Invariant cost models for rewrite-based languages

Simone Martini
based on several joint papers with Ugo Dal Lago
Dipartimento di Scienze dell'Informazione Alma mater studiorum • Università di Bologna

Linearity 2009, Coimbra - September 12, 2009

Dramatis personæ

- First order rewriting, FO
- Higher order rewriting: λ-calculus, λ
- Graph rewriting, GR
in the play

May I safely play your score?

The first lines of the script

FO You know guys? I am able to simulate any of you.
λ Of course you can. We are all Turing-universal. But I may simulate you more concisely. I am higher order.
GR Come on! You are such a waste! You keep copying around subterms. I am more parsimonious of you all.
λ Say the truth: To simulate me fully, you will need to duplicate, like me.

The question

Is there a way in which our three characters can indeed simulate each other in a complexity sound and natural way?
that is
sound polynomial
natural the main cost parameter is naturally expressed in terms of the concepts the character itself understands

What we do not want

Deus ex machina

The Turing machine:
I will simulate each of you in turn. If my simulations are polynomially related in cost, then you all will be happy.

The question in full generality

> What is a good cost model for a declarative, rule-based language, taking into account (only) the intrinsic description of that language, and not (also) its implementation on a conventional machine?

where
In the intrinsic description of a declarative language, the elementary computation step (e.g., resolution, β-reduction, firing of a rewrite rule, etc.) is not a constant-time operation.

An answer?

For most such declarative languages, in their generality:
We do not know.
because the elementary computation step:

- not only looks non constant time
- but indeed is non constant (or even non poly) time

Our second character (almost): full λ-calculus

- Terms $\quad M::=x|\lambda x . M| M M$
- Reduction

$$
\begin{gathered}
\overline{(\lambda x \cdot M) N \rightarrow M\{N / x\}} \\
\frac{M \rightarrow N}{\lambda x \cdot M \rightarrow \lambda x \cdot N} \quad \frac{M \rightarrow N L \rightarrow P}{M L \rightarrow N P}
\end{gathered}
$$

- Terms may be duplicated during reduction
- Arbitray size of terms during reduction

Even with more compact reduction

- Lévy's optimal reduction as graph reduction (à la Lamping)
- Have a notion of constant-time step
- There are (simply typed) λ-terms which:
- normalize in k steps
- require $\geq O\left(2^{k}\right)$ time on a TM
(Asperti and Mairson, POPL 1998; Asperti, Coppola and M., POPL 2000)

Restrict the calculus

- Linear λ-term

Normalization is PTIME-complete
The calculus has little expressivity

- Move to weak reductions
i.e., never reduce under a λ :
$\lambda x . M$ is always a normal form (in fact, a value)

The results, in general terms

- Linear simulations between
- Orthogonal constructor term rewriting
- Weak λ-calculus
- (Constructor) Term graph rewriting
- each equipped with its most natural, intrinsic cost parameter,
- which is polynomially related to the actual cost of their normalization, as measured on a Turing machine
(Dal Lago and M., CiE 2006; ICALP 2009; and unpublished)

Part I

Term and Graph Rewriting

Again: the question

- Given an orthogonal constructor rewrite system,
- What is the relation between
- the derivational complexity of a term, i.e., the length of its derivation, and
- the time needed to rewrite it to normal form, on an efficient interpreter?
- Answer: A polynomial relation, both under innermost and outermost reduction
- Tool: a linear simulation of TR on GR.

First character:

Orthogonal constructor term rewriting

- Symbols, partioned in constructors and functions
- Patterns: terms over constructors and variables
- Rules: $\quad \mathbf{f}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right) \rightarrow \Xi t$ \mathbf{f} is a function symbol; $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}$ are patterns; t is a (general) term.
- Orthogonal: no rule overlapping; left-linear
- Innermost: the term substituted for variables in a firing do not contain any other redex
- Outermost: the term substituted for variables in a firing is not contained in any other redex

Term rewriting

- Strict separation between data (constructor terms) and programs (rules defined for functions)
- No critical pairs!

Given a term t, every innermost (outermost, respectively) reduction sequence leading t to its normal form has the same length.

Well defined:
Time $_{i}(t)$
Time $_{o}(t)$

Third character:
Term graph rewriting

- Represent a term t with a graph $[t]_{\mathcal{G}}$, fixing a root and allowing sharing

- $a(b(a(b(x), c)), b(a(b(x), c)))$
- Define a suitable "unsharing" of a graph, $\langle G\rangle_{\mathcal{R}}$

Other terms graphs

Constructor Term Graph Rewriting

- Fix a signature (with functions and constructors) labelling a graph
- In a pattern path $v_{1}, \ldots, v_{n}, \delta\left(v_{i}\right)$ is either a constructor symbol or is \perp;
- In a left path, the first $\delta\left(v_{1}\right)$ is a function symbol and v_{2}, \ldots, v_{n} is a pattern path.

Graph Rewrite Rules

Definition (Graph Rewrite Rules)

A graph rewrite rule over a signature Σ is a triple $\rho=(G, r, s)$ such that:

- G is a labelled graph;
- r, s are vertices of G, called the left root and the right root of ρ, respectively.
- Any path starting in r is a left path.

Graph Rewrite Rules, 2

- Represent rules with graph rewrite rules

$$
a(b(x), y) \rightarrow b(a(y, a(y, x)))
$$

Graph Rewrite Rules, 3

More examples: a is a function; b, c, d are constructors.

Graph Rewrite Rules, 4

More examples: a is a function; b, c, d are constructors.

Applying a rule

Graph G and rewriting rule $\rho=(H, r, s)$:

G
ρ

1. Locate a homomorphic copy of the "LHS" ($H \downarrow r$) of ρ inside G
2. Add to G a copy of the "RHS" of ρ
($H \downarrow s$ not contained in $H \downarrow r$)

Applying a rule, 2

ρ
2. Add to G a copy of the "RHS" of ρ
3. Redirect the edges from the old to the new source

Applying a rule, 3

ρ
3. Redirect the edges from the old to the new root of the rule
4. Garbage collect the nodes unreachable from the root of the graph

Applying a rule, 4

4. Garbage collect the nodes unreachable from the root of the graph

Non overlapping

Definition

Two rules $\rho=(H, r, s)$ and $\sigma=(J, p, q)$ are overlapping iff there is a term graph G and two homomorphism φ and ψ such that (ρ, φ) and (σ, ψ) are both redexes in G with $\varphi(r)=\varphi(p)$.

Definition

A constructor graph rewrite system (CGRS) over a signature Σ consists of a set of non-overlapping graph rewrite rules \mathcal{G} on Σ.

Lenght of reductions

- Theory of optimality: easy! recall: sharing, no overlapping
- Outermost reduction is the longest one
- A graph is redex-unshared iff there are no multiple paths from the root to a redex
- Innermost reduction preserves redex-unsharedness

Graph-reducing terms

Recall:

- Represent a term t with a graph $[t]$, fixing a root and allowing sharing
- Define a suitable "unsharing" of a graph, $\langle G\rangle_{\mathcal{R}}$
- Reduction on graphs can be traced back to terms:

Lemma

If $G \rightarrow I$, then $\langle G\rangle_{\mathcal{R}} \rightarrow^{+}\langle I\rangle_{\mathcal{R}}$. Moreover, if $G \rightarrow_{i} I$ and G is redex-unshared, then $\langle G\rangle_{\mathcal{R}} \rightarrow\langle I\rangle_{\mathcal{R}}$.

Graph reducibility

For every constructor rewrite system \mathcal{R} over Σ and for every term t over Σ :

Theorem (Outermost Graph-Reducibility)
(1) $t \rightarrow{ }_{o}^{n} u$, where u is in normal form; iff
(2) $[t]_{\mathcal{G}} \rightarrow{ }_{o}^{m} G$, where G is in normal form and $\langle G\rangle_{\mathcal{R}}=u$.

Moreover, $m \leq n$.
Theorem (Innermost Graph Reducibility)
(1) $t \rightarrow_{i}^{n} u$, where u is in normal form; iff
(2) $[t]_{\mathcal{G}} \rightarrow_{i}^{n} G$, where G is in normal form and $\langle G\rangle_{\mathcal{R}}=u$.

Complexity

- Let t and G be such that $[t]_{\mathcal{G}} \rightarrow_{o}^{*} G$.
- Every graph rewriting step makes the graph bigger by at most the size of the rhs of a rewrite rule. $\ln [t]_{\mathcal{G}} \rightarrow_{o}^{*} G \rightarrow{ }_{0} H,|H|-|G| \leq k ; k$ depending on \mathcal{R} but not on t
- $[t]_{\mathcal{G}} \rightarrow_{o}^{n} G$ then $|G| \leq n k+|t|$. Sharing!
- If $[t]_{\mathcal{G}} \rightarrow_{o}^{n} G$, computing a graph H such that $G \rightarrow H$ takes polynomial time in $|G|$, which is itself polynomially bounded by n and $|t|$.

Complexity

Theorem

For every orthogonal, constructor term rewriting system \mathcal{R}, there is a polynomial $p: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that for every term t the normal form of $[t]_{\mathcal{G}}$ can be computed in time at most $p\left(|t|\right.$, Time $\left._{o}(M)\right)$ when performing outermost graph reduction and in time $p\left(|t|\right.$, Time $\left._{i}(M)\right)$ when performing innermost graph reduction.

That is:
derivational complexity is a polynomially invariant cost model for orthogonal constructor term rewriting.

Part II

Term rewriting and λ-calculus

Our second character, revisited:

 weak call-by-value λ-calculus- Terms $\quad M::=x|\lambda x . M| M M$
- Values $\quad V::=x \mid \lambda x . M$
- Weak call-by-value reduction

$$
\overline{(\lambda x . M) V \rightarrow_{v} M\{V / x\}} \quad \frac{M \rightarrow_{v} N}{M L \rightarrow_{v} N L} \quad \frac{M \rightarrow_{v} N}{L M \rightarrow_{v} L N}
$$

- Values may be duplicated during reduction
- Is the number of reduction steps a good measure of actual cost?

The result

From λ to constructor rewriting:

From constructor rewriting to λ :

Relevance: specific

- The simulation cannot be obtained with Church-like encoding of data
- There is no constant-time predecessor on Church numerals Parigot, 1990
- Instead

Relevance: specific

- The simulation cannot be obtained with Church-like encoding of data
- There is no constant-time predecessor on Church numerals Parigot, 1990
- Instead

First simulation:

From λ to constructor rewriting

Idea: full defunctionalization
Any λ-abstraction becomes a constructor

$$
\begin{aligned}
{[x]_{\Phi} } & =x ; \\
{[\lambda x \cdot M]_{\Phi} } & =c_{x, M}\left(x_{1}, \ldots, x_{n}\right), \text { where } F V(\lambda x . M)=x_{1}, \ldots, x_{n} ; \\
{[M N]_{\Phi} } & =\operatorname{app}\left([M]_{\Phi},[N]_{\Phi}\right) .
\end{aligned}
$$

- Constructors: $\mathbf{c}_{x, M}$ for any M and any x.
- Functions: app.
- Reduction rules:

$$
\operatorname{app}\left(\mathbf{c}_{x, M}\left(x_{1}, \ldots, x_{n}\right), x\right) \rightarrow[M]_{\Phi}
$$

First simulation, 2

- In the other direction:

$$
\begin{aligned}
\langle x\rangle_{\wedge} & =x \\
\langle\mathbf{a p p}(u, v)\rangle_{\wedge} & =\langle u\rangle_{\wedge}\langle v\rangle_{\wedge} \\
\left\langle\mathbf{c}_{x, M}\left(t_{1}, \ldots t_{n}\right)\right\rangle_{\wedge} & =(\lambda x . M)\left\{\left\langle t_{1}\right\rangle_{\Lambda} / x_{1}, \ldots,\left\langle t_{n}\right\rangle_{\Lambda} / x_{n}\right\}
\end{aligned}
$$

- $\left\langle[M]_{\Phi}\right\rangle_{\wedge}=M$
- For canonical t, if $t \rightarrow u$, then $\langle t\rangle_{\wedge} \rightarrow_{v}\langle u\rangle_{\wedge}$

Theorem (Simulation)

Let M be a closed λ-term. The following are equivalent:
(1) $M \rightarrow{ }_{v}^{n} N$ where N is in normal form;
(2) $[M]_{\Phi} \rightarrow^{n} t$ where $\langle t\rangle_{\wedge}=N$ and t is in normal form.

Second simulation:
 From constructor rewriting to λ

First: Encode data, i.e. constructor terms

- Use Scott numerals-like encoding:

$$
\begin{aligned}
\underline{0} & \equiv \lambda x_{1} \cdot \lambda x_{2} \cdot x_{1} \\
\underline{n+1} & \equiv \lambda x_{1} \cdot \lambda x_{2} \cdot \underline{n}
\end{aligned}
$$

- Here: $\langle\rangle\rangle \wedge$: constructor terms $\rightarrow \lambda$-terms For constructors $\mathbf{c}_{1}, \ldots, \mathbf{c}_{g}$:

$$
\left\langle\left\langle\mathbf{c}_{i}\left(t_{1} \ldots, t_{n}\right)\right\rangle\right\rangle_{\wedge} \equiv \lambda x_{1} \ldots . \lambda x_{g} \cdot \lambda y \cdot x_{i}\left\langle\left\langle t_{1}\right\rangle\right\rangle_{\wedge} \ldots\left\langle\left\langle t_{n}\right\rangle\right\rangle_{\wedge} .
$$

- $\perp \equiv \lambda x_{1} \ldots . . \lambda x_{g} . \lambda y . y$ denotes an error value

Second simulation, 2

Second: Encode pattern matching

- On an example:

$$
\begin{aligned}
f\left(\mathbf{p}_{1}^{1}\left(x_{1}, x_{2}\right), \mathbf{p}_{2}^{1}\left(x_{3}\right), \mathbf{p}_{3}^{1}\left(x_{4}\right)\right) & \rightarrow t_{1} \\
\left.f\left(\mathbf{p}_{1}^{2}\left(x_{5}\right)\right), \mathbf{p}_{2}^{2}\left(x_{6}, x_{7}\right), \mathbf{p}_{3}^{2}\left(x_{8}\right)\right) & \rightarrow t_{2}
\end{aligned}
$$

- Given such a sequence α_{1}, α_{2} of patterns, construct a selector $M_{\alpha_{1}, \alpha_{2}}^{3}$ s.t., for k depending only on α_{1}, α_{2}

Second simulation, 2

Second: Encode pattern matching

- On an example:

$$
\begin{aligned}
f\left(\mathbf{p}_{1}^{1}\left(x_{1}, x_{2}\right), \mathbf{p}_{2}^{1}\left(x_{3}\right), \mathbf{p}_{3}^{1}\left(x_{4}\right)\right) & \rightarrow t_{1} \\
\left.f\left(\mathbf{p}_{1}^{2}\left(x_{5}\right)\right), \mathbf{p}_{2}^{2}\left(x_{6}, x_{7}\right), \mathbf{p}_{3}^{2}\left(x_{8}\right)\right) & \rightarrow t_{2}
\end{aligned}
$$

- Given such a sequence α_{1}, α_{2} of patterns, construct a selector $M_{\alpha_{1}, \alpha_{2}}^{3}$ s.t., for k depending only on α_{1}, α_{2}

$$
\begin{array}{r}
M_{\alpha_{1}, \alpha_{2}}^{3}\left\langle\left\langle\mathbf{p}_{1}^{1}\left(t_{1}, t_{2}\right)\right\rangle\right\rangle_{\wedge},\left\langle\left\langle\mathbf{p}_{2}^{1}\left(t_{3}\right)\right\rangle\right\rangle_{\wedge},\left\langle\left\langle\mathbf{p}_{3}^{1}\left(t_{4}\right)\right\rangle\right\rangle_{\wedge} V_{1} V_{2} \\
\rightarrow V_{V}^{k} V_{1}\left\langle\left\langle t_{1}\right\rangle\right\rangle \wedge \ldots\left\langle\left\langle t_{4}\right\rangle\right\rangle_{\Lambda}
\end{array}
$$

Second simulation, 2

Second: Encode pattern matching

- On an example:

$$
\begin{aligned}
f\left(\mathbf{p}_{1}^{1}\left(x_{1}, x_{2}\right), \mathbf{p}_{2}^{1}\left(x_{3}\right), \mathbf{p}_{3}^{1}\left(x_{4}\right)\right) & \rightarrow t_{1} \\
\left.f\left(\mathbf{p}_{1}^{2}\left(x_{5}\right)\right), \mathbf{p}_{2}^{2}\left(x_{6}, x_{7}\right), \mathbf{p}_{3}^{2}\left(x_{8}\right)\right) & \rightarrow t_{2}
\end{aligned}
$$

- Given such a sequence α_{1}, α_{2} of patterns, construct a selector $M_{\alpha_{1}, \alpha_{2}}^{3}$ s.t., for k depending only on α_{1}, α_{2}

$$
\begin{array}{r}
M_{\alpha_{1}, \alpha_{2}}^{3}\left\langle\left\langle\mathbf{p}_{1}^{2}\left(t_{5}\right)\right\rangle\right\rangle_{\Lambda},\left\langle\left\langle\mathbf{p}_{2}^{2}\left(t_{6}, t_{7}\right)\right\rangle\right\rangle \wedge,\left\langle\left\langle\mathbf{p}_{3}^{2}\left(t_{8}\right)\right\rangle\right\rangle_{\wedge} V_{1} V_{2} \\
\rightarrow{ }_{\vee}^{k} V_{2}\left\langle\left\langle t_{1}\right\rangle\right\rangle \wedge \ldots\left\langle\left\langle t_{4}\right\rangle\right\rangle \wedge
\end{array}
$$

Second simulation, 2

Second: Encode pattern matching

- On an example:

$$
\begin{aligned}
f\left(\mathbf{p}_{1}^{1}\left(x_{1}, x_{2}\right), \mathbf{p}_{2}^{1}\left(x_{3}\right), \mathbf{p}_{3}^{1}\left(x_{4}\right)\right) & \rightarrow t_{1} \\
\left.f\left(\mathbf{p}_{1}^{2}\left(x_{5}\right)\right), \mathbf{p}_{2}^{2}\left(x_{6}, x_{7}\right), \mathbf{p}_{3}^{2}\left(x_{8}\right)\right) & \rightarrow t_{2}
\end{aligned}
$$

- Given such a sequence α_{1}, α_{2} of patterns, construct a selector $M_{\alpha_{1}, \alpha_{2}}^{3}$ s.t., for k depending only on α_{1}, α_{2}

$$
\begin{aligned}
M_{\alpha_{1}, \alpha_{2}}^{3} & X_{1} X_{2} X_{3} \\
& V_{1} \\
& V_{2} \\
& { }_{v}^{k} \perp
\end{aligned}
$$

if any of the X_{i} does not match one of α_{1}, α_{2}, or is \perp.

Second simulation, 3

Third: Solve mutual recursion

$$
\begin{aligned}
\mathbf{f}_{i}\left(\alpha_{i}^{1}\right) & \rightarrow t_{i}^{1} \\
\vdots & \\
\mathbf{f}_{i}\left(\alpha_{i}^{n}\right) & \rightarrow t_{i}^{n}
\end{aligned}
$$

C-b-v fixpoint operators
For any h, there are H_{1}, \ldots, H_{h} and a bound m, such that:

$$
H_{i} V_{1} \ldots V_{h} \rightarrow_{v}^{m} V_{i}\left(\lambda x . H_{1} V_{1} \ldots V_{h} x\right) \ldots\left(\lambda x . H_{h} V_{1} \ldots V_{h} x\right)
$$

$$
\left.\left[\mathbf{f}_{i}\right]_{\Lambda} \equiv H_{i} V_{1} \cdots\left(\overline{\lambda x} \cdot \overline{\lambda y} \cdot M_{\alpha_{i}^{1}, \ldots \alpha_{i}^{n}} \bar{y}\left(\overline{\lambda z} \backslash t_{i}^{1}\right\rangle \wedge\right) \ldots\left(\overline{\lambda z}\left\langle t_{i}^{n}\right\rangle \wedge\right)\right) \cdots
$$

Second simulation, 4

Theorem: There is k such that for any \mathbf{f}
(1)

$$
\begin{gathered}
\mathbf{f}\left(t_{1}, \ldots, t_{h}\right) \longrightarrow{ }^{n} u \in \mathcal{C}(\Xi) \\
{[]_{\wedge}|\langle \rangle\rangle} \\
{[\mathbf{f}]_{\Lambda}\left\langle\left\langle t_{1}\right\rangle\right\rangle \ldots\left\langle\left\langle t_{h}\right\rangle\right\rangle \longrightarrow{ }_{v}^{k n}\langle\langle u\rangle\rangle}
\end{gathered}
$$

(2)

$$
\begin{gathered}
\mathbf{f}\left(t_{1}, \ldots, t_{h}\right) \longrightarrow{ }^{n} u \notin \mathcal{C}(\Xi) \\
{[]_{\Lambda}|\langle \rangle\rangle} \\
{[\mathbf{f}]_{\Lambda}\left\langle\left\langle t_{1}\right\rangle\right\rangle \ldots\left\langle\left\langle t_{h}\right\rangle\right\rangle \longrightarrow{ }_{v}^{k n} \stackrel{\downarrow}{\perp}}
\end{gathered}
$$

(3) $\mathbf{f}\left(t_{1}, \ldots, t_{h}\right)$ diverges, then $[\mathbf{f}]_{\Lambda}\left\langle\left\langle t_{1}\right\rangle\right\rangle \ldots\left\langle\left\langle t_{h}\right\rangle\right\rangle$ diverges.

Part III

Towards a conclusion

The results, in general terms

- Linear simulations between
- Orthogonal constructor term rewriting
- Weak λ-calculus
- (Constructor) Term graph rewriting
- each equipped with its most natural, intrinsic cost parameter,
- which is polynomially related to the actual cost of their normalization, as measured on a Turing machine
(Dal Lago and M., CiE 2006; ICALP 2009; and unpublished)

The context: Implicit Computational Complexity

- A machine-free, logic-based investigation of the notion of feasible computation
- Feasibility through language restrictions, and not external measure conditions
- Incorporate computational complexity into formal methods in software development and programming language design

Implicit Computational Complexity

- In the large: study and characterize complexity classes e.g., Bellantoni-Cook; Girard's ligth logics; etc.
- In the small: study and relate machine-free models of computation i.e., models with no notion of constant-time step

Implicit Computational Complexity

- In the large: study and characterize complexity classes e.g., Bellantoni-Cook; Girard's ligth logics; etc.
- In the small: study and relate machine-free models of computation i.e., models with no notion of constant-time step

