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The big project

Reflect and trace the interaction of mathematical logic
and programming (languages),

identifying some of the driving forces of this process.

First episode: Types
HaPOC 2015, Pisa: from 1955 to 1970 (circa)
Cie 2016, Paris: from 1965 to 1975 (circa)

Towards a Conceptual History of Programming Languages
Collegium - Lyon Institute for Advanced Studies, 2018-2019
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Why types?

Modern programming languages:

control flow specification: small fraction

abstraction mechanisms to model application domains.

• Types are a crucial building block of these abstractions

• And they are a mathematical logic concept, aren’t they?
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We today conflate:

Types as an implementation (representation) issue

Types as an abstraction mechanism

Types as a classification mechanism (from mathematical logic)

One of the goals:
separate them and identify when they arrive in the PL literature
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Framing it in a larger context

The quest for a “Mathematical Theory of Computation”

How does mathematical logic fit into this theory?

And for what purposes?
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Prehistory

1947 “‘
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Goldstine and von Neumann

[. . . ] coding [. . . ] has to be viewed as a logical problem and one
that represents a new branch of formal logics.

Hermann Goldstine and John von Neumann
Planning and Coding of problems for an Electronic Computing Instrument
Report on the mathematical and logical aspects of an electronic computing instrument,
Part II, Volume 1-3, April 1947. Institute of Advanced Studies.
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Boxes in flow diagrams
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Goldstine and von Neumann, 2

Boxes in flow diagrams

operation boxes

substitution boxes

assertion boxes

The contents of an assertion box are one or more relations.

An assertion box [. . . ] indicates only that certain relations are
automatically fulfilled whenever [the control reaches that point]

Free and bound variables, etc.
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Goldstine and von Neumann

Logic as the discipline to prove assertions
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Turing

Lecture on Automatic Computing Engine
London Mathematical Soc., 20 Feb 1947. Typewritten notes, in Turing Archive, AMT/C/32

High-level languages
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Turing

Lecture on Automatic Computing Engine
London Mathematical Soc., 20 Feb 1947. Typewritten notes, in Turing Archive, AMT/C/32

High-level languages

In principle one should be able to communicate [with these machines] in
any symbolic logic [. . . ].

This would mean that there will be much more practical scope for logical
systems than there has been in the past.
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Turing

Logic as the discipline of formal languages
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They both see a bright future. . .

Goldstine and von Neumann:

A logical problem [. . . ] that represents a new branch of formal
logics.

Turing:

There will be much more practical scope for logical systems.
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Turing, again: 1949

The programmer should make assertions about the various states
that the machine can reach.

The checker has to verify that [these assertions] agree with the
claims that are made for the routine as a whole.

Finally the checker has to verify that the process comes to an end.
A.M. Turing. Checking a large routine. Paper read on 24 June 1949 at the inaugural conference of the EDSAC
computer at the Mathematical Laboratory, Cambridge.
Discussed by Morris and Jones, Annals of the History of Computing, Vol. 6, Apr. 1984.
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Types: H.B. Curry, 1949

Types for memory words:

containing instructions: orders

containing data: quantities

Memoranda of Naval Ordnance Laboratory
[see De Mol, Carlé, and Bullyinck, JLC 2015]

Mathematical theory of programs
Theorems in the style of: “well-typed expressions do not go wrong”

G.W. Patterson’s review on JSL 22(01), 1957, 102-103
No known subsequent impact
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However,

Programming in the fifties (and later. . . ) was a different story. . .
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Knuth’s recollection, circa 1962
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Knuth’s recollection, circa 1962

I had never heard of “computer science”

The accepted methodology for program
construction was [. . . ]: People would write
code and make test runs, then find bugs
and make patches, then find more bugs and
make more patches, and so on.

We never realized that there might be a
way to construct a rigorous proof of validity
[. . . ] even though I was doing nothing but
proofs when I was in a classroom

[D.K. Knuth, Robert W. Floyd, in memoriam. ACM SIGACT News 2003]
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Knuth’s recollection, circa 1962

The early treatises of Goldstine and von
Neumann, which provided a glimpse of
mathematical program development, had
long been forgotten.
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Donald E. Knuth

Born, 1938
Bachelor and Master of science:

Physics, Mathematics, 1960
PhD Mathematics, 1963
Stanford University, since 1968
The Art of Computer Programming: 1968 - today
Turing Award, 1974 (he was 36. . . )
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A Mathematical Theory of Computation

It is reasonable to hope that the
relationship between computation and
mathematical logic will be as fruitful in the
next century as that between analysis and
physics in the last.

John McCarthy, MIT 1961; Stanford 1963

From the conclusion of the final version of the paper (1963): A Basis for a
Mathematical Theory of Computation. 1961: the Western Joint Computer
Conference; 1962: IBM symposium in Blaricum, Netherlands; 1963: in
Computer Programming and Formal Systems, North Holland.
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John McCarthy

Born, 1927
Died, 2011

Bachelor of science: Mathematics, 1942
PhD Mathematics, 1951
MIT, 1956–1962
Stanford University, since 1963
Turing Award, 1971

Time sharing (MIT,BBN) Artificial intelligence
Lisp
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Which matematics for computing?

Numerical analysis

Roundoff errors in matrix
computation: Ax = b

- Turing
- Goldstine & von Neumann: solve
A′Ax = A′b, for A′ transpose of A

Jim Wilkinson (Turing Aw. 1970):
backward error analysis
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Which matematics for computing?

Automata theory

McCulloch and Pitts (1943)

Kleene (“regular events”), Nerode, Myhill,
Shepherdson

Automata Studies, Shannon and McCarthy
(eds) [Davis, Kleene, Minsky, Moore, etc.]
Princeton Univ Press, 1956

Rabin and Scott. Finite Automata and
their decision problems. IBM J. 1959
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A basis for a Mathematical Theory of Computation

Expected practical Results:

1 To develop a universal programming language

“Universal” = machine independent and general

2 To define a theory of the equivalence of computation processes

Define equivalence-preserving transformations: optimization,
compilation, etc.
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A basis for a Mathematical Theory of Computation

Expected practical Results:

3 To represent algorithms by symbolic expressions in such a way
that significant changes in the behavior represented by the
algorithms are represented by simple changes in the symbolic
expressions.

Learning algorithms, whose modifiable behavior depends on
the value of certain registers.
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A basis for a Mathematical Theory of Computation

Expected practical Results:

4 To represent computers as well as computations in a
formalism that permits a treatment of the relation between a
computation and the computer that carries out the
computation.

5 To give a quantitative theory of computation. There might be
a quantitative measure of the size of a computation analogous
to Shannon’s measure of information.
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We hope that the reader will not be angry about the contrast
between the great expectations of a mathematical theory of
computation and the meager results presented in this paper.
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Contents

a class of recursively computable functions

based on arbitrary domains of data and operations on them

with conditional expressions

functionals

a general theory of datatypes

recursion induction to prove equivalences
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Reflections

A mathematical theory is the entrance ticket to science

Successes: eg, deterministic parsing: LL, LR etc.

Numerical analysis, formal languages, complexity theory,
algorithms, . . .

But only mathematical logic seems to be dreamed as the
mathematics of computing
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The grand view

Structural engineering

mathematical physics laws

empirical knowledge

to understand, predict, and calculate the stability, strength and
rigidity of structures for buildings.

McCarthy:

the relationship between computation and mathematical logic will
be as fruitful as that between analysis and physics.
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The standard model

The standard model is to PL what movement without friction is to
mechanics.

There is no true pendulum in nature; there is no unbounded
arithmetic inside any laptop.

No two bodies of different masses fall to the ground at the same
time from the leaning tower of Pisa.

Yet, you do not understand a single bit of mechanics if you don’t
abstract away friction, and don’t approximate to small oscillations.
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Back to types
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We today conflate:

Types as a classification mechanism (from mathematical logic)

Types as an abstraction mechanism

Types as an implementation (representation) issue

Goal:
separate them and identify when they arrive in the PL literature
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Antefact: mathematical logic

A type is the range of significance of a variable.
[Russell and Whitehead, 1910]

Types forbid certain inferences which would otherwise be valid,
but does not permit any which would otherwise be invalid.

[ibidem]

And then. . .

Leon Chwistek, in 1921
Frank P. Ramsey in 1926
. . .
Alonzo Church in 1940
. . .
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Pre-antefact

Frege’s Stufe (in the Grundgesetze)
or Ordnung (before the Grundgesetze)

usually translated with “level”, or “degree”
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Part I

The word: “type”
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Types in early Fortran?

Two types of constants are permissible: fixed points (restricted to
integers) and floating points

32 types of statement
[The FORTRAN automatic coding system, 1956]

Any fixed point (floating point) constant, variable, or subscripted
variable is an expression of the same mode.

[ibidem]
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Algol 58:
types

Type declarations serve to declare certain variables, or functions, to
represent quantities of a given class, such as the class of integers
or class of Boolean values.
[Perlis and Samelson. Preliminary report: International algebraic language. Commun. ACM 1(12), December 1958.]
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No types
in the preparatory papers!

A data symbol falls in one of the following classes:
a) Integer b) Boolean c) General

The symbol classification statements are:
INTEGER (s1, . . . , sn)
BOOLEAN (s1, . . . , sn)

[Backus et al. Proposal for a programming language. ACM Ad Hoc Committee on Languages, 1958.]
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Algol 60:
maturity

Integers are of type integer. All other numbers are of type real.

The various “types” (integer, real, Boolean) basically denote
properties of values.

[Backus et al. Report on the algorithmic language ALGOL 60. Commun. ACM 3(5), May 1960.]
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1950s and 1960s

Type based distinctions for compilation: always present

“Type” as a technical term: Algol 58

(Almost) stable since Algol 60

Mode
- in Algol 68, d’après early Fortran usage
- “types (or modes)”, still in Reynolds 1975
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The word: “type”

The technical term “type”:

appears to be a semantical shift from the generic term

no role of the “type” from mathematical logic

The use of ‘type,’ as in ‘x is of type real,’ was analogous to that
employed in logic.

Both programming language design and logic dipped into the
English language and came up with the same word for
roughly the same purpose.

[A. Perlis, The American side of the development of Algol, 1981]
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OT Intermezzo:
Perlis on the Algol Report

Nicely organized, tantalizingly incomplete, slightly ambiguous,
difficult to read, consistent in format, and brief, it was a perfect
canvas for a language that possessed those same properties.

Like the Bible, it was meant not merely to be read, but to be
interpreted.

[A. Perlis, The American side of the development of Algol, 1981]
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These types:

guide the compiler

are a reasonable abstraction over implementation details
(contra: FORTRAN !)

However:

no provision for other data, but integer, real, Boolean
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Part II

Types as an abstraction mechanism
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McCarthy:
the “weakness” of Algol

1961:

defining new data spaces in terms of given base spaces and (. . . )
defining functions on the new spaces in terms of functions on the
base spaces

[John McCarthy. A basis for a mathematical theory of computation, preliminary report. 1961]
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The needs:

1 from simple to structured values

2 a general modelling tool

3 user definable “extensions”

4 robust abstractions over the representation
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The arrival point

Type structure is a syntactic discipline
for enforcing levels of abstraction [John Reynolds, 1983]
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The two champions:

Tony Hoare

Ole-Johan Dahl and Kristen Nygaard
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The two champions:

Records

Objects
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The two champions for data abstraction:

Abstract data encapsulation

Procedural encapsulation
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Hoare:
records and references AB21 p. 39 

A B 2 1 . 3 . 6  R E C O R D  HANDLING 

C.  A.  R .  H o a r e  

E n t i a  non  s u n t  m u l t i p l i c a n d a  p r a e t e r  n e c e s s i t a t e m  - 

William of Occam. 

1. I n t r o d u c t i o n  

A m e t h o d  is  p r o p o s e d  f o r  the  r e p r e s e n t a t i o n  in  a c o m p u t e r  of 
c o m p l e x  s t r u c t u r e d  o b j e c t s ,  and f o r  t h e i r  m a n i p u l a t i o n  b y  a p r o g r a m  
w r i t t e n  in  a g e n e r a l  p u r p o s e  l a n g u a g e ,  wh ich  i s  h e r e  a s s u m e d  to be an  
e x t e n s i o n  of A L G O L  60. The p r o p e r t i e s  of s u c h  ob j ec t s  can  be  
r e p r e s e n t e d  b y  g roups  of the  f a m i l i a r  B o o l e a n  and a r i t h m e t i c  q u a n t i t i e s .  
F u r t h e r m o r e ,  a r b i t r a r i l y  c o m p l e x  n e t w o r k s  of r e l a t i o n s h i p s  h o l d i n g  
b e t w e e n  the  ob j ec t s  c a n  be r e p r e s e n t e d  and m a n i p u l a t e d  b y  the  p r o g r a m .  

The m a i n  r e c o m m e n d a t i o n  f o r  the  p r o p o s a l  i s  t ha t  i t  e x t e n d s  the 
s c o p e  of a g e n e r a l  p u r p o s e  p r o g r a m m i n g  l a n g u a g e  to  m a n y  f i e l d s  of 
a p p l i c a t i o n  wh ich  have  h i t h e r t o  b e e n  r e g a r d e d  as  the  p r e s e r v e  of s p e c i a l  
p u r p o s e  l a n g u a g e s .  T h i s  s u g g e s t s  t h a t  the  p r o p o s a l  i s  no a r b i t r a r y  
e x t e n s i o n  to an  e x i s t i n g  l a n g u a g e ,  but  r e p r e s e n t s  a genu ine  a b s t r a c t i o n  
of s o m e  f e a t u r e  w h i c h  i s  f u n d a m e n t a l  to  the  a r t  o r  s c i e n c e  of c o m p u t a t i o n .  

A f u r t h e r  r e c o m m e n d a t i o n  m a y  be found in  the  f r u i t f u l  w a y  in  
w h i c h  the  b a s i c  n u c l e u s  of e s s e n t i a l  f a c i l i t i e s  s u g g e s t s  a n u m b e r  of 
e l e g a n t  and u s e f u l  e x t e n s i o n s ,  s o m e  of which  a r e  s u m m a r i s e d  in  
s e c t ion  7. 

2. S u m m a r y  

2 .1  R e c o r d s  and R e c o r d  C l a s s e s  

The p r o p o s a l  e n v i s a g e s  the  e x i s t e n c e  i n s i d e  the  c o m p u t e r  
d u r i n g  the  e x e c u t i o n  of the  p r o g r a m ,  of an  a r b i t r a r y  n u m b e r  of r e c o r d s ,  
e a c h  of wh ich  r e p r e s e n t s  s o m e  ob jec t  wh ich  i s  of p a s t ,  p r e s e n t  o r  
f u t u r e  i n t e r e s t  to the  p r o g r a m m e r .  The p r o g r a m  k e e p s  d y n a m i c  
c o n t r o l  of the  n u m b e r  of r e c o r d s  in  e x i s t e n c e ,  and c a n  c r e a t e  new r e c o r d s  
o r  d e s t r o y  e x i s t i n g  ones  in  a c c o r d a n c e  wi th  the  r e q u i r e m e n t s  of the  t a s k  
in  hand .  

E a c h  r e c o r d  in  the  c o m p u t e r  m u s t  b e l o n g  to  one of a l i m i t e d  
n u m b e r  of d i s j o i n t  r e c o r d  c l a s s e s ;  the  p r o g r a m m e r  m a y  d e c l a r e  as  
m a n y  r e c o r d  c l a s s e s  as  he r e q u i r e s ,  and he  a s s o c i a t e s  wi th  e a c h  

1964:

ordered collection of named fields: record classes

typed references (like pointers, but no operations)

non stack-based, dynamically allocated structures
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Dahl and Nygaard:
objects ante litteram

around 1962:

record class: activity;

record: process;

record field: local variable of a process

a “process” encapsulates both data objects and their
operators: a closure
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Hoare:
records and references, 2

With Hoare’s paper, types become a general abstraction
mechanism:

[Our proposal] is no arbitrary extension to an existing language,
but represents a genuine abstraction of some feature which is
fundamental to the art or science of computation.

[Tony Hoare, 1964]
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Modelling tool

In the simulation of complex situations in the real world, it is
necessary to construct in the computer analogues of the objects of
the real world, so that procedures representing types of even may
operate upon them in a realistic fashion.

[Tony Hoare, 1964] (page 46, and, more generally, all Section 4)
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Robust abstraction

It was a firm principle of our implementation that the results of
any program, even erroneous, should be comprehensible without
knowing anything about the machine or its storage layout

[Tony Hoare, 2014, personal communication]
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Algol W,
circa 1970

Every value is said to be of a certain type.

The following types of structured values are distiguished:
array: (. . . ), record: (. . . ).

[Algol W reference manual, 1972]
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They both make into languages

Algol W, circa 1970 (and then Pascal, and then . . . )

Simula 67

Never seen as rivals (on the contrary: many collaborations)

Are the records to have immediate impact

Records beat Objects

1-0
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Simula 67

Classes/Objects

Record class → Object class → Class

“declared quantity (class)” vs
“its dynamic offspring (objects)”

Subclasses

Hoare 1966, Villard-de-Lans Summer School:
- record subclasses
- dot notation
- ⇒ pure data abstraction

Simula 67: Prefixing (subclassing)
- code of the subclass is “permanently glued together” the
code of the superclass
- data and operations
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Example

From Dahl’s recollection:

Queuable (“Link”):
next/precedessor in queue

Car
subclass of Queuable

Truck and Bus
both subclasses of Car
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A further emerging need

Correctness of programs

Floyd, Assigning meanings to programs, 1967

Hoare, An axiomatic basis for computer programming, 1969

Burstall, Proving properties of programs by structural
induction, 1969

McCarthy and Painter, Correctness of a compiler for
arithmetic expressions, 1967
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The Algol research program

Mark Priestly, A Science of Operations, Springer 2011

Algol 60 was not particularly successful in practical terms.
However. . .

A coherent and comprehensive research programme

Algol 60 report: a paradigmatic (à la Kuhn) achievement

First theoretical framework for studying:
- the design of programming languages,
- the process of software development.
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Several attempts
towards general mechanisms for data definition
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Extensible languages

Explicit definitions

Galler and Perlis, A proposal for definitions in ALGOL,
CACM 10, 1967

Schuman and Jorrand, Definition mechanisms in extensible
programming languages.
Proc. AFIPS, Vol. 37, 1970.
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Standard Abstract Operations

Representation and representation independence

- Levels of systems, each represented on the other:
- ρ represents D onto D ′

- π procedure on D data
- The correspondence guarantees that representation and
implementation commute.

[Mealy, Another look at data. Proc. AFIPS, Vol. 31, 1967.]

We have, incidentally, slipped in a definition of 
data item, which is an element of a data map. A data 
element will be the set of all data items associated 
with a given entity. List elements in IPL-V and 
LISP are data elements, in this sense. The notion 
of a logical record also corresponds to data element 
in our sense, and field corresponds roughly to our 
data item. 

This explanation of data processing may seem 
quite artificial, in view of our Platonistic feeling that 
the "right" rule for assigning the value of a data item 
should be independent of how we do our data process-
ing. My friend the nominalist would not be bothered 
by this scruple - he did not claim that such a thing 
as a "right" rule existed in the first place; data do 
not necessarily represent facts with utter accuracy. 
Data processing, he might say, is data's way of at-
tempting to adjust to the facts, if such there be. 

Procedures 

We have now noted the effect of a procedure-it 
redefines one or more data maps or, what is the same 
thing, changes the value part of certain data items. 
The effect on D is to map it into a new subset of the 
data maps. In other words, procedures are maps of 
the form 

Our idea about D is that it is the data at any given 
moment of time, not the data for all time. 

The import of our introduction of the auxiliary 
entities was to effect a clean separation of structural 
from other considerations. That is, we have set things 
up so that any data map can be decomposed into a 
structural data map followed by a non-structural data 
map. The structural data maps are maps of E into E, 
by definition. Our long-standing name for data items 
in such maps is "pointers." This, in turn, suggests 
an identification of list processing with procedures 
which process structural data. A list processing 
proceq.ure, hence, is any map of the form 

This is a precise version of our vague notion that list 
processing has something to do with pointers and data 
structures. 

Data storage and representation 

The foregoing model obviously can be taken to 
apply directly to physical storage media.3 To en-
tities correspond cells in storage (blocks, words, 

Another Look at Data 529 

characters, bits, registers,etc.). Maps specify attri-
butes of the storage cells (more properly, proper-
ties) such as content, structure, parity, ability to read 
and/or write, address, protection key, and the like. 
The structural maps and access functions clearly 
correspond to our more usual notions of storage 
structure and access. 

If our data maps are an abstract theory of the real 
world, we must do data processing with something 
else; computers are, after all, not abstract objects. 
However, the abstract theory is just as capable of 
modeling computation as it is of providing models of 
the real world-possibly even more so. We are con-
fronted, we might say, with three systems in any 
specific situation. Each such system is composed of a 
quadruple of entities, values, data maps, and pro-
cedures. The first system is, at least from a Platonist-
ic point of view, some part of the real world, the sec-
ond is our theory of the first, and the third is a ma-
chine representation of that theory. A representation 
is, itself, now defined as a map establishing a corre-
spondence between two systems. 

What criteria should a representation satisfy? Well, 
consider a system in the above sense: 

S=(E,V,D,P) 
where P is the set of procedures. Further, let 7T be 
any procedure in P, mapping D into a new set of data 
maps D, and let p be a representation map which 
maps S into S': 

p: 
For any object in S, we wish the representation to 
assign a unique object in S', and vice versa. In other 
words, p should be one-one onto. However, we desire 
more than just this; in order to insure that anything 
happening in the one system also happens in the other, 
we require that the following diagram be commutative: 

P 
D D' 

P D D' 

or, in other words, that: 
P7T=7T'p 

This criterion can fail in two ways: (1) obviously, 
when the map p is not one-one onto, and (2) when the 
procedure 7T', chosen in the belief that it corresponds 
to 7T, does not in fact so correspond. It might be 
thought that the second alternative can happen only 
by mistake, since we could presumably define the 

From the collection of the Computer History Museum (www.computerhistory.org)
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Standard Abstract Operations, 2

The programmer should be able to construct his program in terms
of the logical processing required without regard to either the
representation of data or the method of accessing and updating.
This concept we call “Dataless programming”.

[Balzer, Dataless programming. Proc. AFIPS, Vol. 31, 1967.]

Abstract procedures to handle representation:
create, access, modify, and destroy abstract data collections.
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Information hiding

Parnas 1972

a stable interface towards the rest of the program

to protect those design choices which are bound to change

a general design methodology, which applies to types,
modules, packages, etc.

From the programming language community:

information hiding enforced by linguistic abstractions,
and not merely by a design methodology.
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Towards ADTs

Morris, 1973 and Reynolds, 1974

The meaning of a syntactically-valid program in a “type-correct”
language should never depend upon the particular representation
used to implement its primitive types.

The main thesis of [Morris 1973] is that this property of
representation independence should hold for user-defined types as
well as primitive types.

[Reynolds, 1974]
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A ready-made abstraction mechanism:

procedures
(closures)
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Procedural encapsulation

Procedures, particularly procedures which can return procedures as
their result, are the proper mechanism for modularizing
both programs and data.

Procedural encapsulation: representing system components in
terms of one or more procedures such that interactions among
components are limited to procedure calls.

Similar to classes in SIMULA 67. Unlike SIMULA, however, the
local variables [. . . ] are not made accessible outside the procedure
in which they are defined. [Zilles, 1973]
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Moral, 1

From our perspective, post festam:

Simula’s classes,

extended with a visibility mechanism protecting local variables
from outside access,

provide a good encapsulation abstraction.

No need of a separate abstraction mechanisms:
use closures: code + environment

But this is not what happened back then. . .
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Abstract Data Types

Liskov and Zilles, 1974 ff

Public part:
I name complex
I operations create, add, get-x, get-y, equal

Private part:
I representation for type
I implementation of operations

Inside the private part: representation is accessible

Outside the private part: representation is inaccessible
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A CLU cluster

complex = cluster is create , add , get -x, get -y, equal

rep = struct[x, y: real]

create = proc (x, y: real) returns (cvt)

return(rep$[x: x, y:y])

end create

add = proc (a, b: cvt) returns (cvt)

return(rep$[x: a.x + b.x, y: a.y + b.y])

end add

...

end complex

[CLU Reference Manual, LNCS 114, 1981]
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Data encapsulation

A specific abstraction mechanism enforces information hiding,
and then guarantees representation independence.
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Abstract types are intended to be very much like the built-in types
provided by a programming language.

An ADT defines a class of abstract objects which is completely
characterized by the operations available on those objects. This
means that an abstract data type can be defined by defining the
characterizing operations for that type. [Liskov and Zilles, 1974]
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Semantics of ADTs: Algebras

An ADT is an abstract algebra, where “abstract” means
unique up to isomorphism.

A representation is a concrete many sorted algebra

The presentation of an abstract algebra, is the initial algebra
in a certain class.
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Initial algebras

J. Goguen, Some remarks on data structures,
unpublished notes of ETH course, 1973.

ADJ, Abstract data types as initial algebras (. . . ),
IEEE 1975 ff

J. Guttag, PhD thesis Toronto, 1975

Equations would give correctness constraints

Freeness ensures abstraction

Freeness allows proofs by (structural) induction
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The seemingly unstoppable
march of ADTs

ADTs beat Objects

2-0
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Meanwhile,
in the opposite camp

Smalltalk

Alan Kay, from 1972

Simula concept of class and objects

In a new metaphor and design methodology

To use for “open” systems
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The “official” computer science world started to regard Simula as a
possible vehicle for defining abstract data types.
To put it mildly, we were quite amazed at this.

What Simula had whispered was something much stronger than
simply reimplementing a weak and ad hoc idea.

You could now replace bindings and assignment with goals.

The objects should be presented as sites of higher level behaviors
more appropriate for use as dynamic components.

[Kay, The early history of Smalltalk, 1993]
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Someone noticed, though

John Reynolds:

User-defined types and procedural data structures as
complementary approaches to data abstraction
in New Directions in Algorithmic Languages, 1975

User-defined types = ADTs
Procedural data structures = Procedural encapsulation

(= Objects)

Do not cite Simula
Cites Hoare and Dahl; Balzer’s Dataless programming
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ADTs vs Procedural abstraction

ADTs

Centralized implementation

All operations defined together with implementation

Procedural abstraction

Decentralized implementation: each value is independent

Operations are attached to the value they act upon

Procedural approaches: easier to extend !
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ADTs, extension, compatibility

type C{

fun m(c:C){}

}

type D{

fun m(d:D){ modified wrt to C}

fun op(d:D){}

}

Clearly D<:C (by “Liskov substitution principle”).
Hence for any d:D, we have d:C.

We process a list L of elements of type C:

L : list(C)

foreach e in L:

m(e)

When e:D this breaks abtraction.
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Objects, extension, compatibility

class C{

meth m(c:C){}

}

class D{

meth m(d:D){ modified wrt to C}

meth op(d:D){}

}

We process a list L of elements of type C:

L : list(C)

foreach e in L:

m(e)

Late binding: which m is called depends on the actual class of e
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Object oriented languages

The key ingredients

Abstraction: to pack data and code

Inheritance: reuse of implementations

Subtyping: compatibility of interfaces

Late binding: to reconcile all of them
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Objects

A research question:

Both Simula and Smalltalk were designed for specific application
domains.

How this influenced their characteristics?

What about the interaction with the “computational objects”?
à la Papert: objects you can
“get to know [. . . ] like the way you get to know a person”
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The 80s and 90s

Objects beat ADTs

3-2

C++ (C with classes, 1979, after Simula)
Java (Oak, 1991)
Javascript (Mocha, 1995)

102 / 124



The 80s and 90s

Objects beat ADTs

3-2

C++ (C with classes, 1979, after Simula)
Java (Oak, 1991)
Javascript (Mocha, 1995)

103 / 124



Part III

Types from mathematical logic
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certainly people knew “some logic”:
McCarthy, Hoare, Landin, Scott (!), Morris, etc.

but

Morris (1968) cites Curry (1958), but not Church (1940)

Reynolds (1974) rediscovers Girard’s System F (1971)

Milner (1977-78) rediscovers
simple type inference (Hindley, 1969)

Programming languages and proof-theory are talking the same
language, but the conflation is anonymous.
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Yet, compare:

Types forbid certain inferences which would otherwise be valid,
but does not permit any which would otherwise be invalid.

[Russell and Whitehead, 1910]

We shall now introduce a type system which, in effect, singles out
a decidable subset of those wfes that are safe; i.e., cannot given
rise to ERRORs. This will disqualify certain wfes which do not, in
fact, cause ERRORS and thus reduce the expressive power of the
language.

[Morris, PhD thesis, 1968]

108 / 124



Yet, compare:

Types forbid certain inferences which would otherwise be valid,
but does not permit any which would otherwise be invalid.

[Russell and Whitehead, 1910]

We shall now introduce a type system which, in effect, singles out
a decidable subset of those wfes that are safe; i.e., cannot given
rise to ERRORs. This will disqualify certain wfes which do not, in
fact, cause ERRORS and thus reduce the expressive power of the
language.

[Morris, PhD thesis, 1968]

109 / 124



“Denoting” vs. “Non denoting”

becomes

“Non producing errors” vs. “Producing errors”

Well-typed expressions do not go wrong.
[Milner, 1978]
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The formidable middleman:

λ-calculus

The catalist:

Curry-Howard isomorphism, (1969); 1980
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The explicit recognition:

Per Martin-Löf.
Constructive mathematics and computer programming.

(1979); 1982.

1 62 P. MARTIN-LOF 

but also, and this is the reading which is most natural when the language is 
thought of as a programming language, 

A is a problem (task). 

Correlatively, the third form of judgment may be read not only 

u is an object of type (element of the set) A ,  

a is a proof of the proposition A ,  

but also 
u is a program for the problem (task) A .  

The equivalence of the first two readings is the by now well-known cor- 
respondence between propositions and types discovered by CURRY (1 958, 
pp. 312-315) and HOWARD (1969), whereas the transition from the second 
to the third is the KOLMOGOROV (1932) interpretation of propositions as 
problems or tasks (Ger. Aufgube). 

The four forms of judgment used in the theory of types should be com- 
pared with the three forms of judgment used (although usually not so called) 
in standard presentations of first order predicate calculus, whether classical 
or intuitionistic, namely 

A is a formula , 
A is true , 
a is an individual term, 

The first of these corresponds to the form A is a type (proposition), 
the second is obtained from the form u is an object of type (a proof of the 
proposition) A by suppressing a, and the third is again obtained from the 
form a is an object of type A,  this time by choosing for A the type of 
individuals. 

In  explaining what a judgment of one of the above four forms means, 
I shall first limit myself to assumption free judgments. Once it has been 
explained what meanings they carry, the explanations can readily be 
extended so as to cover hypothetical judgments as well. 

A canonical type A is defined by prescribing how a canonical object of 
type A is formed as well as how two equal canonical objects of type A are 
formed. There is no limitation on this prescription except that the relation 
of equality which it defines between canonical objects of type A must be 
reflexive, symmetric and transitive. If the rules for forming canonical objects 
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In foundations of mathematics, types:

never supposed to be used by the working mathematician

in principle could be used, to avoid paradoxes

In programming languages, types:

are used everyday, by everyone

should be made more “expressive”, “flexible”
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In foundations of mathematics, types:

are perceived as constraints
(they “forbid” something, as in Russell’s quote).

In programming languages, types:

are experienced as an enabling feature (Voevodsky),
allowing simpler writing of programs,

and better verification of their correctess.

The Algol research program is still at work. . . :-)
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Why this is interesting

Our programming languages are also
(a huge part of) the metalanguage
in which we express the discipline.
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“Programming” languages

No scientific discipline exists without first inventing a visual and
written language which allows it to break with its confusing past.

[B. Latour, Visualisation and Cognition: Thinking with Eyes and Hands; 1986]

Referring to Dagognet, F.: Tableaux et Langages de la Chimie. Paris : Le Seuil 1969;
and to: Ecriture et Iconographie. Paris : Vrin 1973.

What we call programming languages are both such a founding
language and one of the very objects of the discipline.
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The study of programming languages, and of their “conceptual”
history, could become a blueprint for a more general
epistemological investigation.
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The project for the Collegium de Lyon

IRPHIL
LIP/PLUME
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At the Collegium. . .

Next steps?

Continuation passing transformation (van Wijngaarden, 1964)

Exceptions handlers (PL/I: resume-based; etc.)

Pinpoint the impact of the Curry-Howard isomorphism

. . .
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Methodology

History and Philosophy of Computing: HAPOC

Interplay between researchers across disciplines
may add to the maturity of the field of computing in general.

Bring together:
computer scientists, historians, and philosophy scholars.

Narrowing the gap between a technology and a professional history
of that technology.

The long-term perspective:
provide a historical recollection that could be useful for the (young)
technician of today, and could help her to make better science and
technology.
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Side paths

Computational thinking: not just coding

Programming as interaction (Smalltalk, Logo,. . . , Scratch, etc.)

Program as inscriptions (Latour)

Is the “traditional” Mathematical theory of computation still
useful?
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Sipario

Please, talk to me if interested.

Thank you.
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