
Invariant cost models
for rewrite-based languages

Simone Martini
based on several joint papers with Ugo Dal Lago

Dipartimento di Scienze dell’Informazione
Alma mater studiorum � Università di Bologna

Linearity 2009, Coimbra – September 12, 2009

1 / 51

Dramatis personæ

First order rewriting, FO

Higher order rewriting: λ-calculus, λ

Graph rewriting, GR

in the play

May I safely play your score?

2 / 51

The first lines of the script

FO You know guys? I am able to simulate any of you.

λ Of course you can. We are all Turing-universal. But I may

simulate you more concisely. I am higher order.

GR Come on! You are such a waste! You keep copying around

subterms. I am more parsimonious of you all.

λ Say the truth: To simulate me fully, you will need to

duplicate, like me.

3 / 51

The question

Is there a way in which our three characters can indeed simulate

each other in a complexity sound and natural way?

that is

sound polynomial

natural the main cost parameter is naturally expressed in terms of the

concepts the character itself understands

4 / 51

What we do not want

Deus ex machina

The Turing machine:

I will simulate each of you in turn. If my simulations are

polynomially related in cost, then you all will be happy.

5 / 51

The question in full generality

What is a good cost model for a declarative, rule-based language,

taking into account (only) the intrinsic description of that

language, and not (also) its implementation on a conventional

machine?

where

In the intrinsic description of a declarative language, the

elementary computation step (e.g., resolution, β-reduction, firing

of a rewrite rule, etc.) is not a constant-time operation.

6 / 51

An answer?

For most such declarative languages, in their generality:

We do not know.

because the elementary computation step:

not only looks non constant time

but indeed is non constant (or even non poly) time

7 / 51

Our second character (almost):
full λ-calculus

Terms M ::= x | λx .M | MM

Reduction

(λx .M)N → M{N/x}

M → N
λx .M → λx .N

M → N L → P
ML → NP

Terms may be duplicated during reduction

Arbitray size of terms during reduction

8 / 51

Even with more compact reduction

Lévy’s optimal reduction as graph reduction (à la Lamping)

Have a notion of constant-time step

There are (simply typed) λ-terms which:
I normalize in k steps
I require � O(2k) time on a TM

(Asperti and Mairson, POPL 1998; Asperti, Coppola and M., POPL 2000)

9 / 51

Restrict the calculus

Linear λ-term

Normalization is PTIME-complete (Mairson, JFP 2004)

The calculus has little expressivity

Move to weak reductions

i.e., never reduce under a λ:

λx .M is always a normal form (in fact, a value)

10 / 51

The results, in general terms

Linear simulations between

I Orthogonal constructor term rewriting
I Weak λ-calculus
I (Constructor) Term graph rewriting

each equipped with its most natural, intrinsic cost parameter,

which is polynomially related to the actual cost of their

normalization, as measured on a Turing machine

(Dal Lago and M., CiE 2006; ICALP 2009; and unpublished)

11 / 51

Part I

Term and Graph Rewriting

12 / 51

Again: the question

Given an orthogonal constructor rewrite system,

What is the relation between
I the derivational complexity of a term,

i.e., the length of its derivation, and
I the time needed to rewrite it to normal form, on an efficient

interpreter?

Answer: A polynomial relation,

both under innermost and outermost reduction

Tool: a linear simulation of TR on GR.

13 / 51

First character:
Orthogonal constructor term rewriting

Symbols, partioned in constructors and functions

Patterns: terms over constructors and variables

Rules: f(p1, . . . ,pn) →Ξ t

f is a function symbol; p1, . . . ,pn are patterns; t is a

(general) term.

Orthogonal: no rule overlapping; left-linear

Innermost: the term substituted for variables in a firing do not

contain any other redex

Outermost: the term substituted for variables in a firing is not

contained in any other redex

14 / 51

Term rewriting

Strict separation between data (constructor terms) and

programs (rules defined for functions)

No critical pairs!

Given a term t, every innermost (outermost, respectively) reduction

sequence leading t to its normal form has the same length.

Well defined:

Timei (t)

Timeo(t)

15 / 51

Third character:
Term graph rewriting

Represent a term t with a graph [t]G , fixing a root and

allowing sharing '&%$!"#a

�� ��
b

��
a

������
��66666

b

��

c

?

a(b(a(b(x), c)), b(a(b(x), c)))

Define a suitable “unsharing” of a graph, hG iR

16 / 51

Other terms graphs

a

��%%

/.-,()*+b

�������

?

'&%$!"#a

��

��
b

��
a

������
��8888

? b

��
?

a(x , x) b(x) a(a(x , b(y)), b(a(x , b(y))))

17 / 51

Constructor Term Graph Rewriting

Fix a signature (with functions and constructors) labelling a

graph

In a pattern path v1, . . . , vn, δ(vi) is either a constructor

symbol or is ?;

In a left path, the first δ(v1) is a function symbol and

v2, . . . , vn is a pattern path.

18 / 51

Graph Rewrite Rules

Definition (Graph Rewrite Rules)

A graph rewrite rule over a signature Σ is a triple ρ = (G , r , s)

such that:

G is a labelled graph;

r , s are vertices of G , called the left root and the right root of

ρ, respectively.

Any path starting in r is a left path.

19 / 51

Graph Rewrite Rules, 2

Represent rules with graph rewrite rules

a(b(x), y) → b(a(y , a(y , x)))

'&%$!"#a

�������

��66666 b

��
b

��

? aoo

��55555

? a

[[

gg

20 / 51

Graph Rewrite Rules, 3

More examples: a is a function; b, c , d are constructors.

'&%$!"#a

�� ��
b

��
d

������
��66666

b

��

c

?

a(b(d(b(x), c)), b(d(b(x), c))) → x

21 / 51

Graph Rewrite Rules, 4

More examples: a is a function; b, c , d are constructors.

'&%$!"#a

��%%

b

������

?

'&%$!"#a

�������
��88888 c

b

��

b

��
? ?

a(x , x) → b(x) a(b(x), b(y)) → c

22 / 51

Applying a rule

Graph G and rewriting rule ρ = (H, r , s):

'&%$!"#a

�������

��88888

b

��

aoo

yytttttttt

c

G

'&%$!"#a

��

��666666666666 b

��
b

��

aoo

��
? c

ρ

1. Locate a homomorphic copy of the “LHS” (H ↓ r) of ρ inside G

2. Add to G a copy of the “RHS” of ρ

(H ↓ s not contained in H ↓ r)

23 / 51

Applying a rule, 2

'&%$!"#a

��					

��55555 b

��
b

��

aoo

zzuuuuuuu a

qq

yy

c

'&%$!"#a

��

��666666666666 b

��
b

��

aoo

��
? c

ρ

2. Add to G a copy of the “RHS” of ρ

3. Redirect the edges from the old to the new source

24 / 51

Applying a rule, 3

'&%$!"#a

��					
// b

��
b

��

aoo

zzuuuuuuu a

qq

yy

c

'&%$!"#a

��

��666666666666 b

��
b

��

aoo

��
? c

ρ

3. Redirect the edges from the old to the new root of the rule

4. Garbage collect the nodes unreachable from the root of the

graph

25 / 51

Applying a rule, 4

'&%$!"#a

��

��
b

��
a

������
��66666

b // c

'&%$!"#a

��

��666666666666 b

��
b

��

aoo

��
? c

ρ

4. Garbage collect the nodes unreachable from the root of the

graph

26 / 51

Non overlapping

Definition

Two rules ρ = (H, r , s) and σ = (J, p, q) are overlapping iff there

is a term graph G and two homomorphism ϕ and ψ such that

(ρ,ϕ) and (σ,ψ) are both redexes in G with ϕ(r) = ϕ(p).

Definition

A constructor graph rewrite system (CGRS) over a signature Σ

consists of a set of non-overlapping graph rewrite rules G on Σ.

27 / 51

Lenght of reductions

Theory of optimality: easy!

recall: sharing, no overlapping

Outermost reduction is the longest one

A graph is redex-unshared iff there are no multiple paths from

the root to a redex

Innermost reduction preserves redex-unsharedness

28 / 51

Graph-reducing terms

Recall:

Represent a term t with a graph [t]G , fixing a root and

allowing sharing

Define a suitable “unsharing” of a graph, hG iR

Reduction on graphs can be traced back to terms:

Lemma

If G → I , then hG iR →+ hI iR . Moreover, if G →i I and G is

redex-unshared, then hG iR → hI iR .

29 / 51

Graph reducibility

For every constructor rewrite system R over Σ and for every term

t over Σ:

Theorem (Outermost Graph-Reducibility)

1 t →n
o u, where u is in normal form; iff

2 [t]G →m
o G , where G is in normal form and hG iR = u.

Moreover, m � n.

Theorem (Innermost Graph Reducibility)

1 t →n
i u, where u is in normal form; iff

2 [t]G →n
i G , where G is in normal form and hG iR = u.

30 / 51

Complexity

Let t and G be such that [t]G →�
o G .

Every graph rewriting step makes the graph bigger by at most

the size of the rhs of a rewrite rule.

In [t]G →�
o G →o H, |H | − |G | � k ; k depending on R but not

on t

[t]G →n
o G then |G | � nk + |t |. Sharing!

If [t]G →n
o G , computing a graph H such that G → H takes

polynomial time in |G |, which is itself polynomially bounded

by n and |t |.

31 / 51

Complexity

Theorem

For every orthogonal, constructor term rewriting system R, there

is a polynomial p : N2 → N such that for every term t the normal

form of [t]G can be computed in time at most p(|t |,Timeo(M))

when performing outermost graph reduction and in time

p(|t |,Time i (M)) when performing innermost graph reduction.

That is:

derivational complexity is a polynomially invariant cost model for

orthogonal constructor term rewriting.

32 / 51

Part II

Term rewriting and λ-calculus

33 / 51

Our second character, revisited:
weak call-by-value λ-calculus

Terms M ::= x | λx .M | MM

Values V ::= x | λx .M

Weak call-by-value reduction

(λx .M)V →v M{V /x}

M →v N
ML →v NL

M →v N
LM →v LN

Values may be duplicated during reduction

Is the number of reduction steps a good measure of actual

cost? (Yes: Sands, Gustavsson, and Moran, 2002)

34 / 51

The result

From λ to constructor rewriting:

M - n
v N

[M]Φ

[]Φ
?

- nt

h i
6

From constructor rewriting to λ:

f(t1, . . . , th) - n u

[f]Λhht1ii . . . hhthii

[]Λ hh ii
?

- kn
v hhuii

?

35 / 51

Relevance: specific

The simulation cannot be obtained with Church-like encoding
of data

I There is no constant-time predecessor on Church numerals

Parigot, 1990

I Instead

Pred(succ(n)) - 1 n

[pred]Λhhsucc(n)ii
?

- k
v hhnii

?

36 / 51

Relevance: specific

The simulation cannot be obtained with Church-like encoding
of data

I There is no constant-time predecessor on Church numerals

Parigot, 1990

I Instead

Pred(succ(n)) - 1 n

[pred]Λhhsucc(n)ii
?

- k
v hhnii

?

37 / 51

First simulation:
From λ to constructor rewriting

Idea: full defunctionalization

Any λ-abstraction becomes a constructor

[x]Φ = x ;

[λx .M]Φ = cx ,M(x1, . . . , xn), where FV (λx .M) = x1, . . . , xn;

[MN]Φ = app([M]Φ, [N]Φ).

Constructors: cx ,M for any M and any x .

Functions: app.

Reduction rules:

app(cx ,M(x1, . . . , xn), x) → [M]Φ

38 / 51

First simulation, 2

In the other direction:

hxiΛ = x

happ(u, v)iΛ = huiΛhviΛ

hcx ,M(t1, . . . tn)iΛ = (λx .M){ht1iΛ/x1, . . . , htniΛ/xn}

h[M]ΦiΛ = M

For canonical t, if t → u, then htiΛ →v huiΛ

Theorem (Simulation)

Let M be a closed λ-term. The following are equivalent:

1 M →n
v N where N is in normal form;

2 [M]Φ →n t where htiΛ = N and t is in normal form.

39 / 51

Second simulation:
From constructor rewriting to λ

First: Encode data, i.e. constructor terms

Use Scott numerals-like encoding:

0 � λx1.λx2.x1

n + 1 � λx1.λx2.n

Here: hh iiΛ : constructor terms → λ-terms

For constructors c1, . . . , cg :

hhci (t1 . . . , tn)iiΛ � λx1.λxg .λy .xi hht1iiΛ . . . hhtniiΛ.

? � λx1.λxg .λy .y denotes an error value

40 / 51

Second simulation, 2

Second: Encode pattern matching

On an example:

f (p1
1(x1, x2),p1

2(x3),p1
3(x4)) → t1

f (p2
1(x5)),p2

2(x6, x7),p2
3(x8)) → t2

Given such a sequence α1, α2 of patterns, construct a selector

M3
α1,α2

s.t., for k depending only on α1, α2

41 / 51

Second simulation, 2

Second: Encode pattern matching

On an example:

f (p1
1(x1, x2),p1

2(x3),p1
3(x4)) → t1

f (p2
1(x5)),p2

2(x6, x7),p2
3(x8)) → t2

Given such a sequence α1, α2 of patterns, construct a selector

M3
α1,α2

s.t., for k depending only on α1, α2

M3
α1,α2

hhp1
1(t1, t2)iiΛ, hhp1

2(t3)iiΛ, hhp1
3(t4)iiΛ V1 V2→k

v V1hht1iiΛ . . . hht4iiΛ

42 / 51

Second simulation, 2

Second: Encode pattern matching

On an example:

f (p1
1(x1, x2),p1

2(x3),p1
3(x4)) → t1

f (p2
1(x5)),p2

2(x6, x7),p2
3(x8)) → t2

Given such a sequence α1, α2 of patterns, construct a selector

M3
α1,α2

s.t., for k depending only on α1, α2

M3
α1,α2

hhp2
1(t5)iiΛ, hhp2

2(t6, t7)iiΛ, hhp2
3(t8)iiΛ V1 V2→k

v V2hht1iiΛ . . . hht4iiΛ

43 / 51

Second simulation, 2

Second: Encode pattern matching

On an example:

f (p1
1(x1, x2),p1

2(x3),p1
3(x4)) → t1

f (p2
1(x5)),p2

2(x6, x7),p2
3(x8)) → t2

Given such a sequence α1, α2 of patterns, construct a selector

M3
α1,α2

s.t., for k depending only on α1, α2

M3
α1,α2

X1 X2 X3 V1 V2→k
v ?

if any of the Xi does not match one of α1, α2, or is ?.

44 / 51

Second simulation, 3
Third: Solve mutual recursion

fi (α1
i) → t1

i

...

fi (αn
i) → tn

i .

C-b-v fixpoint operators

For any h, there are H1, . . . ,Hh and a bound m, such that:

HiV1 . . .Vh →m
v Vi (λx .H1V1 . . .Vhx) . . . (λx .HhV1 . . .Vhx).

[fi]Λ � Hi V1 � � � (λx . λy .Mα1
i ,...α

n
i
y(λzh|t1

i |iΛ) . . . (λzh|tn
i |iΛ)) � � �Vh

45 / 51

Second simulation, 4

Theorem: There is k such that for any f
1

f(t1, . . . , th) - n u 2 C(Ξ)

[f]Λhht1ii . . . hhthii

[]Λ hh ii
?

- kn
v hhuii

?

2

f(t1, . . . , th) - n u 62 C(Ξ)

[f]Λhht1ii . . . hhthii

[]Λ hh ii
?

- kn
v ?

?

3 f(t1, . . . , th) diverges, then [f]Λhht1ii . . . hhthii diverges.

46 / 51

Part III

Towards a conclusion

47 / 51

The results, in general terms

Linear simulations between

I Orthogonal constructor term rewriting
I Weak λ-calculus
I (Constructor) Term graph rewriting

each equipped with its most natural, intrinsic cost parameter,

which is polynomially related to the actual cost of their

normalization, as measured on a Turing machine

(Dal Lago and M., CiE 2006; ICALP 2009; and unpublished)

48 / 51

The context:
Implicit Computational Complexity

A machine-free, logic-based investigation of the notion of

feasible computation

Feasibility through language restrictions, and not external

measure conditions

Incorporate computational complexity into formal methods in

software development and programming language design

49 / 51

Implicit Computational Complexity

In the large: study and characterize complexity classes

e.g., Bellantoni-Cook; Girard’s ligth logics; etc.

In the small: study and relate machine-free models of

computation i.e., models with no notion of constant-time step

50 / 51

Implicit Computational Complexity

In the large: study and characterize complexity classes

e.g., Bellantoni-Cook; Girard’s ligth logics; etc.

In the small: study and relate machine-free models of

computation i.e., models with no notion of constant-time step

51 / 51

	Term and Graph Rewriting
	Term rewriting and -calculus
	Towards a conclusion

