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Dramatis personæ

First order rewriting, FO

Higher order rewriting: λ-calculus, λ

Graph rewriting, GR

in the play

May I safely play your score?
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The first lines of the script

FO You know guys? I am able to simulate any of you.

λ Of course you can. We are all Turing-universal. But I may

simulate you more concisely. I am higher order.

GR Come on! You are such a waste! You keep copying around

subterms. I am more parsimonious of you all.

λ Say the truth: To simulate me fully, you will need to

duplicate, like me.
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The question

Is there a way in which our three characters can indeed simulate

each other in a complexity sound and natural way?

that is

sound polynomial

natural the main cost parameter is naturally expressed in terms of the

concepts the character itself understands
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What we do not want

Deus ex machina

The Turing machine:

I will simulate each of you in turn. If my simulations are

polynomially related in cost, then you all will be happy.
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The question in full generality

What is a good cost model for a declarative, rule-based language,

taking into account (only) the intrinsic description of that

language, and not (also) its implementation on a conventional

machine?

where

In the intrinsic description of a declarative language, the

elementary computation step (e.g., resolution, β-reduction, firing

of a rewrite rule, etc.) is not a constant-time operation.
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An answer?

For most such declarative languages, in their generality:

We do not know.

because the elementary computation step:

not only looks non constant time

but indeed is non constant (or even non poly) time
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Our second character (almost):
full λ-calculus

Terms M ::= x | λx .M | MM

Reduction

(λx .M)N → M{N/x}

M → N
λx .M → λx .N

M → N L → P
ML → NP

Terms may be duplicated during reduction

Arbitray size of terms during reduction

8 / 51



Even with more compact reduction

Lévy’s optimal reduction as graph reduction (à la Lamping)

Have a notion of constant-time step

There are (simply typed) λ-terms which:
I normalize in k steps
I require � O(2k) time on a TM

(Asperti and Mairson, POPL 1998; Asperti, Coppola and M., POPL 2000)
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Restrict the calculus

Linear λ-term

Normalization is PTIME-complete (Mairson, JFP 2004)

The calculus has little expressivity

Move to weak reductions

i.e., never reduce under a λ:

λx .M is always a normal form (in fact, a value)
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The results, in general terms

Linear simulations between

I Orthogonal constructor term rewriting
I Weak λ-calculus
I (Constructor) Term graph rewriting

each equipped with its most natural, intrinsic cost parameter,

which is polynomially related to the actual cost of their

normalization, as measured on a Turing machine

(Dal Lago and M., CiE 2006; ICALP 2009; and unpublished)
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Part I

Term and Graph Rewriting
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Again: the question

Given an orthogonal constructor rewrite system,

What is the relation between
I the derivational complexity of a term,

i.e., the length of its derivation, and
I the time needed to rewrite it to normal form, on an efficient

interpreter?

Answer: A polynomial relation,

both under innermost and outermost reduction

Tool: a linear simulation of TR on GR.
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First character:
Orthogonal constructor term rewriting

Symbols, partioned in constructors and functions

Patterns: terms over constructors and variables

Rules: f(p1, . . . ,pn) →Ξ t

f is a function symbol; p1, . . . ,pn are patterns; t is a

(general) term.

Orthogonal: no rule overlapping; left-linear

Innermost: the term substituted for variables in a firing do not

contain any other redex

Outermost: the term substituted for variables in a firing is not

contained in any other redex
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Term rewriting

Strict separation between data (constructor terms) and

programs (rules defined for functions)

No critical pairs!

Given a term t, every innermost (outermost, respectively) reduction

sequence leading t to its normal form has the same length.

Well defined:

Timei (t)

Timeo(t)
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Third character:
Term graph rewriting

Represent a term t with a graph [t]G , fixing a root and

allowing sharing '&%$ !"#a

�� ��
b

��
a

������
��66666

b

��

c

?

a(b(a(b(x), c)), b(a(b(x), c)))

Define a suitable “unsharing” of a graph, hG iR
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Other terms graphs

a

��%%

/.-,()*+b

�������

?

'&%$ !"#a

��

��
b

��
a

������
��8888

? b

��
?

a(x , x) b(x) a(a(x , b(y)), b(a(x , b(y))))
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Constructor Term Graph Rewriting

Fix a signature (with functions and constructors) labelling a

graph

In a pattern path v1, . . . , vn, δ(vi ) is either a constructor

symbol or is ?;

In a left path, the first δ(v1) is a function symbol and

v2, . . . , vn is a pattern path.
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Graph Rewrite Rules

Definition (Graph Rewrite Rules)

A graph rewrite rule over a signature Σ is a triple ρ = (G , r , s)

such that:

G is a labelled graph;

r , s are vertices of G , called the left root and the right root of

ρ, respectively.

Any path starting in r is a left path.
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Graph Rewrite Rules, 2

Represent rules with graph rewrite rules

a(b(x), y) → b(a(y , a(y , x)))

'&%$ !"#a

�������

��66666 b

��
b

��

? aoo

��55555

? a

[[

gg
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Graph Rewrite Rules, 3

More examples: a is a function; b, c , d are constructors.

'&%$ !"#a

�� ��
b

��
d

������
��66666

b

��

c

?

a(b(d(b(x), c)), b(d(b(x), c))) → x
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Graph Rewrite Rules, 4

More examples: a is a function; b, c , d are constructors.

'&%$ !"#a

��%%

b

������

?

'&%$ !"#a

�������
��88888 c

b

��

b

��
? ?

a(x , x) → b(x) a(b(x), b(y)) → c
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Applying a rule

Graph G and rewriting rule ρ = (H, r , s):

'&%$ !"#a

�������

��88888

b

��

aoo

yytttttttt

c

G

'&%$ !"#a

��

��666666666666 b

��
b

��

aoo

��
? c

ρ

1. Locate a homomorphic copy of the “LHS” (H ↓ r) of ρ inside G

2. Add to G a copy of the “RHS” of ρ

(H ↓ s not contained in H ↓ r)
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Applying a rule, 2

'&%$ !"#a

��					

��55555 b

��
b

��

aoo

zzuuuuuuu a

qq

yy

c

'&%$ !"#a

��

��666666666666 b

��
b

��

aoo

��
? c

ρ

2. Add to G a copy of the “RHS” of ρ

3. Redirect the edges from the old to the new source

24 / 51



Applying a rule, 3

'&%$ !"#a

��					
// b

��
b

��

aoo

zzuuuuuuu a

qq

yy

c

'&%$ !"#a

��

��666666666666 b

��
b

��

aoo

��
? c

ρ

3. Redirect the edges from the old to the new root of the rule

4. Garbage collect the nodes unreachable from the root of the

graph
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Applying a rule, 4

'&%$ !"#a

��

��
b

��
a

������
��66666

b // c

'&%$ !"#a

��

��666666666666 b

��
b

��

aoo

��
? c

ρ

4. Garbage collect the nodes unreachable from the root of the

graph
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Non overlapping

Definition

Two rules ρ = (H, r , s) and σ = (J, p, q) are overlapping iff there

is a term graph G and two homomorphism ϕ and ψ such that

(ρ,ϕ) and (σ,ψ) are both redexes in G with ϕ(r) = ϕ(p).

Definition

A constructor graph rewrite system (CGRS) over a signature Σ

consists of a set of non-overlapping graph rewrite rules G on Σ.
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Lenght of reductions

Theory of optimality: easy!

recall: sharing, no overlapping

Outermost reduction is the longest one

A graph is redex-unshared iff there are no multiple paths from

the root to a redex

Innermost reduction preserves redex-unsharedness
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Graph-reducing terms

Recall:

Represent a term t with a graph [t]G , fixing a root and

allowing sharing

Define a suitable “unsharing” of a graph, hG iR

Reduction on graphs can be traced back to terms:

Lemma

If G → I , then hG iR →+ hI iR . Moreover, if G →i I and G is

redex-unshared, then hG iR → hI iR .
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Graph reducibility

For every constructor rewrite system R over Σ and for every term

t over Σ:

Theorem (Outermost Graph-Reducibility)

1 t →n
o u, where u is in normal form; iff

2 [t]G →m
o G , where G is in normal form and hG iR = u.

Moreover, m � n.

Theorem (Innermost Graph Reducibility)

1 t →n
i u, where u is in normal form; iff

2 [t]G →n
i G , where G is in normal form and hG iR = u.
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Complexity

Let t and G be such that [t]G →�
o G .

Every graph rewriting step makes the graph bigger by at most

the size of the rhs of a rewrite rule.

In [t]G →�
o G →o H, |H | − |G | � k ; k depending on R but not

on t

[t]G →n
o G then |G | � nk + |t |. Sharing!

If [t]G →n
o G , computing a graph H such that G → H takes

polynomial time in |G |, which is itself polynomially bounded

by n and |t |.
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Complexity

Theorem

For every orthogonal, constructor term rewriting system R, there

is a polynomial p : N2 → N such that for every term t the normal

form of [t]G can be computed in time at most p(|t |,Timeo(M))

when performing outermost graph reduction and in time

p(|t |,Time i (M)) when performing innermost graph reduction.

That is:

derivational complexity is a polynomially invariant cost model for

orthogonal constructor term rewriting.
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Part II

Term rewriting and λ-calculus
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Our second character, revisited:
weak call-by-value λ-calculus

Terms M ::= x | λx .M | MM

Values V ::= x | λx .M

Weak call-by-value reduction

(λx .M)V →v M{V /x}

M →v N
ML →v NL

M →v N
LM →v LN

Values may be duplicated during reduction

Is the number of reduction steps a good measure of actual

cost? (Yes: Sands, Gustavsson, and Moran, 2002)
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The result

From λ to constructor rewriting:

M - n
v N

[M]Φ

[ ]Φ
?

- nt

h i
6

From constructor rewriting to λ:

f(t1, . . . , th) - n u

[f ]Λhht1ii . . . hhthii

[ ]Λ hh ii
?

- kn
v hhuii

?
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Relevance: specific

The simulation cannot be obtained with Church-like encoding
of data

I There is no constant-time predecessor on Church numerals

Parigot, 1990

I Instead

Pred(succ(n)) - 1 n

[pred ]Λhhsucc(n)ii
?

- k
v hhnii

?
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First simulation:
From λ to constructor rewriting

Idea: full defunctionalization

Any λ-abstraction becomes a constructor

[x ]Φ = x ;

[λx .M]Φ = cx ,M(x1, . . . , xn), where FV (λx .M) = x1, . . . , xn;

[MN]Φ = app([M]Φ, [N]Φ).

Constructors: cx ,M for any M and any x .

Functions: app.

Reduction rules:

app(cx ,M(x1, . . . , xn), x) → [M]Φ
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First simulation, 2

In the other direction:

hxiΛ = x

happ(u, v)iΛ = huiΛhviΛ

hcx ,M(t1, . . . tn)iΛ = (λx .M){ht1iΛ/x1, . . . , htniΛ/xn}

h[M]ΦiΛ = M

For canonical t, if t → u, then htiΛ →v huiΛ

Theorem (Simulation)

Let M be a closed λ-term. The following are equivalent:

1 M →n
v N where N is in normal form;

2 [M]Φ →n t where htiΛ = N and t is in normal form.
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Second simulation:
From constructor rewriting to λ

First: Encode data, i.e. constructor terms

Use Scott numerals-like encoding:

0 � λx1.λx2.x1

n + 1 � λx1.λx2.n

Here: hh iiΛ : constructor terms → λ-terms

For constructors c1, . . . , cg :

hhci (t1 . . . , tn)iiΛ � λx1. . . . .λxg .λy .xi hht1iiΛ . . . hhtniiΛ.

? � λx1. . . . .λxg .λy .y denotes an error value
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Second simulation, 2

Second: Encode pattern matching

On an example:

f (p1
1(x1, x2),p1

2(x3),p1
3(x4)) → t1

f (p2
1(x5)),p2

2(x6, x7),p2
3(x8)) → t2

Given such a sequence α1, α2 of patterns, construct a selector

M3
α1,α2

s.t., for k depending only on α1, α2
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Second simulation, 2

Second: Encode pattern matching

On an example:

f (p1
1(x1, x2),p1

2(x3),p1
3(x4)) → t1

f (p2
1(x5)),p2

2(x6, x7),p2
3(x8)) → t2

Given such a sequence α1, α2 of patterns, construct a selector

M3
α1,α2

s.t., for k depending only on α1, α2

M3
α1,α2

hhp1
1(t1, t2)iiΛ, hhp1

2(t3)iiΛ, hhp1
3(t4)iiΛ V1 V2→k

v V1hht1iiΛ . . . hht4iiΛ
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Second simulation, 2

Second: Encode pattern matching

On an example:

f (p1
1(x1, x2),p1

2(x3),p1
3(x4)) → t1

f (p2
1(x5)),p2

2(x6, x7),p2
3(x8)) → t2

Given such a sequence α1, α2 of patterns, construct a selector

M3
α1,α2

s.t., for k depending only on α1, α2

M3
α1,α2

hhp2
1(t5)iiΛ, hhp2

2(t6, t7)iiΛ, hhp2
3(t8)iiΛ V1 V2→k

v V2hht1iiΛ . . . hht4iiΛ
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Second simulation, 2

Second: Encode pattern matching

On an example:

f (p1
1(x1, x2),p1

2(x3),p1
3(x4)) → t1

f (p2
1(x5)),p2

2(x6, x7),p2
3(x8)) → t2

Given such a sequence α1, α2 of patterns, construct a selector

M3
α1,α2

s.t., for k depending only on α1, α2

M3
α1,α2

X1 X2 X3 V1 V2→k
v ?

if any of the Xi does not match one of α1, α2, or is ?.
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Second simulation, 3
Third: Solve mutual recursion

fi (α1
i ) → t1

i

...

fi (αn
i ) → tn

i .

C-b-v fixpoint operators

For any h, there are H1, . . . ,Hh and a bound m, such that:

HiV1 . . .Vh →m
v Vi (λx .H1V1 . . .Vhx) . . . (λx .HhV1 . . .Vhx).

[fi ]Λ � Hi V1 � � � (λx . λy .Mα1
i ,...α

n
i
y(λzh|t1

i |iΛ) . . . (λzh|tn
i |iΛ)) � � �Vh
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Second simulation, 4

Theorem: There is k such that for any f
1

f(t1, . . . , th) - n u 2 C(Ξ)

[f ]Λhht1ii . . . hhthii

[ ]Λ hh ii
?

- kn
v hhuii

?

2

f(t1, . . . , th) - n u 62 C(Ξ)

[f ]Λhht1ii . . . hhthii

[ ]Λ hh ii
?

- kn
v ?

?

3 f(t1, . . . , th) diverges, then [f ]Λhht1ii . . . hhthii diverges.
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Part III

Towards a conclusion
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The results, in general terms

Linear simulations between

I Orthogonal constructor term rewriting
I Weak λ-calculus
I (Constructor) Term graph rewriting

each equipped with its most natural, intrinsic cost parameter,

which is polynomially related to the actual cost of their

normalization, as measured on a Turing machine

(Dal Lago and M., CiE 2006; ICALP 2009; and unpublished)
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The context:
Implicit Computational Complexity

A machine-free, logic-based investigation of the notion of

feasible computation

Feasibility through language restrictions, and not external

measure conditions

Incorporate computational complexity into formal methods in

software development and programming language design
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Implicit Computational Complexity

In the large: study and characterize complexity classes

e.g., Bellantoni-Cook; Girard’s ligth logics; etc.

In the small: study and relate machine-free models of

computation i.e., models with no notion of constant-time step
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