
LEGO© programming:
non-verbal dimensions of computer programming

Simone Martini

Alma mater studiorum • Università di Bologna
and

INRIA FoCUS – Sophia / Bologna

April 8, 2022

1 / 71

Two different approaches

“Swipe” and “tap” for our phones

[Photo: ©Minuum]

Text for our programs

def QS(L):

if L==[]: return L

pivot = L[0]

return QS([x for x in L[1:] if x\lt pivot])

+ [pivot] +

QS([x for x in L[1:] if x \ge pivot])

2 / 71

Two different approaches

“Swipe” and “tap” for our phones

[Photo: ©Minuum]

Text for our programs

def QS(L):

if L==[]: return L

pivot = L[0]

return QS([x for x in L[1:] if x\lt pivot])

+ [pivot] +

QS([x for x in L[1:] if x \ge pivot])

3 / 71

Sed contra:

Using a phone is not computer programming

We cannot compare the two actitivies

4 / 71

Are they
really non comparable?

Any entity which can performe a computation
(= an abstract machine)

has its own machine language

5 / 71

Are they
really non comparable?

Any entity which can performe a computation
(= an abstract machine)

has its own machine language

6 / 71

Are they
really non comparable?

Any entity which can performe a computation
(= an abstract machine)

has its own machine language

7 / 71

Are they
really non comparable?

Any entity which can performe a computation
(= an abstract machine)

has its own machine language

8 / 71

Are they
really non comparable?

Any entity which can performe a computation
(= an abstract machine)

has its own machine language

9 / 71

Programming languages

When a machine language is “powerful enough”
(= Turing-complete)

it is called a programming language”.

But the conceptual framework is the same:
an abstract machine with its own language

10 / 71

Visual and gestural languages

Is it possible a real visual, or gestural, programming language?

Can we trace this idea in the history of programming languages?

11 / 71

Scratch

A project of the Lifelong Kindergarten Group at the MIT Media Lab

12 / 71

Scratch

when clicked(flag):

x = 0

y = 100

goto_pos(x,y)

angle = 0

while True:

angle += 5

x = 100* sin(angle)

y = 100* cos(angle)

wait (0.1)

A project of the Lifelong Kindergarten Group at the MIT Media Lab

13 / 71

The medium is the message

14 / 71

The linguistic metaphor

:hHn THFhnRlRJ\ BHFDPH LDnJXDJH: ThH 2rLJLnV Rf

thH LLnJXLVtLF &RnFHptLRn Rf &RPpXtHr PrRJrDPPLnJ,

���0૱��60
David Nofre, Mark Priestley, Gerard Alberts

Technology and Culture, Volume 55, Number 1, January 2014, pp.
40-75 (Article)

PXblLVhHd b\ ThH JRhnV HRpNLnV 8nLvHrVLt\ PrHVV
DOI: 10.1353/tech.2014.0031

For additional information about this article

 Access provided by Amsterdam Universiteit (22 Dec 2014 08:06 GMT)

http://muse.jhu.edu/journals/tech/summary/v055/55.1.nofre.html

15 / 71

ENIAC programming: cables (1945-46)

16 / 71

Programming languages

technical tool

object of study

meta-languages:
algorithms published in Algol
on the Communications of ACM, 50s-60s

17 / 71

CACM 1961

18 / 71

Using Scratch

Bricks, not sentences in a language. . .

19 / 71

Using Scratch
1: concrete

A “concrete” tool

we play with the elements, like in LEGO©

no grammar rules:
either the bricks fit, or don’t fit

bricks fit together only in meaningful ways:
no syntactic errors

20 / 71

Using Scratch
2: live

A “live” tool

the system responds continuously

each action on the bricks has an immediate consequence

no cycle code-compile-run

21 / 71

Using Scratch
3: tinkerable

A “tinkerable” tool

“It lets users experiment with commands and code snippets
the way one might tinker with mechanical or electronic
components.”

“the brick shapes suggest what is possible”

“experimentation and experience teaches what works”

22 / 71

Using Scratch:

concrete (visual)

live

tinkerable

All elements also present in the “tap and swipe” language of our
smartphones

We can trace these elements in the history of programming
languages. . . ?

But the truly important thing is their presence together. . .

23 / 71

Using Scratch:

concrete (visual)

live

tinkerable

All elements also present in the “tap and swipe” language of our
smartphones

We can trace these elements in the history of programming
languages. . . ?

But the truly important thing is their presence together. . .

24 / 71

Using Scratch:

concrete (visual)

live

tinkerable

All elements also present in the “tap and swipe” language of our
smartphones

We can trace these elements in the history of programming
languages. . . ?

But the truly important thing is their presence together. . .

25 / 71

Using Scratch:

concrete (visual)

live

tinkerable

All elements also present in the “tap and swipe” language of our
smartphones

We can trace these elements in the history of programming
languages. . . ?

But the truly important thing is their presence together. . .

26 / 71

Concrete - Visual: ENIAC

ENIAC: 1945-46

27 / 71

Concrete - Visual:
Flow diagrams

Flow diagrams, Goldstine and von Neumann: 1947

28 / 71

Concrete - Visual:
VLSI design

Very large-scale integration according to
Mead and Conway, 1977ff; book ©1980

29 / 71

Concrete - Visual:
VLSI design

Mead and Conway, 1977ff; book ©1980

30 / 71

Mead and Conway’s VLSI

Like Scratch for programming:

project of integrated circuits possible for people without any
training in electronics/semi-conductors

graphical composition rules

ensuring the correction of the design

31 / 71

Concrete - Visual:
languages from the 80s

complex programs. One tends either to end up with some
form or other of the proverbial spaghetti ball, or to find it
necessary to mumble “encapsulate!” and resort to hand-
waving.

Some investigators believe that the two-dimensional
nature common to the classical graphical representations
is part of the problem. Thus, they have advocated the
use of multiple, interconnected planar diagrams, in what
we call a 2.5-dimensional approach [17,18,19].

BLOX representations take all of these ideas one step
further. In particular, they have been designed from their
inception for display by a computer on a VDU, with far-
reaching consequences.

Programming environments based on the BLOX
methodology are termed BLOX worlds. The elements of
these worlds present an external facade patterned after
familiar children’s toys. For the purposes of this section,
and in conformity with the manner in which the method-
ology has been presented in the literature up to now, the
elements are tiles analogous to the pieces of which jigsaw
puzzles are composed. However, BLOX tiles are at once
real and imaginary, for unlike their counterparts in the
physical world they can hide “miniature” or lower level
substructures which they encapsulate (note that this im-
plies a 2.5-D approach). BLOX tiles are also dynamic
rather than static, in that their visible features (e.g.,
size, color, and edge contour or shape) may all change
under appropriate circumstances - say, when elements
are repositioned on the screen (location/context induced
change), or as sundry events transpire (temporally in-
duced change).

Users compose BLOX programs by building struc-
tures which consist of one or more joined tiles, accord-
ing to the usual jigsaw-puzzle lock and key metaphor
in which protrusions are plugged into correspondingly
shaped indentations so that the two juxtaposed tiles in-
terlock. Depending upon the applications domain, the
designer of a BLOX world can, if appropriate, impose
additional constraints on which tiles or blocks may be
joined. For example, the colors on the interlocking edges
or, more generally, the images on the tiles might have to
be compatible in some sense.

To elucidate some of the aforementioned concepts,
we briefly discuss two examples. In each case, just a few
salient features will be described.

Consider first a Proc-BLOX world for programming
according to the imperative procedural paradigm. In this
environment we would have available tiles which corre-
spond to constructs such as the clause or BLOCK (a se-
quence of one or more statements, often enclosed, in tex-
tual environments, between reserved words akin to the
Pascal BEGIN and END), and the IF and WHILE condi-
tionals. However, we would most likely not wish to apply
the BLOX mechanism to details at too low a level (e.g.,

Figure 1: Possible Realizations of Some Imperative Pro-
cedural Constructs Using Tiles.

individual characters in identifiers, or the symbols that
denote the various arithmetic operations). Thus expres-
sions, say, in assignment statements would be typed in
via the conventional keyboard and parsed incrementally
(by an interpreter) to assure syntactic correctness.

Fig. 1 illustrates how the aforementioned tiles might
look. The actual configurations of knobs and sockets
assigned to the various tiles in the Figure are clearly ar-
bitrary and, as a consequence, immaterial. Note how

begin
Sl;
if not I1 then

begin
s2; s3;

end
else

while Ll do
begin

if 12 then S4 else S5; S6;
end;

while L2 do S7;
S8;

end.

Figure 2: Schematic Fragment of a Pascal Program.

the lock and key metaphor incorporated in the design
of the tiles is used to effectively enforce proper syntax.
Note, also, how the shapes of the various instances of the
BLOCK tile have been dynamically tailored by the en-
vironment to the context in which they are being used.
We remark that, in an actual program, the code seg-
ments corresponding to the alternative branches, loop
bodies and Boolean expressions associated with the IF
and WHILE statements could be individually encapsu-

294

BLOX, 1987; E. P. Glinert

32 / 71

Live:
Maloney and Smith, 1995

Directness and Liveness in the Morphic
User Interface Construction Environment

John H. Maloney Randall B. Smith
Apple Computer, Inc. Sun Microsystems Laboratories

1 Infinite Loop, M/S 301 -3E 2550 Garcia Avenue, MTV 29-116
Cupertino, CA 95014 USA Mountain View, CA 94043 USA

+1-408-974-7293 +1-415-336-2620
J.Maloney @eWorld.com Randall. Smith@ Sun.com

ABSTRACT
Morphic is a user interface construction environment that
strives to embody directness and liveness. Directness
means a user interface designer can initiate the process of
examining or changing the attributes, structure, and
behavior of user interface components by pointing at their
graphical representations directly. Liveness means the user
interface is always active and reactive-+bjects respond to
user actions, animations run, layout happens, and
information displays update continuously. Four
implementation techniques work together to support
directness and liveness in Morphic: structural reification,
layout reification, ubiquitous animation, and live editing.

KEYWORDS: User interface frameworks, user interface
construction, directness, liveness, direct manipulation,
animation, structural reification, automatic layout, live
editing.

INTRODUCTION
Creating a good user interface is an iterative process.
Streamlining this process enables the user interface
designer to try more alternatives in search of the best
solution. Directness means a user interface designer can
initiate the process of examining or changing the attributes,
structure, and behavior of user interface components by
pointing at their graphical representations directly, as
opposed to navigating through an alternate representation.
Liveness means the user interface is always active and
reactive—objects respond to user actions, animations run,
layout happens, and information displays are updated
continuously. Directness and liveness are properties of the
physical world: to examine and change a physical object,
you manipulate it directly while the laws of physics
continue to operate. In a user interface construction
environment, directness and liveness reduce iteration time.
They also decrease cognitive load by not forcing the
designer to correlate graphical components of the interface

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for protit or commercial advantage, the copy-
right notice, the title of Ihe puhlicti[km and its date appear, and notice is
given that copyright is by permission of the ACM. Inc. Tu copy otherwise.
to republish, to post on sewers or to redistribute to lists, requires specific
permission and/or fee.
UIST 95 Pittsburgh PA USA
@ 1995 ACM o-89791-709-x/95/l i ..$3.50

with their alternate representations (directness) or to switch
between run and edit modes (Iiveness).

Morphic is a user interface construction environment that
strives to embody the principles of directness and liveness
[10]. Morphic is based on general graphical objects known
as mo?phs, from the Greek for “shape” or “physical form.”
Morphic allows user interfaces and their components to be
assembled, disassembled, and rearranged via direct
manipulation. It supports interactive automatic layout,
animation, and multiple users working simultaneously in a
large, virtual space (like Shared ARK [1 l]).

Morphic draws many ideas from earlier work, although it
attempts to go beyond previous systems in consciously
harnessing and integrating these ideas in the service of
directness and liveness. The section on related work
acknowledges some of Morphic’s intellectual debt.

Directness and liveness in Morphic are supported by four
implementation techniques:
● structural reification (supports directness),
● layout reification (supports directness and liveness),
● ubiquitous animation (supports liveness), and
● live editing (supports directness and liveness).

The remainder of this paper will describe these techniques
and how they each contribute to directness and liveness in
Morphic.

STRUCTURAL REIFICATION
Complex morphs are constructed by composition (Figure
1). Any morph can be made into a composite morph by
attaching other morphs JO it as submorphs. A composite
morph behaves like a single object: when it is moved,
drawn, copied, or deleted, all its submorphs (and their
submorphs, recursively) are moved, drawn, copied, or
deleted as well. The submorphs of a composite morph are
drawn in front of their parent morph and, by default, are
given a chance to handle user input events, such as mouse
button presses, before their parent. In short, submorphs act
as if they were glued onto the face of their parent morph.
The submorph structure forms a tree in which every node is
a concrete morph and any morph can be a root, leaf, or
inner node. Thus, if a composite morph is disassembled,

November 14-17, 1995 UIST ’95 21

Liveness means the user interface is always active and reactive:

objects respond to user actions

animations run

layout happens, and

information displays update continuously

33 / 71

Live:
Maloney and Smith, 1995

Directness and Liveness in the Morphic
User Interface Construction Environment

John H. Maloney Randall B. Smith
Apple Computer, Inc. Sun Microsystems Laboratories

1 Infinite Loop, M/S 301 -3E 2550 Garcia Avenue, MTV 29-116
Cupertino, CA 95014 USA Mountain View, CA 94043 USA

+1-408-974-7293 +1-415-336-2620
J.Maloney @eWorld.com Randall. Smith@ Sun.com

ABSTRACT
Morphic is a user interface construction environment that
strives to embody directness and liveness. Directness
means a user interface designer can initiate the process of
examining or changing the attributes, structure, and
behavior of user interface components by pointing at their
graphical representations directly. Liveness means the user
interface is always active and reactive-+bjects respond to
user actions, animations run, layout happens, and
information displays update continuously. Four
implementation techniques work together to support
directness and liveness in Morphic: structural reification,
layout reification, ubiquitous animation, and live editing.

KEYWORDS: User interface frameworks, user interface
construction, directness, liveness, direct manipulation,
animation, structural reification, automatic layout, live
editing.

INTRODUCTION
Creating a good user interface is an iterative process.
Streamlining this process enables the user interface
designer to try more alternatives in search of the best
solution. Directness means a user interface designer can
initiate the process of examining or changing the attributes,
structure, and behavior of user interface components by
pointing at their graphical representations directly, as
opposed to navigating through an alternate representation.
Liveness means the user interface is always active and
reactive—objects respond to user actions, animations run,
layout happens, and information displays are updated
continuously. Directness and liveness are properties of the
physical world: to examine and change a physical object,
you manipulate it directly while the laws of physics
continue to operate. In a user interface construction
environment, directness and liveness reduce iteration time.
They also decrease cognitive load by not forcing the
designer to correlate graphical components of the interface

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for protit or commercial advantage, the copy-
right notice, the title of Ihe puhlicti[km and its date appear, and notice is
given that copyright is by permission of the ACM. Inc. Tu copy otherwise.
to republish, to post on sewers or to redistribute to lists, requires specific
permission and/or fee.
UIST 95 Pittsburgh PA USA
@ 1995 ACM o-89791-709-x/95/l i ..$3.50

with their alternate representations (directness) or to switch
between run and edit modes (Iiveness).

Morphic is a user interface construction environment that
strives to embody the principles of directness and liveness
[10]. Morphic is based on general graphical objects known
as mo?phs, from the Greek for “shape” or “physical form.”
Morphic allows user interfaces and their components to be
assembled, disassembled, and rearranged via direct
manipulation. It supports interactive automatic layout,
animation, and multiple users working simultaneously in a
large, virtual space (like Shared ARK [1 l]).

Morphic draws many ideas from earlier work, although it
attempts to go beyond previous systems in consciously
harnessing and integrating these ideas in the service of
directness and liveness. The section on related work
acknowledges some of Morphic’s intellectual debt.

Directness and liveness in Morphic are supported by four
implementation techniques:
● structural reification (supports directness),
● layout reification (supports directness and liveness),
● ubiquitous animation (supports liveness), and
● live editing (supports directness and liveness).

The remainder of this paper will describe these techniques
and how they each contribute to directness and liveness in
Morphic.

STRUCTURAL REIFICATION
Complex morphs are constructed by composition (Figure
1). Any morph can be made into a composite morph by
attaching other morphs JO it as submorphs. A composite
morph behaves like a single object: when it is moved,
drawn, copied, or deleted, all its submorphs (and their
submorphs, recursively) are moved, drawn, copied, or
deleted as well. The submorphs of a composite morph are
drawn in front of their parent morph and, by default, are
given a chance to handle user input events, such as mouse
button presses, before their parent. In short, submorphs act
as if they were glued onto the face of their parent morph.
The submorph structure forms a tree in which every node is
a concrete morph and any morph can be a root, leaf, or
inner node. Thus, if a composite morph is disassembled,

November 14-17, 1995 UIST ’95 21

Liveness means the user interface is always active and reactive:

objects respond to user actions

animations run

layout happens, and

information displays update continuously

34 / 71

Live:
Maloney and Smith, 1995

Directness and Liveness in the Morphic
User Interface Construction Environment

John H. Maloney Randall B. Smith
Apple Computer, Inc. Sun Microsystems Laboratories

1 Infinite Loop, M/S 301 -3E 2550 Garcia Avenue, MTV 29-116
Cupertino, CA 95014 USA Mountain View, CA 94043 USA

+1-408-974-7293 +1-415-336-2620
J.Maloney @eWorld.com Randall. Smith@ Sun.com

ABSTRACT
Morphic is a user interface construction environment that
strives to embody directness and liveness. Directness
means a user interface designer can initiate the process of
examining or changing the attributes, structure, and
behavior of user interface components by pointing at their
graphical representations directly. Liveness means the user
interface is always active and reactive-+bjects respond to
user actions, animations run, layout happens, and
information displays update continuously. Four
implementation techniques work together to support
directness and liveness in Morphic: structural reification,
layout reification, ubiquitous animation, and live editing.

KEYWORDS: User interface frameworks, user interface
construction, directness, liveness, direct manipulation,
animation, structural reification, automatic layout, live
editing.

INTRODUCTION
Creating a good user interface is an iterative process.
Streamlining this process enables the user interface
designer to try more alternatives in search of the best
solution. Directness means a user interface designer can
initiate the process of examining or changing the attributes,
structure, and behavior of user interface components by
pointing at their graphical representations directly, as
opposed to navigating through an alternate representation.
Liveness means the user interface is always active and
reactive—objects respond to user actions, animations run,
layout happens, and information displays are updated
continuously. Directness and liveness are properties of the
physical world: to examine and change a physical object,
you manipulate it directly while the laws of physics
continue to operate. In a user interface construction
environment, directness and liveness reduce iteration time.
They also decrease cognitive load by not forcing the
designer to correlate graphical components of the interface

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for protit or commercial advantage, the copy-
right notice, the title of Ihe puhlicti[km and its date appear, and notice is
given that copyright is by permission of the ACM. Inc. Tu copy otherwise.
to republish, to post on sewers or to redistribute to lists, requires specific
permission and/or fee.
UIST 95 Pittsburgh PA USA
@ 1995 ACM o-89791-709-x/95/l i ..$3.50

with their alternate representations (directness) or to switch
between run and edit modes (Iiveness).

Morphic is a user interface construction environment that
strives to embody the principles of directness and liveness
[10]. Morphic is based on general graphical objects known
as mo?phs, from the Greek for “shape” or “physical form.”
Morphic allows user interfaces and their components to be
assembled, disassembled, and rearranged via direct
manipulation. It supports interactive automatic layout,
animation, and multiple users working simultaneously in a
large, virtual space (like Shared ARK [1 l]).

Morphic draws many ideas from earlier work, although it
attempts to go beyond previous systems in consciously
harnessing and integrating these ideas in the service of
directness and liveness. The section on related work
acknowledges some of Morphic’s intellectual debt.

Directness and liveness in Morphic are supported by four
implementation techniques:
● structural reification (supports directness),
● layout reification (supports directness and liveness),
● ubiquitous animation (supports liveness), and
● live editing (supports directness and liveness).

The remainder of this paper will describe these techniques
and how they each contribute to directness and liveness in
Morphic.

STRUCTURAL REIFICATION
Complex morphs are constructed by composition (Figure
1). Any morph can be made into a composite morph by
attaching other morphs JO it as submorphs. A composite
morph behaves like a single object: when it is moved,
drawn, copied, or deleted, all its submorphs (and their
submorphs, recursively) are moved, drawn, copied, or
deleted as well. The submorphs of a composite morph are
drawn in front of their parent morph and, by default, are
given a chance to handle user input events, such as mouse
button presses, before their parent. In short, submorphs act
as if they were glued onto the face of their parent morph.
The submorph structure forms a tree in which every node is
a concrete morph and any morph can be a root, leaf, or
inner node. Thus, if a composite morph is disassembled,

November 14-17, 1995 UIST ’95 21

Liveness means the user interface is always active and reactive:

objects respond to user actions

35 / 71

A long history

To program is to interact with the executor, the machine

Logo, 1969:
W. Feurzeig and S. Papert. Programming languages as a conceptual

framework for teaching mathematics. Final report on the first fifteen

months of the Logo Project. TR 1889. BBN, Cambridge, MA.

Smalltalk, 1972
Alan Kay, XEROX PARC

Interaction is expressed with powerful metaphors:

turtle

objects

36 / 71

A long history

To program is to interact with the executor, the machine

Logo, 1969:
W. Feurzeig and S. Papert. Programming languages as a conceptual

framework for teaching mathematics. Final report on the first fifteen

months of the Logo Project. TR 1889. BBN, Cambridge, MA.

Smalltalk, 1972
Alan Kay, XEROX PARC

Interaction is expressed with powerful metaphors:

turtle

objects

37 / 71

The turtle

38 / 71

Tinkerable

We have to make a little detour,
to explain why it is important

39 / 71

Constructivism

Per conoscere il mondo bisogna costruirlo
Cesare Pavese, Il mestiere di vivere. 1952

To know the world, we should contruct it

We really know (only) what we (re-)build on our own.

40 / 71

Constructivism

Per conoscere il mondo bisogna costruirlo
Cesare Pavese, Il mestiere di vivere. 1952

To know the world, we should contruct it

We really know (only) what we (re-)build on our own.

41 / 71

Constructivism

We build concrete models of abstract concepts

Using a programming language is one of the most effective and
economical ways to obtain such models independently.

42 / 71

Per conoscere il mondo bisogna costruirlo
Cesare Pavese, Il mestiere di vivere. 1952

To know the world, we should contruct it

In other words, we make not just to have, but to know.
But the having can happen without most of the knowing taking
place. Alan Kay, The early history of Smalltalk. 1993

43 / 71

We have a problem:

If the “having” can happen without the “knowing” taking place,

are there conditions under which “making” produces the
“knowing” and not only the “having”?

Making for knowing:

Seymour Papert:
We should build meaningful objects and relations

44 / 71

We have a problem:

If the “having” can happen without the “knowing” taking place,

are there conditions under which “making” produces the
“knowing” and not only the “having”?

Making for knowing:

Seymour Papert:
We should build meaningful objects and relations

45 / 71

Piaget and the constructivism

We know what we construct

Papert and the constructionism

We should build meaningful object and relations

46 / 71

Piaget and the constructivism

We know what we construct

Papert and the constructionism

We should build meaningful object and relations

47 / 71

Papert and the constructionism

constructivism + meaningfulness

We build concrete versions of abstract concepts
and we enter into relation with these concrete objects

48 / 71

Affective dimension

Build “objects to think with”

oxymoron:
the abstract is obtained using the concrete

In the choice of these objects:

Not only a cognitive dimension:

Papert: “I was in love with gears!”

49 / 71

Papert

Using a programming language is one of the most effective and
economical ways for children to obtain such models independently.

But:

The modality of interaction with the computer is as important
(and probably more important) than its content

The “test and correct” cycle

Obtaining feedback from computational objects.

50 / 71

The context for the
“computational thinking” citation

Samba schools for computation

In the next few years we shall see the formation of some
computational environments that deserve to be called “samba
schools for computation.”

There have already been attempts in this direction [but] their
visions of how to integrate computational thinking into everyday
life was insufficiently developed.

51 / 71

Samba schools, in Rio

52 / 71

In samba schools for computation:

no knowledge is transmitted

pupils will learn because are immersed in an environment

activities are both “rich of computational principles” and
meaningful for the community

53 / 71

Smalltalk, at the beginning

Alan Kay:

1966-1969: master student, University of Utah

summer 1967: he learns Papert’s ideas, from Marvin Minsky

winter 1968: he meets Papert and his group

This encounter finally hit me with what the destiny of personal
computing really was going to be: [. . .] a personal dynamic
medium [which] had to extend into the world of childhood.

a personal computer: It had to be no larger than a notebook, with
a friendly interface but with the power of a real programming
language.

54 / 71

Smalltalk, at the beginning

Alan Kay:

1966-1969: master student, University of Utah

summer 1967: he learns Papert’s ideas, from Marvin Minsky

winter 1968: he meets Papert and his group

This encounter finally hit me with what the destiny of personal
computing really was going to be: [. . .] a personal dynamic
medium [which] had to extend into the world of childhood.

a personal computer: It had to be no larger than a notebook, with
a friendly interface but with the power of a real programming
language.

55 / 71

Smalltalk, at the beginning

Alan Kay:

1966-1969: master student, University of Utah

summer 1967: he learns Papert’s ideas, from Marvin Minsky

winter 1968: he meets Papert and his group

This encounter finally hit me with what the destiny of personal
computing really was going to be: [. . .] a personal dynamic
medium [which] had to extend into the world of childhood.

a personal computer: It had to be no larger than a notebook, with
a friendly interface but with the power of a real programming
language.

56 / 71

Smalltalk

It isn’t enough to just learn to read and write. There is also a
literature that renders ideas. Language is used to read and write
about them, but at some point the organization of ideas starts to
dominate mere language abilities.

And it helps greatly to have some powerful ideas under one’s belt
to better acquire more powerful ideas [Papert 70s]. So, we decided
we should teach design.

57 / 71

Smalltalk

From the objects and classes of programming languages

to an ecosystem of interacting objects

58 / 71

Smalltalk for Alto, fin 1970s

59 / 71

Smalltalk

From the objects and classes of programming languages

to an ecosystem of interacting objects

Smalltalk is NOT only its syntax or the class.

I’m sorry that I long ago coined the term "objects"

for this topic because it gets many people to focus

on the lesser idea.

The big idea is "messaging" [...] The Japanese have

a small word -- ma -- for "that which is in between".

A. Kay, message to the Squeak-dev mailing list. Sat Oct 10 1998

60 / 71

Smalltalk

From the objects and classes of programming languages

to an ecosystem of interacting objects

Smalltalk is NOT only its syntax or the class.

I’m sorry that I long ago coined the term "objects"

for this topic because it gets many people to focus

on the lesser idea.

The big idea is "messaging" [...] The Japanese have

a small word -- ma -- for "that which is in between".

A. Kay, message to the Squeak-dev mailing list. Sat Oct 10 1998

61 / 71

Smalltalk

And this is reflected in Smalltalk itself:

when ST hit the larger world, it was pretty much

taken as "something just to be learned", as though it

were Pascal or Algol.

while is something we should tinker with:

at PARC we changed Smalltalk constantly, treating it

always as a work in progress

62 / 71

Smalltalk

And this is reflected in Smalltalk itself:

when ST hit the larger world, it was pretty much

taken as "something just to be learned", as though it

were Pascal or Algol.

while is something we should tinker with:

at PARC we changed Smalltalk constantly, treating it

always as a work in progress

63 / 71

Smalltalk

And this is reflected in Smalltalk itself:

when ST hit the larger world, it was pretty much

taken as "something just to be learned", as though it

were Pascal or Algol.

while is something we should tinker with:

at PARC we changed Smalltalk constantly, treating it

always as a work in progress

64 / 71

Conclusions

Programming in visual languages
and the interaction with our computing means
exploits less and less the linguistic metaphor

This view has ancient and well-established roots, even in the
classical linguistic context

65 / 71

what we can say in words may be more limited than
what we can do with things. [. . .]

Here is a, perhaps the, fundamental human limit:
language is not an adequate “mirror-tool” for the
physical movements of the human body.

[R. Sennett, The Craftsman. 2009]

66 / 71

what we can say in words may be more limited than
what we can do with things. [. . .]

Here is a, perhaps the, fundamental human limit:
language is not an adequate “mirror-tool” for the
physical movements of the human body.

[R. Sennett, The Craftsman. 2009]

67 / 71

An old observation

On s’est adressé aux plus habiles de Paris et du
royaume. On s’est donné la peine d’aller dans leurs
ateliers [. . .]

À peine, entre mille, en trouve-t-on une douzaine
en état de s’exprimer avec quelque clarté sur les
instruments qu’ils emploient et sur les ouvrages
qu’ils fabriquent.

[D. Diderot, Prospectus à l’Encyclopédie, 141; 1751.]

68 / 71

An old observation

On s’est adressé aux plus habiles de Paris et du
royaume. On s’est donné la peine d’aller dans leurs
ateliers [. . .]

À peine, entre mille, en trouve-t-on une douzaine
en état de s’exprimer avec quelque clarté sur les
instruments qu’ils emploient et sur les ouvrages
qu’ils fabriquent.

[D. Diderot, Prospectus à l’Encyclopédie, 141; 1751.]

69 / 71

We are still far from the moment when gesture will be more
expressive than language, in our interaction with computers

But we must be prepared, as computer scientists, epistemologists,
people of culture, . . .

70 / 71

We are still far from the moment when gesture will be more
expressive than language, in our interaction with computers

But we must be prepared, as computer scientists, epistemologists,
people of culture, . . .

71 / 71

