
Lego Programming

Simone Martini

Alma mater studiorum • Università di Bologna
and

INRIA FoCUS – Sophia / Bologna

and

Collegium - Institut d’études avancées de Lyon 2018-2019

1 / 1

Very preliminary
material on

non-verbal programming experiences

2 / 1

Scratch

A project of the Lifelong Kindergarten Group at the MIT Media Lab

3 / 1

Scratch

when clicked(flag):

x = 0

y = 100

goto_pos(x,y)

angle = 0

while True:

angle += 5

x = 100* sin(angle)

y = 100* cos(angle)

wait (0.1)

A project of the Lifelong Kindergarten Group at the MIT Media Lab

4 / 1

The linguistic metaphor

:hHn THFhnRlRJ\ BHFDPH LDnJXDJH: ThH 2rLJLnV Rf

thH LLnJXLVtLF &RnFHptLRn Rf &RPpXtHr PrRJrDPPLnJ,

���0૱��60
David Nofre, Mark Priestley, Gerard Alberts

Technology and Culture, Volume 55, Number 1, January 2014, pp.
40-75 (Article)

PXblLVhHd b\ ThH JRhnV HRpNLnV 8nLvHrVLt\ PrHVV
DOI: 10.1353/tech.2014.0031

For additional information about this article

 Access provided by Amsterdam Universiteit (22 Dec 2014 08:06 GMT)

http://muse.jhu.edu/journals/tech/summary/v055/55.1.nofre.html

5 / 1

Programming languages

tool

object of study

meta-language:
algorithms published in Algol on the Communications of ACM

programs are “immutable mobiles” (B. Latour; see also J. Goguen)

6 / 1

Programming ENIAC: 1945-46

7 / 1

CACM 1961

8 / 1

H. Bergson:
l’illusion rétrospective du vrai

Par le seul fait de s’accomplir, la réalité projette derrière elle son
ombre dans le passé indéfiniment lointain ; elle parâıt ainsi avoir
préexisté, sous forme de possible, à sa propre réalisation

[H. Bergson, La pensée et le mouvant, 1934]

also: le mouvement rétrospectif/rétrograde du vrai

9 / 1

Scratch, in use

Bricks, not languages. . .

10 / 1

From Scratch’s
official distribution

a graphical programming language

children can drag and combine code blocks to make a range
of programs

it’s a bit like the programming equivalent of LEGO!

learn coding concepts [. . .] without needing to learn a
text-based programming language

they won’t be slowed down by their keyboard skills
or the ability to remember complex code

11 / 1

From freeCodeCamp

On Scratch:

Isn’t even a proper language

It’s more reminiscent of LEGO than real engineering

Every student over the age of 12 agrees with my diagnosis

It turns out, typing is overrated

Programming isn’t like English
There aren’t a million different words and sentence structures

Creating blocks saves time

[Scratch] enables to focus 100% on the design and logic of
the programs, not the semantics.

c©Steve Krouse

12 / 1

From freeCodeCamp

On Scratch:

Isn’t even a proper language

It’s more reminiscent of LEGO than real engineering

Every student over the age of 12 agrees with my diagnosis

It turns out, typing is overrated

Programming isn’t like English
There aren’t a million different words and sentence structures

Creating blocks saves time

[Scratch] enables to focus 100% on the design and logic of
the programs, not the semantics.

c©Steve Krouse

13 / 1

Lego programming

Non linguistics components

Brick game

Continuous interaction and feedback

Visual aspect more important than the linguistic one

14 / 1

A long history

Programming is interacting with the executor, the machine

Logo, 1969:
W. Feurzeig and S. Papert. Programming languages as a conceptual

framework for teaching mathematics. Final report on the first fifteen

months of the Logo Project. TR 1889. BBN, Cambridge, MA.

Smalltalk, 1972
Alan Key, XEROX PARC

Interaction is mediated by powerful metaphors:

turtle

object

15 / 1

A long history

Programming is interacting with the executor, the machine

Logo, 1969:
W. Feurzeig and S. Papert. Programming languages as a conceptual

framework for teaching mathematics. Final report on the first fifteen

months of the Logo Project. TR 1889. BBN, Cambridge, MA.

Smalltalk, 1972
Alan Key, XEROX PARC

Interaction is mediated by powerful metaphors:

turtle

object

16 / 1

Per conoscere il mondo bisogna costruirlo

To know the world we must construct it
Cesare Pavese, Il mestiere di vivere (Engl.: This business of living). 1952

(we must re-construct it in a story — or as a story)

In other words, we make not just to have, but to know.
But the having can happen without most of the knowing taking
place.

Alan Kay, The early history of Smalltalk. 1993

The problem:

How, then, can we construct for knowing and not just for having?

17 / 1

Per conoscere il mondo bisogna costruirlo

To know the world we must construct it
Cesare Pavese, Il mestiere di vivere (Engl.: This business of living). 1952

(we must re-construct it in a story — or as a story)

In other words, we make not just to have, but to know.
But the having can happen without most of the knowing taking
place.

Alan Kay, The early history of Smalltalk. 1993

The problem:

How, then, can we construct for knowing and not just for having?

18 / 1

Per conoscere il mondo bisogna costruirlo

To know the world we must construct it
Cesare Pavese, Il mestiere di vivere (Engl.: This business of living). 1952

(we must re-construct it in a story — or as a story)

In other words, we make not just to have, but to know.
But the having can happen without most of the knowing taking
place.

Alan Kay, The early history of Smalltalk. 1993

The problem:

How, then, can we construct for knowing and not just for having?

19 / 1

Constructing for knowing:

Seymour Papert:
we must construct meaningful objects and relations

20 / 1

Papert

Central for Papert:

not computer science, or a programming language, or
programming, per se

but construction, with computational means,
of concrete versions of abstract mathematical concepts

We understand what we construct

Constructivism:

Jean Piaget

Computational “environments” are one of the most effective and
economic ways to obtain such models in an autonomous manner.

21 / 1

Papert

Central for Papert:

not computer science, or a programming language, or
programming, per se

but construction, with computational means,
of concrete versions of abstract mathematical concepts

We understand what we construct

Constructivism:

Jean Piaget

Computational “environments” are one of the most effective and
economic ways to obtain such models in an autonomous manner.

22 / 1

Computational thinking

Seymour Papert, 1980

Mindstorm: Children, Computers, And Powerful Ideas

Their visions of how to integrate computational thinking into
everyday life was insufficiently developed.

Their = people using computers for offering computationally rich activities

23 / 1

Papert’s constructionism

Constructivism + Meaningfulness

We build concrete versions of abstract concepts
and we enter into a relationship with these concrete objects

24 / 1

Too tempting

25 / 1

Papert

The use of some programming languages is one of the most
effective and economic ways for children to obtain such models in
an autonomous manner.

But:

The modality of interaction with the computational media is as
(and probably more) important than its contents.

The try and correct cycle:
Feedback from the computational objects more than static
semantics.

26 / 1

The context for the
“computational thinking” citation

Samba schools for computation

In the next few years we shall see the formation of some
computational environments that deserve to be called “samba
schools for computation.”

There have already been attempts in this direction [but] their
visions of how to integrate computational thinking into everyday
life was insufficiently developed.

27 / 1

Samba schools, in Rio

28 / 1

Samba schools, in Rio

clubs ranging from hundreds to thousands of people, from
children to their grandparents, from novices to professionals

they gather every weekend to dance and to meet with friends

all of them dance: the novice learns, the expert teaches and
practices for harder moves

a great social cohesion, a great sense of belonging, a strong
idea of having a “common purpose.”

learning is spontaneous and natural, it is also deliberate

29 / 1

In samba schools for computation:

no knowledge is transmitted

pupils will learn because are immersed in an environment

activities are both “rich of computational principles” and
meaningful for the community

30 / 1

Affective relation

Building “objects to think with”

oxymoron:
the abstract is obtained using the concrete

In the choice of such objects:

there is not only a cognitive aspect

there is always a fundamental affective component

Papert: “I was in love with gears!”

31 / 1

Early Smalltalk

Alan Kay:

1966-1969: in graduate school at University of Utah

Summer 1967: learns Papert’s ideas from Minsky

Winter 1968: meets Papert and his group

This encounter finally hit me with what the destiny of personal
computing really was going to be: [. . .] a personal dynamic
medium [which] had to extend into the world of childhood.

All came together to form an image of what a personal computer
really should be. It had to be no larger than a notebook, and
needed an interface as friendly as JOSS’, GRAIL’s, and LOGO’s,
but with the reach of Simula and FLEX.

32 / 1

Early Smalltalk

Alan Kay:

1966-1969: in graduate school at University of Utah

Summer 1967: learns Papert’s ideas from Minsky

Winter 1968: meets Papert and his group

This encounter finally hit me with what the destiny of personal
computing really was going to be: [. . .] a personal dynamic
medium [which] had to extend into the world of childhood.

All came together to form an image of what a personal computer
really should be. It had to be no larger than a notebook, and
needed an interface as friendly as JOSS’, GRAIL’s, and LOGO’s,
but with the reach of Simula and FLEX.

33 / 1

Early Smalltalk

Alan Kay:

1966-1969: in graduate school at University of Utah

Summer 1967: learns Papert’s ideas from Minsky

Winter 1968: meets Papert and his group

This encounter finally hit me with what the destiny of personal
computing really was going to be: [. . .] a personal dynamic
medium [which] had to extend into the world of childhood.

All came together to form an image of what a personal computer
really should be. It had to be no larger than a notebook, and
needed an interface as friendly as JOSS’, GRAIL’s, and LOGO’s,
but with the reach of Simula and FLEX.

34 / 1

Smalltalk

It isn’t enough to just learn to read and write. There is also a
literature that renders ideas. Language is used to read and write
about them, but at some point the organization of ideas starts to
dominate mere language abilities.

And it helps greatly to have some powerful ideas under one’s belt
to better acquire more powerful ideas [Papert 70s]. So, we decided
we should teach design.

35 / 1

Smalltalk

Adele [Goldberg] decided that what was needed was an
intermediary between the vague ideas about the problem and the
very detailed writing and debugging that had to be done to get it
to run in Smalltalk. She called the intermediary forms design
templates.

Using these the children could look at a situation [. . .] and
decompose it into classes and messages without having to worry
just how a method would work.

We wanted more, and started to push on the inheritance idea as a
way to let novices build on frameworks that could only be designed
by experts.

36 / 1

Smalltalk

Adele [Goldberg] decided that what was needed was an
intermediary between the vague ideas about the problem and the
very detailed writing and debugging that had to be done to get it
to run in Smalltalk. She called the intermediary forms design
templates.

Using these the children could look at a situation [. . .] and
decompose it into classes and messages without having to worry
just how a method would work.

We wanted more, and started to push on the inheritance idea as a
way to let novices build on frameworks that could only be designed
by experts.

37 / 1

Smalltalk

Adele [Goldberg] decided that what was needed was an
intermediary between the vague ideas about the problem and the
very detailed writing and debugging that had to be done to get it
to run in Smalltalk. She called the intermediary forms design
templates.

Using these the children could look at a situation [. . .] and
decompose it into classes and messages without having to worry
just how a method would work.

We wanted more, and started to push on the inheritance idea as a
way to let novices build on frameworks that could only be designed
by experts.

38 / 1

Smalltalk

From the objects and classes of Simula

to an ecosystem of interacting objects

39 / 1

Smalltalk for Alto

40 / 1

Smalltalk

From the objects and classes of Simula

to an ecosystem of interacting objects

Smalltalk is NOT only its syntax or the class

library, it is not even about classes. I’m sorry

that I long ago coined the term "objects" for this

topic because it gets many people to focus on the

lesser idea.

The big idea is "messaging" [...] The Japanese have

a small word -- ma -- for "that which is in between".

A. Kay, message to the Squeak-dev mailing list. Sat Oct 10 1998

41 / 1

Smalltalk

From the objects and classes of Simula

to an ecosystem of interacting objects

Smalltalk is NOT only its syntax or the class

library, it is not even about classes. I’m sorry

that I long ago coined the term "objects" for this

topic because it gets many people to focus on the

lesser idea.

The big idea is "messaging" [...] The Japanese have

a small word -- ma -- for "that which is in between".

A. Kay, message to the Squeak-dev mailing list. Sat Oct 10 1998

42 / 1

Smalltalk

And this is reflected into Smalltalk itself:

when ST hit the larger world, it was pretty much

taken as "something just to be learned", as though it

were Pascal or Algol.

while it is something one should fiddle about, tinker with:

at PARC we changed Smalltalk constantly, treating it

always as a work in progress

43 / 1

Smalltalk

And this is reflected into Smalltalk itself:

when ST hit the larger world, it was pretty much

taken as "something just to be learned", as though it

were Pascal or Algol.

while it is something one should fiddle about, tinker with:

at PARC we changed Smalltalk constantly, treating it

always as a work in progress

44 / 1

Smalltalk

And this is reflected into Smalltalk itself:

when ST hit the larger world, it was pretty much

taken as "something just to be learned", as though it

were Pascal or Algol.

while it is something one should fiddle about, tinker with:

at PARC we changed Smalltalk constantly, treating it

always as a work in progress

45 / 1

Concluding

Am I saying that. . .

Scratch is not a programming language?

Programming in Scratch is not a linguistic activity?

But programming in these visual languages is experienced,
and often explicitly proposed, primarily as non-linguistic

This view has ancient and well established roots in some standard,
linguistic ancestor

46 / 1

Concluding

Am I saying that. . .

Scratch is not a programming language?

Programming in Scratch is not a linguistic activity?

But programming in these visual languages is experienced,
and often explicitly proposed, primarily as non-linguistic

This view has ancient and well established roots in some standard,
linguistic ancestor

47 / 1

After all. . .

We interact with our smartphones
that is: we program them
exploiting less and less the linguistic metaphor

We should try to make sense of this

48 / 1

After all. . .

We interact with our smartphones
that is: we program them
exploiting less and less the linguistic metaphor

We should try to make sense of this

49 / 1

