LEGO® programming:
non-verbal dimensions of computer programming

Simone Martini

Alma mater studiorum e Universita di Bologna
and
INRIA FoCUS — Sophia / Bologna

April 8, 2022

4

- informatiques #Zmathématiques
ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA

1/71

Two different approaches

“Swipe” and “tap” for our phones)

[Photo: (©Minuum]

2/71

Two different approaches

“Swipe” and “tap” for our phones

J

[Photo: ©Minuum]

Text for our programs

def QS(L):
if L==[]: return
pivot = L[0]
return QS([x for
+ [pivot]
QS ([x for

X

+

X

in L[1:] if x\1t pivot])

in L[1:] if x \ge pivot])

3/71

Sed contra:

Using a phone is not computer programming

We cannot compare the two actitivies

4/71

Are they
really non comparable?
Any entity which can performe a computation

(= an abstract machine)
has its own machine language

5/71

Are they
really non comparable?

Any entity which can performe a computation
(= an abstract machine)

has its own machine language

CASIO

SL.310UC

[

i RATESET TRE
WS T T % TAX—

T
MR) (M- M+

79 1680 I&9
U)(E) @
(M)Z)(E

(0

6/71

Are they
really non comparable?

Any entity which can performe a computation
(= an abstract machine)
has its own machine language

7/71

Are they
really non comparable?
Any entity which can performe a computation

(= an abstract machine)
has its own machine language

8/71

Are they
really non comparable?

Any entity which can performe a computation

(= an abstract machine)
has its own machine language

CASIO

SL.310UC

I231569E

N binwrs) o 1o (T

Mc) (MR M= v+ (= . o

(7

4
(&
(0]

9/7

Programming languages

When a machine language is “powerful enough”

(= Turing-complete)
it is called a programming language”.)

But the conceptual framework is the same:
an abstract machine with its own language

10/71

Visual and gestural languages

Is it possible a real visual, or gestural, programming language? J

Can we trace this idea in the history of programming languages?

11/71

Scratch

when clicked

gotox @y
set angle to [[J

forever

change angle by @

»

set x to @UI) * sin of angle
»

sety to @) * cos of angle

3
wait () secs
LS

A project of the Lifelong Kindergarten Group at the MIT Media Lab

12/71

when clicked

go to x O y: @D

set angle to [[J

when clicked(flag):

forever x=0
- y = 100
goto_pos (x,y)
change angle angle = 0

»

set x to @) *
»

while True:
angle += 5

x = 100xsin(angle)
y = 100*cos(angle)
wait (0.1)

Scratch

set y to €D *
»

wait X
3

A project of the Lifelong Kindergarten Group at the MIT Media Lab

13/71

The medium is the message

0 A PENGUIN BOOK

The
Medium
is the W
Massage'

Marshall
MclLuhan

Quentin
Fiore

14/71

The linguistic metaphor

When Technology Became Language: The Origins of
the Linguistic Conception of Computer Programmis
1950-1960

David Nofre, Mark Priestley, Gerard Alberts

Technology and Culture, Volume 55, Number 1, January 2014, pp.
40-75 (Article)

Published by The Johns Hopkins University Press - :
DOI: 10.1353/tech.2014.0031

15/71

ENIAC programming: cables (1945-46) |

16/71

Programming languages

technical tool
object of study

meta-languages:
algorithms published in Algol
on the Communications of ACM, 50s-60s

17/71

CACM 1961
ALGORITHM 64
QUICKSORT
C. A. R. Hoarge
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (AM,N); value M,N;
array A; integer M N;

comment Quicksort 18 a very fasi and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer 1,J;

if M < N then begin partition (A MN,[.J);
quicksort (A M,J);
quicksort (A, I, N)

end
end quicksort,

18/71

Using Scratch

Fle Edt Untitied-1 Share | () See Community

Blocks Costumes Sounds
Motion
Motian

Looks

Souna
Rl oo o random positon
Corteo
PRl ice @) secsto random posiion +

Gperators,

Variables. —
s
My Blocks o Spite Catt Fing ex 0 1y = oo
v © B s: 100 Orsctin 0 i‘
p—
Boskaiops

T HHHAH BE
LT
MU HH
‘ 0

!
g
0

B
i
0
(a)
()

Bricks, not sentences in a language. ..)

19/71

Using Scratch
1: concrete

A “concrete” tool
@ we play with the elements, like in LEGO®

@ no grammar rules:
either the bricks fit, or don't fit

@ bricks fit together only in meaningful ways:
no syntactic errors

20/71

Using Scratch
2: live

A “live” tool
@ the system responds continuously
@ each action on the bricks has an immediate consequence

@ no cycle code-compile-run

21/71

Using Scratch
3: tinkerable

A “tinkerable” tool

@ "It lets users experiment with commands and code snippets
the way one might tinker with mechanical or electronic
components.”

@ “the brick shapes suggest what is possible”

@ “experimentation and experience teaches what works”

22/71

Using Scratch:
ST

@ concrete (visual) l

o live

o tinkerable

Using Scratch:

@ concrete (visual)
o live

@ tinkerable

All elements also present in the “tap and swipe” language of our
smartphones

24 /71

Using Scratch:

@ concrete (visual)
o live

@ tinkerable

We can trace these elements in the history of programming
languages. .. ? J

25/71

Using Scratch:

@ concrete (visual)
o live

@ tinkerable

We can trace these elements in the history of programming
languages. .. ?

But the truly important thing is their presence together. ..

26/71

Concrete - Visual: ENIAC

7

ENIAC: 1945-46

-

27/71

Concrete - Visual:

Flow diagrams

| o~ P70
" Flow diagrams, Goldstine and von Neumann: 1947 J]

BN A/

Concrete - Visual:
VLSI design

INTRODUCTION NW@D SYSTEMS

CARVER MEAD - LYNN CONWAY.

A AddsonWesloy

Very large-scale integration according to
Mead and Conway, 1977ff; book (€)1980

29/71

Concrete - Visual:
VLSI design

A)\‘
r\ I iy -1 i
> M] -
E.
A:AL
@ WS 2 Eg/A>1) Ep/A> 1
;&(0\ -
p2Y 22|
2 o i Cover Scale in A
EEE Ll -
T om * @ 0123456
b
(©)S/A> 2 5/A> 2.
4
1
i .
JY\T B
3

(©) /A3 3; Sp/A >3

PLATE 3 nMOS design rules (continued) (a) NAND gate layout geometry.

Mead and Conway, 1977ff; book (€)1980

30/71

Mead and Conway's VLSI

Like Scratch for programming:

@ project of integrated circuits possible for people without any
training in electronics/semi-conductors

@ graphical composition rules
@ ensuring the correction of the design

31/71

Concrete - Visual:
languages from the 80s

0o
BLOCK
Y
THEN IF ELSE
BLOCK BLOCK
—y

Figure 1: Possible Realizations of Some Imperative Pro-
cedural Constructs Using Tiles.

BLOX, 1987; E. P. Glinert J

32/71

Live:
Maloney and Smith, 1995

Directness and Liveness in the Morphic
User Interface Construction Environment

John H. Maloney Randall B. Smith
Apple Computer, Inc. Sun Microsystems Laboratories
1 Infinite Loop, M/S 301-3E 2550 Garcia Avenue, MTV 29-116
Cupertino, CA 95014 USA Mountain View, CA 94043 USA
+1-408-974-7293 +1-415-336-2620
J.Maloney @eWorld.com Randall.Smith@Sun.com

33/71

Live:
Maloney and Smith, 1995

Directness and Liveness in the Morphic
User Interface Construction Environment

John H. Maloney Randall B. Smith
Apple Computer, Inc. Sun Microsystems Laboratories
1 Infinite Loop, M/S 301-3E 2550 Garcia Avenue, MTV 29-116
Cupertino, CA 95014 USA Mountain View, CA 94043 USA
+1-408-974-7293 +1-415-336-2620
J.Maloney @eWorld.com Randall.Smith@Sun.com

Liveness means the user interface is always active and reactive:
@ objects respond to user actions
@ animations run

@ layout happens, and

@ information displays update continuously

34/71

Live:
Maloney and Smith, 1995

Directness and Liveness in the Morphic
User Interface Construction Environment

John H. Maloney Randall B. Smith
Apple Computer, Inc. Sun Microsystems Laboratories
1 Infinite Loop, M/S 301-3E 2550 Garcia Avenue, MTV 29-116
Cupertino, CA 95014 USA Mountain View, CA 94043 USA
+1-408-974-7293 +1-415-336-2620
J.Maloney @eWorld.com Randall.Smith@Sun.com

Liveness means the user interface is always active and reactive:
@ objects respond to user actions
o

35/71

A long history

To program is to interact with the executor, the machine

@ Logo, 1969:
W. Feurzeig and S. Papert. Programming languages as a conceptual
framework for teaching mathematics. Final report on the first fifteen
months of the Logo Project. TR 1889. BBN, Cambridge, MA.

@ Smalltalk, 1972
Alan Kay, XEROX PARC

36/71

A long history

To program is to interact with the executor, the machine

@ Logo, 1969:
W. Feurzeig and S. Papert. Programming languages as a conceptual
framework for teaching mathematics. Final report on the first fifteen
months of the Logo Project. TR 1889. BBN, Cambridge, MA.

@ Smalltalk, 1972
Alan Kay, XEROX PARC
Interaction is expressed with powerful metaphors:
turtle

objects

37/71

The turtle

38/71

Tinkerable

A AN
,;é

Constructivism

Per conoscere il mondo bisogna costruirlo

Cesare Pavese, Il mestiere di vivere. 1952

To know the world, we should contruct it

40/71

Constructivism

Per conoscere il mondo bisogna costruirlo

Cesare Pavese, Il mestiere di vivere. 1952

To know the world, we should contruct it

We really know (only) what we (re-)build on our own. J

41/71

Constructivism

We build concrete models of abstract concepts)

Using a programming language is one of the most effective and
economical ways to obtain such models independently. J

42/7

Per conoscere il mondo bisogna costruirlo

Cesare Pavese, Il mestiere di vivere. 1952

To know the world, we should contruct it

In other words, we make not just to have, but to know.
But the having can happen without most of the knowing taking
place. Alan Kay, The early history of Smalltalk. 1993J

43/71

We have a problem:

If the “having” can happen without the “knowing” taking place,

are there conditions under which “making” produces the
“knowing” and not only the “having”?

4471

We have a problem:

If the “having” can happen without the “knowing” taking place,

are there conditions under which “making” produces the

“knowing” and not only the “having”?

Making for knowing:

Seymour Papert:
We should build meaningful objects and relations

4571

A S 7

Piaget and the constructivism
We know what we construct

) o A\

We should build object and relations

46 /71

Piaget and the constructivism
We know what we construct J

Papert and the constructionism
We should build meaningful object and relations J

47/71

Papert and the constructionism

constructivism + meaningfulness

We build concrete versions of abstract concepts
and we enter into relation with these concrete objects

48/71

Affective dimension

Build “objects to think with”

oxymoron:
the abstract is obtained using the concrete

In the choice of these objects:
Not only a cognitive dimension:

Papert: “l was in love with gears!”

49/71

Papert

Using a programming language is one of the most effective and
economical ways for children to obtain such models independently. J

But:
The modality of interaction with the computer is as important
(and probably more important) than its content

The “test and correct” cycle

Obtaining feedback from computational objects.

50 /71

The context for the
“computational thinking” citation

Samba schools for computation

In the next few years we shall see the formation of some
computational environments that deserve to be called “samba
schools for computation.”

There have already been attempts in this direction [but] their
visions of how to integrate computational thinking into everyday
life was insufficiently developed.

51/71

Samba schools, in Rio

52/71

In samba schools for computation:
@ no knowledge is transmitted
@ pupils will learn because are immersed in an environment

@ activities are both “rich of computational principles” and
meaningful for the community

53/71

Smalltalk, at the beginning

Alan Kay:
@ 1966-1969: master student, University of Utah
@ summer 1967: he learns Papert's ideas, from Marvin Minsky

@ winter 1968: he meets Papert and his group

54/71

Smalltalk, at the beginning

Alan Kay:
@ 1966-1969: master student, University of Utah
@ summer 1967: he learns Papert's ideas, from Marvin Minsky

@ winter 1968: he meets Papert and his group

This encounter finally hit me with what the destiny of personal
computing really was going to be: [...] a personal dynamic
medium [which] had to extend into the world of childhood.

55 /71

Smalltalk, at the beginning

Alan Kay:
@ 1966-1969: master student, University of Utah
@ summer 1967: he learns Papert's ideas, from Marvin Minsky

@ winter 1968: he meets Papert and his group

This encounter finally hit me with what the destiny of personal
computing really was going to be: [...] a personal dynamic
medium [which] had to extend into the world of childhood.

a personal computer: It had to be no larger than a notebook, with
a friendly interface but with the power of a real programming
language.

56 /71

Smalltalk

It isn’t enough to just learn to read and write. There is also a
literature that renders ideas. Language is used to read and write
about them, but at some point the organization of ideas starts to
dominate mere language abilities.

And it helps greatly to have some powerful ideas under one’s belt
to better acquire more powerful ideas [Papert 70s]. So, we decided
we should teach design.

V.

57/71

Smalltalk

From the objects and classes of programming languages J

to an ecosystem of interacting objects

58 /71

Smalltalk for Alto, fin 1970s

Ctions=Taxt Jelict;
o

an::mms Arraye] Linka
co

- ns-Strean| MappedCollaction [ad: doiandBetweenDo:
. Suppor| OrderedCallseian | removin promoteFirstauchT]

raphics-Displ
| | Grabrios-matia Form

§§1 Graphics-Paths =
Collect: aBlock

“Evatuate aBlock with each of my elements as the argument

resulting values into a collection that is like me. Answer with

collection, Override superclass in order to use add, not at:put:

| newGallection |
newGallaction + salf spacias naw.

self do: [:each | newCollection add: (aBlock value: each)].
*newCollection

User Interropt

| | paragrapnomoussselectito

CadaCantrollGF(ParagraPNEAITOr)Scon trolACtVIL
GadaCantrollar(Controller)>>controlLocp

[sssecmmmisorappmedtery rocsauautions
|

ControlAct
e rsceralnacuor
| I#True:
[self scrail]
ifFalse:

| [self processkeybol L

. salf processMoused
| P

il

‘N"mam SRS camars | [Flena)Hobsons 5P Woracrapies o
| e D

R Fectangie framUser orighn

paragrap]
|Feareeio Sereanform setFulPageWisin
. - H
‘m\‘NHN“NHH\HNﬂ\ . | §:§‘ . “H“

Eﬁ . |

. .
e *wmuuuw ; ; i .
~ - - S - -

59/71

Smalltalk

From the objects and classes of programming languages

to an ecosystem of interacting objects

60/71

Smalltalk

From the objects and classes of programming languages

to an ecosystem of interacting objects

Smalltalk is NOT only its syntax or the class.

I’m sorry that I long ago coined the term "objects"
for this topic because it gets many people to focus
on the lesser idea.

The big idea is "messaging" [...] The Japanese have
a small word -— ma -- for "that which is in between".

A. Kay, message to the Squeak-dev mailing list. Sat Oct 10 1998/

61/71

Smalltalk

And this is reflected in Smalltalk itself:

N

J

at PARC we changed Smalltalk constantly, treating it
always as a work in progress J

62/71

Smalltalk

And this is reflected in Smalltalk itself:

S

when ST hit the larger world, it was pretty much
taken as "something just to be learned", as though it
were Pascal or Algol.

at PARC we changed Smalltalk constantly, treating it
always as a work in progress J

63/71

Smalltalk

And this is reflected in Smalltalk itself:

S—

when ST hit the larger world, it was pretty much
taken as "something just to be learned", as though it
were Pascal or Algol.

while is something we should tinker with: J

at PARC we changed Smalltalk constantly, treating it
always as a work in progress J

64/71

Conclusions

Programming in visual languages
and the interaction with our computing means
exploits less and less the linguistic metaphor

This view has ancient and well-established roots, even in the
classical linguistic context

65,71

Richard Sennett

66 /71

THE CRAFTSMAN

what we can say in words may be more limited than
what we can do with things. [

T RIS] Here is a, perhaps the, fundamental human limit:
language is not an adequate “mirror-tool” for the

physical movements of the human body.
[R. Sennett, The Craftsman. 2009]

67/71

Januier 175,

ENCY CLOPE DIE

DICTIONNAIRE RAISONNE

DES SCIENCES,
DES ARTS ET DES METIERS,

RECUEILLI
DES MEILLEURS AUTEURS

ET PARTICULIERENENT
DES DICTIONNAIRES ANGLOIS
DE CHAMBERS, D’'HARRIS, DE DYCHE, &«
PAR UNE SOCIETE DE GENS DE LETTRES.
s Mis en ordre & publié par M. DrnEror: & quant i laPARTIE MATHEMATIQUE,
par M. D’ALEMBERT, de PAcadémie Royale des Sciences de Paris
& de 'Académic Royale de Berlin.

RS Tanaum fires jundhurague pollees
g T, de‘medio fumpis accedic honorisl HoraT. =

DIX VOLUMES IN-FOLIO,

DONT DEUX DE PLANCHES EN TAILLE-DOUCE,

|

PROPOSES PAR SOUSCRIPTION.

An

old observation

68/71

‘ ' An old observation
ENCYCLOPEDIE,

DICTIONNAIRE RAISONNE

DES SCIENCES,
DES ARTS ET DES METIERS,

RECUEILLI
DES MEILLEURS AUTEURS

ET PARTICULIEREMENT

oes prcrionyaires axe On s’est adressé aux plus habiles de Paris et du
DE CHAMBERS, DHARRIS, DE))) ,
| par uE soctite pr crxs pe 1 fOyaume. On s'est donné la peine d’aller dans leurs
B e e s &t e ateliers [

2 & de I'Académic Royale de Berlin.)))
o e M . A peine, entre mille, en trouve-t-on une douzaine
DIX VOLUMES IN-F on état de s'exprimer avec quelque clarté sur les
DONT DEUX DE PLANCHES EN TAILLE-]
instruments qu’ils emploient et sur les ouvrages

qu'ils fabriquent.

PROPOSES PAR SOUSCRI

[D. Diderot, Prospectus a I'Encyclopédie, 141; 1751.]
v

TASS ON, e Salos S d e Shse:
1D Viind, rec Saine Jaiges, 3 ba Plams Levc
RETON, Imprimenr onlisake du Roy, . o b Horp.
URAND, e Saine Jopet 3 Seint Linky , & e Grifo

-
~
>
=
@
~—
orow
mam
=

69 /71

We are still far from the moment when gesture will be more
expressive than language, in our interaction with computers J

70/71

We are still far from the moment when gesture will be more
expressive than language, in our interaction with computers J

But we must be prepared, as computer scientists, epistemologists,
people of culture, ... J

71/71

