from mathematical logic)

5 / 57

The quest for a “Mathematical Theory of Computation”

How does mathematical logic fit into this theory?

And for what purposes?

6 / 57

The quest for a “Mathematical Theory of Computation”

How does mathematical logic fit into this theory?

And for what purposes?

7 / 57

Prehistory

1947

8 / 57

Goldstine and von Neumann

[. . .] coding [. . .] has to be viewed as a logical problem and one
that represents a new branch of formal logics.

Hermann Goldstine and John von Neumann
Planning and Coding of problems for an Electronic Computing Instrument
Report on the mathematical and logical aspects of an electronic computing instrument,
Part II, Volume 1-3, April 1947. Institute of Advanced Studies.

9 / 57

Boxes in flow diagrams

10 / 57

Goldstine and von Neumann, 2

Boxes in flow diagrams

operation boxes

substitution boxes

assertion boxes

The contents of an assertion box are one or more relations.

An assertion box [. . .] indicates only that certain relations are
automatically fulfilled whenever [the control reaches that point]

Free and bound variables, etc.

11 / 57

Goldstine and von Neumann

Logic as the discipline to prove assertions

12 / 57

Turing

Lecture on Automatic Computing Engine
London Mathematical Soc., 20 Feb 1947. Typewritten notes, in Turing Archive, AMT/C/32

High-level languages

13 / 57

Turing

Lecture on Automatic Computing Engine
London Mathematical Soc., 20 Feb 1947. Typewritten notes, in Turing Archive, AMT/C/32

High-level languages

In principle one should be able to communicate [with these machines] in
any symbolic logic [. . .].

This would mean that there will be much more practical scope for logical
systems than there has been in the past.

14 / 57

Turing

Logic as the discipline of formal languages

15 / 57

A bright future, for both

Goldstine and von Neumann:

A logical problem [. . .] that represents a new branch of formal
logics.

Turing:

There will be much more practical scope for logical systems.

16 / 57

Turing, again: 1949

The programmer should make assertions about the various states
that the machine can reach.

The checker has to verify that [these assertions] agree with the
claims that are made for the routine as a whole.

Finally the checker has to verify that the process comes to an end.
A.M. Turing. Checking a large routine. Paper read on 24 June 1949 at the inaugural conference of the EDSAC
computer at the Mathematical Laboratory, Cambridge.
Discussed by Morris and Jones, Annals of the History of Computing, Vol. 6, Apr. 1984.

17 / 57

Programming in the fifties (and later. . .) was a different story. . .

18 / 57

Knuth’s recollection, circa 1962

19 / 57

Knuth’s recollection, circa 1962

I had never heard of “computer science”

The accepted methodology for program
construction was [. . .]: People would write
code and make test runs, then find bugs
and make patches, then find more bugs and
make more patches, and so on

We never realized that there might be a
way to construct a rigorous proof of validity
[. . .] even though I was doing nothing but
proofs when I was in a classroom
[D.K. Knuth, Robert W. Floyd, in memoriam. ACM SIGACT News 2003]

20 / 57

Knuth’s recollection, circa 1962

The early treatises of Goldstine and von
Neumann, which provided a glimpse of
mathematical program development, had
long been forgotten.

21 / 57

A Mathematical Theory of Computation

It is reasonable to hope that the
relationship between computation and
mathematical logic will be as fruitful in the
next century as that between analysis and
physics in the last.

John McCarthy, MIT 1961; Stanford 1963

From the conclusion of the final version of the paper (1963): A Basis for a
Mathematical Theory of Computation. 1961: the Western Joint Computer
Conference; 1962: IBM symposium in Blaricum, Netherlands; 1963: in
Computer Programming and Formal Systems, North Holland.

22 / 57

A Mathematical Theory of Computation

It is reasonable to hope that the
relationship between computation and
mathematical logic will be as fruitful in the
next century as that between analysis and
physics in the last.

John McCarthy, MIT 1961; Stanford 1963

From the conclusion of the final version of the paper (1963): A Basis for a
Mathematical Theory of Computation. 1961: the Western Joint Computer
Conference; 1962: IBM symposium in Blaricum, Netherlands; 1963: in
Computer Programming and Formal Systems, North Holland.

23 / 57

Which matematics for computing?

Numerical analysis

Roundoff errors in matrix
computation: Ax = b

- Turing
- Goldstine & von Neumann: solve
A′Ax = A′b, for A′ transpose of A

Jim Wilkinson (Turing Aw. 1970):
backward error analysis

24 / 57

Which matematics for computing?

Automata theory

McCulloch and Pitts (1943)

Kleene (“regular events”), Nerode, Myhill,
Shepherdson

Automata Studies, Shannon and McCarthy
(eds) [Davis, Kleene, Minsky, Moore, etc.]
Princeton Univ Press, 1956

Rabin and Scott. Finite Automata and
their decision problems. IBM J. 1959

25 / 57

A basis for a Mathematical Theory of Computation

Expected practical Results:

1 To develop a universal programming language

“Universal” = machine independent and general

2 To define a theory of the equivalence of computation processes

Define equivalence-preserving transformations: optimization,
compilation, etc.

26 / 57

A basis for a Mathematical Theory of Computation

Expected practical Results:

3 To represent algorithms by symbolic expressions in such a way
that significant changes in the behavior represented by the
algorithms are represented by simple changes in the symbolic
expressions.

Learning algorithms, whose modifiable behavior depends on
the value of certain registers.

27 / 57

A basis for a Mathematical Theory of Computation

Expected practical Results:

4 To represent computers as well as computations in a
formalism that permits a treatment of the relation between a
computation and the computer that carries out the
computation.

5 To give a quantitative theory of computation. There might be
a quantitative measure of the size of a computation analogous
to Shannon’s measure of information.

28 / 57

We hope that the reader will not be angry about the contrast
between the great expectations of a mathematical theory of
computation and the meager results presented in this paper.

29 / 57

Contents

a class of recursively computable functions

based on arbitrary domains of data and operations on them

with conditional expressions

functionals

a general theory of datatypes

recursion induction to prove equivalences

30 / 57

Computation and Mathematical Logic, 1-2/4

There is no single relationship between logic and computation
which dominates the others.

1 Morphological parallels
the importance of this relationship has been exaggerated,
because as soon as one goes into what the sentences mean
the parallelism disappears

2 Equivalent classes of problems
reduction between problems to show undecidability
Some of this world is of potential interest for computation
even though the generation of new unsolvable classes of
problems does not in itself seem to be of great interest for
computation.

31 / 57

Computation and Mathematical Logic, 3

There is no single relationship between logic and computation
which dominates the others.

3 Proof procedures and proof checking procedures:

Instead of trying out computer programs on test cases until
they are debugged, one should prove that they have the
desired properties.

Work on a mildly more general concept of formal system:

check(statement, proof)

32 / 57

Computation and Mathematical Logic, 3

There is no single relationship between logic and computation
which dominates the others.

3 Proof procedures and proof checking procedures:

It should be remembered that the formal systems so far
developed by logicians have heretofore quite properly had as
their objective that it should be convenient to prove
metatheorems about the systems rather than that it be
convenient to prove theorems in the systems.

33 / 57

Computation and Mathematical Logic, 4

There is no single relationship between logic and computation
which dominates the others.

4 Use of formal systems by computer programs:
Mathematical linguists are making a serious mistake in their
almost exclusive concentration on the syntax and, even more
specially, the grammar of natural languages. It is even more
important to develop a mathematical understanding and a
formalization of the kinds of information conveyed in natural
language.

The main problem in realizing the Advice Taker has been
devising suitable formal languages covering the subject matter
about which we want the program to think.

34 / 57

No explicit program correctness?

Towards a Mathematical Science of Computation, IFIP 1962

One of the first attempts towards an epistemology of computing

1 What are the entities with which the science of computation
deals?
data, procedures, programs, semantics etc.

2 What kinds of facts about these entities would we like to
derive?

3 What are the basic assumptions from which we should start?

35 / 57

No explicit program correctness?

Towards a Mathematical Science of Computation, IFIP 1962

One of the first attempts towards an epistemology of computing

1 What are the entities with which the science of computation
deals?
data, procedures, programs, semantics etc.

2 What kinds of facts about these entities would we like to
derive?

3 What are the basic assumptions from which we should start?

36 / 57

For what purpose?

1 To define programming languages
At present, programming languages are constructed in a very
unsystematic way. [. . .] A better understanding of the
structure of computations and of data spaces will make it
easier to see what features are really desirable.

2 To eliminate debugging.
Instead of debugging a program, one should prove that it
meets its specifications, and this proof should be checked by a
computer program. For this to be possible, formal systems are
required in which it is easy to write proofs.

37 / 57

Contents

1 Recursion induction to prove properties of Algol programs

2 Abstract syntax of programming languages

3 Semantics: the meaning of program is defined by its effect on
the state vector.

38 / 57

R. Floyd

An adequate basis for formal definitions of
the meanings of programs [. . .] in such a
way that a rigorous standard is established
for proofs about computer programs

Based on ideas of Perlis and Gorn

That semantics of a programming language
may be defined independently of all
processors [. . .] appear[s] to be new,

although McCarthy has done similar work
for programming languages based on
evaluation of recursive functions.
Robert W. Floyd. Assigning meaning to programs. Mathematical Aspects

of Computer Science, AMS 1967.

39 / 57

R. Floyd

An adequate basis for formal definitions of
the meanings of programs [. . .] in such a
way that a rigorous standard is established
for proofs about computer programs

Based on ideas of Perlis and Gorn

That semantics of a programming language
may be defined independently of all
processors [. . .] appear[s] to be new,

although McCarthy has done similar work
for programming languages based on
evaluation of recursive functions.
Robert W. Floyd. Assigning meaning to programs. Mathematical Aspects

of Computer Science, AMS 1967.

40 / 57

Mathematical Aspects of CSCONTENTS

A review of automatic theorem-proving 1
J. A. Robinson

Assigning meanings to programs 19
Robert W. Floyd

Correctness of a compiler for arithmetic expressions 33
John McCarthy
James Painter

Context-free languages and Turing machine computations 42
J. Hartmanis

Computer analysis of natural languages 52
Susumu Kuno

The use of computers in the theory of numbers 111
P. Swinnerton-Dyer

A machine calculation of a spectral sequence 117
M. E. Mahowald
M. D. MacLaren

Numerical hydrodynamics of the atmosphere 125
C. E. Leith

The calculation of zeros of polynomials and analytic functions 138
J. F. Traub

Mathematical theory of automata 153
Michael O. Rabin

Linearly unrecognizable patterns 176
Marvin Minsky
Seymour Papert

Author Index 219

Subject Index 221
41 / 57

C.A.R. Hoare

Computer programming is an exact science in that all the
properties of a program and all the consequences of executing it in
any given environment can, in principle, be found out from the text
of the program itself by means of purely deductive reasoning.

Deductive reasoning involves the application of valid rules of
inference to sets of valid axioms. It is therefore desirable and
interesting to elucidate the axioms and rules of inference which
underlie our reasoning about computer programs.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. CACM 12(10), 1969.

42 / 57

Hoare’s triples

{P} C {Q}: partial correctness

{P[E/x]} x := E {P}

{P} C1 {Q} {Q} C2 {R]}
{P} C1;C2 {R}

{I ∧ B} C {I}
{I} while B do C {I ∧ ¬B}

43 / 57

Hoare’s triples

Examples

{x > 0} x := x ∗ 2 {x > −2}

x:=10;

A:=0;

while x>0 do {INV ≡ x+A = 10}

A := A+1;

x := x-1;

44 / 57

Computer programming is an exact science. . .

45 / 57

Resistances

Most scientists thought that using a computer was simply
programming — that it didn’t involve any deep scientific thought
and that anyone could learn to program. So why have a degree?
They thought computers were vocational vs. scientific in nature.

[Conte, Computerworld magazines, 1999]

46 / 57

Computer Science Dpts

1962 Purdue University (West Lafayette, IN): first dpt of CS;
Samuel D. Conte (Perlis: 1951-1956@computation center)

1965 Stanford University (Palo Alto, CA); George Forsythe
(Herriot, McCarthy, Feigenbaum, Wirth, Knuth(later))
Since 1961 it was a “division” of Math Dpt.

1965 Carnegie Mellon University (Pittsburg, PA); Alan J. Perlis
(Allen, Simon)

1965 First PhD given by a CS Dpt: Richard Wexelblat @ University
of Pennsylvania (ENIAC!)

1971 Yale (New Haven, CT); Perlis

47 / 57

Reflections

A mathematical theory is the entrance ticket to science

Successes: eg, deterministic parsing: LL, LR etc.

Numerical analysis, formal languages, complexity theory,
algorithms, . . .

But only mathematical logic seems to be dreamed as the
mathematics of computing

48 / 57

The grand view

Structural engineering

mathematical physics laws

empirical knowledge

to understand, predict, and calculate the stability, strength and
rigidity of structures for buildings.

McCarthy:

the relationship between computation and mathematical logic will
be as fruitful as that between analysis and physics.

49 / 57

C.A.R. Hoare

When the correctness of a program, its compiler, and the hardware
of the computer have all been established with mathematical
certainty, it will be possible to place great reliance on the results of
the program, and predict their properties with a confidence limited
only by the reliability of the electronics.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. CACM 12(10), 1969.

50 / 57

Hierarchy of machines

All levels are of the same (abstract) nature

All levels could be subject (at least conceptually) to the same
analysis.

A formally proved chain of compilers:
a proof that a model of the hight level program satisfies a
condition,
transfers to a proof that a model of the low level program
satisfies a certain condition (automatically obtained from the
other)

No concrete, iron, workmanship is involved.

51 / 57

E. Dijkstra

In the relation between mathematics and computing science, the
latter has been for many years at the receiving end, and I have
often asked myself if, when, and how computing would ever be
able to repay its debt.

Edsger. W. Dijkstra. On a cultural gap. Mathematical Intelligencer, 1986.

52 / 57

The analogy with structural engineering is all that is claimed.

Not more.

[There are] theoretical limitations of program verification. But
they’re are just the limitations implicit in any applied mathematics.

Jon Barwise. Mathematical Proofs of Computer System Correctness, Notices of the AMS; 1989.

53 / 57

Linear Logic, 1987

Theoretical Computer Science 50 (1987) l-102
North-Holland

Jean-Yves GI IXD
gquipe de Logique Mathknatique, UA 753 du CNRS, UER de Mathkmatiques, Universite’ de Paris
VII, 75251 Paris, France

Communicated by M. Nivat
Received October 1986

A la mbmoive de Jean van Heijenoort

Abstract. The familiar connective of negation is broken into two operations: linear negation which
is the purely negative part of negation and the modality “of course” which has the meaning of
a reaffirmation. Following this basic discovery, a completely new approach to the whole area
between constructive logics and programmation is initiated.

Contents

I. Introduction and abstract ...
II. Linear logic explained to a proof-theorist. ..

11.1. The maintenance of space in sequent calculus
11.2. Linear logic as a sequent calculus ...
11.3. Strength of linear logic ..
11.4. Subtlety of linear logic ..
11.5. me semantics of linear logic: phased ..

III. Linear logic explained to a (theoretical) computer scientist
111.1.
111.2.
III.3.
111.4.

The semantics of linear logic: coherent spaces
Proof-nets: a Glassical natural deduction
Normalization for proof-nets ..
Relevance for computer science. ...
111.4.1. Questions and answers ...
111.4.2. Towards parallelism ...
111.4.3. Communication and trips ..
111.4.4. Work in progress ..

IV. Pons asinorum: from usual implication to linear implication

IV.l. Interpretation of functional languages. ..

IV.2. Thedisturbance ..
IV.3. The decomposition ...

IV.4. Further questions ...

1. The phase semantics ...

2
4
4
4
5
6
6
7
8
8

11
12
12
12
13
14
14
15
15
16
17
17

* Because of its length and novelty this paper has not been subjected to the normal process of
refereeing. The editor is prepared to share with the autilor any criticism that eventually will be expressed
concerning this work.

0304-3975/87/$3.50 @ 1987, Elsevier Science Publishers B.V. (North-Holland)

54 / 57

Linear Logic, 1987

One of the main outputs of linear logic seems to be in computer
science:

(i) [. . .] LL will help us to improve the efficiency of programs;

(ii) LL is the first attemp to solve the problem of parallelism at
the logical level

(iii) [. . .] databases; [. . .] automatic reasoning

(iv) [. . .] logic programming

55 / 57

Linear Logic, 1987

For CS, logic is the only way to rationalize bricolage.

In some sense, logic plays the same role as the one played by
geometry w.r.t physics: the geometrical frame imposes certain
conservation results [. . .]. The symmetries of logic presumably
express deep conservation of information.

56 / 57

Back to bricolage. . . ?

deep learning,
internet of things,
big data,
cyber-physical systems,
big networks,
. . .

57 / 57

