
Teaching programming
in the age of generative AI

Simone Martini

Dipartimento di Informatica-Scienza e Ingegneria

Future visions of computing and programming, then and now
Lille, June 12, 2023

Programming

Programming is the essence of computing/informatics.
Indeed, computing is much more than programming, but
programming [. . .] is essential to computing.

[Caspersen, Teaching Programming. In Computer Science Education, Bloomsbury Academic. 2018]

2 |

Programming

Programming was considered by many to be a uniquely intellectual
activity, a black art that relied on individual ability and
idiosyncratic style. [. . .]

By the early 1960s, the “problem of programming” had eclipsed all
other aspects of commercial computer development.

[Ensmenger, The Computer Boys Take Over, MIT Press, 2010, p. 29]

3 |

Programming

Through programming:

algorithms

languages

methods: modeling and simulation, analysis and evaluation

processes: abstraction, problem decomposition,
modularization

even systems and networks

4 |

Programming languages

From the end of the 50s

Tool of the trade

Object of study

Meta-language

Our programming languages are also (a huge part of) the
metalanguage in which we express the discipline.

5 |

“Programming” languages

What we insist in calling programming languages

Are powerful tools to organize, make coherent, and model
reality

I data models
I procedural models
I interaction models
I synchronization models
I organization models
I . . .

6 |

An informal journey

With two fellow travellers, of almost the same age

7 |

Then and Now

Then: Automatic programming

8 |

Saul Gorn, 1912-1992

9 |

1940s: Saul Gorn

Is Automatic Programming Feasible?

A (formerly) classified paper for the Aberdeen Proving Ground

According to D.L. Parnas:

The automatic programming system was an assembler in today’s
terminology.
[One would write a symbolic] code and the computer would
automatically punch the proper holes in the tape.

[Parnas, Sw aspects of strategic defence systems, CACM 28(12), 1985]

10 |

Corrado Böhm, 1923-2017

11 |

1952: Corrado Böhm

La codification automatique

La codification se fait pendant deux phases consécutives :
- le programme est placé sur l’entrée de la machine ; la calculatrice
exécute une série de calculs qui fournissent le même programme,
mais enregistré sous forme d’instructions codifiées, propres à être
interprétées automatiquement ;
- la calculatrice réalise les calculs, d’après les instructions codifiées.

[Böhm, Calculatrices digitales. PhD thesis, ETH Zürich, 1952]

12 |

Alick Glennie, 1925-2003

13 |

1952: Alick Glennie

Autocode for Manchester Mark I

14 |

1988: Rich and Waters

We will be saying much the same thing about automatic
programming in 1998 that we said in 1958:
that it has improved programmer productivity dramatically and
has further reduced the distinction between programmers and
end users.

[Rich and Waters, Automatic Programming: Myths and Prospects, IEEE Computer 21(8), 1988]

15 |

Automatic programming in-the-large

2005: Generative Programming

GP is an attempt to manufacture software components in an
automated way by developing programs that synthesize other
programs.

[Cointe, Towards Generative Programming, Unconventional Programming Paradigms, 2005]

16 |

David Parnas, 1941-

17 |

Summarizing: David Parnas

Automatic programming always has been a euphemism for
programming with a higher-level language than was then available
to the programmer.
Research in automatic programming is simply research in the
implementation of higher-level programming languages.

[Parnas, Sw aspects of strategic defence systems, CACM 28(12), 1985]

18 |

A brief intermezzo

Two mantras. . .

19 |

A first mantra: in CS Education

As the level of abstraction in computing education [. . .] steadily
arose, the credo among computing cognoscenti became that one
needs to be familiar with at least one abstraction level below that
at which one is working.

[Tedre et al., Teaching Machine Learning in K–12 Classroom, IEEE Access, vol. 9, 2021]

1950 underlying electronics

1960 octal machine code for assembly

1970 assembly language for high-level languages

19xx data structures for highly optimized class libraries

20 |

A first mantra: in CS Education

As the level of abstraction in computing education [. . .] steadily
arose, the credo among computing cognoscenti became that one
needs to be familiar with at least one abstraction level below that
at which one is working.

[Tedre et al., Teaching Machine Learning in K–12 Classroom, IEEE Access, vol. 9, 2021]

1950 underlying electronics

1960 octal machine code for assembly

1970 assembly language for high-level languages

19xx data structures for highly optimized class libraries

21 |

A second mantra: in Programming Languages

Programs are not text; they are hierarchical compositions of
computational structures and should be edited, executed, and
debugged in an environment that consistently acknowledges and
reinforces this viewpoint.

[Teitelbaum, The Cornell Program Synthesizer. CACM. 24(9), 1981]

22 |

My “ontological” interpretation

Programs are not text; they are hierarchical compositions of
computational structures and should be edited, executed, and
debugged in an environment that consistently acknowledges and
reinforces this viewpoint.

There is no programming, if they are not created, understood,
and modified under this viewpoint.

23 |

Sed contra

Phrases as trees has been the mantra of NLP for decades

And it didn’t work

24 |

However

Meaning in NL is fluid and multidimensional

String corpora are always up-to-date and usable,
as opposed as NL semantic trees, that need to be updated

Hybrid models: graph neural network,
neuro-symbolic architectures, knowledge integration

25 |

Then and Now

Now: Generative AI produces (good?) code

Should we still teach programmming?
Should we teach machine learning?

26 |

ChatGPT as a problem solver

Elementary problems: DaVinci on Bebras

correct 1/3 of the times; a random solver: 1/4 of the times;
the poor performance confirms previous results

erratic answers; there is no guarantee that they are correct

better suited for tasks that describe a procedure
synthesis tasks are harder

remarkable linguistic fluency
scrutiny needed to recognize inconsistencies, errors, gaps, that
occur frequently

[Bellettini et al., DaVinci goes to Bebras, CSEDU, 2023]

27 |

OpenAI Codex as a programmer

Test problems for CS1ACE ’22, February 14–18, 2022, Virtual Event, Australia Finnie-Ansley et al.

Table 1: Several examples of questions from Test 2, illustrating typ-
ical language used in problem prompts. All of these examples were
solved correctly by Codex.

Q1: Write a function named count_odd(my_list) that returns the number
of odd integers in a given list.
Q5: Write the get_numbers_needed() function which takes two parame-
ters: a list of numbers (numbers) and an integer (target) . The function
returns a list of all the numbers from the parameter list (starting from
the beginning) which add up to exactly, or just over, the target parameter,
e.g. if the target is 21 and the parameter list is [15, 10, 5, 20], the function
returns the list made up of the �rst two numbers, [15, 10] , which have
a sum of 25. If the sum of the parameter list numbers is less than the
target parameter, the function returns the empty list.
Q11: Complete the function sort_contact_tuple(contact_tuple) that
takes a tuple contact_tuple as a parameter. The tuple contains the exten-
sion details of sta� members at a business and is formatted as follows:
(name1, extension1, name2, extension2,...). You can assume that the tuple
always has an even number of entries and that each name in the tuple is
unique. The sort_contact_tuple() function will sort the contact details
based on the sta� names in ascending alphabetical order (A to Z). It will
then return a tuple with the sorted details.

was used verbatim, and any example test cases were included by
showing the expected output for a given input.

For each question, we took the response generated by Codex
and executed it using the same test cases as were applied during
the invigilated tests. This was achieved by submitting the Codex
response as input to the examination software. If a response suc-
cessfully passed all of the tests, we moved on to the next question.
If a response did not pass all of the tests for a question, we gen-
erated a new response by resubmitting the problem statement to
Codex. We generated a maximum of 10 responses from Codex for
any question, at which point we abandoned the question and con-
sidered it unsolved. This “repeated sampling” approach was used
by the developers of Codex in their testing [5] however our aban-
donment threshold (10 attempts) was much lower than theirs (164).
We recorded the total number of submissions required to solve
each question. In a small number of cases, which we document in
our results, if the response from Codex was correct up to a trivial
formatting error (for example, a missing comma in the expected
output) we manually amended the response and counted this as an
extra submission. This is consistent with the approach a student
might take if they submit code which is algorithmically correct, but
includes a minor formatting error. The examination software we
use highlights such formatting errors to students.

3.2 Rainfall Problem Variants
In this evaluation, we use seven variations of the well-known Rain-
fall Problem [39], six of which are published in the literature. The
seventh variation was used in a CS1 course at our large, research
intensive university in New Zealand. This variant uses harvested
apples rather than rainfall as the contextual setting and so will
be referred to as the apples variant. Table 2 shows the wording of
these seven variants exactly as they were provided to Codex. In this
case, no example test cases were provided as part of the problem

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11 Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

R
aw

 s
co

re
 (o

ut
 o

f 1
)

0.0

0.2

0.4

0.6

0.8

1.0

Test 1 Test 2_

Figure 3: Raw score achieved by Codex on CS1 test problems (ac-
cumulating penalties applied for incorrect submissions; problems
abandoned after 10 failing submissions). Empty caps on some bars
indicate potential scores in the absence of trivial errors.

description. The problem descriptions are taken verbatim from the
corresponding source articles, with one exception. In the article
by Simon [37], the problem description includes a graphical �gure
representing one possible input array; we have omitted the image
as there is no support for providing diagrams as input to Codex.

Each problem description was provided to Codex in a docstring
50 times. For the Fisler [10], Simon [37], Guzdial et al. [16], Lakanen
et al. [18], and apples problems, a function header was also provided
as the problem descriptions prompt the solver to write a function
or imply lists are provided as arguments rather than standard input.
Each response was executed against 10 test cases we prepared. Thus,
we evaluated a total of 350 responses, each against 10 test cases, for
a total of 3500 evaluations. We recorded how many of these tests
pass for each response as well as high-level metrics to evaluate
solution structure such as the classic “one loop or two?” distinction
commonly debated regarding the Rainfall Problem [10].

4 RESULTS
4.1 CS1 Programming Tests
Our �rst research question asks “How does Codex perform on
�rst year assessments compared with CS1 students?”. Figure 3
shows the outcome of the responses generated by Codex for the
23 programming questions from Tests 1 and 2 of our CS1 course.
Of the 23 questions, all but 4 were solved successfully using fewer
than 10 responses, and 4 responses (for Q2, Q4 and Q7 of Test 1 and
Q4 of Test 2) generated the correct solution with the exception of a
trivial formatting error. Overall, nearly half of the questions (10)
were solved successfully on the �rst attempt (including solutions
with a trivial formatting error).

4.1.1 Comparison With Student Performance. To contextualise this
performance, we calculate the score that the responses generated
by Codex would have received if graded according to the question
weights and accumulated penalties used for Tests 1 and 2 with real
students. Test 1 was graded out of a total of 20 marks, with Q1 and
Q11 worth 1 mark and all other questions worth 2 marks. Test 2
was graded out of a total of 25 marks, with Q11 and Q12 worth
1 mark, Q4, Q9 and Q10 worth 3 marks, and all other questions

13

[Finnie-Ansley et al. The Robots Are Coming: Exploring. . . . ACE ’22, 2022.]

28 |

OpenAI Codex as a programmer

Test problems for CS1

Failed tests:
restrictions on what features could be used

In some cases: correct solutions, violating the constraints
In other cases: incorrect solutions, meeting the requirements

[Finnie-Ansley et al. The Robots Are Coming: Exploring. . . . ACE ’22, 2022.]

29 |

OpenAI Codex as a programmer

Student vs Codex performance

The Robots Are Coming: Exploring the Implications of OpenAI Codex on CS1 ACE ’22, February 14–18, 2022, Virtual Event, Australia

Table 2: Variations of the wording of the “Rainfall” problem.

Reference Problem wording

Soloway [39] Write a program that will read in integers and output their average. Stop reading when the value 99999 is input.
Ebrahimi [9] Write a program that will read the amount of rainfall for each day. A negative value of rainfall should be rejected, since this is invalid and

inadmissible. The program should print out the number of valid recorded days, the number of rainy days, the rainfall over the period, and
the maximum amount of rain that fell on any one day. Use a sentinel value of 9999 to terminate the program.

Simon [37] A program has a one-dimensional array of integers called iRainfall, which is used to record the rainfall each day. For example, if iRainfall[0]
is 15 and iRainfall[1] is 0, there was 15mm of rain on the �rst day and no rain on the second day. Negative rainfall values are data entry
errors, and should be ignored. A rainfall value of 9999 is used to indicate that no more rainfall �gures have been registered beyond that
element of the array; the last actual rainfall value recorded is in the element immediately before the 9999. The number of days represented
in the array is open-ended: it might be just a few days, or even none; it might be a month; it might be several years. The number of days is
determined solely by the location in the array of the 9999 entry. Write a function method to �nd and return the average rainfall over all
the days represented in the array. A day with negative rainfall is still counted as a day, but with a rainfall of zero.

Fisler [10] Design a program called rainfall that consumes a list of numbers representing daily rainfall amounts as entered by a user. The list may
contain the number -999 indicating the end of the data of interest. Produce the average of the non-negative values in the list up to the �rst
-999 (if it shows up). There may be negative numbers other than -999 in the list.

Guzdial
et al. [16],
cited in [15]

Write a function rainfall that will input a list of numbers, some positive and some negative, e.g., [12, 0, 41, -3, 5, -1, 999, 17]. These are
amounts of rainfall. Negative numbers are clearly a mistake. Print the average of the positive numbers in the list. (Hint: The average is the
total of the positive numbers divided by the number of just the positive numbers.)

Lakanen
et al. [18]

Implement the ‘Average’ function, which takes the amounts of rainfall as an array and returns the average of the array. Notice that if
the value of an element is less than or equal to 0 (‘lowerLimit’), it is discarded, and if it is greater than or equal to 999 (‘sentinel’), stop
iterating (the sentinel value is not counted in the average) and return the average of counted values.

apples Create a method called harvest that takes one parameter that is a list of integers representing daily tonnes of fruit picked at a given
orchard. It returns a �oating point number rounded to 1 decimal place representing an average of the non-negative amounts up to either
the �rst sentinel or the end of the list, whichever comes �rst. The sentinel is -999. If it is not possible to compute an average, then return
-1.0. It is not possible to compute an average if there is no valid list (i.e. the parameter is None), or there are no non-negative values before
the sentinel. There may be values after the sentinel but they are to be ignored when determining the average.

worth 2 marks. Taking into account the penalty scheme, where
each incorrect submission attracts a 5% penalty applied to the �nal
mark for the corresponding question, the Codex responses scored
a total of 15.7/20 (78.5%) for Test 1 and 19.5/25 (78.0%) for Test 2.
Figure 4 plots the scores (scaled to a maximum of 100) of 71 students
enrolled in the CS1 course in 2020 who completed both tests. The
performance of the responses generated by Codex is marked with a
red asterisk. Averaging both Test 1 and Test 2 performance, Codex’s
score is in position 17 when ranked alongside the 71 students’ scores,
placing it within the top quartile of class performance.

4.1.2 Trivial Forma�ing Errors. The Codex generated response
produced incorrectly formatted output for three of the questions
on Test 1 (Q2, Q4, Q7) and one question on Test 2 (Q4). For example,
a test case in Test 1 Q2 prompted students to print “The value of 4x
is 8.” whereas the response generated by Codex, while otherwise
correct, excluded the full stop. Similarly, a full stop was missing in
the output for Test 1 Q4 as well as an incorrectly worded prompt.
This question asked for a program that prompted the user to enter
a positive integer, and the example test cases displayed this prompt
as: “Enter a positive integer:”, whereas the prompt generated by the
Codex response was: “Enter a number:”

The error for Q4 of Test 2 also involved the printing of a prompt
for the user. This question asked for a program that would repeat-
edly read an input string from the user until a string that met certain
conditions was received. The example test cases for this question
illustrated that the prompt presented to the user should be shown
just once, whereas the Codex response placed the printing of this
prompt inside the loop that read input, thus printing it repeatedly.

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●● ●

●
●

●●

●

●

●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

Test 1 (/100)

Te
st

 2
 (/

10
0)

Figure 4: Student scores on invigilated tests (Test 1 and Test 2), with
performance of Codex (plotted as red asterisk).

4.1.3 Failed Problems. In our evaluation, four problems remained
unsolved after 10 consecutive attempts. The two problems from
Test 1 (Q10, Q11) both placed restrictions on what features could be
used in solutions (and the grading tool enforced these restrictions).
For example, Q10 asked students to write a function that takes two

14

[Finnie-Ansley et al. The Robots Are Coming: Exploring. . . . ACE ’22, 2022.]30 |

Codex on the Rainfall problem

Algorithmic variations

The Robots Are Coming: Exploring the Implications of OpenAI Codex on CS1 ACE ’22, February 14–18, 2022, Virtual Event, Australia

0.00

0.25

0.50

0.75

1.00

Blank One0 One+ve One−ve Multiple+ve Multiple−ve Multiple0's Mixed+ve&0 Mixed+ve&−ve MixedAll

Av
er
ag
e

Variant Soloway Simon Fisler Ebrahimi Guzdial Lakanen Apples

Figure 6: Mean mark (out of 1) per-case.

Variant One
while

One
for

Sum /
Len

Two
Pass

Other

Soloway [39] 41 1 0 5 3
Simon [37] 5 36 1 8 0
Fisler [10] 3 42 1 3 1
Ebrahimi [9] 36 3 0 10 1
Guzdial et al. [16] 0 35 1 13 1
Lakanen et al. [18] 2 37 2 5 4
apples 4 23 3 16 4

Table 5: Count of general method used by response.

apples variant explicitly mentions to return -1 in the case there are
no valid values and does much better on these cases in comparison.

4.3 Variety
Our third research question asks: “How much variety is there in
the solutions generated by Codex?”. To evaluate the variety of
solutions generated by Codex, we examined the number of source
lines of code (sloc) excluding blank and comment lines of solutions
to all rainfall variants, as well as the general algorithmic approach
employed in the solutions as an indicator of algorithmic variation.
Figure 7 shows sloc. Table 5 reports on the algorithmic variation
highlighting the di�erent approaches of the solutions generated by
Codex. One while and one for represent solutions that exclusively
used a single while or for loop respectively. For example, using a
single for loop to add values to a sum and increment a count on the
condition a value is non-negative. Sum/Len represents solutions that
calculated an average only using built-in sum() and len() functions
without the use of loops. Two pass represents solutions that used
multiple methods to clean and then aggregate the data. For example,
having a while loop to �lter values up to the sentinel followed by a
for loop to compute the average. Other represents solutions that
utilised some other method for calculating a result.

We �nd that the sloc and counts of general method indicate
Codex is providing a range of di�erent responses to the same
prompt while ultimately favouring expected methods for each
response (i.e., for loops for processing lists, and while loops for
processing standard input). The variation is likely related to the

0

10

20

30

40

Soloway Simon Fisler Ebrahimi Guzdial Lakanen Apples

sl
oc

Figure 7: Source lines of code (sloc) per variant.

high temperature value of 0.9 which the Codex documentation
recommends as a value which will yield “creative” results.

5 DISCUSSION
We cannot put the genie back in the bottle! AI is already capable of
automatically generating a human-like quality of solutions in this
context. We anticipate that in the near-term such tools will be able
to generate solutions to increasingly more sophisticated problems,
and will be more commonly used by students. Our results show
that Codex performs better than most students on code writing
questions in typical �rst year programming exams, and performs
reasonably well in most variations of the Rainfall Problem. The
solutions generated by Codex appear to include quite a lot of vari-
ation, which is likely to make it di�cult for instructors to detect,
but may o�er some potential bene�ts for students. The question
arising for the computing education community (perhaps the most
signi�cant question of the present century – so far at least) is how
we engage with the challenges and opportunities presented by the
increasing e�ectiveness of machine learning tools such as Codex.

16

[Finnie-Ansley et al. The Robots Are Coming: Exploring. . . . ACE ’22, 2022.]

31 |

Codex on the Rainfall problem

Source lines of code (sloc)

The Robots Are Coming: Exploring the Implications of OpenAI Codex on CS1 ACE ’22, February 14–18, 2022, Virtual Event, Australia

0.00

0.25

0.50

0.75

1.00

Blank One0 One+ve One−ve Multiple+ve Multiple−ve Multiple0's Mixed+ve&0 Mixed+ve&−ve MixedAll

Av
er
ag
e

Variant Soloway Simon Fisler Ebrahimi Guzdial Lakanen Apples

Figure 6: Mean mark (out of 1) per-case.

Variant One
while

One
for

Sum /
Len

Two
Pass

Other

Soloway [39] 41 1 0 5 3
Simon [37] 5 36 1 8 0
Fisler [10] 3 42 1 3 1
Ebrahimi [9] 36 3 0 10 1
Guzdial et al. [16] 0 35 1 13 1
Lakanen et al. [18] 2 37 2 5 4
apples 4 23 3 16 4

Table 5: Count of general method used by response.

apples variant explicitly mentions to return -1 in the case there are
no valid values and does much better on these cases in comparison.

4.3 Variety
Our third research question asks: “How much variety is there in
the solutions generated by Codex?”. To evaluate the variety of
solutions generated by Codex, we examined the number of source
lines of code (sloc) excluding blank and comment lines of solutions
to all rainfall variants, as well as the general algorithmic approach
employed in the solutions as an indicator of algorithmic variation.
Figure 7 shows sloc. Table 5 reports on the algorithmic variation
highlighting the di�erent approaches of the solutions generated by
Codex. One while and one for represent solutions that exclusively
used a single while or for loop respectively. For example, using a
single for loop to add values to a sum and increment a count on the
condition a value is non-negative. Sum/Len represents solutions that
calculated an average only using built-in sum() and len() functions
without the use of loops. Two pass represents solutions that used
multiple methods to clean and then aggregate the data. For example,
having a while loop to �lter values up to the sentinel followed by a
for loop to compute the average. Other represents solutions that
utilised some other method for calculating a result.

We �nd that the sloc and counts of general method indicate
Codex is providing a range of di�erent responses to the same
prompt while ultimately favouring expected methods for each
response (i.e., for loops for processing lists, and while loops for
processing standard input). The variation is likely related to the

0

10

20

30

40

Soloway Simon Fisler Ebrahimi Guzdial Lakanen Apples

sl
oc

Figure 7: Source lines of code (sloc) per variant.

high temperature value of 0.9 which the Codex documentation
recommends as a value which will yield “creative” results.

5 DISCUSSION
We cannot put the genie back in the bottle! AI is already capable of
automatically generating a human-like quality of solutions in this
context. We anticipate that in the near-term such tools will be able
to generate solutions to increasingly more sophisticated problems,
and will be more commonly used by students. Our results show
that Codex performs better than most students on code writing
questions in typical �rst year programming exams, and performs
reasonably well in most variations of the Rainfall Problem. The
solutions generated by Codex appear to include quite a lot of vari-
ation, which is likely to make it di�cult for instructors to detect,
but may o�er some potential bene�ts for students. The question
arising for the computing education community (perhaps the most
signi�cant question of the present century – so far at least) is how
we engage with the challenges and opportunities presented by the
increasing e�ectiveness of machine learning tools such as Codex.

16

[Finnie-Ansley et al. The Robots Are Coming: Exploring. . . . ACE ’22, 2022.]

32 |

OpenAI Codex as a Python programmer

Lab problems for first-year Math students

Very good on well-described, analytic texts (as in exam texts)

Much less good under constraints

Much less good on more generic texts:
erratic answers, “very well ” (albeit incorrectly) justified

[Lodi, SM, Sbaraglia. Preliminary results. 2023]

33 |

Notional machines

The aims of introductory courses are students’ development of
notional machines for reasoning about how a computer executes a
program, and the development of the pragmatic skills for writing
and debugging programs that computers can execute.

[Shapiro et al., How Machine Learning Impacts the Undergraduate Computing Curriculum. CACM 61(11), 2018]

Students will learn early on about two kinds of notional
machine—that of the classical logical computer and that of the
statistical model.

34 |

Notional machines

The aims of introductory courses are students’ development of
notional machines for reasoning about how a computer executes a
program, and the development of the pragmatic skills for writing
and debugging programs that computers can execute.

[Shapiro et al., How Machine Learning Impacts the Undergraduate Computing Curriculum. CACM 61(11), 2018]

Students will learn early on about two kinds of notional
machine—that of the classical logical computer and that of the
statistical model.

35 |

Shifts

from rule-driven to data-driven thinking

change in the role of syntax and semantics

a shift away from algorithmic steps

higher level of abstraction and black-boxed mechanisms

new notional machines

access to bodily and natural language interaction

. . .

[Tedre et al., Teaching Machine Learning in K–12 Classroom, IEEE Access, vol. 9, 2021]

From deterministic compilers to variability on produced code

36 |

Shifts

from rule-driven to data-driven thinking

change in the role of syntax and semantics

a shift away from algorithmic steps

higher level of abstraction and black-boxed mechanisms

new notional machines

access to bodily and natural language interaction

. . .

[Tedre et al., Teaching Machine Learning in K–12 Classroom, IEEE Access, vol. 9, 2021]

From deterministic compilers to variability on produced code

37 |

Teaching programming

In a holistic curriculum:
e.g., elementary school, non-vocational high-school (“liceo”)

vs

In a professional curriculum:
e.g., vocational high-school, CS university degree

38 |

In a holistic curriculum:
Disciplines are lenses to understand reality
CS to understand the algorithmic fabric of our society

In a vocational curriculum
Disciplines are tools to modify reality
CS to weave the algorithmic fabric of our society

39 |

In a holistic curriculum:
Disciplines are lenses to understand reality
CS to understand the algorithmic fabric of our society

In a vocational curriculum
Disciplines are tools to modify reality
CS to weave the algorithmic fabric of our society

40 |

Concepts

Collect and verify data

Data representation

Problem decomposition

Abstraction

Generalisation and pattern recognition

Algorithms

Automation

Simulation, test, debug

Parallelization

Computational complexity

And how these concepts are related to their linguistic
expression

41 |

Concepts

Collect and verify data

Data representation

Problem decomposition

Abstraction

Generalisation and pattern recognition

Algorithms

Automation

Simulation, test, debug

Parallelization

Computational complexity

And how these concepts are related to their linguistic
expression

42 |

Generative AI calls for deeper integration
with (other) STEAM subjects

43 |

Gilbert Simondon, 1924-1989

44 |

Gilbert Simondon

The human being is among and with machines

His/her relation to technical objects is not explained
in terms of instrumentality
but expressed in terms of being-with

[Lindberg, Being with Technique—Technique as being-with, Continental Philosophy Review 52, 2019]

45 |

Technical objects

A technical object is something that. . .

is distinct, can be carried along and manipulated

corresponds to the forces of the human body

can be lost, and found again

exists regardless of its use

but is designed for a specific use, included in a sequence of
gestures that make it meaningful

46 |

Open and closed technical objects

Gilbert Simondon interviewed by Yves Deforge, 1967
[Le point sur la technologie, de J. Jahan et Y. Deforge, 1967]

47 |

Open and closed

Open technical object

its user knows how it works, and how it could be repaired

“being” instead of “appearing” (être et ne pas parâıtre)

a lesson of reality, of veracity, of respect for the past
(because it shows the trace of its own evolution)

Closed technical object

its user does not understand how and why it works

it cannot be repaired

it is unmodifiable

it recalls the sacred, the untouchable

48 |

Closed objects: alienation

Les objets techniques qui produisent le plus d’aliénation sont ceux
qui sont destinés à des utilisateurs ignorants.

De tels objets se dégradent progressivement : neufs pendant peu
de temps, ils se dévaluent en perdant ce caractère, parce qu’ils ne
peuvent que s’éloigner de leurs conditions de perfection initiale.

G. Simondon, Du mode d’existence des objets techniques [1958], Paris, Aubier, 2012. p. 250-251

The technical objects that produce the most alienation are those
intended for ignorant users.
Such objects are gradually degraded: new for a short time, they then lose
their character, because they can only move away from their initial
conditions of perfection.

49 |

Closed objects: alienation

Les objets techniques qui produisent le plus d’aliénation sont ceux
qui sont destinés à des utilisateurs ignorants.

De tels objets se dégradent progressivement : neufs pendant peu
de temps, ils se dévaluent en perdant ce caractère, parce qu’ils ne
peuvent que s’éloigner de leurs conditions de perfection initiale.

G. Simondon, Du mode d’existence des objets techniques [1958], Paris, Aubier, 2012. p. 250-251

The technical objects that produce the most alienation are those
intended for ignorant users.
Such objects are gradually degraded: new for a short time, they then lose
their character, because they can only move away from their initial
conditions of perfection.

50 |

Therefore:

Yes, we should keep teaching (some) programming
To reduce alienation

51 |

Moreover:

The understanding and manipulation of programs as
“hierarchical compositions of computational structures”
is cognitively important

Programming is not (only) the production of a string
Managing abstractions inside a program

52 |

In a vocational curriculum

Disciplines are tools to modify reality
CS to weave the algorithmic fabric of our society

53 |

In a vocational curriculum

As the level of abstraction in computing education across
educational levels steadily arose, the credo among computing
cognoscenti became that one needs to be familiar with at least one
abstraction level below that at which one is working.

[Tedre et al., Teaching Machine Learning in K–12 Classroom, IEEE Access, vol. 9, 2021]

54 |

In a vocational curriculum

Being able to produce code in a programming language will lose
importance

“Co-pilot”

55 |

Italo Calvino, 1923-1985

56 |

1967: Italo Calvino

Cybernetics and Ghosts

Lecture delivered in several Italian and European cities, November 1967.

[in Calvino, The Uses of Literature. Harcourt & Co., 1986. Translated by Patrick Creagh]

57 |

Calvino: Automatic writing

Will we have a machine capable of replacing the poet and the
author?

I am thinking of a writing machine that would bring to the page all
those things that we are accustomed to consider as the most
jealously guarded attributes of our psychological life, of our daily
experience, our unpredictable changes of mood and inner elations,
despairs and moments of illumination.

58 |

Calvino: Automatic writing

What are these if not so many linguistic ”fields,” for which we
might well succeed in establishing the vocabulary, grammar,
syntax, and properties of permutation?

Developments in cybernetics lean toward machines capable of
learning, of changing their own programs [. . .]

[We imagine] a literature-machine that at a certain point feels
unsatisfied with its own traditionalism and starts to propose new
ways of writing, turning its own codes completely upside down.

59 |

Calvino: The author disappears

Writers [. . .] are already writing machines [. . .]

What [we call] genius or talent or inspiration or intuition is nothing
other than finding the right road empirically, following one’s nose,
taking short cuts.

60 |

Calvino: But something remains

Once we have dismantled and reassembled the process of literary
composition, the decisive moment of literary life will be that of

61 |

Calvino: But something remains

Once we have dismantled and reassembled the process of literary
composition, the decisive moment of literary life will be that of

reading.

62 |

Calvino: the reader

Let the author—this enfant gâté of unawareness—disappear, to
give place to a more thoughtful person, a person who will know
that the author is a machine,
and will know how this machine works.

Cf Simondon’s open technical objects

63 |

Reading and correctness, 1

Compiler:
- rules based: deterministic output
- “easy” to understand and prove correct
- open technical object

Code generator:
- deep learning based: “non-deterministic” output
- opaque for our understanding
- closed technical object

64 |

Reading and correctness, 2

A reader to understand and convince themself
that the code is correct

65 |

Reading and maintenance

We cannot maintain a program changing its “high level”
description for ChatGPT
Read, understand, and modify the (old style) code

66 |

Reading and code review

Automatically generated solutions may provide students with
models that they can use for learning

Many benefits arise from looking at a variety of solutions, even
when the code is flawed

More emphasis on code review, or evaluation of code

[Finnie-Ansley et al. The Robots Are Coming: Exploring. . . . ACE ’22, 2022.]

67 |

Programs are meant to be read by humans
and only incidentally for computers to execute.

[Abelson & Sussman, Structure and Interpretation of Computer Programs, MIT Press, 1984]

68 |

