Teaching programming
in the age of generative Al

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DIPARTIMENTO DI
INFORMATICA - SCIENZA E INGEGNERIA

Simone Martini

Dipartimento di Informatica-Scienza e Ingegneria

Future visions of computing and programming, then and now
Lille, June 12, 2023

Programming

Programming is the essence of computing/informatics.
Indeed, computing is much more than programming, but
programming [...] is essential to computing.

[Caspersen, Teaching Programming. In Computer Science Education, Bloomsbury Academic. 2018]

2|

Programming

Programming was considered by many to be a uniquely intellectual
activity, a black art that relied on individual ability and
idiosyncratic style. [...]

By the early 1960s, the “problem of programming” had eclipsed all
other aspects of commercial computer development.
[Ensmenger, The Computer Boys Take Over, MIT Press, 2010, p. 29]

3]

Programming

Through programming:

4|

algorithms

languages

methods: modeling and simulation, analysis and evaluation
processes: abstraction, problem decomposition,

modularization

even systems and networks

Programming languages

From the end of the 50s
@ Tool of the trade
@ Object of study

o Meta-language

Our programming languages are also (a huge part of) the
metalanguage in which we express the discipline.

5]

“Programming” languages

What we insist in calling programming languages

Are powerful tools to organize, make coherent, and model
reality

data models

procedural models

interaction models

synchronization models

organization models

6|

An informal journey

With two fellow travellers, of almost the same age

7|

Then and Now

Then: Automatic programming

8|

Saul Gorn, 1912-1992

91

1940s: Saul Gorn

Is Automatic Programming Feasible?
A (formerly) classified paper for the Aberdeen Proving Ground

According to D.L. Parnas:

The automatic programming system was an assembler in today’s
terminology.

[One would write a symbolic] code and the computer would
automatically punch the proper holes in the tape.

[Parnas, Sw aspects of strategic defence systems, CACM 28(12), 1985]

10]

Corrado Bohm, 1923-2017

11|

1952: Corrado Bohm

La codification automatique

La codification se fait pendant deux phases consécutives :

- le programme est placé sur I'entrée de la machine; la calculatrice
exécute une série de calculs qui fournissent le méme programme,
mais enregistré sous forme d'instructions codifiées, propres a étre
interprétées automatiquement;

- la calculatrice réalise les calculs, d’aprés les instructions codifiées.

[B&hm, Calculatrices digitales. PhD thesis, ETH Ziirich, 1952]

ALMA MATE

12 |

Alick Glennie, 1925-2003

13

1952: Alick Glennie
Autocode for Manchester Mark |

14 |

’Smlm!—qm\w‘ 1= o=

BIEIBIGBIEIRIG = IR IE

C@VA t@IC X@®4C yGRC zGNC
INTEGERS +5 —¢
-t
+t TESTA Z
-t
ENTRY Z
SUBROUTINE 6 —z
+tt -y -x
+tX -y -x
+ztcx CLOSE WRITE 1

aG/% b@MA cBGA dGOA e@PA fGHA iGVE XGME
INTEGERS +20 »b +10 ~c +400 »d +999 »e +1 ~f
LOOP 10n

n-x
+b-X =X

x-q
SUBROUTINE 5 ~aq
REPEAT n

+c -1

LOOP 10n
+an SUBROUTINE 1 -y
+d-y TESTA Z

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

1988: Rich and Waters

We will be saying much the same thing about automatic
programming in 1998 that we said in 1958:

that it has improved programmer productivity dramatically and
has further reduced the distinction between programmers and
end users.

[Rich and Waters, Automatic Programming: Myths and Prospects, IEEE Computer 21(8), 1988]

15|

Automatic programming in-the-large

2005: Generative Programming

GP is an attempt to manufacture software components in an
automated way by developing programs that synthesize other
programs.

[Cointe, Towards Generative Programming, Unconventional Programming Paradigms, 2005]

16|

David Parnas, 1941-

17

Summarizing: David Parnas

Automatic programming always has been a euphemism for
programming with a higher-level language than was then available
to the programmer.

Research in automatic programming is simply research in the
implementation of higher-level programming languages.

[Parnas, Sw aspects of strategic defence systems, CACM 28(12), 1985]

18

A brief intermezzo

Two mantras. ..

19

A first mantra: in CS Education

As the level of abstraction in computing education |[...] steadily
arose, the credo among computing cognoscenti became that one
needs to be familiar with at least one abstraction level below that
at which one is working.

[Tedre et al., Teaching Machine Learning in K-12 Classroom, IEEE Access, vol. 9, 2021]

1950 underlying electronics
1960 octal machine code for assembly

1970 assembly language for high-level languages

20 |

A first mantra: in CS Education

As the level of abstraction in computing education |[...] steadily
arose, the credo among computing cognoscenti became that one
needs to be familiar with at least one abstraction level below that
at which one is working.

[Tedre et al., Teaching Machine Learning in K-12 Classroom, IEEE Access, vol. 9, 2021]

1950 underlying electronics
1960 octal machine code for assembly

1970 assembly language for high-level languages

19xx data structures for highly optimized class libraries

21 |

A second mantra: in Programming Languages

Programs are not text; they are hierarchical compositions of
computational structures and should be edited, executed, and
debugged in an environment that consistently acknowledges and
reinforces this viewpoint.

[Teitelbaum, The Cornell Program Synthesizer. CACM. 24(9), 1981]

22 |

My “ontological” interpretation

Programs are not text; they are hierarchical compositions of
computational structures and should be edited, executed, and
debugged in an environment that consistently acknowledges and
reinforces this viewpoint.

There is no programming, if they are not created, understood,
and modified under this viewpoint.

23 |

Sed contra

@ Phrases as trees has been the mantra of NLP for decades
o And it didn't work

24 |

However

@ Meaning in NL is fluid and multidimensional

@ String corpora are always up-to-date and usable,
as opposed as NL semantic trees, that need to be updated

o Hybrid models: graph neural network,
neuro-symbolic architectures, knowledge integration

25 |

Then and Now

Now: Generative Al produces (good?) code

Should we still teach programmming?
Should we teach machine learning?

26 |

ChatGPT as a problem solver

Elementary problems: DaVinci on Bebras

@ correct 1/3 of the times; a random solver: 1/4 of the times;
the poor performance confirms previous results

@ erratic answers; there is no guarantee that they are correct

@ better suited for tasks that describe a procedure
synthesis tasks are harder

@ remarkable linguistic fluency
scrutiny needed to recognize inconsistencies, errors, gaps, that

occur frequently
[Bellettini et al., DaVinci goes to Bebras, CSEDU, 2023]

27 |

OpenAl Codex as a programmer

@
a

Test problems for CS1

1.0

0.8 1

0.6

0.4

0.2+

0.0-
v ©
a

Raw score (out of 1)

vm:or\coc»g: (\I < N~ OO TN
[eXexe] OOO goccoo OOOO

Test 1 | Test 2

[Finnie-Ansley et al. The Robots Are Coming: Exploring. ..

28 |

. ACE '22, 2022.]

ALMA MAT
UNIVERSITA

OpenAl Codex as a programmer

Test problems for CS1
Failed tests:
restrictions on what features could be used

In some cases: correct solutions, violating the constraints
In other cases: incorrect solutions, meeting the requirements

[Finnie-Ansley et al. The Robots Are Coming: Exploring. ... ACE '22, 2022.]

29 | e

OpenAl Codex as a programmer

Student vs Codex performance

8- o) 00
@ @@ 0
o | o) o))
o o O%* O o
o}
o © o ©
g% o :
= o)
° 3 3
F e o o)
o O o
% o)
s 00 O 0 0 @
o @ @ O o)
@ @ O o
o
T T T T T T
0 20 40 60 80 100
Test 1 (/100)
30 | ORIERITA D1 BOLOGKA

[Finnie-Ansley et al. The Robots Are Coming: Exploring. ... ACE "2z, zuzz.|

Codex on the Rainfall problem

Algorithmic variations

Variant One One Sum/ Two Other
while for Len Pass
Soloway [39] 41 1 0 5 3
Simon [37] 5 36 1 8 0
Fisler [10] 3 42 1 3 1
Ebrahimi [9] 36 3 0 10 1
Guzdial et al. [16] 0 35 1 13 1
Lakanen et al. [18] 2 37 2 5 4
apples 4 23 3 16 4

[Finnie-Ansley et al. The Robots Are Coming: Exploring.... ACE '22, 2022.]

31

Codex on the Rainfall problem

Source lines of code (sloc)

40
.
.
30
.
.
Q .
o
» 20 :
. .
.
. .
.
. :
. = -
. .
i . .
. . .
0 . . Bicncis
Soloway Simon Fisler Ebrahimi Guzdial Lakanen Apples A MATER STUDIORUA
32| UNIVERSITA DI BOLOGNA

[Finnie-Ansley et al. The Robots Are Coming: Exploring. ... ACE '22, 2022.]

OpenAl Codex as a Python programmer

Lab problems for first-year Math students
@ Very good on well-described, analytic texts (as in exam texts)
@ Much less good under constraints

@ Much less good on more generic texts:
erratic answers, “very well " (albeit incorrectly) justified

[Lodi, SM, Sbaraglia. Preliminary results. 2023]

33|

Notional machines

The aims of introductory courses are students’ development of
notional machines for reasoning about how a computer executes a
program, and the development of the pragmatic skills for writing
and debugging programs that computers can execute.

[Shapiro et al., How Machine Learning Impacts the Undergraduate Computing Curriculum. CACM 61(11), 2018]

34 |

Notional machines

The aims of introductory courses are students’ development of
notional machines for reasoning about how a computer executes a
program, and the development of the pragmatic skills for writing
and debugging programs that computers can execute.

[Shapiro et al., How Machine Learning Impacts the Undergraduate Computing Curriculum. CACM 61(11), 2018]

Students will learn early on about two kinds of notional
machine—that of the classical logical computer and that of the
statistical model.

35 |

Shifts

from rule-driven to data-driven thinking

change in the role of syntax and semantics

a shift away from algorithmic steps

higher level of abstraction and black-boxed mechanisms
new notional machines

access to bodily and natural language interaction

[Tedre et al., Teaching Machine Learning in K-12 Classroom, IEEE Access, vol. 9, 2021]

36 | Unive

Shifts

from rule-driven to data-driven thinking

change in the role of syntax and semantics

a shift away from algorithmic steps

higher level of abstraction and black-boxed mechanisms
new notional machines

access to bodily and natural language interaction

[Tedre et al., Teaching Machine Learning in K-12 Classroom, IEEE Access, vol. 9, 2021]

From deterministic compilers to variability on produced code

37 |

Teaching programming

In a holistic curriculum:
e.g., elementary school, non-vocational high-school (*“liceo”)

VS

In a professional curriculum:
e.g., vocational high-school, CS university degree

38 |

In a holistic curriculum:
Disciplines are lenses to understand reality
CS to understand the algorithmic fabric of our society

In a vocational curriculum

Disciplines are tools to modify reality
CS to weave the algorithmic fabric of our society

39 |

In a holistic curriculum:
Disciplines are lenses to understand reality
CS to understand the algorithmic fabric of our society

40 |

Concepts

Collect and verify data

Data representation

Problem decomposition

Abstraction

Generalisation and pattern recognition
Algorithms

Automation

Simulation, test, debug

Parallelization

@ ©6 6 6 6 6 6 o o o

Computational complexity

41 |

Concepts

Collect and verify data

Data representation

Problem decomposition

Abstraction

Generalisation and pattern recognition
Algorithms

Automation

Simulation, test, debug

Parallelization

@ ©6 6 6 6 6 6 o o o

Computational complexity

@ And how these concepts are related to their linguistic
expression

42 |

Generative Al calls for deeper integration
with (other) STEAM subjects

43 |

Gilbert Simondon, 1924-1989

Gilbert Simondon

The human being is among and with machines

His/her relation to technical objects is not explained
in terms of instrumentality
but expressed in terms of being-with

[Lindberg, Being with Technique—Technique as being-with, Continental Philosophy Review 52, 2019]

45 |

Technical objects

A technical object is something that. ..
@ is distinct, can be carried along and manipulated
@ corresponds to the forces of the human body
@ can be lost, and found again
@ exists regardless of its use

@ but is designed for a specific use, included in a sequence of
gestures that make it meaningful

46 |

Open and closed technical objects

L

Gilbert Simondon interviewed by Yves Deforge, 1967

[Le point sur la technologie, de J. Jahan et Y. Deforge, 1967|

47 |

Open and closed

Open technical object
@ its user knows how it works, and how it could be repaired
@ "being” instead of “appearing” (étre et ne pas paraitre)

@ a lesson of reality, of veracity, of respect for the past
(because it shows the trace of its own evolution)

Closed technical object
@ its user does not understand how and why it works
@ it cannot be repaired
@ it is unmodifiable
o

it recalls the sacred, the untouchable

48 |

Closed objects: alienation

Les objets techniques qui produisent le plus d’aliénation sont ceux
qui sont destinés a des utilisateurs ignorants.

De tels objets se dégradent progressivement : neufs pendant peu
de temps, ils se dévaluent en perdant ce caractére, parce qu'ils ne
peuvent que s'éloigner de leurs conditions de perfection initiale.

G. Simondon, Du mode d’existence des objets techniques [1958], Paris, Aubier, 2012. p. 250-251

49 |

Closed objects: alienation

Les objets techniques qui produisent le plus d’aliénation sont ceux
qui sont destinés a des utilisateurs ignorants.

De tels objets se dégradent progressivement : neufs pendant peu
de temps, ils se dévaluent en perdant ce caractére, parce qu'ils ne
peuvent que s'éloigner de leurs conditions de perfection initiale.

G. Simondon, Du mode d’existence des objets techniques [1958], Paris, Aubier, 2012. p. 250-251

The technical objects that produce the most alienation are those
intended for ignorant users.

Such objects are gradually degraded: new for a short time, they then lose
their character, because they can only move away from their initial
conditions of perfection.

Therefore:

Yes, we should keep teaching (some) programming
To reduce alienation

51 |

Moreover:

The understanding and manipulation of programs as
“hierarchical compositions of computational structures”
is cognitively important

Programming is not (only) the production of a string
Managing abstractions inside a program

52 |

In a vocational curriculum

Disciplines are tools to modify reality
CS to weave the algorithmic fabric of our society

53 |

In a vocational curriculum

As the level of abstraction in computing education across
educational levels steadily arose, the credo among computing
cognoscenti became that one needs to be familiar with at least one
abstraction level below that at which one is working.

[Tedre et al., Teaching Machine Learning in K-12 Classroom, IEEE Access, vol. 9, 2021]

54 |

In a vocational curriculum

Being able to produce code in a programming language will lose
importance

“Co-pilot”

55 |

Italo Calvino, 1923-1985

ALWA MATER STUDIORUM
56 | SRR DY KoLOONA

1967: Italo Calvino

Cybernetics and Ghosts

Lecture delivered in several Italian and European cities, November 1967.

[in Calvino, The Uses of Literature. Harcourt & Co., 1986. Translated by Patrick Creagh]

Calvino: Automatic writing

Will we have a machine capable of replacing the poet and the
author?

| am thinking of a writing machine that would bring to the page all
those things that we are accustomed to consider as the most
jealously guarded attributes of our psychological life, of our daily
experience, our unpredictable changes of mood and inner elations,
despairs and moments of illumination.

58 |

Calvino: Automatic writing

What are these if not so many linguistic "fields,” for which we
might well succeed in establishing the vocabulary, grammar,
syntax, and properties of permutation?

Developments in cybernetics lean toward machines capable of
learning, of changing their own programs [...]

[We imagine] a literature-machine that at a certain point feels
unsatisfied with its own traditionalism and starts to propose new
ways of writing, turning its own codes completely upside down.

50 |

Calvino: The author disappears

Writers [...] are already writing machines [.. .|

What [we call] genius or talent or inspiration or intuition is nothing
other than finding the right road empirically, following one’s nose,
taking short cuts.

60 |

Calvino: But something remains

Once we have dismantled and reassembled the process of literary
composition, the decisive moment of literary life will be that of

61 |

Calvino: But something remains

Once we have dismantled and reassembled the process of literary
composition, the decisive moment of literary life will be that of

reading.

62 |

Calvino: the reader

Let the author—this enfant gaté of unawareness—disappear, to
give place to a more thoughtful person, a person who will know
that the author is a machine,

and will know how this machine works.

Cf Simondon's open technical objects

63 |

Reading and correctness, 1

Compiler:

- rules based: deterministic output

- "easy” to understand and prove correct
- open technical object

Code generator:

- deep learning based: “non-deterministic” output
- opaque for our understanding

- closed technical object

64 |

Reading and correctness, 2

A reader to understand and convince themself
that the code is correct

65 |

Reading and maintenance

We cannot maintain a program changing its “high level”
description for ChatGPT
Read, understand, and modify the (old style) code

66 |

Reading and code review

Automatically generated solutions may provide students with
models that they can use for learning

Many benefits arise from looking at a variety of solutions, even
when the code is flawed

More emphasis on code review, or evaluation of code

[Finnie-Ansley et al. The Robots Are Coming: Exploring. ... ACE '22, 2022.]

67 |

Programs are meant to be read by humans
and only incidentally for computers to execute.

[Abelson & Sussman, Structure and Interpretation of Computer Programs, MIT Press, 1984]

68 |

