Invariant cost models
for rewrite-based languages

Simone Martini

based on several joint papers with Ugo Dal Lago

Dipartimento di Scienze dell'Informazione
Alma mater studiorum e Universita di Bologna

Linearity 2009, Coimbra — September 12, 2009

Dramatis persona

o First order rewriting, FO
@ Higher order rewriting: A-calculus, A

@ Graph rewriting, GR
in the play

May | safely play your score? J

The first lines of the script

FO You know guys? / am able to simulate any of you.

A Of course you can. We are all Turing-universal. But / may
simulate you more concisely. | am higher order.
GR Come on! You are such a waste! You keep copying around
subterms. / am more parsimonious of you all.

A Say the truth: To simulate me fully, you will need to
duplicate, like me.

The question

Is there a way in which our three characters can indeed simulate
each other in a complexity sound and natural way?

that is

sound polynomial
natural the main cost parameter is naturally expressed in terms of the
concepts the character itself understands

What we do not want

Deus ex machina

The Turing machine:
I will simulate each of you in turn. If my simulations are
polynomially related in cost, then you all will be happy.

The question in full generality

What is a good cost model for a declarative, rule-based language,
taking into account (only) the intrinsic description of that
language, and not (also) its implementation on a conventional
machine?

where

In the intrinsic description of a declarative language, the
elementary computation step (e.g., resolution, 3-reduction, firing
of a rewrite rule, etc.) is not a constant-time operation.

6/51

An answer?

For most such declarative languages, in their generality:

We do not know.)

because the elementary computation step:

@ not only looks non constant time

@ but indeed is non constant (or even non poly) time

Our second character (almost):
full A-calculus

Terms M = x| Ax.M | MM
Reduction
Ax.MYN — M{N/x}
M— N M—>N L—>P
Ax.M — Ax.N ML — NP
Terms may be duplicated during reduction

Arbitray size of terms during reduction

Even with more compact reduction

e Lévy's optimal reduction as graph reduction (a la Lamping)

@ Have a notion of constant-time step

@ There are (simply typed) A-terms which:

» normalize in k steps
» require > O(2%) time on a TM

(Asperti and Mairson, POPL 1998; Asperti, Coppola and M., POPL 2000)

Restrict the calculus

@ Linear A-term
Normalization is PTIME-complete (Mairson, JFP 2004)
The calculus has little expressivity

@ Move to weak reductions
i.e., never reduce under a A:
Ax.M is always a normal form (in fact, a value)

10/51

The results, in general terms

@ Linear simulations between

» Orthogonal constructor term rewriting
> Weak A-calculus
» (Constructor) Term graph rewriting

@ each equipped with its most natural, intrinsic cost parameter,

@ which is polynomially related to the actual cost of their
normalization, as measured on a Turing machine

(Dal Lago and M., CiE 2006; ICALP 2009; and unpublished)

11/51

Part |

Term and Graph Rewriting

12/51

Again: the question

@ Given an orthogonal constructor rewrite system,
@ What is the relation between

» the derivational complexity of a term,
i.e., the length of its derivation, and

» the time needed to rewrite it to normal form, on an efficient
interpreter?

@ Answer: A polynomial relation,
both under innermost and outermost reduction

@ Tool: a linear simulation of TR on GR.

13/51

First character:
Orthogonal constructor term rewriting

Symbols, partioned in constructors and functions

Patterns: terms over constructors and variables

Rules: f(p1,...,pn) ==t
f is a function symbol; p1,...,pn are patterns; t is a
(general) term.

Orthogonal: no rule overlapping; left-linear

Innermost: the term substituted for variables in a firing do not
contain any other redex

Outermost: the term substituted for variables in a firing is not
contained in any other redex {

14 /51

Term rewriting

@ Strict separation between data (constructor terms) and
programs (rules defined for functions)

@ No critical pairs!

Given a term t, every innermost (outermost, respectively) reduction
sequence leading t to its normal form has the same length.

Well defined:
Time;(t)
Time,(t)

15/51

Third character:
Term graph rewriting

@ Represent a term t with a graph [t]g, fixing a root and
allowing sharing

(@

()

b

|

a

/N
b c
i
1
o albla(b(x), c)), bla(b(x), c))

@ Define a suitable “unsharing” of a graph, (G)»

16 /51

Other terms graphs

a (b @
NV <i
i
/N
S

a(x,x) b(x) a(a(x, b(y)), b(a(x, b(y))))

Constructor Term Graph Rewriting

e Fix a signature (with functions and constructors) labelling a
graph

@ In a pattern path vi,..., Vs, 8(v;) is either a constructor
symbol or is L;

@ In a left path, the first &(v1) is a function symbol and
Vo,...,V, is a pattern path.

18 /51

Graph Rewrite Rules

Definition (Graph Rewrite Rules)

A graph rewrite rule over a signature ¥ is a triple p = (G, r, s)
such that:

@ G is a labelled graph;

@ r,s are vertices of G, called the left root and the right root of
p, respectively.

@ Any path starting in r is a left path.

19/51

Graph Rewrite Rules, 2

@ Represent rules with graph rewrite rules

a(b(x),y) — b(aly, aly, x)))

/‘K@

Graph Rewrite Rules, 3

More examples: a is a function; b, ¢, d are constructors.
b

d

Graph Rewrite Rules, 4

More examples: a is a function; b, ¢, d are constructors.

\YVa A E

b b

by

1 1
alix, x) = b(x) alb(x), bly)) — ¢

Applying a rule

Graph G and rewriting rule p = (H, r,s):

PANEE NI
N
G

p

1. Locate a homomorphic copy of the “LHS" (H | r) of p inside G
2. Add to G a copy of the “RHS” of p
(H | s not contained in H | r)

23 /51

Applying a rule, 2

!
|

C

N=<=—T
[\))
- <~—o <—

2. Add to G a copy of the “RHS" of p
3. Redirect the edges from the old to the new source

24 /51

Applying a rule, 3

!
£

N >\@
ol
- —®

X

p

3. Redirect the edges from the old to the new root of the rule
4. Garbage collect the nodes unreachable from the root of the
graph

25 /51

Applying a rule, 4

!
i

@
!
b
i

<=—o <—

i

W\
b——c¢ p

4. Garbage collect the nodes unreachable from the root of the

graph

26 /51

Non overlapping

Definition

Two rules p = (H, r,s) and 0 = (J, p, q) are overlapping iff there
is a term graph G and two homomorphism ¢ and 1 such that
(p, @) and (o,1) are both redexes in G with @(r) = @(p).

Definition
A constructor graph rewrite system (CGRS) over a signature X
consists of a set of non-overlapping graph rewrite rules G on X.

27 /51

Lenght of reductions

@ Theory of optimality: easy!
recall: sharing, no overlapping

@ Outermost reduction is the longest one

@ A graph is redex-unshared iff there are no multiple paths from
the root to a redex

@ Innermost reduction preserves redex-unsharedness

28 /51

Graph-reducing terms

Recall:

@ Represent a term t with a graph [t]g, fixing a root and
allowing sharing

@ Define a suitable “unsharing” of a graph, (G)z

@ Reduction on graphs can be traced back to terms:

Lemma

If G — I, then (G)r —T (I)». Moreover, if G —; | and G is
redex-unshared, then (G)r — (I)%.

29 /51

Graph reducibility

For every constructor rewrite system R over X and for every term
t over X:

Theorem (Outermost Graph-Reducibility)

©Q t —] u, where u is in normal form; iff

@ [tlg —7 G, where G is in normal form and (G)r = u.

Moreover, m < n.

Theorem (Innermost Graph Reducibility)

©Q t —7 u, where u is in normal form; iff

Q [tlg —] G, where G is in normal form and (G)r = u.

30/51

Complexity

Let t and G be such that [tlg —} G.

Every graph rewriting step makes the graph bigger by at most
the size of the rhs of a rewrite rule.

In [tlg =% G —, H, |[H|—|G| < k; k depending on R but not
on t

[tlg —2 G then |G| < nk + |t|. Sharing!

If [tlg —2 G, computing a graph H such that G — H takes
polynomial time in |G|, which is itself polynomially bounded
by n and |t|.

31/51

Complexity

Theorem

For every orthogonal, constructor term rewriting system R, there
is a polynomial p : N> — N such that for every term t the normal
form of [tlg can be computed in time at most p(|t|, Time,(M))
when performing outermost graph reduction and in time

p(|tl, Teme;(M)) when performing innermost graph reduction.

That is:
derivational complexity is a polynomially invariant cost model for
orthogonal constructor term rewriting.

32/51

Part Il

Term rewriting and A-calculus

33/51

Our second character, revisited:
weak call-by-value A-calculus

Terms M 2= x| Ax.M | MM
Values Vi=x|Ax.M

Weak call-by-value reduction

M-, N M—, N
Ax.M)V —, M{V/x} ML —, NL LM —, LN

Values may be duplicated during reduction

Is the number of reduction steps a good measure of actual
Cost? (Yes: Sands, Gustavsson, and Moran, 2002 Q

34 /51

The result

From A to constructor rewriting:

M—"N
[]CD‘|; J
Mo — "t

From constructor rewriting to A:

35/51

Relevance: specific

@ The simulation cannot be obtained with Church-like encoding
of data

» There is no constant-time predecessor on Church numerals

Parigot, 1990

36 /51

Relevance: specific

@ The simulation cannot be obtained with Church-like encoding
of data

» There is no constant-time predecessor on Church numerals

Parigot, 1990

» |nstead

Pred(succ(n)) — ' n

]

[pred] a {(succ(n) — 5 {n)

37/51

First simulation:
From A to constructor rewriting

Idea: full defunctionalization
Any A-abstraction becomes a constructor

Xlo = x;
Ax.Mlo = cxmlxi,...,xn), where FV(Ax.M) = x1,...,Xp;
[MNlo = app(Mlo, [N]o).

e Constructors: c, p for any M and any x.
e Functions: app.

@ Reduction rules:

app(cx,/\/l(xlv' .. vXn),X) — [M](D

38 /51

First simulation, 2

@ In the other direction:

(XA = x
(app(u,v))A = (A(v)A
(cxmlty, .. ta)A = (AMY{{ti)a/x1, ..., (ta) A/Xn}

o (Mlp)a=M

e For canonical t, if t — u, then (t)aA —y (U)A
Theorem (Simulation)

Let M be a closed A-term. The following are equivalent:

Q@ M = N where N is in normal form;

Q@ [M]p —" t where (t)po = N and t is in normal form.

Second simulation:
From constructor rewriting to A

First: Encode data, i.e. constructor terms

@ Use Scott numerals-like encoding:

o

=)\Xl.)\Xz.Xl
n+1 = Axi.Axo.n

@ Here: {{) A : constructor terms — A-terms
For constructors cq,. .., Cg:

(eilty ot DA = Axte o Axg Ay xil B A - - (E) A

o L =Axg..... Axg.Ay.y denotes an error value

40 /51

Second simulation, 2

Second: Encode pattern matching

@ On an example:

f(p}(x1, %), P3(x3),

(xa)) — t
f(pi(xs)), P3(x6, x7), P3(xs

p3
p%() — B

@ Given such a sequence 4, xo of patterns, construct a selector

ng,cxz s.t., for k depending only on o, &p

41 /51

Second simulation, 2

Second: Encode pattern matching

@ On an example:

f(p}(x1, %), P3(x3),

(xa)) — t
f(pi(xs)), P3(x6, x7), P3(xs

1
P3
2
p3(xg)) — b
@ Given such a sequence 4, xo of patterns, construct a selector

ng,cxz s.t., for k depending only on o, &p

M3, (1t) A, (P3(t)) A, (P3(ta) A Vi Va
=8 Vitiha. .. (taha

42 /51

Second simulation, 2

Second: Encode pattern matching

@ On an example:

f(p}(x1, %), P3(x3),

(xa)) — t
f(pi(xs)), P3(x6, x7), P3(xs

1
P3
2
p3(xg)) — b
@ Given such a sequence 4, xo of patterns, construct a selector

ng,cxz s.t., for k depending only on o, &p

M3, s (PE(ts)) A, (P3(ts, t1)) A, (P3(8)NA Vi V2
=y Val(tiha. . (tah A

43 /51

Second simulation, 2

Second: Encode pattern matching

@ On an example:

f(p10x1, %), p3(x3),P3(xa)) — &

P}
f(p2(xs)), P3(%6, x7), P3(x8)) — t

@ Given such a sequence 4, xo of patterns, construct a selector
M3

oo St for k depending only on &1, x»

M3 Xi Xo X3 Vi Vs

k
-, L

x1,62

if any of the X; does not match one of &y, &y, oris L.

44 /51

Second simulation, 3

Third: Solve mutual recursion

C-b-v fixpoint operators
For any h, there are Hy,...,Hp and a bound m, such that:

H;Vl ce Vh —)Vm \/,'(7\X.H1V1 Ce VhX) Ce (7\X.HhV1 Ce VhX).

45 /51

Second simulation, 4

Theorem: There is k such that for any f

o
f(ty,...,.tn) ——"u € C(2)
[]/\I« » I
[FIAL) ... () — 4" (u))
2]

kn
v L

© f(t,...,tn) diverges, then [fIA{(t1)) ... {(tn)) diverges.

Part Il

Towards a conclusion

47 /51

The results, in general terms

@ Linear simulations between

» Orthogonal constructor term rewriting
> Weak A-calculus
» (Constructor) Term graph rewriting

@ each equipped with its most natural, intrinsic cost parameter,

@ which is polynomially related to the actual cost of their
normalization, as measured on a Turing machine

(Dal Lago and M., CiE 2006; ICALP 2009; and unpublished)

48 /51

The context:
Implicit Computational Complexity

@ A machine-free, logic-based investigation of the notion of
feasible computation

o Feasibility through language restrictions, and not external
measure conditions

@ Incorporate computational complexity into formal methods in
software development and programming language design

49 /51

Implicit Computational Complexity

@ In the large: study and characterize complexity classes
e.g., Bellantoni-Cook; Girard's ligth logics; etc.

@ In the small: study and relate machine-free models of
computation i.e., models with no notion of constant-time step

50 /51

Implicit Computational Complexity

@ In the small: study and relate machine-free models of
computation i.e., models with no notion of constant-time step

51/51

	Term and Graph Rewriting
	Term rewriting and -calculus
	Towards a conclusion

